blob: 5fac3978ffe69ce0e583b21ae10ab0877cb37fd0 [file] [log] [blame]
Hal Finkel7529c552014-09-02 21:43:13 +00001//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_STRATIFIEDSETS_H
11#define LLVM_ADT_STRATIFIEDSETS_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/Optional.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include <bitset>
19#include <cassert>
20#include <cmath>
21#include <limits>
22#include <type_traits>
23#include <vector>
24
25namespace llvm {
26// \brief An index into Stratified Sets.
27typedef unsigned StratifiedIndex;
28// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
29// ~1M sets exist.
30
31// \brief Container of information related to a value in a StratifiedSet.
32struct StratifiedInfo {
33 StratifiedIndex Index;
34 // For field sensitivity, etc. we can tack attributes on to this struct.
35};
36
37// The number of attributes that StratifiedAttrs should contain. Attributes are
38// described below, and 32 was an arbitrary choice because it fits nicely in 32
39// bits (because we use a bitset for StratifiedAttrs).
40static constexpr unsigned NumStratifiedAttrs = 32;
41
42// These are attributes that the users of StratifiedSets/StratifiedSetBuilders
43// may use for various purposes. These also have the special property of that
44// they are merged down. So, if set A is above set B, and one decides to set an
45// attribute in set A, then the attribute will automatically be set in set B.
46typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
47
48// \brief A "link" between two StratifiedSets.
49struct StratifiedLink {
50 // \brief This is a value used to signify "does not exist" where
51 // the StratifiedIndex type is used. This is used instead of
52 // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
53 // eat up a considerable amount of extra memory, after struct
54 // padding/alignment is taken into account.
55 static constexpr auto SetSentinel =
56 std::numeric_limits<StratifiedIndex>::max();
57
58 // \brief The index for the set "above" current
59 StratifiedIndex Above;
60
61 // \brief The link for the set "below" current
62 StratifiedIndex Below;
63
64 // \brief Attributes for these StratifiedSets.
65 StratifiedAttrs Attrs;
66
67 StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
68
69 bool hasBelow() const { return Below != SetSentinel; }
70 bool hasAbove() const { return Above != SetSentinel; }
71
72 void clearBelow() { Below = SetSentinel; }
73 void clearAbove() { Above = SetSentinel; }
74};
75
76// \brief These are stratified sets, as described in "Fast algorithms for
77// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
78// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
79// of Value*s. If two Value*s are in the same set, or if both sets have
80// overlapping attributes, then the Value*s are said to alias.
81//
82// Sets may be related by position, meaning that one set may be considered as
83// above or below another. In CFL Alias Analysis, this gives us an indication
84// of how two variables are related; if the set of variable A is below a set
85// containing variable B, then at some point, a variable that has interacted
86// with B (or B itself) was either used in order to extract the variable A, or
87// was used as storage of variable A.
88//
89// Sets may also have attributes (as noted above). These attributes are
90// generally used for noting whether a variable in the set has interacted with
91// a variable whose origins we don't quite know (i.e. globals/arguments), or if
92// the variable may have had operations performed on it (modified in a function
93// call). All attributes that exist in a set A must exist in all sets marked as
94// below set A.
95template <typename T> class StratifiedSets {
96public:
97 StratifiedSets() {}
98
99 StratifiedSets(DenseMap<T, StratifiedInfo> Map,
100 std::vector<StratifiedLink> Links)
101 : Values(std::move(Map)), Links(std::move(Links)) {}
102
103 StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
104
105 StratifiedSets &operator=(StratifiedSets<T> &&Other) {
106 Values = std::move(Other.Values);
107 Links = std::move(Other.Links);
108 return *this;
109 }
110
111 Optional<StratifiedInfo> find(const T &Elem) const {
112 auto Iter = Values.find(Elem);
113 if (Iter == Values.end()) {
114 return NoneType();
115 }
116 return Iter->second;
117 }
118
119 const StratifiedLink &getLink(StratifiedIndex Index) const {
120 assert(inbounds(Index));
121 return Links[Index];
122 }
123
124private:
125 DenseMap<T, StratifiedInfo> Values;
126 std::vector<StratifiedLink> Links;
127
128 bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
129};
130
131// \brief Generic Builder class that produces StratifiedSets instances.
132//
133// The goal of this builder is to efficiently produce correct StratifiedSets
134// instances. To this end, we use a few tricks:
135// > Set chains (A method for linking sets together)
136// > Set remaps (A method for marking a set as an alias [irony?] of another)
137//
138// ==== Set chains ====
139// This builder has a notion of some value A being above, below, or with some
140// other value B:
141// > The `A above B` relationship implies that there is a reference edge going
142// from A to B. Namely, it notes that A can store anything in B's set.
143// > The `A below B` relationship is the opposite of `A above B`. It implies
144// that there's a dereference edge going from A to B.
145// > The `A with B` relationship states that there's an assignment edge going
146// from A to B, and that A and B should be treated as equals.
147//
148// As an example, take the following code snippet:
149//
150// %a = alloca i32, align 4
151// %ap = alloca i32*, align 8
152// %app = alloca i32**, align 8
153// store %a, %ap
154// store %ap, %app
155// %aw = getelementptr %ap, 0
156//
157// Given this, the follow relations exist:
158// - %a below %ap & %ap above %a
159// - %ap below %app & %app above %ap
160// - %aw with %ap & %ap with %aw
161//
162// These relations produce the following sets:
163// [{%a}, {%ap, %aw}, {%app}]
164//
165// ...Which states that the only MayAlias relationship in the above program is
166// between %ap and %aw.
167//
168// Life gets more complicated when we actually have logic in our programs. So,
169// we either must remove this logic from our programs, or make consessions for
170// it in our AA algorithms. In this case, we have decided to select the latter
171// option.
172//
173// First complication: Conditionals
174// Motivation:
175// %ad = alloca int, align 4
176// %a = alloca int*, align 8
177// %b = alloca int*, align 8
178// %bp = alloca int**, align 8
179// %c = call i1 @SomeFunc()
180// %k = select %c, %ad, %bp
181// store %ad, %a
182// store %b, %bp
183//
184// %k has 'with' edges to both %a and %b, which ordinarily would not be linked
185// together. So, we merge the set that contains %a with the set that contains
186// %b. We then recursively merge the set above %a with the set above %b, and
187// the set below %a with the set below %b, etc. Ultimately, the sets for this
188// program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
189// {%a, %b, %c} is below {%ad}.
190//
191// Second complication: Arbitrary casts
192// Motivation:
193// %ip = alloca int*, align 8
194// %ipp = alloca int**, align 8
195// %i = bitcast ipp to int
196// store %ip, %ipp
197// store %i, %ip
198//
199// This is impossible to construct with any of the rules above, because a set
200// containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
201// to be below the set with %ip, and the set with %ip is supposed to be below
202// the set with %ipp. Because we don't allow circular relationships like this,
203// we merge all concerned sets into one. So, the above code would generate a
204// single StratifiedSet: {%ip, %ipp, %i}.
205//
206// ==== Set remaps ====
207// More of an implementation detail than anything -- when merging sets, we need
208// to update the numbers of all of the elements mapped to those sets. Rather
209// than doing this at each merge, we note in the BuilderLink structure that a
210// remap has occurred, and use this information so we can defer renumbering set
211// elements until build time.
212template <typename T> class StratifiedSetsBuilder {
213 // \brief Represents a Stratified Set, with information about the Stratified
214 // Set above it, the set below it, and whether the current set has been
215 // remapped to another.
216 struct BuilderLink {
217 const StratifiedIndex Number;
218
219 BuilderLink(StratifiedIndex N) : Number(N) {
220 Remap = StratifiedLink::SetSentinel;
221 }
222
223 bool hasAbove() const {
224 assert(!isRemapped());
225 return Link.hasAbove();
226 }
227
228 bool hasBelow() const {
229 assert(!isRemapped());
230 return Link.hasBelow();
231 }
232
233 void setBelow(StratifiedIndex I) {
234 assert(!isRemapped());
235 Link.Below = I;
236 }
237
238 void setAbove(StratifiedIndex I) {
239 assert(!isRemapped());
240 Link.Above = I;
241 }
242
243 void clearBelow() {
244 assert(!isRemapped());
245 Link.clearBelow();
246 }
247
248 void clearAbove() {
249 assert(!isRemapped());
250 Link.clearAbove();
251 }
252
253 StratifiedIndex getBelow() const {
254 assert(!isRemapped());
255 assert(hasBelow());
256 return Link.Below;
257 }
258
259 StratifiedIndex getAbove() const {
260 assert(!isRemapped());
261 assert(hasAbove());
262 return Link.Above;
263 }
264
265 StratifiedAttrs &getAttrs() {
266 assert(!isRemapped());
267 return Link.Attrs;
268 }
269
270 void setAttr(unsigned index) {
271 assert(!isRemapped());
272 assert(index < NumStratifiedAttrs);
273 Link.Attrs.set(index);
274 }
275
276 void setAttrs(const StratifiedAttrs &other) {
277 assert(!isRemapped());
278 Link.Attrs |= other;
279 }
280
281 bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
282
283 // \brief For initial remapping to another set
284 void remapTo(StratifiedIndex Other) {
285 assert(!isRemapped());
286 Remap = Other;
287 }
288
289 StratifiedIndex getRemapIndex() const {
290 assert(isRemapped());
291 return Remap;
292 }
293
294 // \brief Should only be called when we're already remapped.
295 void updateRemap(StratifiedIndex Other) {
296 assert(isRemapped());
297 Remap = Other;
298 }
299
300 // \brief Prefer the above functions to calling things directly on what's
301 // returned from this -- they guard against unexpected calls when the
302 // current BuilderLink is remapped.
303 const StratifiedLink &getLink() const { return Link; }
304
305 private:
306 StratifiedLink Link;
307 StratifiedIndex Remap;
308 };
309
310 // \brief This function performs all of the set unioning/value renumbering
311 // that we've been putting off, and generates a vector<StratifiedLink> that
312 // may be placed in a StratifiedSets instance.
313 void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
314 DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
315 for (auto &Link : Links) {
316 if (Link.isRemapped()) {
317 continue;
318 }
319
320 StratifiedIndex Number = StratLinks.size();
321 Remaps.insert({Link.Number, Number});
322 StratLinks.push_back(Link.getLink());
323 }
324
325 for (auto &Link : StratLinks) {
326 if (Link.hasAbove()) {
327 auto &Above = linksAt(Link.Above);
328 auto Iter = Remaps.find(Above.Number);
329 assert(Iter != Remaps.end());
330 Link.Above = Iter->second;
331 }
332
333 if (Link.hasBelow()) {
334 auto &Below = linksAt(Link.Below);
335 auto Iter = Remaps.find(Below.Number);
336 assert(Iter != Remaps.end());
337 Link.Below = Iter->second;
338 }
339 }
340
341 for (auto &Pair : Values) {
342 auto &Info = Pair.second;
343 auto &Link = linksAt(Info.Index);
344 auto Iter = Remaps.find(Link.Number);
345 assert(Iter != Remaps.end());
346 Info.Index = Iter->second;
347 }
348 }
349
350 // \brief There's a guarantee in StratifiedLink where all bits set in a
351 // Link.externals will be set in all Link.externals "below" it.
352 static void propagateAttrs(std::vector<StratifiedLink> &Links) {
353 const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
354 const auto *Link = &Links[Idx];
355 while (Link->hasAbove()) {
356 Idx = Link->Above;
357 Link = &Links[Idx];
358 }
359 return Idx;
360 };
361
362 SmallSet<StratifiedIndex, 16> Visited;
363 for (unsigned I = 0, E = Links.size(); I < E; ++I) {
364 auto CurrentIndex = getHighestParentAbove(I);
365 if (!Visited.insert(CurrentIndex)) {
366 continue;
367 }
368
369 while (Links[CurrentIndex].hasBelow()) {
370 auto &CurrentBits = Links[CurrentIndex].Attrs;
371 auto NextIndex = Links[CurrentIndex].Below;
372 auto &NextBits = Links[NextIndex].Attrs;
373 NextBits |= CurrentBits;
374 CurrentIndex = NextIndex;
375 }
376 }
377 }
378
379public:
380 // \brief Builds a StratifiedSet from the information we've been given since
381 // either construction or the prior build() call.
382 StratifiedSets<T> build() {
383 std::vector<StratifiedLink> StratLinks;
384 finalizeSets(StratLinks);
385 propagateAttrs(StratLinks);
386 Links.clear();
387 return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
388 }
389
390 std::size_t size() const { return Values.size(); }
391 std::size_t numSets() const { return Links.size(); }
392
393 bool has(const T &Elem) const { return get(Elem).hasValue(); }
394
395 bool add(const T &Main) {
396 if (get(Main).hasValue())
397 return false;
398
399 auto NewIndex = getNewUnlinkedIndex();
400 return addAtMerging(Main, NewIndex);
401 }
402
403 // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
404 // set above "Main". There are some cases where this is not possible (see
405 // above), so we merge them such that ToAdd and Main are in the same set.
406 bool addAbove(const T &Main, const T &ToAdd) {
407 assert(has(Main));
408 auto Index = *indexOf(Main);
409 if (!linksAt(Index).hasAbove())
410 addLinkAbove(Index);
411
412 auto Above = linksAt(Index).getAbove();
413 return addAtMerging(ToAdd, Above);
414 }
415
416 // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
417 // set below "Main". There are some cases where this is not possible (see
418 // above), so we merge them such that ToAdd and Main are in the same set.
419 bool addBelow(const T &Main, const T &ToAdd) {
420 assert(has(Main));
421 auto Index = *indexOf(Main);
422 if (!linksAt(Index).hasBelow())
423 addLinkBelow(Index);
424
425 auto Below = linksAt(Index).getBelow();
426 return addAtMerging(ToAdd, Below);
427 }
428
429 bool addWith(const T &Main, const T &ToAdd) {
430 assert(has(Main));
431 auto MainIndex = *indexOf(Main);
432 return addAtMerging(ToAdd, MainIndex);
433 }
434
435 void noteAttribute(const T &Main, unsigned AttrNum) {
436 assert(has(Main));
437 assert(AttrNum < StratifiedLink::SetSentinel);
438 auto *Info = *get(Main);
439 auto &Link = linksAt(Info->Index);
440 Link.setAttr(AttrNum);
441 }
442
443 void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
444 assert(has(Main));
445 auto *Info = *get(Main);
446 auto &Link = linksAt(Info->Index);
447 Link.setAttrs(NewAttrs);
448 }
449
450 StratifiedAttrs getAttributes(const T &Main) {
451 assert(has(Main));
452 auto *Info = *get(Main);
453 auto *Link = &linksAt(Info->Index);
454 auto Attrs = Link->getAttrs();
455 while (Link->hasAbove()) {
456 Link = &linksAt(Link->getAbove());
457 Attrs |= Link->getAttrs();
458 }
459
460 return Attrs;
461 }
462
463 bool getAttribute(const T &Main, unsigned AttrNum) {
464 assert(AttrNum < StratifiedLink::SetSentinel);
465 auto Attrs = getAttributes(Main);
466 return Attrs[AttrNum];
467 }
468
469 // \brief Gets the attributes that have been applied to the set that Main
470 // belongs to. It ignores attributes in any sets above the one that Main
471 // resides in.
472 StratifiedAttrs getRawAttributes(const T &Main) {
473 assert(has(Main));
474 auto *Info = *get(Main);
475 auto &Link = linksAt(Info->Index);
476 return Link.getAttrs();
477 }
478
479 // \brief Gets an attribute from the attributes that have been applied to the
480 // set that Main belongs to. It ignores attributes in any sets above the one
481 // that Main resides in.
482 bool getRawAttribute(const T &Main, unsigned AttrNum) {
483 assert(AttrNum < StratifiedLink::SetSentinel);
484 auto Attrs = getRawAttributes(Main);
485 return Attrs[AttrNum];
486 }
487
488private:
489 DenseMap<T, StratifiedInfo> Values;
490 std::vector<BuilderLink> Links;
491
492 // \brief Adds the given element at the given index, merging sets if
493 // necessary.
494 bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
495 StratifiedInfo Info = {Index};
496 auto Pair = Values.insert({ToAdd, Info});
497 if (Pair.second)
498 return true;
499
500 auto &Iter = Pair.first;
501 auto &IterSet = linksAt(Iter->second.Index);
502 auto &ReqSet = linksAt(Index);
503
504 // Failed to add where we wanted to. Merge the sets.
505 if (&IterSet != &ReqSet)
506 merge(IterSet.Number, ReqSet.Number);
507
508 return false;
509 }
510
511 // \brief Gets the BuilderLink at the given index, taking set remapping into
512 // account.
513 BuilderLink &linksAt(StratifiedIndex Index) {
514 auto *Start = &Links[Index];
515 if (!Start->isRemapped())
516 return *Start;
517
518 auto *Current = Start;
519 while (Current->isRemapped())
520 Current = &Links[Current->getRemapIndex()];
521
522 auto NewRemap = Current->Number;
523
524 // Run through everything that has yet to be updated, and update them to
525 // remap to NewRemap
526 Current = Start;
527 while (Current->isRemapped()) {
528 auto *Next = &Links[Current->getRemapIndex()];
529 Current->updateRemap(NewRemap);
530 Current = Next;
531 }
532
533 return *Current;
534 }
535
536 // \brief Merges two sets into one another. Assumes that these sets are not
537 // already one in the same
538 void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
539 assert(inbounds(Idx1) && inbounds(Idx2));
540 assert(&linksAt(Idx1) != &linksAt(Idx2) &&
541 "Merging a set into itself is not allowed");
542
543 // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
544 // both the
545 // given sets, and all sets between them, into one.
546 if (tryMergeUpwards(Idx1, Idx2))
547 return;
548
549 if (tryMergeUpwards(Idx2, Idx1))
550 return;
551
552 // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
553 // We therefore need to merge the two chains together.
554 mergeDirect(Idx1, Idx2);
555 }
556
557 // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
558 // traversing above or below the set at `Idx2`.
559 void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
560 assert(inbounds(Idx1) && inbounds(Idx2));
561
562 auto *LinksInto = &linksAt(Idx1);
563 auto *LinksFrom = &linksAt(Idx2);
564 // Merging everything above LinksInto then proceeding to merge everything
565 // below LinksInto becomes problematic, so we go as far "up" as possible!
566 while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
567 LinksInto = &linksAt(LinksInto->getAbove());
568 LinksFrom = &linksAt(LinksFrom->getAbove());
569 }
570
571 if (LinksFrom->hasAbove()) {
572 LinksInto->setAbove(LinksFrom->getAbove());
573 auto &NewAbove = linksAt(LinksInto->getAbove());
574 NewAbove.setBelow(LinksInto->Number);
575 }
576
577 // Merging strategy:
578 // > If neither has links below, stop.
579 // > If only `LinksInto` has links below, stop.
580 // > If only `LinksFrom` has links below, reset `LinksInto.Below` to
581 // match `LinksFrom.Below`
582 // > If both have links above, deal with those next.
583 while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
584 auto &FromAttrs = LinksFrom->getAttrs();
585 LinksInto->setAttrs(FromAttrs);
586
587 // Remap needs to happen after getBelow(), but before
588 // assignment of LinksFrom
589 auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
590 LinksFrom->remapTo(LinksInto->Number);
591 LinksFrom = NewLinksFrom;
592 LinksInto = &linksAt(LinksInto->getBelow());
593 }
594
595 if (LinksFrom->hasBelow()) {
596 LinksInto->setBelow(LinksFrom->getBelow());
597 auto &NewBelow = linksAt(LinksInto->getBelow());
598 NewBelow.setAbove(LinksInto->Number);
599 }
600
601 LinksFrom->remapTo(LinksInto->Number);
602 }
603
604 // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
605 // If so, it will merge lowerIndex with upperIndex (and all of the sets
606 // between) and return true. Otherwise, it will return false.
607 bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
608 assert(inbounds(LowerIndex) && inbounds(UpperIndex));
609 auto *Lower = &linksAt(LowerIndex);
610 auto *Upper = &linksAt(UpperIndex);
611 if (Lower == Upper)
612 return true;
613
614 SmallVector<BuilderLink *, 8> Found;
615 auto *Current = Lower;
616 auto Attrs = Current->getAttrs();
617 while (Current->hasAbove() && Current != Upper) {
618 Found.push_back(Current);
619 Attrs |= Current->getAttrs();
620 Current = &linksAt(Current->getAbove());
621 }
622
623 if (Current != Upper)
624 return false;
625
626 Upper->setAttrs(Attrs);
627
628 if (Lower->hasBelow()) {
629 auto NewBelowIndex = Lower->getBelow();
630 Upper->setBelow(NewBelowIndex);
631 auto &NewBelow = linksAt(NewBelowIndex);
632 NewBelow.setAbove(UpperIndex);
633 } else {
634 Upper->clearBelow();
635 }
636
637 for (const auto &Ptr : Found)
638 Ptr->remapTo(Upper->Number);
639
640 return true;
641 }
642
643 Optional<const StratifiedInfo *> get(const T &Val) const {
644 auto Result = Values.find(Val);
645 if (Result == Values.end())
646 return NoneType();
647 return &Result->second;
648 }
649
650 Optional<StratifiedInfo *> get(const T &Val) {
651 auto Result = Values.find(Val);
652 if (Result == Values.end())
653 return NoneType();
654 return &Result->second;
655 }
656
657 Optional<StratifiedIndex> indexOf(const T &Val) {
658 auto MaybeVal = get(Val);
659 if (!MaybeVal.hasValue())
660 return NoneType();
661 auto *Info = *MaybeVal;
662 auto &Link = linksAt(Info->Index);
663 return Link.Number;
664 }
665
666 StratifiedIndex addLinkBelow(StratifiedIndex Set) {
667 auto At = addLinks();
668 Links[Set].setBelow(At);
669 Links[At].setAbove(Set);
670 return At;
671 }
672
673 StratifiedIndex addLinkAbove(StratifiedIndex Set) {
674 auto At = addLinks();
675 Links[At].setBelow(Set);
676 Links[Set].setAbove(At);
677 return At;
678 }
679
680 StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
681
682 StratifiedIndex addLinks() {
683 auto Link = Links.size();
684 Links.push_back(BuilderLink(Link));
685 return Link;
686 }
687
688 bool inbounds(StratifiedIndex N) const { return N >= 0 && N < Links.size(); }
689};
690}
691#endif // LLVM_ADT_STRATIFIEDSETS_H