Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1 | //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 9 | // |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 10 | /// \file |
| 11 | /// This file contains the declarations of the Vectorization Plan base classes: |
| 12 | /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual |
| 13 | /// VPBlockBase, together implementing a Hierarchical CFG; |
| 14 | /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be |
| 15 | /// treated as proper graphs for generic algorithms; |
| 16 | /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained |
| 17 | /// within VPBasicBlocks; |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 18 | /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned |
| 19 | /// instruction; |
| 20 | /// 5. The VPlan class holding a candidate for vectorization; |
| 21 | /// 6. The VPlanPrinter class providing a way to print a plan in dot format; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 22 | /// These are documented in docs/VectorizationPlan.rst. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 23 | // |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 27 | #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 28 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 29 | #include "VPlanValue.h" |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 30 | #include "llvm/ADT/DenseMap.h" |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 31 | #include "llvm/ADT/GraphTraits.h" |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 32 | #include "llvm/ADT/Optional.h" |
Florian Hahn | a1cc848 | 2018-06-12 11:16:56 +0000 | [diff] [blame] | 33 | #include "llvm/ADT/SmallPtrSet.h" |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 34 | #include "llvm/ADT/SmallSet.h" |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 35 | #include "llvm/ADT/SmallVector.h" |
| 36 | #include "llvm/ADT/Twine.h" |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 37 | #include "llvm/ADT/ilist.h" |
| 38 | #include "llvm/ADT/ilist_node.h" |
| 39 | #include "llvm/IR/IRBuilder.h" |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 40 | #include <algorithm> |
| 41 | #include <cassert> |
| 42 | #include <cstddef> |
| 43 | #include <map> |
| 44 | #include <string> |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 45 | |
| 46 | namespace llvm { |
| 47 | |
Hal Finkel | 0f1314c | 2018-01-07 16:02:58 +0000 | [diff] [blame] | 48 | class LoopVectorizationLegality; |
| 49 | class LoopVectorizationCostModel; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 50 | class BasicBlock; |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 51 | class DominatorTree; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 52 | class InnerLoopVectorizer; |
Hal Finkel | 7333aa9 | 2017-12-16 01:12:50 +0000 | [diff] [blame] | 53 | class InterleaveGroup; |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 54 | class LoopInfo; |
| 55 | class raw_ostream; |
| 56 | class Value; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 57 | class VPBasicBlock; |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 58 | class VPRegionBlock; |
Florian Hahn | 45e5d5b | 2018-06-08 17:30:45 +0000 | [diff] [blame] | 59 | class VPlan; |
| 60 | |
| 61 | /// A range of powers-of-2 vectorization factors with fixed start and |
| 62 | /// adjustable end. The range includes start and excludes end, e.g.,: |
| 63 | /// [1, 9) = {1, 2, 4, 8} |
| 64 | struct VFRange { |
| 65 | // A power of 2. |
| 66 | const unsigned Start; |
| 67 | |
| 68 | // Need not be a power of 2. If End <= Start range is empty. |
| 69 | unsigned End; |
| 70 | }; |
| 71 | |
| 72 | using VPlanPtr = std::unique_ptr<VPlan>; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 73 | |
| 74 | /// In what follows, the term "input IR" refers to code that is fed into the |
| 75 | /// vectorizer whereas the term "output IR" refers to code that is generated by |
| 76 | /// the vectorizer. |
| 77 | |
| 78 | /// VPIteration represents a single point in the iteration space of the output |
| 79 | /// (vectorized and/or unrolled) IR loop. |
| 80 | struct VPIteration { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 81 | /// in [0..UF) |
| 82 | unsigned Part; |
| 83 | |
| 84 | /// in [0..VF) |
| 85 | unsigned Lane; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 86 | }; |
| 87 | |
| 88 | /// This is a helper struct for maintaining vectorization state. It's used for |
| 89 | /// mapping values from the original loop to their corresponding values in |
| 90 | /// the new loop. Two mappings are maintained: one for vectorized values and |
| 91 | /// one for scalarized values. Vectorized values are represented with UF |
| 92 | /// vector values in the new loop, and scalarized values are represented with |
| 93 | /// UF x VF scalar values in the new loop. UF and VF are the unroll and |
| 94 | /// vectorization factors, respectively. |
| 95 | /// |
| 96 | /// Entries can be added to either map with setVectorValue and setScalarValue, |
| 97 | /// which assert that an entry was not already added before. If an entry is to |
| 98 | /// replace an existing one, call resetVectorValue and resetScalarValue. This is |
| 99 | /// currently needed to modify the mapped values during "fix-up" operations that |
| 100 | /// occur once the first phase of widening is complete. These operations include |
| 101 | /// type truncation and the second phase of recurrence widening. |
| 102 | /// |
| 103 | /// Entries from either map can be retrieved using the getVectorValue and |
| 104 | /// getScalarValue functions, which assert that the desired value exists. |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 105 | struct VectorizerValueMap { |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 106 | friend struct VPTransformState; |
| 107 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 108 | private: |
| 109 | /// The unroll factor. Each entry in the vector map contains UF vector values. |
| 110 | unsigned UF; |
| 111 | |
| 112 | /// The vectorization factor. Each entry in the scalar map contains UF x VF |
| 113 | /// scalar values. |
| 114 | unsigned VF; |
| 115 | |
| 116 | /// The vector and scalar map storage. We use std::map and not DenseMap |
| 117 | /// because insertions to DenseMap invalidate its iterators. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 118 | using VectorParts = SmallVector<Value *, 2>; |
| 119 | using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 120 | std::map<Value *, VectorParts> VectorMapStorage; |
| 121 | std::map<Value *, ScalarParts> ScalarMapStorage; |
| 122 | |
| 123 | public: |
| 124 | /// Construct an empty map with the given unroll and vectorization factors. |
| 125 | VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} |
| 126 | |
| 127 | /// \return True if the map has any vector entry for \p Key. |
| 128 | bool hasAnyVectorValue(Value *Key) const { |
| 129 | return VectorMapStorage.count(Key); |
| 130 | } |
| 131 | |
| 132 | /// \return True if the map has a vector entry for \p Key and \p Part. |
| 133 | bool hasVectorValue(Value *Key, unsigned Part) const { |
| 134 | assert(Part < UF && "Queried Vector Part is too large."); |
| 135 | if (!hasAnyVectorValue(Key)) |
| 136 | return false; |
| 137 | const VectorParts &Entry = VectorMapStorage.find(Key)->second; |
| 138 | assert(Entry.size() == UF && "VectorParts has wrong dimensions."); |
| 139 | return Entry[Part] != nullptr; |
| 140 | } |
| 141 | |
| 142 | /// \return True if the map has any scalar entry for \p Key. |
| 143 | bool hasAnyScalarValue(Value *Key) const { |
| 144 | return ScalarMapStorage.count(Key); |
| 145 | } |
| 146 | |
| 147 | /// \return True if the map has a scalar entry for \p Key and \p Instance. |
| 148 | bool hasScalarValue(Value *Key, const VPIteration &Instance) const { |
| 149 | assert(Instance.Part < UF && "Queried Scalar Part is too large."); |
| 150 | assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); |
| 151 | if (!hasAnyScalarValue(Key)) |
| 152 | return false; |
| 153 | const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; |
| 154 | assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); |
| 155 | assert(Entry[Instance.Part].size() == VF && |
| 156 | "ScalarParts has wrong dimensions."); |
| 157 | return Entry[Instance.Part][Instance.Lane] != nullptr; |
| 158 | } |
| 159 | |
| 160 | /// Retrieve the existing vector value that corresponds to \p Key and |
| 161 | /// \p Part. |
| 162 | Value *getVectorValue(Value *Key, unsigned Part) { |
| 163 | assert(hasVectorValue(Key, Part) && "Getting non-existent value."); |
| 164 | return VectorMapStorage[Key][Part]; |
| 165 | } |
| 166 | |
| 167 | /// Retrieve the existing scalar value that corresponds to \p Key and |
| 168 | /// \p Instance. |
| 169 | Value *getScalarValue(Value *Key, const VPIteration &Instance) { |
| 170 | assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); |
| 171 | return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; |
| 172 | } |
| 173 | |
| 174 | /// Set a vector value associated with \p Key and \p Part. Assumes such a |
| 175 | /// value is not already set. If it is, use resetVectorValue() instead. |
| 176 | void setVectorValue(Value *Key, unsigned Part, Value *Vector) { |
| 177 | assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); |
| 178 | if (!VectorMapStorage.count(Key)) { |
| 179 | VectorParts Entry(UF); |
| 180 | VectorMapStorage[Key] = Entry; |
| 181 | } |
| 182 | VectorMapStorage[Key][Part] = Vector; |
| 183 | } |
| 184 | |
| 185 | /// Set a scalar value associated with \p Key and \p Instance. Assumes such a |
| 186 | /// value is not already set. |
| 187 | void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { |
| 188 | assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); |
| 189 | if (!ScalarMapStorage.count(Key)) { |
| 190 | ScalarParts Entry(UF); |
| 191 | // TODO: Consider storing uniform values only per-part, as they occupy |
| 192 | // lane 0 only, keeping the other VF-1 redundant entries null. |
| 193 | for (unsigned Part = 0; Part < UF; ++Part) |
| 194 | Entry[Part].resize(VF, nullptr); |
| 195 | ScalarMapStorage[Key] = Entry; |
| 196 | } |
| 197 | ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; |
| 198 | } |
| 199 | |
| 200 | /// Reset the vector value associated with \p Key for the given \p Part. |
| 201 | /// This function can be used to update values that have already been |
| 202 | /// vectorized. This is the case for "fix-up" operations including type |
| 203 | /// truncation and the second phase of recurrence vectorization. |
| 204 | void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { |
| 205 | assert(hasVectorValue(Key, Part) && "Vector value not set for part"); |
| 206 | VectorMapStorage[Key][Part] = Vector; |
| 207 | } |
| 208 | |
| 209 | /// Reset the scalar value associated with \p Key for \p Part and \p Lane. |
| 210 | /// This function can be used to update values that have already been |
| 211 | /// scalarized. This is the case for "fix-up" operations including scalar phi |
| 212 | /// nodes for scalarized and predicated instructions. |
| 213 | void resetScalarValue(Value *Key, const VPIteration &Instance, |
| 214 | Value *Scalar) { |
| 215 | assert(hasScalarValue(Key, Instance) && |
| 216 | "Scalar value not set for part and lane"); |
| 217 | ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; |
| 218 | } |
| 219 | }; |
| 220 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 221 | /// This class is used to enable the VPlan to invoke a method of ILV. This is |
| 222 | /// needed until the method is refactored out of ILV and becomes reusable. |
| 223 | struct VPCallback { |
| 224 | virtual ~VPCallback() {} |
| 225 | virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; |
| 226 | }; |
| 227 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 228 | /// VPTransformState holds information passed down when "executing" a VPlan, |
| 229 | /// needed for generating the output IR. |
| 230 | struct VPTransformState { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 231 | VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, |
| 232 | IRBuilder<> &Builder, VectorizerValueMap &ValueMap, |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 233 | InnerLoopVectorizer *ILV, VPCallback &Callback) |
| 234 | : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), |
| 235 | ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 236 | |
| 237 | /// The chosen Vectorization and Unroll Factors of the loop being vectorized. |
| 238 | unsigned VF; |
| 239 | unsigned UF; |
| 240 | |
| 241 | /// Hold the indices to generate specific scalar instructions. Null indicates |
| 242 | /// that all instances are to be generated, using either scalar or vector |
| 243 | /// instructions. |
| 244 | Optional<VPIteration> Instance; |
| 245 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 246 | struct DataState { |
| 247 | /// A type for vectorized values in the new loop. Each value from the |
| 248 | /// original loop, when vectorized, is represented by UF vector values in |
| 249 | /// the new unrolled loop, where UF is the unroll factor. |
| 250 | typedef SmallVector<Value *, 2> PerPartValuesTy; |
| 251 | |
| 252 | DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; |
| 253 | } Data; |
| 254 | |
| 255 | /// Get the generated Value for a given VPValue and a given Part. Note that |
| 256 | /// as some Defs are still created by ILV and managed in its ValueMap, this |
| 257 | /// method will delegate the call to ILV in such cases in order to provide |
| 258 | /// callers a consistent API. |
| 259 | /// \see set. |
| 260 | Value *get(VPValue *Def, unsigned Part) { |
| 261 | // If Values have been set for this Def return the one relevant for \p Part. |
| 262 | if (Data.PerPartOutput.count(Def)) |
| 263 | return Data.PerPartOutput[Def][Part]; |
| 264 | // Def is managed by ILV: bring the Values from ValueMap. |
| 265 | return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); |
| 266 | } |
| 267 | |
| 268 | /// Set the generated Value for a given VPValue and a given Part. |
| 269 | void set(VPValue *Def, Value *V, unsigned Part) { |
| 270 | if (!Data.PerPartOutput.count(Def)) { |
| 271 | DataState::PerPartValuesTy Entry(UF); |
| 272 | Data.PerPartOutput[Def] = Entry; |
| 273 | } |
| 274 | Data.PerPartOutput[Def][Part] = V; |
| 275 | } |
| 276 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 277 | /// Hold state information used when constructing the CFG of the output IR, |
| 278 | /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. |
| 279 | struct CFGState { |
| 280 | /// The previous VPBasicBlock visited. Initially set to null. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 281 | VPBasicBlock *PrevVPBB = nullptr; |
| 282 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 283 | /// The previous IR BasicBlock created or used. Initially set to the new |
| 284 | /// header BasicBlock. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 285 | BasicBlock *PrevBB = nullptr; |
| 286 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 287 | /// The last IR BasicBlock in the output IR. Set to the new latch |
| 288 | /// BasicBlock, used for placing the newly created BasicBlocks. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 289 | BasicBlock *LastBB = nullptr; |
| 290 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 291 | /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case |
| 292 | /// of replication, maps the BasicBlock of the last replica created. |
| 293 | SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; |
| 294 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 295 | CFGState() = default; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 296 | } CFG; |
| 297 | |
| 298 | /// Hold a pointer to LoopInfo to register new basic blocks in the loop. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 299 | LoopInfo *LI; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 300 | |
| 301 | /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 302 | DominatorTree *DT; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 303 | |
| 304 | /// Hold a reference to the IRBuilder used to generate output IR code. |
| 305 | IRBuilder<> &Builder; |
| 306 | |
| 307 | /// Hold a reference to the Value state information used when generating the |
| 308 | /// Values of the output IR. |
| 309 | VectorizerValueMap &ValueMap; |
| 310 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 311 | /// Hold a reference to a mapping between VPValues in VPlan and original |
| 312 | /// Values they correspond to. |
| 313 | VPValue2ValueTy VPValue2Value; |
| 314 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 315 | /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 316 | InnerLoopVectorizer *ILV; |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 317 | |
| 318 | VPCallback &Callback; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 319 | }; |
| 320 | |
| 321 | /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. |
| 322 | /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. |
| 323 | class VPBlockBase { |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 324 | friend class VPBlockUtils; |
| 325 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 326 | private: |
| 327 | const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| 328 | |
| 329 | /// An optional name for the block. |
| 330 | std::string Name; |
| 331 | |
| 332 | /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if |
| 333 | /// it is a topmost VPBlockBase. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 334 | VPRegionBlock *Parent = nullptr; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 335 | |
| 336 | /// List of predecessor blocks. |
| 337 | SmallVector<VPBlockBase *, 1> Predecessors; |
| 338 | |
| 339 | /// List of successor blocks. |
| 340 | SmallVector<VPBlockBase *, 1> Successors; |
| 341 | |
| 342 | /// Add \p Successor as the last successor to this block. |
| 343 | void appendSuccessor(VPBlockBase *Successor) { |
| 344 | assert(Successor && "Cannot add nullptr successor!"); |
| 345 | Successors.push_back(Successor); |
| 346 | } |
| 347 | |
| 348 | /// Add \p Predecessor as the last predecessor to this block. |
| 349 | void appendPredecessor(VPBlockBase *Predecessor) { |
| 350 | assert(Predecessor && "Cannot add nullptr predecessor!"); |
| 351 | Predecessors.push_back(Predecessor); |
| 352 | } |
| 353 | |
| 354 | /// Remove \p Predecessor from the predecessors of this block. |
| 355 | void removePredecessor(VPBlockBase *Predecessor) { |
| 356 | auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); |
| 357 | assert(Pos && "Predecessor does not exist"); |
| 358 | Predecessors.erase(Pos); |
| 359 | } |
| 360 | |
| 361 | /// Remove \p Successor from the successors of this block. |
| 362 | void removeSuccessor(VPBlockBase *Successor) { |
| 363 | auto Pos = std::find(Successors.begin(), Successors.end(), Successor); |
| 364 | assert(Pos && "Successor does not exist"); |
| 365 | Successors.erase(Pos); |
| 366 | } |
| 367 | |
| 368 | protected: |
| 369 | VPBlockBase(const unsigned char SC, const std::string &N) |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 370 | : SubclassID(SC), Name(N) {} |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 371 | |
| 372 | public: |
| 373 | /// An enumeration for keeping track of the concrete subclass of VPBlockBase |
| 374 | /// that are actually instantiated. Values of this enumeration are kept in the |
| 375 | /// SubclassID field of the VPBlockBase objects. They are used for concrete |
| 376 | /// type identification. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 377 | using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 378 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 379 | using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 380 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 381 | virtual ~VPBlockBase() = default; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 382 | |
| 383 | const std::string &getName() const { return Name; } |
| 384 | |
| 385 | void setName(const Twine &newName) { Name = newName.str(); } |
| 386 | |
| 387 | /// \return an ID for the concrete type of this object. |
| 388 | /// This is used to implement the classof checks. This should not be used |
| 389 | /// for any other purpose, as the values may change as LLVM evolves. |
| 390 | unsigned getVPBlockID() const { return SubclassID; } |
| 391 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 392 | VPRegionBlock *getParent() { return Parent; } |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 393 | const VPRegionBlock *getParent() const { return Parent; } |
| 394 | |
| 395 | void setParent(VPRegionBlock *P) { Parent = P; } |
| 396 | |
| 397 | /// \return the VPBasicBlock that is the entry of this VPBlockBase, |
| 398 | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| 399 | /// VPBlockBase is a VPBasicBlock, it is returned. |
| 400 | const VPBasicBlock *getEntryBasicBlock() const; |
| 401 | VPBasicBlock *getEntryBasicBlock(); |
| 402 | |
| 403 | /// \return the VPBasicBlock that is the exit of this VPBlockBase, |
| 404 | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| 405 | /// VPBlockBase is a VPBasicBlock, it is returned. |
| 406 | const VPBasicBlock *getExitBasicBlock() const; |
| 407 | VPBasicBlock *getExitBasicBlock(); |
| 408 | |
| 409 | const VPBlocksTy &getSuccessors() const { return Successors; } |
| 410 | VPBlocksTy &getSuccessors() { return Successors; } |
| 411 | |
| 412 | const VPBlocksTy &getPredecessors() const { return Predecessors; } |
| 413 | VPBlocksTy &getPredecessors() { return Predecessors; } |
| 414 | |
| 415 | /// \return the successor of this VPBlockBase if it has a single successor. |
| 416 | /// Otherwise return a null pointer. |
| 417 | VPBlockBase *getSingleSuccessor() const { |
| 418 | return (Successors.size() == 1 ? *Successors.begin() : nullptr); |
| 419 | } |
| 420 | |
| 421 | /// \return the predecessor of this VPBlockBase if it has a single |
| 422 | /// predecessor. Otherwise return a null pointer. |
| 423 | VPBlockBase *getSinglePredecessor() const { |
| 424 | return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); |
| 425 | } |
| 426 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 427 | size_t getNumSuccessors() const { return Successors.size(); } |
| 428 | size_t getNumPredecessors() const { return Predecessors.size(); } |
| 429 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 430 | /// An Enclosing Block of a block B is any block containing B, including B |
| 431 | /// itself. \return the closest enclosing block starting from "this", which |
| 432 | /// has successors. \return the root enclosing block if all enclosing blocks |
| 433 | /// have no successors. |
| 434 | VPBlockBase *getEnclosingBlockWithSuccessors(); |
| 435 | |
| 436 | /// \return the closest enclosing block starting from "this", which has |
| 437 | /// predecessors. \return the root enclosing block if all enclosing blocks |
| 438 | /// have no predecessors. |
| 439 | VPBlockBase *getEnclosingBlockWithPredecessors(); |
| 440 | |
| 441 | /// \return the successors either attached directly to this VPBlockBase or, if |
| 442 | /// this VPBlockBase is the exit block of a VPRegionBlock and has no |
| 443 | /// successors of its own, search recursively for the first enclosing |
| 444 | /// VPRegionBlock that has successors and return them. If no such |
| 445 | /// VPRegionBlock exists, return the (empty) successors of the topmost |
| 446 | /// VPBlockBase reached. |
| 447 | const VPBlocksTy &getHierarchicalSuccessors() { |
| 448 | return getEnclosingBlockWithSuccessors()->getSuccessors(); |
| 449 | } |
| 450 | |
| 451 | /// \return the hierarchical successor of this VPBlockBase if it has a single |
| 452 | /// hierarchical successor. Otherwise return a null pointer. |
| 453 | VPBlockBase *getSingleHierarchicalSuccessor() { |
| 454 | return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); |
| 455 | } |
| 456 | |
| 457 | /// \return the predecessors either attached directly to this VPBlockBase or, |
| 458 | /// if this VPBlockBase is the entry block of a VPRegionBlock and has no |
| 459 | /// predecessors of its own, search recursively for the first enclosing |
| 460 | /// VPRegionBlock that has predecessors and return them. If no such |
| 461 | /// VPRegionBlock exists, return the (empty) predecessors of the topmost |
| 462 | /// VPBlockBase reached. |
| 463 | const VPBlocksTy &getHierarchicalPredecessors() { |
| 464 | return getEnclosingBlockWithPredecessors()->getPredecessors(); |
| 465 | } |
| 466 | |
| 467 | /// \return the hierarchical predecessor of this VPBlockBase if it has a |
| 468 | /// single hierarchical predecessor. Otherwise return a null pointer. |
| 469 | VPBlockBase *getSingleHierarchicalPredecessor() { |
| 470 | return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); |
| 471 | } |
| 472 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 473 | /// Set a given VPBlockBase \p Successor as the single successor of this |
| 474 | /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. |
| 475 | /// This VPBlockBase must have no successors. |
| 476 | void setOneSuccessor(VPBlockBase *Successor) { |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 477 | assert(Successors.empty() && "Setting one successor when others exist."); |
| 478 | appendSuccessor(Successor); |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 479 | } |
| 480 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 481 | /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two |
| 482 | /// successors of this VPBlockBase. This VPBlockBase is not added as |
| 483 | /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no |
| 484 | /// successors. |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 485 | void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { |
| 486 | assert(Successors.empty() && "Setting two successors when others exist."); |
| 487 | appendSuccessor(IfTrue); |
| 488 | appendSuccessor(IfFalse); |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 489 | } |
| 490 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 491 | /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. |
| 492 | /// This VPBlockBase must have no predecessors. This VPBlockBase is not added |
| 493 | /// as successor of any VPBasicBlock in \p NewPreds. |
| 494 | void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { |
| 495 | assert(Predecessors.empty() && "Block predecessors already set."); |
| 496 | for (auto *Pred : NewPreds) |
| 497 | appendPredecessor(Pred); |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 498 | } |
| 499 | |
| 500 | /// The method which generates the output IR that correspond to this |
| 501 | /// VPBlockBase, thereby "executing" the VPlan. |
| 502 | virtual void execute(struct VPTransformState *State) = 0; |
| 503 | |
| 504 | /// Delete all blocks reachable from a given VPBlockBase, inclusive. |
| 505 | static void deleteCFG(VPBlockBase *Entry); |
| 506 | }; |
| 507 | |
| 508 | /// VPRecipeBase is a base class modeling a sequence of one or more output IR |
| 509 | /// instructions. |
| 510 | class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { |
| 511 | friend VPBasicBlock; |
| 512 | |
| 513 | private: |
| 514 | const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| 515 | |
| 516 | /// Each VPRecipe belongs to a single VPBasicBlock. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 517 | VPBasicBlock *Parent = nullptr; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 518 | |
| 519 | public: |
| 520 | /// An enumeration for keeping track of the concrete subclass of VPRecipeBase |
| 521 | /// that is actually instantiated. Values of this enumeration are kept in the |
| 522 | /// SubclassID field of the VPRecipeBase objects. They are used for concrete |
| 523 | /// type identification. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 524 | using VPRecipeTy = enum { |
Gil Rapaport | 848581c | 2017-11-14 12:09:30 +0000 | [diff] [blame] | 525 | VPBlendSC, |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 526 | VPBranchOnMaskSC, |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 527 | VPInstructionSC, |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 528 | VPInterleaveSC, |
| 529 | VPPredInstPHISC, |
| 530 | VPReplicateSC, |
| 531 | VPWidenIntOrFpInductionSC, |
Gil Rapaport | 848581c | 2017-11-14 12:09:30 +0000 | [diff] [blame] | 532 | VPWidenMemoryInstructionSC, |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 533 | VPWidenPHISC, |
| 534 | VPWidenSC, |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 535 | }; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 536 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 537 | VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} |
| 538 | virtual ~VPRecipeBase() = default; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 539 | |
| 540 | /// \return an ID for the concrete type of this object. |
| 541 | /// This is used to implement the classof checks. This should not be used |
| 542 | /// for any other purpose, as the values may change as LLVM evolves. |
| 543 | unsigned getVPRecipeID() const { return SubclassID; } |
| 544 | |
| 545 | /// \return the VPBasicBlock which this VPRecipe belongs to. |
| 546 | VPBasicBlock *getParent() { return Parent; } |
| 547 | const VPBasicBlock *getParent() const { return Parent; } |
| 548 | |
| 549 | /// The method which generates the output IR instructions that correspond to |
| 550 | /// this VPRecipe, thereby "executing" the VPlan. |
| 551 | virtual void execute(struct VPTransformState &State) = 0; |
| 552 | |
| 553 | /// Each recipe prints itself. |
| 554 | virtual void print(raw_ostream &O, const Twine &Indent) const = 0; |
Florian Hahn | 7591e4e | 2018-06-18 11:34:17 +0000 | [diff] [blame^] | 555 | |
| 556 | /// Insert an unlinked recipe into a basic block immediately before |
| 557 | /// the specified recipe. |
| 558 | void insertBefore(VPRecipeBase *InsertPos); |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 559 | }; |
| 560 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 561 | /// This is a concrete Recipe that models a single VPlan-level instruction. |
| 562 | /// While as any Recipe it may generate a sequence of IR instructions when |
| 563 | /// executed, these instructions would always form a single-def expression as |
| 564 | /// the VPInstruction is also a single def-use vertex. |
| 565 | class VPInstruction : public VPUser, public VPRecipeBase { |
| 566 | public: |
| 567 | /// VPlan opcodes, extending LLVM IR with idiomatics instructions. |
| 568 | enum { Not = Instruction::OtherOpsEnd + 1 }; |
| 569 | |
| 570 | private: |
| 571 | typedef unsigned char OpcodeTy; |
| 572 | OpcodeTy Opcode; |
| 573 | |
| 574 | /// Utility method serving execute(): generates a single instance of the |
| 575 | /// modeled instruction. |
| 576 | void generateInstruction(VPTransformState &State, unsigned Part); |
| 577 | |
| 578 | public: |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 579 | VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 580 | : VPUser(VPValue::VPInstructionSC, Operands), |
| 581 | VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} |
| 582 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 583 | VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) |
| 584 | : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} |
| 585 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 586 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 587 | static inline bool classof(const VPValue *V) { |
| 588 | return V->getVPValueID() == VPValue::VPInstructionSC; |
| 589 | } |
| 590 | |
| 591 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 592 | static inline bool classof(const VPRecipeBase *R) { |
| 593 | return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; |
| 594 | } |
| 595 | |
| 596 | unsigned getOpcode() const { return Opcode; } |
| 597 | |
| 598 | /// Generate the instruction. |
| 599 | /// TODO: We currently execute only per-part unless a specific instance is |
| 600 | /// provided. |
| 601 | void execute(VPTransformState &State) override; |
| 602 | |
| 603 | /// Print the Recipe. |
| 604 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 605 | |
| 606 | /// Print the VPInstruction. |
| 607 | void print(raw_ostream &O) const; |
| 608 | }; |
| 609 | |
Hal Finkel | 7333aa9 | 2017-12-16 01:12:50 +0000 | [diff] [blame] | 610 | /// VPWidenRecipe is a recipe for producing a copy of vector type for each |
| 611 | /// Instruction in its ingredients independently, in order. This recipe covers |
| 612 | /// most of the traditional vectorization cases where each ingredient transforms |
| 613 | /// into a vectorized version of itself. |
| 614 | class VPWidenRecipe : public VPRecipeBase { |
| 615 | private: |
| 616 | /// Hold the ingredients by pointing to their original BasicBlock location. |
| 617 | BasicBlock::iterator Begin; |
| 618 | BasicBlock::iterator End; |
| 619 | |
| 620 | public: |
| 621 | VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { |
| 622 | End = I->getIterator(); |
| 623 | Begin = End++; |
| 624 | } |
| 625 | |
| 626 | ~VPWidenRecipe() override = default; |
| 627 | |
| 628 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 629 | static inline bool classof(const VPRecipeBase *V) { |
| 630 | return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; |
| 631 | } |
| 632 | |
| 633 | /// Produce widened copies of all Ingredients. |
| 634 | void execute(VPTransformState &State) override; |
| 635 | |
| 636 | /// Augment the recipe to include Instr, if it lies at its End. |
| 637 | bool appendInstruction(Instruction *Instr) { |
| 638 | if (End != Instr->getIterator()) |
| 639 | return false; |
| 640 | End++; |
| 641 | return true; |
| 642 | } |
| 643 | |
| 644 | /// Print the recipe. |
| 645 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 646 | }; |
| 647 | |
| 648 | /// A recipe for handling phi nodes of integer and floating-point inductions, |
| 649 | /// producing their vector and scalar values. |
| 650 | class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { |
| 651 | private: |
| 652 | PHINode *IV; |
| 653 | TruncInst *Trunc; |
| 654 | |
| 655 | public: |
| 656 | VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) |
| 657 | : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} |
| 658 | ~VPWidenIntOrFpInductionRecipe() override = default; |
| 659 | |
| 660 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 661 | static inline bool classof(const VPRecipeBase *V) { |
| 662 | return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; |
| 663 | } |
| 664 | |
| 665 | /// Generate the vectorized and scalarized versions of the phi node as |
| 666 | /// needed by their users. |
| 667 | void execute(VPTransformState &State) override; |
| 668 | |
| 669 | /// Print the recipe. |
| 670 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 671 | }; |
| 672 | |
| 673 | /// A recipe for handling all phi nodes except for integer and FP inductions. |
| 674 | class VPWidenPHIRecipe : public VPRecipeBase { |
| 675 | private: |
| 676 | PHINode *Phi; |
| 677 | |
| 678 | public: |
| 679 | VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} |
| 680 | ~VPWidenPHIRecipe() override = default; |
| 681 | |
| 682 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 683 | static inline bool classof(const VPRecipeBase *V) { |
| 684 | return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; |
| 685 | } |
| 686 | |
| 687 | /// Generate the phi/select nodes. |
| 688 | void execute(VPTransformState &State) override; |
| 689 | |
| 690 | /// Print the recipe. |
| 691 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 692 | }; |
| 693 | |
| 694 | /// A recipe for vectorizing a phi-node as a sequence of mask-based select |
| 695 | /// instructions. |
| 696 | class VPBlendRecipe : public VPRecipeBase { |
| 697 | private: |
| 698 | PHINode *Phi; |
| 699 | |
| 700 | /// The blend operation is a User of a mask, if not null. |
| 701 | std::unique_ptr<VPUser> User; |
| 702 | |
| 703 | public: |
| 704 | VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) |
| 705 | : VPRecipeBase(VPBlendSC), Phi(Phi) { |
| 706 | assert((Phi->getNumIncomingValues() == 1 || |
| 707 | Phi->getNumIncomingValues() == Masks.size()) && |
| 708 | "Expected the same number of incoming values and masks"); |
| 709 | if (!Masks.empty()) |
| 710 | User.reset(new VPUser(Masks)); |
| 711 | } |
| 712 | |
| 713 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 714 | static inline bool classof(const VPRecipeBase *V) { |
| 715 | return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; |
| 716 | } |
| 717 | |
| 718 | /// Generate the phi/select nodes. |
| 719 | void execute(VPTransformState &State) override; |
| 720 | |
| 721 | /// Print the recipe. |
| 722 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 723 | }; |
| 724 | |
| 725 | /// VPInterleaveRecipe is a recipe for transforming an interleave group of load |
| 726 | /// or stores into one wide load/store and shuffles. |
| 727 | class VPInterleaveRecipe : public VPRecipeBase { |
| 728 | private: |
| 729 | const InterleaveGroup *IG; |
| 730 | |
| 731 | public: |
| 732 | VPInterleaveRecipe(const InterleaveGroup *IG) |
| 733 | : VPRecipeBase(VPInterleaveSC), IG(IG) {} |
| 734 | ~VPInterleaveRecipe() override = default; |
| 735 | |
| 736 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 737 | static inline bool classof(const VPRecipeBase *V) { |
| 738 | return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; |
| 739 | } |
| 740 | |
| 741 | /// Generate the wide load or store, and shuffles. |
| 742 | void execute(VPTransformState &State) override; |
| 743 | |
| 744 | /// Print the recipe. |
| 745 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 746 | |
| 747 | const InterleaveGroup *getInterleaveGroup() { return IG; } |
| 748 | }; |
| 749 | |
| 750 | /// VPReplicateRecipe replicates a given instruction producing multiple scalar |
| 751 | /// copies of the original scalar type, one per lane, instead of producing a |
| 752 | /// single copy of widened type for all lanes. If the instruction is known to be |
| 753 | /// uniform only one copy, per lane zero, will be generated. |
| 754 | class VPReplicateRecipe : public VPRecipeBase { |
| 755 | private: |
| 756 | /// The instruction being replicated. |
| 757 | Instruction *Ingredient; |
| 758 | |
| 759 | /// Indicator if only a single replica per lane is needed. |
| 760 | bool IsUniform; |
| 761 | |
| 762 | /// Indicator if the replicas are also predicated. |
| 763 | bool IsPredicated; |
| 764 | |
| 765 | /// Indicator if the scalar values should also be packed into a vector. |
| 766 | bool AlsoPack; |
| 767 | |
| 768 | public: |
| 769 | VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) |
| 770 | : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), |
| 771 | IsPredicated(IsPredicated) { |
| 772 | // Retain the previous behavior of predicateInstructions(), where an |
| 773 | // insert-element of a predicated instruction got hoisted into the |
| 774 | // predicated basic block iff it was its only user. This is achieved by |
| 775 | // having predicated instructions also pack their values into a vector by |
| 776 | // default unless they have a replicated user which uses their scalar value. |
| 777 | AlsoPack = IsPredicated && !I->use_empty(); |
| 778 | } |
| 779 | |
| 780 | ~VPReplicateRecipe() override = default; |
| 781 | |
| 782 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 783 | static inline bool classof(const VPRecipeBase *V) { |
| 784 | return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; |
| 785 | } |
| 786 | |
| 787 | /// Generate replicas of the desired Ingredient. Replicas will be generated |
| 788 | /// for all parts and lanes unless a specific part and lane are specified in |
| 789 | /// the \p State. |
| 790 | void execute(VPTransformState &State) override; |
| 791 | |
| 792 | void setAlsoPack(bool Pack) { AlsoPack = Pack; } |
| 793 | |
| 794 | /// Print the recipe. |
| 795 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 796 | }; |
| 797 | |
| 798 | /// A recipe for generating conditional branches on the bits of a mask. |
| 799 | class VPBranchOnMaskRecipe : public VPRecipeBase { |
| 800 | private: |
| 801 | std::unique_ptr<VPUser> User; |
| 802 | |
| 803 | public: |
| 804 | VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { |
| 805 | if (BlockInMask) // nullptr means all-one mask. |
| 806 | User.reset(new VPUser({BlockInMask})); |
| 807 | } |
| 808 | |
| 809 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 810 | static inline bool classof(const VPRecipeBase *V) { |
| 811 | return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; |
| 812 | } |
| 813 | |
| 814 | /// Generate the extraction of the appropriate bit from the block mask and the |
| 815 | /// conditional branch. |
| 816 | void execute(VPTransformState &State) override; |
| 817 | |
| 818 | /// Print the recipe. |
| 819 | void print(raw_ostream &O, const Twine &Indent) const override { |
| 820 | O << " +\n" << Indent << "\"BRANCH-ON-MASK "; |
| 821 | if (User) |
| 822 | O << *User->getOperand(0); |
| 823 | else |
| 824 | O << " All-One"; |
| 825 | O << "\\l\""; |
| 826 | } |
| 827 | }; |
| 828 | |
| 829 | /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when |
| 830 | /// control converges back from a Branch-on-Mask. The phi nodes are needed in |
| 831 | /// order to merge values that are set under such a branch and feed their uses. |
| 832 | /// The phi nodes can be scalar or vector depending on the users of the value. |
| 833 | /// This recipe works in concert with VPBranchOnMaskRecipe. |
| 834 | class VPPredInstPHIRecipe : public VPRecipeBase { |
| 835 | private: |
| 836 | Instruction *PredInst; |
| 837 | |
| 838 | public: |
| 839 | /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi |
| 840 | /// nodes after merging back from a Branch-on-Mask. |
| 841 | VPPredInstPHIRecipe(Instruction *PredInst) |
| 842 | : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} |
| 843 | ~VPPredInstPHIRecipe() override = default; |
| 844 | |
| 845 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 846 | static inline bool classof(const VPRecipeBase *V) { |
| 847 | return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; |
| 848 | } |
| 849 | |
| 850 | /// Generates phi nodes for live-outs as needed to retain SSA form. |
| 851 | void execute(VPTransformState &State) override; |
| 852 | |
| 853 | /// Print the recipe. |
| 854 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 855 | }; |
| 856 | |
| 857 | /// A Recipe for widening load/store operations. |
| 858 | /// TODO: We currently execute only per-part unless a specific instance is |
| 859 | /// provided. |
| 860 | class VPWidenMemoryInstructionRecipe : public VPRecipeBase { |
| 861 | private: |
| 862 | Instruction &Instr; |
| 863 | std::unique_ptr<VPUser> User; |
| 864 | |
| 865 | public: |
| 866 | VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask) |
| 867 | : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) { |
| 868 | if (Mask) // Create a VPInstruction to register as a user of the mask. |
| 869 | User.reset(new VPUser({Mask})); |
| 870 | } |
| 871 | |
| 872 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 873 | static inline bool classof(const VPRecipeBase *V) { |
| 874 | return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; |
| 875 | } |
| 876 | |
| 877 | /// Generate the wide load/store. |
| 878 | void execute(VPTransformState &State) override; |
| 879 | |
| 880 | /// Print the recipe. |
| 881 | void print(raw_ostream &O, const Twine &Indent) const override; |
| 882 | }; |
| 883 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 884 | /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It |
| 885 | /// holds a sequence of zero or more VPRecipe's each representing a sequence of |
| 886 | /// output IR instructions. |
| 887 | class VPBasicBlock : public VPBlockBase { |
| 888 | public: |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 889 | using RecipeListTy = iplist<VPRecipeBase>; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 890 | |
| 891 | private: |
| 892 | /// The VPRecipes held in the order of output instructions to generate. |
| 893 | RecipeListTy Recipes; |
| 894 | |
| 895 | public: |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 896 | VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) |
| 897 | : VPBlockBase(VPBasicBlockSC, Name.str()) { |
| 898 | if (Recipe) |
| 899 | appendRecipe(Recipe); |
| 900 | } |
| 901 | |
| 902 | ~VPBasicBlock() override { Recipes.clear(); } |
| 903 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 904 | /// Instruction iterators... |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 905 | using iterator = RecipeListTy::iterator; |
| 906 | using const_iterator = RecipeListTy::const_iterator; |
| 907 | using reverse_iterator = RecipeListTy::reverse_iterator; |
| 908 | using const_reverse_iterator = RecipeListTy::const_reverse_iterator; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 909 | |
| 910 | //===--------------------------------------------------------------------===// |
| 911 | /// Recipe iterator methods |
| 912 | /// |
| 913 | inline iterator begin() { return Recipes.begin(); } |
| 914 | inline const_iterator begin() const { return Recipes.begin(); } |
| 915 | inline iterator end() { return Recipes.end(); } |
| 916 | inline const_iterator end() const { return Recipes.end(); } |
| 917 | |
| 918 | inline reverse_iterator rbegin() { return Recipes.rbegin(); } |
| 919 | inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } |
| 920 | inline reverse_iterator rend() { return Recipes.rend(); } |
| 921 | inline const_reverse_iterator rend() const { return Recipes.rend(); } |
| 922 | |
| 923 | inline size_t size() const { return Recipes.size(); } |
| 924 | inline bool empty() const { return Recipes.empty(); } |
| 925 | inline const VPRecipeBase &front() const { return Recipes.front(); } |
| 926 | inline VPRecipeBase &front() { return Recipes.front(); } |
| 927 | inline const VPRecipeBase &back() const { return Recipes.back(); } |
| 928 | inline VPRecipeBase &back() { return Recipes.back(); } |
| 929 | |
Florian Hahn | 7591e4e | 2018-06-18 11:34:17 +0000 | [diff] [blame^] | 930 | /// Returns a reference to the list of recipes. |
| 931 | RecipeListTy &getRecipeList() { return Recipes; } |
| 932 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 933 | /// Returns a pointer to a member of the recipe list. |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 934 | static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { |
| 935 | return &VPBasicBlock::Recipes; |
| 936 | } |
| 937 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 938 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 939 | static inline bool classof(const VPBlockBase *V) { |
| 940 | return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; |
| 941 | } |
| 942 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 943 | void insert(VPRecipeBase *Recipe, iterator InsertPt) { |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 944 | assert(Recipe && "No recipe to append."); |
| 945 | assert(!Recipe->Parent && "Recipe already in VPlan"); |
| 946 | Recipe->Parent = this; |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 947 | Recipes.insert(InsertPt, Recipe); |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 948 | } |
| 949 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 950 | /// Augment the existing recipes of a VPBasicBlock with an additional |
| 951 | /// \p Recipe as the last recipe. |
| 952 | void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } |
| 953 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 954 | /// The method which generates the output IR instructions that correspond to |
| 955 | /// this VPBasicBlock, thereby "executing" the VPlan. |
| 956 | void execute(struct VPTransformState *State) override; |
| 957 | |
| 958 | private: |
| 959 | /// Create an IR BasicBlock to hold the output instructions generated by this |
| 960 | /// VPBasicBlock, and return it. Update the CFGState accordingly. |
| 961 | BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); |
| 962 | }; |
| 963 | |
| 964 | /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks |
| 965 | /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. |
| 966 | /// A VPRegionBlock may indicate that its contents are to be replicated several |
| 967 | /// times. This is designed to support predicated scalarization, in which a |
| 968 | /// scalar if-then code structure needs to be generated VF * UF times. Having |
| 969 | /// this replication indicator helps to keep a single model for multiple |
| 970 | /// candidate VF's. The actual replication takes place only once the desired VF |
| 971 | /// and UF have been determined. |
| 972 | class VPRegionBlock : public VPBlockBase { |
| 973 | private: |
| 974 | /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. |
| 975 | VPBlockBase *Entry; |
| 976 | |
| 977 | /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. |
| 978 | VPBlockBase *Exit; |
| 979 | |
| 980 | /// An indicator whether this region is to generate multiple replicated |
| 981 | /// instances of output IR corresponding to its VPBlockBases. |
| 982 | bool IsReplicator; |
| 983 | |
| 984 | public: |
| 985 | VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, |
| 986 | const std::string &Name = "", bool IsReplicator = false) |
| 987 | : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), |
| 988 | IsReplicator(IsReplicator) { |
| 989 | assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); |
| 990 | assert(Exit->getSuccessors().empty() && "Exit block has successors."); |
| 991 | Entry->setParent(this); |
| 992 | Exit->setParent(this); |
| 993 | } |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 994 | VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) |
| 995 | : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), |
| 996 | IsReplicator(IsReplicator) {} |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 997 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 998 | ~VPRegionBlock() override { |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 999 | if (Entry) |
| 1000 | deleteCFG(Entry); |
| 1001 | } |
| 1002 | |
| 1003 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 1004 | static inline bool classof(const VPBlockBase *V) { |
| 1005 | return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; |
| 1006 | } |
| 1007 | |
| 1008 | const VPBlockBase *getEntry() const { return Entry; } |
| 1009 | VPBlockBase *getEntry() { return Entry; } |
| 1010 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 1011 | /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p |
| 1012 | /// EntryBlock must have no predecessors. |
| 1013 | void setEntry(VPBlockBase *EntryBlock) { |
| 1014 | assert(EntryBlock->getPredecessors().empty() && |
| 1015 | "Entry block cannot have predecessors."); |
| 1016 | Entry = EntryBlock; |
| 1017 | EntryBlock->setParent(this); |
| 1018 | } |
| 1019 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1020 | const VPBlockBase *getExit() const { return Exit; } |
| 1021 | VPBlockBase *getExit() { return Exit; } |
| 1022 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 1023 | /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p |
| 1024 | /// ExitBlock must have no successors. |
| 1025 | void setExit(VPBlockBase *ExitBlock) { |
| 1026 | assert(ExitBlock->getSuccessors().empty() && |
| 1027 | "Exit block cannot have successors."); |
| 1028 | Exit = ExitBlock; |
| 1029 | ExitBlock->setParent(this); |
| 1030 | } |
| 1031 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1032 | /// An indicator whether this region is to generate multiple replicated |
| 1033 | /// instances of output IR corresponding to its VPBlockBases. |
| 1034 | bool isReplicator() const { return IsReplicator; } |
| 1035 | |
| 1036 | /// The method which generates the output IR instructions that correspond to |
| 1037 | /// this VPRegionBlock, thereby "executing" the VPlan. |
| 1038 | void execute(struct VPTransformState *State) override; |
| 1039 | }; |
| 1040 | |
| 1041 | /// VPlan models a candidate for vectorization, encoding various decisions take |
| 1042 | /// to produce efficient output IR, including which branches, basic-blocks and |
| 1043 | /// output IR instructions to generate, and their cost. VPlan holds a |
| 1044 | /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry |
| 1045 | /// VPBlock. |
| 1046 | class VPlan { |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 1047 | friend class VPlanPrinter; |
| 1048 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1049 | private: |
| 1050 | /// Hold the single entry to the Hierarchical CFG of the VPlan. |
| 1051 | VPBlockBase *Entry; |
| 1052 | |
| 1053 | /// Holds the VFs applicable to this VPlan. |
| 1054 | SmallSet<unsigned, 2> VFs; |
| 1055 | |
| 1056 | /// Holds the name of the VPlan, for printing. |
| 1057 | std::string Name; |
| 1058 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 1059 | /// Holds all the external definitions created for this VPlan. |
| 1060 | // TODO: Introduce a specific representation for external definitions in |
| 1061 | // VPlan. External definitions must be immutable and hold a pointer to its |
| 1062 | // underlying IR that will be used to implement its structural comparison |
| 1063 | // (operators '==' and '<'). |
Craig Topper | 6199828 | 2018-06-09 05:04:20 +0000 | [diff] [blame] | 1064 | SmallPtrSet<VPValue *, 16> VPExternalDefs; |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 1065 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 1066 | /// Holds a mapping between Values and their corresponding VPValue inside |
| 1067 | /// VPlan. |
| 1068 | Value2VPValueTy Value2VPValue; |
| 1069 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1070 | public: |
| 1071 | VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} |
| 1072 | |
| 1073 | ~VPlan() { |
| 1074 | if (Entry) |
| 1075 | VPBlockBase::deleteCFG(Entry); |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 1076 | for (auto &MapEntry : Value2VPValue) |
| 1077 | delete MapEntry.second; |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 1078 | for (VPValue *Def : VPExternalDefs) |
| 1079 | delete Def; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1080 | } |
| 1081 | |
| 1082 | /// Generate the IR code for this VPlan. |
| 1083 | void execute(struct VPTransformState *State); |
| 1084 | |
| 1085 | VPBlockBase *getEntry() { return Entry; } |
| 1086 | const VPBlockBase *getEntry() const { return Entry; } |
| 1087 | |
| 1088 | VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } |
| 1089 | |
| 1090 | void addVF(unsigned VF) { VFs.insert(VF); } |
| 1091 | |
| 1092 | bool hasVF(unsigned VF) { return VFs.count(VF); } |
| 1093 | |
| 1094 | const std::string &getName() const { return Name; } |
| 1095 | |
| 1096 | void setName(const Twine &newName) { Name = newName.str(); } |
| 1097 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 1098 | /// Add \p VPVal to the pool of external definitions if it's not already |
| 1099 | /// in the pool. |
| 1100 | void addExternalDef(VPValue *VPVal) { |
| 1101 | VPExternalDefs.insert(VPVal); |
| 1102 | } |
| 1103 | |
Gil Rapaport | 8b9d1f3 | 2017-11-20 12:01:47 +0000 | [diff] [blame] | 1104 | void addVPValue(Value *V) { |
| 1105 | assert(V && "Trying to add a null Value to VPlan"); |
| 1106 | assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); |
| 1107 | Value2VPValue[V] = new VPValue(); |
| 1108 | } |
| 1109 | |
| 1110 | VPValue *getVPValue(Value *V) { |
| 1111 | assert(V && "Trying to get the VPValue of a null Value"); |
| 1112 | assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); |
| 1113 | return Value2VPValue[V]; |
| 1114 | } |
| 1115 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1116 | private: |
| 1117 | /// Add to the given dominator tree the header block and every new basic block |
| 1118 | /// that was created between it and the latch block, inclusive. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1119 | static void updateDominatorTree(DominatorTree *DT, |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1120 | BasicBlock *LoopPreHeaderBB, |
| 1121 | BasicBlock *LoopLatchBB); |
| 1122 | }; |
| 1123 | |
| 1124 | /// VPlanPrinter prints a given VPlan to a given output stream. The printing is |
| 1125 | /// indented and follows the dot format. |
| 1126 | class VPlanPrinter { |
| 1127 | friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); |
| 1128 | friend inline raw_ostream &operator<<(raw_ostream &OS, |
| 1129 | const struct VPlanIngredient &I); |
| 1130 | |
| 1131 | private: |
| 1132 | raw_ostream &OS; |
| 1133 | VPlan &Plan; |
| 1134 | unsigned Depth; |
| 1135 | unsigned TabWidth = 2; |
| 1136 | std::string Indent; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1137 | unsigned BID = 0; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1138 | SmallDenseMap<const VPBlockBase *, unsigned> BlockID; |
| 1139 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1140 | VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} |
| 1141 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1142 | /// Handle indentation. |
| 1143 | void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } |
| 1144 | |
| 1145 | /// Print a given \p Block of the Plan. |
| 1146 | void dumpBlock(const VPBlockBase *Block); |
| 1147 | |
| 1148 | /// Print the information related to the CFG edges going out of a given |
| 1149 | /// \p Block, followed by printing the successor blocks themselves. |
| 1150 | void dumpEdges(const VPBlockBase *Block); |
| 1151 | |
| 1152 | /// Print a given \p BasicBlock, including its VPRecipes, followed by printing |
| 1153 | /// its successor blocks. |
| 1154 | void dumpBasicBlock(const VPBasicBlock *BasicBlock); |
| 1155 | |
| 1156 | /// Print a given \p Region of the Plan. |
| 1157 | void dumpRegion(const VPRegionBlock *Region); |
| 1158 | |
| 1159 | unsigned getOrCreateBID(const VPBlockBase *Block) { |
| 1160 | return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; |
| 1161 | } |
| 1162 | |
| 1163 | const Twine getOrCreateName(const VPBlockBase *Block); |
| 1164 | |
| 1165 | const Twine getUID(const VPBlockBase *Block); |
| 1166 | |
| 1167 | /// Print the information related to a CFG edge between two VPBlockBases. |
| 1168 | void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, |
| 1169 | const Twine &Label); |
| 1170 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1171 | void dump(); |
| 1172 | |
| 1173 | static void printAsIngredient(raw_ostream &O, Value *V); |
| 1174 | }; |
| 1175 | |
| 1176 | struct VPlanIngredient { |
| 1177 | Value *V; |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1178 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1179 | VPlanIngredient(Value *V) : V(V) {} |
| 1180 | }; |
| 1181 | |
| 1182 | inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { |
| 1183 | VPlanPrinter::printAsIngredient(OS, I.V); |
| 1184 | return OS; |
| 1185 | } |
| 1186 | |
| 1187 | inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { |
| 1188 | VPlanPrinter Printer(OS, Plan); |
| 1189 | Printer.dump(); |
| 1190 | return OS; |
| 1191 | } |
| 1192 | |
| 1193 | //===--------------------------------------------------------------------===// |
| 1194 | // GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs // |
| 1195 | //===--------------------------------------------------------------------===// |
| 1196 | |
| 1197 | // Provide specializations of GraphTraits to be able to treat a VPBlockBase as a |
| 1198 | // graph of VPBlockBase nodes... |
| 1199 | |
| 1200 | template <> struct GraphTraits<VPBlockBase *> { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1201 | using NodeRef = VPBlockBase *; |
| 1202 | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1203 | |
| 1204 | static NodeRef getEntryNode(NodeRef N) { return N; } |
| 1205 | |
| 1206 | static inline ChildIteratorType child_begin(NodeRef N) { |
| 1207 | return N->getSuccessors().begin(); |
| 1208 | } |
| 1209 | |
| 1210 | static inline ChildIteratorType child_end(NodeRef N) { |
| 1211 | return N->getSuccessors().end(); |
| 1212 | } |
| 1213 | }; |
| 1214 | |
| 1215 | template <> struct GraphTraits<const VPBlockBase *> { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1216 | using NodeRef = const VPBlockBase *; |
| 1217 | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1218 | |
| 1219 | static NodeRef getEntryNode(NodeRef N) { return N; } |
| 1220 | |
| 1221 | static inline ChildIteratorType child_begin(NodeRef N) { |
| 1222 | return N->getSuccessors().begin(); |
| 1223 | } |
| 1224 | |
| 1225 | static inline ChildIteratorType child_end(NodeRef N) { |
| 1226 | return N->getSuccessors().end(); |
| 1227 | } |
| 1228 | }; |
| 1229 | |
| 1230 | // Provide specializations of GraphTraits to be able to treat a VPBlockBase as a |
| 1231 | // graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order |
| 1232 | // for a VPBlockBase is considered to be when traversing the predecessors of a |
| 1233 | // VPBlockBase instead of its successors. |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1234 | template <> struct GraphTraits<Inverse<VPBlockBase *>> { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1235 | using NodeRef = VPBlockBase *; |
| 1236 | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1237 | |
| 1238 | static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) { |
| 1239 | return B; |
| 1240 | } |
| 1241 | |
| 1242 | static inline ChildIteratorType child_begin(NodeRef N) { |
| 1243 | return N->getPredecessors().begin(); |
| 1244 | } |
| 1245 | |
| 1246 | static inline ChildIteratorType child_end(NodeRef N) { |
| 1247 | return N->getPredecessors().end(); |
| 1248 | } |
| 1249 | }; |
| 1250 | |
Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame] | 1251 | //===----------------------------------------------------------------------===// |
| 1252 | // VPlan Utilities |
| 1253 | //===----------------------------------------------------------------------===// |
| 1254 | |
| 1255 | /// Class that provides utilities for VPBlockBases in VPlan. |
| 1256 | class VPBlockUtils { |
| 1257 | public: |
| 1258 | VPBlockUtils() = delete; |
| 1259 | |
| 1260 | /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p |
| 1261 | /// NewBlock as successor of \p BlockPtr and \p Block as predecessor of \p |
| 1262 | /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p NewBlock |
| 1263 | /// must have neither successors nor predecessors. |
| 1264 | static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { |
| 1265 | assert(NewBlock->getSuccessors().empty() && |
| 1266 | "Can't insert new block with successors."); |
| 1267 | // TODO: move successors from BlockPtr to NewBlock when this functionality |
| 1268 | // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr |
| 1269 | // already has successors. |
| 1270 | BlockPtr->setOneSuccessor(NewBlock); |
| 1271 | NewBlock->setPredecessors({BlockPtr}); |
| 1272 | NewBlock->setParent(BlockPtr->getParent()); |
| 1273 | } |
| 1274 | |
| 1275 | /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p |
| 1276 | /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p |
| 1277 | /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr |
| 1278 | /// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors |
| 1279 | /// and \p IfTrue and \p IfFalse must have neither successors nor |
| 1280 | /// predecessors. |
| 1281 | static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, |
| 1282 | VPBlockBase *BlockPtr) { |
| 1283 | assert(IfTrue->getSuccessors().empty() && |
| 1284 | "Can't insert IfTrue with successors."); |
| 1285 | assert(IfFalse->getSuccessors().empty() && |
| 1286 | "Can't insert IfFalse with successors."); |
| 1287 | BlockPtr->setTwoSuccessors(IfTrue, IfFalse); |
| 1288 | IfTrue->setPredecessors({BlockPtr}); |
| 1289 | IfFalse->setPredecessors({BlockPtr}); |
| 1290 | IfTrue->setParent(BlockPtr->getParent()); |
| 1291 | IfFalse->setParent(BlockPtr->getParent()); |
| 1292 | } |
| 1293 | |
| 1294 | /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to |
| 1295 | /// the successors of \p From and \p From to the predecessors of \p To. Both |
| 1296 | /// VPBlockBases must have the same parent, which can be null. Both |
| 1297 | /// VPBlockBases can be already connected to other VPBlockBases. |
| 1298 | static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { |
| 1299 | assert((From->getParent() == To->getParent()) && |
| 1300 | "Can't connect two block with different parents"); |
| 1301 | assert(From->getNumSuccessors() < 2 && |
| 1302 | "Blocks can't have more than two successors."); |
| 1303 | From->appendSuccessor(To); |
| 1304 | To->appendPredecessor(From); |
| 1305 | } |
| 1306 | |
| 1307 | /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To |
| 1308 | /// from the successors of \p From and \p From from the predecessors of \p To. |
| 1309 | static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { |
| 1310 | assert(To && "Successor to disconnect is null."); |
| 1311 | From->removeSuccessor(To); |
| 1312 | To->removePredecessor(From); |
| 1313 | } |
| 1314 | }; |
Florian Hahn | 45e5d5b | 2018-06-08 17:30:45 +0000 | [diff] [blame] | 1315 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1316 | } // end namespace llvm |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 1317 | |
| 1318 | #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |