Nadav Rotem | e7b6a8a | 2013-03-28 22:34:46 +0000 | [diff] [blame] | 1 | //=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the machine model for Haswell to support instruction |
| 11 | // scheduling and other instruction cost heuristics. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | def HaswellModel : SchedMachineModel { |
| 16 | // All x86 instructions are modeled as a single micro-op, and HW can decode 4 |
| 17 | // instructions per cycle. |
| 18 | let IssueWidth = 4; |
Andrew Trick | 18dc3da | 2013-06-15 04:50:02 +0000 | [diff] [blame] | 19 | let MicroOpBufferSize = 192; // Based on the reorder buffer. |
Nadav Rotem | e7b6a8a | 2013-03-28 22:34:46 +0000 | [diff] [blame] | 20 | let LoadLatency = 4; |
Nadav Rotem | e7b6a8a | 2013-03-28 22:34:46 +0000 | [diff] [blame] | 21 | let MispredictPenalty = 16; |
| 22 | } |
| 23 | |
| 24 | let SchedModel = HaswellModel in { |
| 25 | |
| 26 | // Haswell can issue micro-ops to 8 different ports in one cycle. |
| 27 | |
| 28 | // Ports 0, 1, 5, 6 and 7 handle all computation. |
| 29 | // Port 4 gets the data half of stores. Store data can be available later than |
| 30 | // the store address, but since we don't model the latency of stores, we can |
| 31 | // ignore that. |
| 32 | // Ports 2 and 3 are identical. They handle loads and the address half of |
| 33 | // stores. Port 7 can handle address calculations. |
| 34 | def HWPort0 : ProcResource<1>; |
| 35 | def HWPort1 : ProcResource<1>; |
| 36 | def HWPort2 : ProcResource<1>; |
| 37 | def HWPort3 : ProcResource<1>; |
| 38 | def HWPort4 : ProcResource<1>; |
| 39 | def HWPort5 : ProcResource<1>; |
| 40 | def HWPort6 : ProcResource<1>; |
| 41 | def HWPort7 : ProcResource<1>; |
| 42 | |
| 43 | // Many micro-ops are capable of issuing on multiple ports. |
| 44 | def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>; |
| 45 | def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>; |
| 46 | def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>; |
| 47 | def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>; |
| 48 | def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>; |
| 49 | def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>; |
| 50 | def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>; |
| 51 | |
Andrew Trick | 40c4f38 | 2013-06-15 04:50:06 +0000 | [diff] [blame] | 52 | // 60 Entry Unified Scheduler |
| 53 | def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4, |
| 54 | HWPort5, HWPort6, HWPort7]> { |
| 55 | let BufferSize=60; |
| 56 | } |
| 57 | |
Andrew Trick | e1d88cf | 2013-04-02 01:58:47 +0000 | [diff] [blame] | 58 | // Integer division issued on port 0. |
| 59 | def HWDivider : ProcResource<1>; |
Nadav Rotem | e7b6a8a | 2013-03-28 22:34:46 +0000 | [diff] [blame] | 60 | |
| 61 | // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 |
| 62 | // cycles after the memory operand. |
| 63 | def : ReadAdvance<ReadAfterLd, 4>; |
| 64 | |
| 65 | // Many SchedWrites are defined in pairs with and without a folded load. |
| 66 | // Instructions with folded loads are usually micro-fused, so they only appear |
| 67 | // as two micro-ops when queued in the reservation station. |
| 68 | // This multiclass defines the resource usage for variants with and without |
| 69 | // folded loads. |
| 70 | multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW, |
| 71 | ProcResourceKind ExePort, |
| 72 | int Lat> { |
| 73 | // Register variant is using a single cycle on ExePort. |
| 74 | def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } |
| 75 | |
| 76 | // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the |
| 77 | // latency. |
| 78 | def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> { |
| 79 | let Latency = !add(Lat, 4); |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | // A folded store needs a cycle on port 4 for the store data, but it does not |
| 84 | // need an extra port 2/3 cycle to recompute the address. |
| 85 | def : WriteRes<WriteRMW, [HWPort4]>; |
| 86 | |
| 87 | def : WriteRes<WriteStore, [HWPort237, HWPort4]>; |
| 88 | def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; } |
| 89 | def : WriteRes<WriteMove, [HWPort0156]>; |
| 90 | def : WriteRes<WriteZero, []>; |
| 91 | |
| 92 | defm : HWWriteResPair<WriteALU, HWPort0156, 1>; |
| 93 | defm : HWWriteResPair<WriteIMul, HWPort1, 3>; |
Andrew Trick | 7201f4f | 2013-06-21 18:33:04 +0000 | [diff] [blame^] | 94 | def : WriteRes<WriteIMulH, []> { let Latency = 3; } |
Nadav Rotem | e7b6a8a | 2013-03-28 22:34:46 +0000 | [diff] [blame] | 95 | defm : HWWriteResPair<WriteShift, HWPort056, 1>; |
| 96 | defm : HWWriteResPair<WriteJump, HWPort5, 1>; |
| 97 | |
| 98 | // This is for simple LEAs with one or two input operands. |
| 99 | // The complex ones can only execute on port 1, and they require two cycles on |
| 100 | // the port to read all inputs. We don't model that. |
| 101 | def : WriteRes<WriteLEA, [HWPort15]>; |
| 102 | |
| 103 | // This is quite rough, latency depends on the dividend. |
| 104 | def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> { |
| 105 | let Latency = 25; |
| 106 | let ResourceCycles = [1, 10]; |
| 107 | } |
| 108 | def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> { |
| 109 | let Latency = 29; |
| 110 | let ResourceCycles = [1, 1, 10]; |
| 111 | } |
| 112 | |
| 113 | // Scalar and vector floating point. |
| 114 | defm : HWWriteResPair<WriteFAdd, HWPort1, 3>; |
| 115 | defm : HWWriteResPair<WriteFMul, HWPort0, 5>; |
| 116 | defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles. |
| 117 | defm : HWWriteResPair<WriteFRcp, HWPort0, 5>; |
| 118 | defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>; |
| 119 | defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>; |
| 120 | defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>; |
| 121 | defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>; |
| 122 | |
| 123 | // Vector integer operations. |
| 124 | defm : HWWriteResPair<WriteVecShift, HWPort05, 1>; |
| 125 | defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>; |
| 126 | defm : HWWriteResPair<WriteVecALU, HWPort15, 1>; |
| 127 | defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>; |
| 128 | defm : HWWriteResPair<WriteShuffle, HWPort15, 1>; |
| 129 | |
| 130 | def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; } |
| 131 | def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; } |
| 132 | } // SchedModel |