Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 1 | //===--- RDFLiveness.cpp --------------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Computation of the liveness information from the data-flow graph. |
| 11 | // |
| 12 | // The main functionality of this code is to compute block live-in |
| 13 | // information. With the live-in information in place, the placement |
| 14 | // of kill flags can also be recalculated. |
| 15 | // |
| 16 | // The block live-in calculation is based on the ideas from the following |
| 17 | // publication: |
| 18 | // |
| 19 | // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. |
| 20 | // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." |
| 21 | // ACM Transactions on Architecture and Code Optimization, Association for |
| 22 | // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance |
| 23 | // and Embedded Architectures and Compilers", 8 (4), |
| 24 | // <10.1145/2086696.2086706>. <hal-00647369> |
| 25 | // |
| 26 | #include "RDFGraph.h" |
| 27 | #include "RDFLiveness.h" |
| 28 | #include "llvm/ADT/SetVector.h" |
| 29 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 30 | #include "llvm/CodeGen/MachineDominanceFrontier.h" |
| 31 | #include "llvm/CodeGen/MachineDominators.h" |
| 32 | #include "llvm/CodeGen/MachineFunction.h" |
| 33 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 34 | #include "llvm/Target/TargetRegisterInfo.h" |
| 35 | |
| 36 | using namespace llvm; |
| 37 | using namespace rdf; |
| 38 | |
| 39 | namespace rdf { |
| 40 | template<> |
| 41 | raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) { |
| 42 | OS << '{'; |
| 43 | for (auto I : P.Obj) { |
| 44 | OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{'; |
| 45 | for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { |
| 46 | OS << Print<NodeId>(*J, P.G); |
| 47 | if (++J != E) |
| 48 | OS << ','; |
| 49 | } |
| 50 | OS << '}'; |
| 51 | } |
| 52 | OS << " }"; |
| 53 | return OS; |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | // The order in the returned sequence is the order of reaching defs in the |
| 58 | // upward traversal: the first def is the closest to the given reference RefA, |
| 59 | // the next one is further up, and so on. |
| 60 | // The list ends at a reaching phi def, or when the reference from RefA is |
| 61 | // covered by the defs in the list (see FullChain). |
| 62 | // This function provides two modes of operation: |
| 63 | // (1) Returning the sequence of reaching defs for a particular reference |
| 64 | // node. This sequence will terminate at the first phi node [1]. |
| 65 | // (2) Returning a partial sequence of reaching defs, where the final goal |
| 66 | // is to traverse past phi nodes to the actual defs arising from the code |
| 67 | // itself. |
| 68 | // In mode (2), the register reference for which the search was started |
| 69 | // may be different from the reference node RefA, for which this call was |
| 70 | // made, hence the argument RefRR, which holds the original register. |
| 71 | // Also, some definitions may have already been encountered in a previous |
| 72 | // call that will influence register covering. The register references |
| 73 | // already defined are passed in through DefRRs. |
| 74 | // In mode (1), the "continuation" considerations do not apply, and the |
| 75 | // RefRR is the same as the register in RefA, and the set DefRRs is empty. |
| 76 | // |
| 77 | // [1] It is possible for multiple phi nodes to be included in the returned |
| 78 | // sequence: |
| 79 | // SubA = phi ... |
| 80 | // SubB = phi ... |
| 81 | // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) |
| 82 | // However, these phi nodes are independent from one another in terms of |
| 83 | // the data-flow. |
| 84 | |
| 85 | NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, |
| 86 | NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) { |
| 87 | SetVector<NodeId> DefQ; |
| 88 | SetVector<NodeId> Owners; |
| 89 | |
| 90 | // The initial queue should not have reaching defs for shadows. The |
| 91 | // whole point of a shadow is that it will have a reaching def that |
| 92 | // is not aliased to the reaching defs of the related shadows. |
| 93 | NodeId Start = RefA.Id; |
| 94 | auto SNA = DFG.addr<RefNode*>(Start); |
| 95 | if (NodeId RD = SNA.Addr->getReachingDef()) |
| 96 | DefQ.insert(RD); |
| 97 | |
| 98 | // Collect all the reaching defs, going up until a phi node is encountered, |
| 99 | // or there are no more reaching defs. From this set, the actual set of |
| 100 | // reaching defs will be selected. |
| 101 | // The traversal upwards must go on until a covering def is encountered. |
| 102 | // It is possible that a collection of non-covering (individually) defs |
| 103 | // will be sufficient, but keep going until a covering one is found. |
| 104 | for (unsigned i = 0; i < DefQ.size(); ++i) { |
| 105 | auto TA = DFG.addr<DefNode*>(DefQ[i]); |
| 106 | if (TA.Addr->getFlags() & NodeAttrs::PhiRef) |
| 107 | continue; |
| 108 | // Stop at the covering/overwriting def of the initial register reference. |
| 109 | RegisterRef RR = TA.Addr->getRegRef(); |
| 110 | if (RAI.covers(RR, RefRR)) { |
| 111 | uint16_t Flags = TA.Addr->getFlags(); |
| 112 | if (!(Flags & NodeAttrs::Preserving)) |
| 113 | continue; |
| 114 | } |
| 115 | // Get the next level of reaching defs. This will include multiple |
| 116 | // reaching defs for shadows. |
| 117 | for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) |
| 118 | if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) |
| 119 | DefQ.insert(RD); |
| 120 | } |
| 121 | |
| 122 | // Remove all non-phi defs that are not aliased to RefRR, and collect |
| 123 | // the owners of the remaining defs. |
| 124 | SetVector<NodeId> Defs; |
| 125 | for (auto N : DefQ) { |
| 126 | auto TA = DFG.addr<DefNode*>(N); |
| 127 | bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; |
| 128 | if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef())) |
| 129 | continue; |
| 130 | Defs.insert(TA.Id); |
| 131 | Owners.insert(TA.Addr->getOwner(DFG).Id); |
| 132 | } |
| 133 | |
| 134 | // Return the MachineBasicBlock containing a given instruction. |
| 135 | auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* { |
| 136 | if (IA.Addr->getKind() == NodeAttrs::Stmt) |
| 137 | return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent(); |
| 138 | assert(IA.Addr->getKind() == NodeAttrs::Phi); |
| 139 | NodeAddr<PhiNode*> PA = IA; |
| 140 | NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG); |
| 141 | return BA.Addr->getCode(); |
| 142 | }; |
| 143 | // Less(A,B) iff instruction A is further down in the dominator tree than B. |
| 144 | auto Less = [&Block,this] (NodeId A, NodeId B) -> bool { |
| 145 | if (A == B) |
| 146 | return false; |
| 147 | auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B); |
| 148 | MachineBasicBlock *BA = Block(OA), *BB = Block(OB); |
| 149 | if (BA != BB) |
| 150 | return MDT.dominates(BB, BA); |
| 151 | // They are in the same block. |
| 152 | bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; |
| 153 | bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; |
| 154 | if (StmtA) { |
| 155 | if (!StmtB) // OB is a phi and phis dominate statements. |
| 156 | return true; |
| 157 | auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode(); |
| 158 | auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode(); |
| 159 | // The order must be linear, so tie-break such equalities. |
| 160 | if (CA == CB) |
| 161 | return A < B; |
| 162 | return MDT.dominates(CB, CA); |
| 163 | } else { |
| 164 | // OA is a phi. |
| 165 | if (StmtB) |
| 166 | return false; |
| 167 | // Both are phis. There is no ordering between phis (in terms of |
| 168 | // the data-flow), so tie-break this via node id comparison. |
| 169 | return A < B; |
| 170 | } |
| 171 | }; |
| 172 | |
| 173 | std::vector<NodeId> Tmp(Owners.begin(), Owners.end()); |
| 174 | std::sort(Tmp.begin(), Tmp.end(), Less); |
| 175 | |
| 176 | // The vector is a list of instructions, so that defs coming from |
| 177 | // the same instruction don't need to be artificially ordered. |
| 178 | // Then, when computing the initial segment, and iterating over an |
| 179 | // instruction, pick the defs that contribute to the covering (i.e. is |
| 180 | // not covered by previously added defs). Check the defs individually, |
| 181 | // i.e. first check each def if is covered or not (without adding them |
| 182 | // to the tracking set), and then add all the selected ones. |
| 183 | |
| 184 | // The reason for this is this example: |
| 185 | // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). |
| 186 | // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be |
| 187 | // covered if we added A first, and A would be covered |
| 188 | // if we added B first. |
| 189 | |
| 190 | NodeList RDefs; |
| 191 | RegisterSet RRs = DefRRs; |
| 192 | |
| 193 | auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool { |
| 194 | return TA.Addr->getKind() == NodeAttrs::Def && |
| 195 | Defs.count(TA.Id); |
| 196 | }; |
| 197 | for (auto T : Tmp) { |
| 198 | if (!FullChain && RAI.covers(RRs, RefRR)) |
| 199 | break; |
| 200 | auto TA = DFG.addr<InstrNode*>(T); |
| 201 | bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); |
| 202 | NodeList Ds; |
| 203 | for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) { |
| 204 | auto QR = DA.Addr->getRegRef(); |
| 205 | // Add phi defs even if they are covered by subsequent defs. This is |
| 206 | // for cases where the reached use is not covered by any of the defs |
| 207 | // encountered so far: the phi def is needed to expose the liveness |
| 208 | // of that use to the entry of the block. |
| 209 | // Example: |
| 210 | // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. |
| 211 | // d2<R3>(d1,,u3), ... |
| 212 | // ..., u3<D1>(d2) This use needs to be live on entry. |
| 213 | if (FullChain || IsPhi || !RAI.covers(RRs, QR)) |
| 214 | Ds.push_back(DA); |
| 215 | } |
| 216 | RDefs.insert(RDefs.end(), Ds.begin(), Ds.end()); |
| 217 | for (NodeAddr<DefNode*> DA : Ds) { |
| 218 | // When collecting a full chain of definitions, do not consider phi |
| 219 | // defs to actually define a register. |
| 220 | uint16_t Flags = DA.Addr->getFlags(); |
| 221 | if (!FullChain || !(Flags & NodeAttrs::PhiRef)) |
| 222 | if (!(Flags & NodeAttrs::Preserving)) |
| 223 | RRs.insert(DA.Addr->getRegRef()); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | return RDefs; |
| 228 | } |
| 229 | |
| 230 | |
| 231 | static const RegisterSet NoRegs; |
| 232 | |
| 233 | NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) { |
| 234 | return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs); |
| 235 | } |
| 236 | |
| 237 | |
| 238 | void Liveness::computePhiInfo() { |
| 239 | NodeList Phis; |
| 240 | NodeAddr<FuncNode*> FA = DFG.getFunc(); |
| 241 | auto Blocks = FA.Addr->members(DFG); |
| 242 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 243 | auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
| 244 | Phis.insert(Phis.end(), Ps.begin(), Ps.end()); |
| 245 | } |
| 246 | |
| 247 | // phi use -> (map: reaching phi -> set of registers defined in between) |
| 248 | std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp; |
| 249 | std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. |
| 250 | |
| 251 | // Go over all phis. |
| 252 | for (NodeAddr<PhiNode*> PhiA : Phis) { |
| 253 | // Go over all defs and collect the reached uses that are non-phi uses |
| 254 | // (i.e. the "real uses"). |
| 255 | auto &RealUses = RealUseMap[PhiA.Id]; |
| 256 | auto PhiRefs = PhiA.Addr->members(DFG); |
| 257 | |
| 258 | // Have a work queue of defs whose reached uses need to be found. |
| 259 | // For each def, add to the queue all reached (non-phi) defs. |
| 260 | SetVector<NodeId> DefQ; |
| 261 | NodeSet PhiDefs; |
| 262 | for (auto R : PhiRefs) { |
| 263 | if (!DFG.IsRef<NodeAttrs::Def>(R)) |
| 264 | continue; |
| 265 | DefQ.insert(R.Id); |
| 266 | PhiDefs.insert(R.Id); |
| 267 | } |
| 268 | for (unsigned i = 0; i < DefQ.size(); ++i) { |
| 269 | NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]); |
| 270 | NodeId UN = DA.Addr->getReachedUse(); |
| 271 | while (UN != 0) { |
| 272 | NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN); |
| 273 | if (!(A.Addr->getFlags() & NodeAttrs::PhiRef)) |
| 274 | RealUses[getRestrictedRegRef(A)].insert(A.Id); |
| 275 | UN = A.Addr->getSibling(); |
| 276 | } |
| 277 | NodeId DN = DA.Addr->getReachedDef(); |
| 278 | while (DN != 0) { |
| 279 | NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN); |
| 280 | for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { |
| 281 | uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags(); |
| 282 | // Must traverse the reached-def chain. Consider: |
| 283 | // def(D0) -> def(R0) -> def(R0) -> use(D0) |
| 284 | // The reachable use of D0 passes through a def of R0. |
| 285 | if (!(Flags & NodeAttrs::PhiRef)) |
| 286 | DefQ.insert(T.Id); |
| 287 | } |
| 288 | DN = A.Addr->getSibling(); |
| 289 | } |
| 290 | } |
| 291 | // Filter out these uses that appear to be reachable, but really |
| 292 | // are not. For example: |
| 293 | // |
| 294 | // R1:0 = d1 |
| 295 | // = R1:0 u2 Reached by d1. |
| 296 | // R0 = d3 |
| 297 | // = R1:0 u4 Still reached by d1: indirectly through |
| 298 | // the def d3. |
| 299 | // R1 = d5 |
| 300 | // = R1:0 u6 Not reached by d1 (covered collectively |
| 301 | // by d3 and d5), but following reached |
| 302 | // defs and uses from d1 will lead here. |
| 303 | auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool { |
| 304 | return PhiDefs.count(DA.Id); |
| 305 | }; |
| 306 | for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { |
| 307 | // For each reached register UI->first, there is a set UI->second, of |
| 308 | // uses of it. For each such use, check if it is reached by this phi, |
| 309 | // i.e. check if the set of its reaching uses intersects the set of |
| 310 | // this phi's defs. |
| 311 | auto &Uses = UI->second; |
| 312 | for (auto I = Uses.begin(), E = Uses.end(); I != E; ) { |
| 313 | auto UA = DFG.addr<UseNode*>(*I); |
| 314 | NodeList RDs = getAllReachingDefs(UI->first, UA); |
| 315 | if (std::any_of(RDs.begin(), RDs.end(), HasDef)) |
| 316 | ++I; |
| 317 | else |
| 318 | I = Uses.erase(I); |
| 319 | } |
| 320 | if (Uses.empty()) |
| 321 | UI = RealUses.erase(UI); |
| 322 | else |
| 323 | ++UI; |
| 324 | } |
| 325 | |
| 326 | // If this phi reaches some "real" uses, add it to the queue for upward |
| 327 | // propagation. |
| 328 | if (!RealUses.empty()) |
| 329 | PhiUQ.push_back(PhiA.Id); |
| 330 | |
| 331 | // Go over all phi uses and check if the reaching def is another phi. |
| 332 | // Collect the phis that are among the reaching defs of these uses. |
| 333 | // While traversing the list of reaching defs for each phi use, collect |
| 334 | // the set of registers defined between this phi (Phi) and the owner phi |
| 335 | // of the reaching def. |
| 336 | for (auto I : PhiRefs) { |
| 337 | if (!DFG.IsRef<NodeAttrs::Use>(I)) |
| 338 | continue; |
| 339 | NodeAddr<UseNode*> UA = I; |
| 340 | auto &UpMap = PhiUp[UA.Id]; |
| 341 | RegisterSet DefRRs; |
| 342 | for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) { |
| 343 | if (DA.Addr->getFlags() & NodeAttrs::PhiRef) |
| 344 | UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs; |
| 345 | else |
| 346 | DefRRs.insert(DA.Addr->getRegRef()); |
| 347 | } |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | if (Trace) { |
| 352 | dbgs() << "Phi-up-to-phi map:\n"; |
| 353 | for (auto I : PhiUp) { |
| 354 | dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {"; |
| 355 | for (auto R : I.second) |
| 356 | dbgs() << ' ' << Print<NodeId>(R.first, DFG) |
| 357 | << Print<RegisterSet>(R.second, DFG); |
| 358 | dbgs() << " }\n"; |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | // Propagate the reached registers up in the phi chain. |
| 363 | // |
| 364 | // The following type of situation needs careful handling: |
| 365 | // |
| 366 | // phi d1<R1:0> (1) |
| 367 | // | |
| 368 | // ... d2<R1> |
| 369 | // | |
| 370 | // phi u3<R1:0> (2) |
| 371 | // | |
| 372 | // ... u4<R1> |
| 373 | // |
| 374 | // The phi node (2) defines a register pair R1:0, and reaches a "real" |
| 375 | // use u4 of just R1. The same phi node is also known to reach (upwards) |
| 376 | // the phi node (1). However, the use u4 is not reached by phi (1), |
| 377 | // because of the intervening definition d2 of R1. The data flow between |
| 378 | // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. |
| 379 | // |
| 380 | // When propagating uses up the phi chains, get the all reaching defs |
| 381 | // for a given phi use, and traverse the list until the propagated ref |
| 382 | // is covered, or until or until reaching the final phi. Only assume |
| 383 | // that the reference reaches the phi in the latter case. |
| 384 | |
| 385 | for (unsigned i = 0; i < PhiUQ.size(); ++i) { |
| 386 | auto PA = DFG.addr<PhiNode*>(PhiUQ[i]); |
| 387 | auto &RealUses = RealUseMap[PA.Id]; |
| 388 | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| 389 | NodeAddr<UseNode*> UA = U; |
| 390 | auto &UpPhis = PhiUp[UA.Id]; |
| 391 | for (auto UP : UpPhis) { |
| 392 | bool Changed = false; |
| 393 | auto &MidDefs = UP.second; |
| 394 | // Collect the set UpReached of uses that are reached by the current |
| 395 | // phi PA, and are not covered by any intervening def between PA and |
| 396 | // the upward phi UP. |
| 397 | RegisterSet UpReached; |
| 398 | for (auto T : RealUses) { |
| 399 | if (!isRestricted(PA, UA, T.first)) |
| 400 | continue; |
| 401 | if (!RAI.covers(MidDefs, T.first)) |
| 402 | UpReached.insert(T.first); |
| 403 | } |
| 404 | if (UpReached.empty()) |
| 405 | continue; |
| 406 | // Update the set PRUs of real uses reached by the upward phi UP with |
| 407 | // the actual set of uses (UpReached) that the UP phi reaches. |
| 408 | auto &PRUs = RealUseMap[UP.first]; |
| 409 | for (auto R : UpReached) { |
| 410 | unsigned Z = PRUs[R].size(); |
| 411 | PRUs[R].insert(RealUses[R].begin(), RealUses[R].end()); |
| 412 | Changed |= (PRUs[R].size() != Z); |
| 413 | } |
| 414 | if (Changed) |
| 415 | PhiUQ.push_back(UP.first); |
| 416 | } |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | if (Trace) { |
| 421 | dbgs() << "Real use map:\n"; |
| 422 | for (auto I : RealUseMap) { |
| 423 | dbgs() << "phi " << Print<NodeId>(I.first, DFG); |
| 424 | NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first); |
| 425 | NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); |
| 426 | if (!Ds.empty()) { |
| 427 | RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(); |
| 428 | dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>'; |
| 429 | } else { |
| 430 | dbgs() << "<noreg>"; |
| 431 | } |
| 432 | dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n'; |
| 433 | } |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | |
| 438 | void Liveness::computeLiveIns() { |
| 439 | // Populate the node-to-block map. This speeds up the calculations |
| 440 | // significantly. |
| 441 | NBMap.clear(); |
| 442 | for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { |
| 443 | MachineBasicBlock *BB = BA.Addr->getCode(); |
| 444 | for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { |
| 445 | for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) |
| 446 | NBMap.insert(std::make_pair(RA.Id, BB)); |
| 447 | NBMap.insert(std::make_pair(IA.Id, BB)); |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | MachineFunction &MF = DFG.getMF(); |
| 452 | |
| 453 | // Compute IDF first, then the inverse. |
| 454 | decltype(IIDF) IDF; |
| 455 | for (auto &B : MF) { |
| 456 | auto F1 = MDF.find(&B); |
| 457 | if (F1 == MDF.end()) |
| 458 | continue; |
| 459 | SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end()); |
| 460 | for (unsigned i = 0; i < IDFB.size(); ++i) { |
| 461 | auto F2 = MDF.find(IDFB[i]); |
| 462 | if (F2 != MDF.end()) |
| 463 | IDFB.insert(F2->second.begin(), F2->second.end()); |
| 464 | } |
| 465 | // Add B to the IDF(B). This will put B in the IIDF(B). |
| 466 | IDFB.insert(&B); |
| 467 | IDF[&B].insert(IDFB.begin(), IDFB.end()); |
| 468 | } |
| 469 | |
| 470 | for (auto I : IDF) |
| 471 | for (auto S : I.second) |
| 472 | IIDF[S].insert(I.first); |
| 473 | |
| 474 | computePhiInfo(); |
| 475 | |
| 476 | NodeAddr<FuncNode*> FA = DFG.getFunc(); |
| 477 | auto Blocks = FA.Addr->members(DFG); |
| 478 | |
| 479 | // Build the phi live-on-entry map. |
| 480 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 481 | MachineBasicBlock *MB = BA.Addr->getCode(); |
| 482 | auto &LON = PhiLON[MB]; |
| 483 | for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) |
| 484 | for (auto S : RealUseMap[P.Id]) |
| 485 | LON[S.first].insert(S.second.begin(), S.second.end()); |
| 486 | } |
| 487 | |
| 488 | if (Trace) { |
| 489 | dbgs() << "Phi live-on-entry map:\n"; |
| 490 | for (auto I : PhiLON) |
| 491 | dbgs() << "block #" << I.first->getNumber() << " -> " |
| 492 | << Print<RefMap>(I.second, DFG) << '\n'; |
| 493 | } |
| 494 | |
| 495 | // Build the phi live-on-exit map. Each phi node has some set of reached |
| 496 | // "real" uses. Propagate this set backwards into the block predecessors |
| 497 | // through the reaching defs of the corresponding phi uses. |
| 498 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 499 | auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
| 500 | for (NodeAddr<PhiNode*> PA : Phis) { |
| 501 | auto &RUs = RealUseMap[PA.Id]; |
| 502 | if (RUs.empty()) |
| 503 | continue; |
| 504 | |
| 505 | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| 506 | NodeAddr<PhiUseNode*> UA = U; |
| 507 | if (UA.Addr->getReachingDef() == 0) |
| 508 | continue; |
| 509 | |
| 510 | // Mark all reached "real" uses of P as live on exit in the |
| 511 | // predecessor. |
| 512 | // Remap all the RUs so that they have a correct reaching def. |
| 513 | auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor()); |
| 514 | auto &LOX = PhiLOX[PrA.Addr->getCode()]; |
| 515 | for (auto R : RUs) { |
| 516 | RegisterRef RR = R.first; |
| 517 | if (!isRestricted(PA, UA, RR)) |
| 518 | RR = getRestrictedRegRef(UA); |
| 519 | // The restricted ref may be different from the ref that was |
| 520 | // accessed in the "real use". This means that this phi use |
| 521 | // is not the one that carries this reference, so skip it. |
| 522 | if (!RAI.alias(R.first, RR)) |
| 523 | continue; |
| 524 | for (auto D : getAllReachingDefs(RR, UA)) |
| 525 | LOX[RR].insert(D.Id); |
| 526 | } |
| 527 | } // for U : phi uses |
| 528 | } // for P : Phis |
| 529 | } // for B : Blocks |
| 530 | |
| 531 | if (Trace) { |
| 532 | dbgs() << "Phi live-on-exit map:\n"; |
| 533 | for (auto I : PhiLOX) |
| 534 | dbgs() << "block #" << I.first->getNumber() << " -> " |
| 535 | << Print<RefMap>(I.second, DFG) << '\n'; |
| 536 | } |
| 537 | |
| 538 | RefMap LiveIn; |
| 539 | traverse(&MF.front(), LiveIn); |
| 540 | |
| 541 | // Add function live-ins to the live-in set of the function entry block. |
| 542 | auto &EntryIn = LiveMap[&MF.front()]; |
| 543 | for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) |
| 544 | EntryIn.insert({I->first,0}); |
| 545 | |
| 546 | if (Trace) { |
| 547 | // Dump the liveness map |
| 548 | for (auto &B : MF) { |
| 549 | BitVector LV(TRI.getNumRegs()); |
| 550 | for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) |
| 551 | LV.set(I->PhysReg); |
| 552 | dbgs() << "BB#" << B.getNumber() << "\t rec = {"; |
| 553 | for (int x = LV.find_first(); x >= 0; x = LV.find_next(x)) |
| 554 | dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG); |
| 555 | dbgs() << " }\n"; |
| 556 | dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n'; |
| 557 | } |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | |
| 562 | void Liveness::resetLiveIns() { |
| 563 | for (auto &B : DFG.getMF()) { |
| 564 | // Remove all live-ins. |
| 565 | std::vector<unsigned> T; |
| 566 | for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) |
| 567 | T.push_back(I->PhysReg); |
| 568 | for (auto I : T) |
| 569 | B.removeLiveIn(I); |
| 570 | // Add the newly computed live-ins. |
| 571 | auto &LiveIns = LiveMap[&B]; |
| 572 | for (auto I : LiveIns) { |
| 573 | assert(I.Sub == 0); |
| 574 | B.addLiveIn(I.Reg); |
| 575 | } |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | |
| 580 | void Liveness::resetKills() { |
| 581 | for (auto &B : DFG.getMF()) |
| 582 | resetKills(&B); |
| 583 | } |
| 584 | |
| 585 | |
| 586 | void Liveness::resetKills(MachineBasicBlock *B) { |
| 587 | auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void { |
| 588 | for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I) |
| 589 | LV.set(I->PhysReg); |
| 590 | }; |
| 591 | |
| 592 | BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); |
| 593 | CopyLiveIns(B, LiveIn); |
| 594 | for (auto SI : B->successors()) |
| 595 | CopyLiveIns(SI, Live); |
| 596 | |
| 597 | for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { |
| 598 | MachineInstr *MI = &*I; |
| 599 | if (MI->isDebugValue()) |
| 600 | continue; |
| 601 | |
| 602 | MI->clearKillInfo(); |
| 603 | for (auto &Op : MI->operands()) { |
| 604 | if (!Op.isReg() || !Op.isDef()) |
| 605 | continue; |
| 606 | unsigned R = Op.getReg(); |
| 607 | if (!TargetRegisterInfo::isPhysicalRegister(R)) |
| 608 | continue; |
| 609 | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
| 610 | Live.reset(*SR); |
| 611 | } |
| 612 | for (auto &Op : MI->operands()) { |
| 613 | if (!Op.isReg() || !Op.isUse()) |
| 614 | continue; |
| 615 | unsigned R = Op.getReg(); |
| 616 | if (!TargetRegisterInfo::isPhysicalRegister(R)) |
| 617 | continue; |
| 618 | bool IsLive = false; |
| 619 | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) { |
| 620 | if (!Live[*SR]) |
| 621 | continue; |
| 622 | IsLive = true; |
| 623 | break; |
| 624 | } |
| 625 | if (IsLive) |
| 626 | continue; |
| 627 | Op.setIsKill(true); |
| 628 | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
| 629 | Live.set(*SR); |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | |
| 635 | // For shadows, determine if RR is aliased to a reaching def of any other |
| 636 | // shadow associated with RA. If it is not, then RR is "restricted" to RA, |
| 637 | // and so it can be considered a value specific to RA. This is important |
| 638 | // for accurately determining values associated with phi uses. |
| 639 | // For non-shadows, this function returns "true". |
| 640 | bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, |
| 641 | RegisterRef RR) const { |
| 642 | NodeId Start = RA.Id; |
| 643 | for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA); |
| 644 | TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) { |
| 645 | NodeId RD = TA.Addr->getReachingDef(); |
| 646 | if (RD == 0) |
| 647 | continue; |
| 648 | if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef())) |
| 649 | return false; |
| 650 | } |
| 651 | return true; |
| 652 | } |
| 653 | |
| 654 | |
| 655 | RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const { |
| 656 | assert(DFG.IsRef<NodeAttrs::Use>(RA)); |
| 657 | if (RA.Addr->getFlags() & NodeAttrs::Shadow) { |
| 658 | NodeId RD = RA.Addr->getReachingDef(); |
| 659 | assert(RD); |
| 660 | RA = DFG.addr<DefNode*>(RD); |
| 661 | } |
| 662 | return RA.Addr->getRegRef(); |
| 663 | } |
| 664 | |
| 665 | |
| 666 | unsigned Liveness::getPhysReg(RegisterRef RR) const { |
| 667 | if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg)) |
| 668 | return 0; |
| 669 | return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg; |
| 670 | } |
| 671 | |
| 672 | |
| 673 | // Helper function to obtain the basic block containing the reaching def |
| 674 | // of the given use. |
| 675 | MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { |
| 676 | auto F = NBMap.find(RN); |
| 677 | if (F != NBMap.end()) |
| 678 | return F->second; |
| 679 | llvm_unreachable("Node id not in map"); |
| 680 | } |
| 681 | |
| 682 | |
| 683 | void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { |
| 684 | // The LiveIn map, for each (physical) register, contains the set of live |
| 685 | // reaching defs of that register that are live on entry to the associated |
| 686 | // block. |
| 687 | |
| 688 | // The summary of the traversal algorithm: |
| 689 | // |
| 690 | // R is live-in in B, if there exists a U(R), such that rdef(R) dom B |
| 691 | // and (U \in IDF(B) or B dom U). |
| 692 | // |
| 693 | // for (C : children) { |
| 694 | // LU = {} |
| 695 | // traverse(C, LU) |
| 696 | // LiveUses += LU |
| 697 | // } |
| 698 | // |
| 699 | // LiveUses -= Defs(B); |
| 700 | // LiveUses += UpwardExposedUses(B); |
| 701 | // for (C : IIDF[B]) |
| 702 | // for (U : LiveUses) |
| 703 | // if (Rdef(U) dom C) |
| 704 | // C.addLiveIn(U) |
| 705 | // |
| 706 | |
| 707 | // Go up the dominator tree (depth-first). |
| 708 | MachineDomTreeNode *N = MDT.getNode(B); |
| 709 | for (auto I : *N) { |
| 710 | RefMap L; |
| 711 | MachineBasicBlock *SB = I->getBlock(); |
| 712 | traverse(SB, L); |
| 713 | |
| 714 | for (auto S : L) |
| 715 | LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
| 716 | } |
| 717 | |
| 718 | if (Trace) { |
| 719 | dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber() |
| 720 | << " after recursion into"; |
| 721 | for (auto I : *N) |
| 722 | dbgs() << ' ' << I->getBlock()->getNumber(); |
| 723 | dbgs() << "\n LiveIn: " << Print<RefMap>(LiveIn, DFG); |
| 724 | dbgs() << "\n Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 725 | } |
| 726 | |
| 727 | // Add phi uses that are live on exit from this block. |
| 728 | RefMap &PUs = PhiLOX[B]; |
| 729 | for (auto S : PUs) |
| 730 | LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
| 731 | |
| 732 | if (Trace) { |
| 733 | dbgs() << "after LOX\n"; |
| 734 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 735 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 736 | } |
| 737 | |
| 738 | // Stop tracking all uses defined in this block: erase those records |
| 739 | // where the reaching def is located in B and which cover all reached |
| 740 | // uses. |
| 741 | auto Copy = LiveIn; |
| 742 | LiveIn.clear(); |
| 743 | |
| 744 | for (auto I : Copy) { |
| 745 | auto &Defs = LiveIn[I.first]; |
| 746 | NodeSet Rest; |
| 747 | for (auto R : I.second) { |
| 748 | auto DA = DFG.addr<DefNode*>(R); |
| 749 | RegisterRef DDR = DA.Addr->getRegRef(); |
| 750 | NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); |
| 751 | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| 752 | // Defs from a different block need to be preserved. Defs from this |
| 753 | // block will need to be processed further, except for phi defs, the |
| 754 | // liveness of which is handled through the PhiLON/PhiLOX maps. |
| 755 | if (B != BA.Addr->getCode()) |
| 756 | Defs.insert(R); |
| 757 | else { |
| 758 | bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving; |
| 759 | if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) { |
| 760 | bool Covering = RAI.covers(DDR, I.first); |
| 761 | NodeId U = DA.Addr->getReachedUse(); |
| 762 | while (U && Covering) { |
| 763 | auto DUA = DFG.addr<UseNode*>(U); |
| 764 | RegisterRef Q = DUA.Addr->getRegRef(); |
| 765 | Covering = RAI.covers(DA.Addr->getRegRef(), Q); |
| 766 | U = DUA.Addr->getSibling(); |
| 767 | } |
| 768 | if (!Covering) |
| 769 | Rest.insert(R); |
| 770 | } |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | // Non-covering defs from B. |
| 775 | for (auto R : Rest) { |
| 776 | auto DA = DFG.addr<DefNode*>(R); |
| 777 | RegisterRef DRR = DA.Addr->getRegRef(); |
| 778 | RegisterSet RRs; |
| 779 | for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) { |
| 780 | NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG); |
| 781 | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| 782 | // Preserving defs do not count towards covering. |
| 783 | if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) |
| 784 | RRs.insert(TA.Addr->getRegRef()); |
| 785 | if (BA.Addr->getCode() == B) |
| 786 | continue; |
| 787 | if (RAI.covers(RRs, DRR)) |
| 788 | break; |
| 789 | Defs.insert(TA.Id); |
| 790 | } |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | emptify(LiveIn); |
| 795 | |
| 796 | if (Trace) { |
| 797 | dbgs() << "after defs in block\n"; |
| 798 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 799 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 800 | } |
| 801 | |
| 802 | // Scan the block for upward-exposed uses and add them to the tracking set. |
| 803 | for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { |
| 804 | NodeAddr<InstrNode*> IA = I; |
| 805 | if (IA.Addr->getKind() != NodeAttrs::Stmt) |
| 806 | continue; |
| 807 | for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { |
| 808 | RegisterRef RR = UA.Addr->getRegRef(); |
| 809 | for (auto D : getAllReachingDefs(UA)) |
| 810 | if (getBlockWithRef(D.Id) != B) |
| 811 | LiveIn[RR].insert(D.Id); |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | if (Trace) { |
| 816 | dbgs() << "after uses in block\n"; |
| 817 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 818 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 819 | } |
| 820 | |
| 821 | // Phi uses should not be propagated up the dominator tree, since they |
| 822 | // are not dominated by their corresponding reaching defs. |
| 823 | auto &Local = LiveMap[B]; |
| 824 | auto &LON = PhiLON[B]; |
| 825 | for (auto R : LON) |
| 826 | Local.insert(R.first); |
| 827 | |
| 828 | if (Trace) { |
| 829 | dbgs() << "after phi uses in block\n"; |
| 830 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 831 | dbgs() << " Local: " << Print<RegisterSet>(Local, DFG) << '\n'; |
| 832 | } |
| 833 | |
| 834 | for (auto C : IIDF[B]) { |
| 835 | auto &LiveC = LiveMap[C]; |
| 836 | for (auto S : LiveIn) |
| 837 | for (auto R : S.second) |
| 838 | if (MDT.properlyDominates(getBlockWithRef(R), C)) |
| 839 | LiveC.insert(S.first); |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | |
| 844 | void Liveness::emptify(RefMap &M) { |
| 845 | for (auto I = M.begin(), E = M.end(); I != E; ) |
| 846 | I = I->second.empty() ? M.erase(I) : std::next(I); |
| 847 | } |
| 848 | |