blob: 58992014809956c1b8cc603b0356d9e5efe73fe4 [file] [log] [blame]
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carrutha9174582015-01-22 05:25:13 +000014#include "InstCombineInternal.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000015#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/None.h"
Meador Ingee3f2b262012-11-30 04:05:06 +000019#include "llvm/ADT/Statistic.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000020#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Twine.h"
David Majnemer15032582015-05-22 03:56:46 +000023#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner7a9e47a2010-01-05 07:32:13 +000024#include "llvm/Analysis/MemoryBuiltins.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000025#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/BasicBlock.h"
Chandler Carruth219b89b2014-03-04 11:01:28 +000027#include "llvm/IR/CallSite.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000028#include "llvm/IR/Constant.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/LLVMContext.h"
39#include "llvm/IR/Metadata.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000040#include "llvm/IR/PatternMatch.h"
Philip Reames1a1bdb22014-12-02 18:50:36 +000041#include "llvm/IR/Statepoint.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000042#include "llvm/IR/Type.h"
43#include "llvm/IR/Value.h"
44#include "llvm/IR/ValueHandle.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
Chris Lattner6fcd32e2010-12-25 20:37:57 +000048#include "llvm/Transforms/Utils/Local.h"
Chandler Carruthba4c5172015-01-21 11:23:40 +000049#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000050#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <cstring>
54#include <vector>
55
Chris Lattner7a9e47a2010-01-05 07:32:13 +000056using namespace llvm;
Michael Ilseman536cc322012-12-13 03:13:36 +000057using namespace PatternMatch;
Chris Lattner7a9e47a2010-01-05 07:32:13 +000058
Chandler Carruth964daaa2014-04-22 02:55:47 +000059#define DEBUG_TYPE "instcombine"
60
Meador Ingee3f2b262012-11-30 04:05:06 +000061STATISTIC(NumSimplified, "Number of library calls simplified");
62
Igor Laevskya9b68722017-02-08 15:21:48 +000063static cl::opt<unsigned> UnfoldElementAtomicMemcpyMaxElements(
Igor Laevsky900ffa32017-02-08 14:32:04 +000064 "unfold-element-atomic-memcpy-max-elements",
65 cl::init(16),
66 cl::desc("Maximum number of elements in atomic memcpy the optimizer is "
67 "allowed to unfold"));
68
Sanjay Patelcd4377c2016-01-20 22:24:38 +000069/// Return the specified type promoted as it would be to pass though a va_arg
70/// area.
Chris Lattner229907c2011-07-18 04:54:35 +000071static Type *getPromotedType(Type *Ty) {
72 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +000073 if (ITy->getBitWidth() < 32)
74 return Type::getInt32Ty(Ty->getContext());
75 }
76 return Ty;
77}
78
Sanjay Patelcd4377c2016-01-20 22:24:38 +000079/// Given an aggregate type which ultimately holds a single scalar element,
80/// like {{{type}}} or [1 x type], return type.
Dan Gohmand0080c42012-09-13 18:19:06 +000081static Type *reduceToSingleValueType(Type *T) {
82 while (!T->isSingleValueType()) {
83 if (StructType *STy = dyn_cast<StructType>(T)) {
84 if (STy->getNumElements() == 1)
85 T = STy->getElementType(0);
86 else
87 break;
88 } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
89 if (ATy->getNumElements() == 1)
90 T = ATy->getElementType();
91 else
92 break;
93 } else
94 break;
95 }
96
97 return T;
98}
Chris Lattner7a9e47a2010-01-05 07:32:13 +000099
Sanjay Patel368ac5d2016-02-21 17:29:33 +0000100/// Return a constant boolean vector that has true elements in all positions
Sanjay Patel24401302016-02-21 17:33:31 +0000101/// where the input constant data vector has an element with the sign bit set.
Sanjay Patel368ac5d2016-02-21 17:29:33 +0000102static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
103 SmallVector<Constant *, 32> BoolVec;
104 IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
105 for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
106 Constant *Elt = V->getElementAsConstant(I);
107 assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
108 "Unexpected constant data vector element type");
109 bool Sign = V->getElementType()->isIntegerTy()
110 ? cast<ConstantInt>(Elt)->isNegative()
111 : cast<ConstantFP>(Elt)->isNegative();
112 BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
113 }
114 return ConstantVector::get(BoolVec);
115}
116
Igor Laevsky900ffa32017-02-08 14:32:04 +0000117Instruction *
118InstCombiner::SimplifyElementAtomicMemCpy(ElementAtomicMemCpyInst *AMI) {
119 // Try to unfold this intrinsic into sequence of explicit atomic loads and
120 // stores.
121 // First check that number of elements is compile time constant.
122 auto *NumElementsCI = dyn_cast<ConstantInt>(AMI->getNumElements());
123 if (!NumElementsCI)
124 return nullptr;
125
126 // Check that there are not too many elements.
127 uint64_t NumElements = NumElementsCI->getZExtValue();
128 if (NumElements >= UnfoldElementAtomicMemcpyMaxElements)
129 return nullptr;
130
131 // Don't unfold into illegal integers
132 uint64_t ElementSizeInBytes = AMI->getElementSizeInBytes() * 8;
133 if (!getDataLayout().isLegalInteger(ElementSizeInBytes))
134 return nullptr;
135
136 // Cast source and destination to the correct type. Intrinsic input arguments
137 // are usually represented as i8*.
138 // Often operands will be explicitly casted to i8* and we can just strip
139 // those casts instead of inserting new ones. However it's easier to rely on
140 // other InstCombine rules which will cover trivial cases anyway.
141 Value *Src = AMI->getRawSource();
142 Value *Dst = AMI->getRawDest();
143 Type *ElementPointerType = Type::getIntNPtrTy(
144 AMI->getContext(), ElementSizeInBytes, Src->getType()->getPointerAddressSpace());
145
146 Value *SrcCasted = Builder->CreatePointerCast(Src, ElementPointerType,
147 "memcpy_unfold.src_casted");
148 Value *DstCasted = Builder->CreatePointerCast(Dst, ElementPointerType,
149 "memcpy_unfold.dst_casted");
150
151 for (uint64_t i = 0; i < NumElements; ++i) {
152 // Get current element addresses
153 ConstantInt *ElementIdxCI =
154 ConstantInt::get(AMI->getContext(), APInt(64, i));
155 Value *SrcElementAddr =
156 Builder->CreateGEP(SrcCasted, ElementIdxCI, "memcpy_unfold.src_addr");
157 Value *DstElementAddr =
158 Builder->CreateGEP(DstCasted, ElementIdxCI, "memcpy_unfold.dst_addr");
159
160 // Load from the source. Transfer alignment information and mark load as
161 // unordered atomic.
162 LoadInst *Load = Builder->CreateLoad(SrcElementAddr, "memcpy_unfold.val");
163 Load->setOrdering(AtomicOrdering::Unordered);
164 // We know alignment of the first element. It is also guaranteed by the
165 // verifier that element size is less or equal than first element alignment
166 // and both of this values are powers of two.
167 // This means that all subsequent accesses are at least element size
168 // aligned.
169 // TODO: We can infer better alignment but there is no evidence that this
170 // will matter.
171 Load->setAlignment(i == 0 ? AMI->getSrcAlignment()
172 : AMI->getElementSizeInBytes());
173 Load->setDebugLoc(AMI->getDebugLoc());
174
175 // Store loaded value via unordered atomic store.
176 StoreInst *Store = Builder->CreateStore(Load, DstElementAddr);
177 Store->setOrdering(AtomicOrdering::Unordered);
178 Store->setAlignment(i == 0 ? AMI->getDstAlignment()
179 : AMI->getElementSizeInBytes());
180 Store->setDebugLoc(AMI->getDebugLoc());
181 }
182
183 // Set the number of elements of the copy to 0, it will be deleted on the
184 // next iteration.
185 AMI->setNumElements(Constant::getNullValue(NumElementsCI->getType()));
186 return AMI;
187}
188
Pete Cooper67cf9a72015-11-19 05:56:52 +0000189Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000190 unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, &AC, &DT);
191 unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, &AC, &DT);
Pete Cooper67cf9a72015-11-19 05:56:52 +0000192 unsigned MinAlign = std::min(DstAlign, SrcAlign);
193 unsigned CopyAlign = MI->getAlignment();
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000194
Pete Cooper67cf9a72015-11-19 05:56:52 +0000195 if (CopyAlign < MinAlign) {
196 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000197 return MI;
198 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000199
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000200 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
201 // load/store.
Gabor Greif0a136c92010-06-24 13:54:33 +0000202 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +0000203 if (!MemOpLength) return nullptr;
Jim Grosbach7815f562012-02-03 00:07:04 +0000204
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000205 // Source and destination pointer types are always "i8*" for intrinsic. See
206 // if the size is something we can handle with a single primitive load/store.
207 // A single load+store correctly handles overlapping memory in the memmove
208 // case.
Michael Liao69e172a2012-08-15 03:49:59 +0000209 uint64_t Size = MemOpLength->getLimitedValue();
Alp Tokercb402912014-01-24 17:20:08 +0000210 assert(Size && "0-sized memory transferring should be removed already.");
Jim Grosbach7815f562012-02-03 00:07:04 +0000211
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000212 if (Size > 8 || (Size&(Size-1)))
Craig Topperf40110f2014-04-25 05:29:35 +0000213 return nullptr; // If not 1/2/4/8 bytes, exit.
Jim Grosbach7815f562012-02-03 00:07:04 +0000214
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000215 // Use an integer load+store unless we can find something better.
Mon P Wangc576ee92010-04-04 03:10:48 +0000216 unsigned SrcAddrSp =
Gabor Greif0a136c92010-06-24 13:54:33 +0000217 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
Gabor Greiff3755202010-04-16 15:33:14 +0000218 unsigned DstAddrSp =
Gabor Greif0a136c92010-06-24 13:54:33 +0000219 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
Mon P Wangc576ee92010-04-04 03:10:48 +0000220
Chris Lattner229907c2011-07-18 04:54:35 +0000221 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
Mon P Wangc576ee92010-04-04 03:10:48 +0000222 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
223 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
Jim Grosbach7815f562012-02-03 00:07:04 +0000224
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000225 // Memcpy forces the use of i8* for the source and destination. That means
226 // that if you're using memcpy to move one double around, you'll get a cast
227 // from double* to i8*. We'd much rather use a double load+store rather than
228 // an i64 load+store, here because this improves the odds that the source or
229 // dest address will be promotable. See if we can find a better type than the
230 // integer datatype.
Gabor Greif589a0b92010-06-24 12:58:35 +0000231 Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
Craig Topperf40110f2014-04-25 05:29:35 +0000232 MDNode *CopyMD = nullptr;
Gabor Greif589a0b92010-06-24 12:58:35 +0000233 if (StrippedDest != MI->getArgOperand(0)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000234 Type *SrcETy = cast<PointerType>(StrippedDest->getType())
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000235 ->getElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000236 if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000237 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
238 // down through these levels if so.
Dan Gohmand0080c42012-09-13 18:19:06 +0000239 SrcETy = reduceToSingleValueType(SrcETy);
Jim Grosbach7815f562012-02-03 00:07:04 +0000240
Mon P Wangc576ee92010-04-04 03:10:48 +0000241 if (SrcETy->isSingleValueType()) {
242 NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
243 NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
Dan Gohman3f553c22012-09-13 21:51:01 +0000244
245 // If the memcpy has metadata describing the members, see if we can
246 // get the TBAA tag describing our copy.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000247 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000248 if (M->getNumOperands() == 3 && M->getOperand(0) &&
249 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
250 mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
Nick Lewycky49ac81a2012-10-11 02:05:23 +0000251 M->getOperand(1) &&
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000252 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
253 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
254 Size &&
255 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
Dan Gohman3f553c22012-09-13 21:51:01 +0000256 CopyMD = cast<MDNode>(M->getOperand(2));
257 }
Mon P Wangc576ee92010-04-04 03:10:48 +0000258 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000259 }
260 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000261
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000262 // If the memcpy/memmove provides better alignment info than we can
263 // infer, use it.
Pete Cooper67cf9a72015-11-19 05:56:52 +0000264 SrcAlign = std::max(SrcAlign, CopyAlign);
265 DstAlign = std::max(DstAlign, CopyAlign);
Jim Grosbach7815f562012-02-03 00:07:04 +0000266
Gabor Greif5f3e6562010-06-25 07:57:14 +0000267 Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
268 Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
Eli Friedman49346012011-05-18 19:57:14 +0000269 LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
270 L->setAlignment(SrcAlign);
Dan Gohman3f553c22012-09-13 21:51:01 +0000271 if (CopyMD)
272 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
Dorit Nuzmanabd15f62016-09-04 07:49:39 +0000273 MDNode *LoopMemParallelMD =
274 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
275 if (LoopMemParallelMD)
276 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
Dorit Nuzman7673ba72016-09-04 07:06:00 +0000277
Eli Friedman49346012011-05-18 19:57:14 +0000278 StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
279 S->setAlignment(DstAlign);
Dan Gohman3f553c22012-09-13 21:51:01 +0000280 if (CopyMD)
281 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
Dorit Nuzmanabd15f62016-09-04 07:49:39 +0000282 if (LoopMemParallelMD)
283 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000284
285 // Set the size of the copy to 0, it will be deleted on the next iteration.
Gabor Greif5b1370e2010-06-28 16:50:57 +0000286 MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000287 return MI;
288}
289
290Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000291 unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
Pete Cooper67cf9a72015-11-19 05:56:52 +0000292 if (MI->getAlignment() < Alignment) {
293 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
294 Alignment, false));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000295 return MI;
296 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000297
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000298 // Extract the length and alignment and fill if they are constant.
299 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
300 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
Duncan Sands9dff9be2010-02-15 16:12:20 +0000301 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
Craig Topperf40110f2014-04-25 05:29:35 +0000302 return nullptr;
Michael Liao69e172a2012-08-15 03:49:59 +0000303 uint64_t Len = LenC->getLimitedValue();
Pete Cooper67cf9a72015-11-19 05:56:52 +0000304 Alignment = MI->getAlignment();
Michael Liao69e172a2012-08-15 03:49:59 +0000305 assert(Len && "0-sized memory setting should be removed already.");
Jim Grosbach7815f562012-02-03 00:07:04 +0000306
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000307 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
308 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000309 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Jim Grosbach7815f562012-02-03 00:07:04 +0000310
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000311 Value *Dest = MI->getDest();
Mon P Wang1991c472010-12-20 01:05:30 +0000312 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
313 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
314 Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000315
316 // Alignment 0 is identity for alignment 1 for memset, but not store.
317 if (Alignment == 0) Alignment = 1;
Jim Grosbach7815f562012-02-03 00:07:04 +0000318
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000319 // Extract the fill value and store.
320 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
Eli Friedman49346012011-05-18 19:57:14 +0000321 StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
322 MI->isVolatile());
323 S->setAlignment(Alignment);
Jim Grosbach7815f562012-02-03 00:07:04 +0000324
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000325 // Set the size of the copy to 0, it will be deleted on the next iteration.
326 MI->setLength(Constant::getNullValue(LenC->getType()));
327 return MI;
328 }
329
Simon Pilgrim18617d12015-08-05 08:18:00 +0000330 return nullptr;
331}
332
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000333static Value *simplifyX86immShift(const IntrinsicInst &II,
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000334 InstCombiner::BuilderTy &Builder) {
335 bool LogicalShift = false;
336 bool ShiftLeft = false;
337
338 switch (II.getIntrinsicID()) {
Craig Topperb4173a52016-11-13 07:26:19 +0000339 default: llvm_unreachable("Unexpected intrinsic!");
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000340 case Intrinsic::x86_sse2_psra_d:
341 case Intrinsic::x86_sse2_psra_w:
342 case Intrinsic::x86_sse2_psrai_d:
343 case Intrinsic::x86_sse2_psrai_w:
344 case Intrinsic::x86_avx2_psra_d:
345 case Intrinsic::x86_avx2_psra_w:
346 case Intrinsic::x86_avx2_psrai_d:
347 case Intrinsic::x86_avx2_psrai_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000348 case Intrinsic::x86_avx512_psra_q_128:
349 case Intrinsic::x86_avx512_psrai_q_128:
350 case Intrinsic::x86_avx512_psra_q_256:
351 case Intrinsic::x86_avx512_psrai_q_256:
352 case Intrinsic::x86_avx512_psra_d_512:
353 case Intrinsic::x86_avx512_psra_q_512:
354 case Intrinsic::x86_avx512_psra_w_512:
355 case Intrinsic::x86_avx512_psrai_d_512:
356 case Intrinsic::x86_avx512_psrai_q_512:
357 case Intrinsic::x86_avx512_psrai_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000358 LogicalShift = false; ShiftLeft = false;
359 break;
360 case Intrinsic::x86_sse2_psrl_d:
361 case Intrinsic::x86_sse2_psrl_q:
362 case Intrinsic::x86_sse2_psrl_w:
363 case Intrinsic::x86_sse2_psrli_d:
364 case Intrinsic::x86_sse2_psrli_q:
365 case Intrinsic::x86_sse2_psrli_w:
366 case Intrinsic::x86_avx2_psrl_d:
367 case Intrinsic::x86_avx2_psrl_q:
368 case Intrinsic::x86_avx2_psrl_w:
369 case Intrinsic::x86_avx2_psrli_d:
370 case Intrinsic::x86_avx2_psrli_q:
371 case Intrinsic::x86_avx2_psrli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000372 case Intrinsic::x86_avx512_psrl_d_512:
373 case Intrinsic::x86_avx512_psrl_q_512:
374 case Intrinsic::x86_avx512_psrl_w_512:
375 case Intrinsic::x86_avx512_psrli_d_512:
376 case Intrinsic::x86_avx512_psrli_q_512:
377 case Intrinsic::x86_avx512_psrli_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000378 LogicalShift = true; ShiftLeft = false;
379 break;
380 case Intrinsic::x86_sse2_psll_d:
381 case Intrinsic::x86_sse2_psll_q:
382 case Intrinsic::x86_sse2_psll_w:
383 case Intrinsic::x86_sse2_pslli_d:
384 case Intrinsic::x86_sse2_pslli_q:
385 case Intrinsic::x86_sse2_pslli_w:
386 case Intrinsic::x86_avx2_psll_d:
387 case Intrinsic::x86_avx2_psll_q:
388 case Intrinsic::x86_avx2_psll_w:
389 case Intrinsic::x86_avx2_pslli_d:
390 case Intrinsic::x86_avx2_pslli_q:
391 case Intrinsic::x86_avx2_pslli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000392 case Intrinsic::x86_avx512_psll_d_512:
393 case Intrinsic::x86_avx512_psll_q_512:
394 case Intrinsic::x86_avx512_psll_w_512:
395 case Intrinsic::x86_avx512_pslli_d_512:
396 case Intrinsic::x86_avx512_pslli_q_512:
397 case Intrinsic::x86_avx512_pslli_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000398 LogicalShift = true; ShiftLeft = true;
399 break;
400 }
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000401 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
402
Simon Pilgrim3815c162015-08-07 18:22:50 +0000403 // Simplify if count is constant.
404 auto Arg1 = II.getArgOperand(1);
405 auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
406 auto CDV = dyn_cast<ConstantDataVector>(Arg1);
407 auto CInt = dyn_cast<ConstantInt>(Arg1);
408 if (!CAZ && !CDV && !CInt)
Simon Pilgrim18617d12015-08-05 08:18:00 +0000409 return nullptr;
Simon Pilgrim3815c162015-08-07 18:22:50 +0000410
411 APInt Count(64, 0);
412 if (CDV) {
413 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
414 // operand to compute the shift amount.
415 auto VT = cast<VectorType>(CDV->getType());
416 unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
417 assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
418 unsigned NumSubElts = 64 / BitWidth;
419
420 // Concatenate the sub-elements to create the 64-bit value.
421 for (unsigned i = 0; i != NumSubElts; ++i) {
422 unsigned SubEltIdx = (NumSubElts - 1) - i;
423 auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
424 Count = Count.shl(BitWidth);
425 Count |= SubElt->getValue().zextOrTrunc(64);
426 }
427 }
428 else if (CInt)
429 Count = CInt->getValue();
Simon Pilgrim18617d12015-08-05 08:18:00 +0000430
431 auto Vec = II.getArgOperand(0);
432 auto VT = cast<VectorType>(Vec->getType());
433 auto SVT = VT->getElementType();
Simon Pilgrim3815c162015-08-07 18:22:50 +0000434 unsigned VWidth = VT->getNumElements();
435 unsigned BitWidth = SVT->getPrimitiveSizeInBits();
436
437 // If shift-by-zero then just return the original value.
438 if (Count == 0)
439 return Vec;
440
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000441 // Handle cases when Shift >= BitWidth.
442 if (Count.uge(BitWidth)) {
443 // If LogicalShift - just return zero.
444 if (LogicalShift)
445 return ConstantAggregateZero::get(VT);
446
447 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
448 Count = APInt(64, BitWidth - 1);
449 }
Simon Pilgrim18617d12015-08-05 08:18:00 +0000450
Simon Pilgrim18617d12015-08-05 08:18:00 +0000451 // Get a constant vector of the same type as the first operand.
Simon Pilgrim3815c162015-08-07 18:22:50 +0000452 auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
453 auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000454
455 if (ShiftLeft)
Simon Pilgrim3815c162015-08-07 18:22:50 +0000456 return Builder.CreateShl(Vec, ShiftVec);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000457
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000458 if (LogicalShift)
459 return Builder.CreateLShr(Vec, ShiftVec);
460
461 return Builder.CreateAShr(Vec, ShiftVec);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000462}
463
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000464// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
465// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
466// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
467static Value *simplifyX86varShift(const IntrinsicInst &II,
468 InstCombiner::BuilderTy &Builder) {
469 bool LogicalShift = false;
470 bool ShiftLeft = false;
471
472 switch (II.getIntrinsicID()) {
Craig Topperb4173a52016-11-13 07:26:19 +0000473 default: llvm_unreachable("Unexpected intrinsic!");
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000474 case Intrinsic::x86_avx2_psrav_d:
475 case Intrinsic::x86_avx2_psrav_d_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000476 case Intrinsic::x86_avx512_psrav_q_128:
477 case Intrinsic::x86_avx512_psrav_q_256:
478 case Intrinsic::x86_avx512_psrav_d_512:
479 case Intrinsic::x86_avx512_psrav_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000480 case Intrinsic::x86_avx512_psrav_w_128:
481 case Intrinsic::x86_avx512_psrav_w_256:
482 case Intrinsic::x86_avx512_psrav_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000483 LogicalShift = false;
484 ShiftLeft = false;
485 break;
486 case Intrinsic::x86_avx2_psrlv_d:
487 case Intrinsic::x86_avx2_psrlv_d_256:
488 case Intrinsic::x86_avx2_psrlv_q:
489 case Intrinsic::x86_avx2_psrlv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000490 case Intrinsic::x86_avx512_psrlv_d_512:
491 case Intrinsic::x86_avx512_psrlv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000492 case Intrinsic::x86_avx512_psrlv_w_128:
493 case Intrinsic::x86_avx512_psrlv_w_256:
494 case Intrinsic::x86_avx512_psrlv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000495 LogicalShift = true;
496 ShiftLeft = false;
497 break;
498 case Intrinsic::x86_avx2_psllv_d:
499 case Intrinsic::x86_avx2_psllv_d_256:
500 case Intrinsic::x86_avx2_psllv_q:
501 case Intrinsic::x86_avx2_psllv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000502 case Intrinsic::x86_avx512_psllv_d_512:
503 case Intrinsic::x86_avx512_psllv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000504 case Intrinsic::x86_avx512_psllv_w_128:
505 case Intrinsic::x86_avx512_psllv_w_256:
506 case Intrinsic::x86_avx512_psllv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000507 LogicalShift = true;
508 ShiftLeft = true;
509 break;
510 }
511 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
512
513 // Simplify if all shift amounts are constant/undef.
514 auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
515 if (!CShift)
516 return nullptr;
517
518 auto Vec = II.getArgOperand(0);
519 auto VT = cast<VectorType>(II.getType());
520 auto SVT = VT->getVectorElementType();
521 int NumElts = VT->getNumElements();
522 int BitWidth = SVT->getIntegerBitWidth();
523
524 // Collect each element's shift amount.
525 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
526 bool AnyOutOfRange = false;
527 SmallVector<int, 8> ShiftAmts;
528 for (int I = 0; I < NumElts; ++I) {
529 auto *CElt = CShift->getAggregateElement(I);
530 if (CElt && isa<UndefValue>(CElt)) {
531 ShiftAmts.push_back(-1);
532 continue;
533 }
534
535 auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
536 if (!COp)
537 return nullptr;
538
539 // Handle out of range shifts.
540 // If LogicalShift - set to BitWidth (special case).
541 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
542 APInt ShiftVal = COp->getValue();
543 if (ShiftVal.uge(BitWidth)) {
544 AnyOutOfRange = LogicalShift;
545 ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
546 continue;
547 }
548
549 ShiftAmts.push_back((int)ShiftVal.getZExtValue());
550 }
551
552 // If all elements out of range or UNDEF, return vector of zeros/undefs.
553 // ArithmeticShift should only hit this if they are all UNDEF.
554 auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000555 if (all_of(ShiftAmts, OutOfRange)) {
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000556 SmallVector<Constant *, 8> ConstantVec;
557 for (int Idx : ShiftAmts) {
558 if (Idx < 0) {
559 ConstantVec.push_back(UndefValue::get(SVT));
560 } else {
561 assert(LogicalShift && "Logical shift expected");
562 ConstantVec.push_back(ConstantInt::getNullValue(SVT));
563 }
564 }
565 return ConstantVector::get(ConstantVec);
566 }
567
568 // We can't handle only some out of range values with generic logical shifts.
569 if (AnyOutOfRange)
570 return nullptr;
571
572 // Build the shift amount constant vector.
573 SmallVector<Constant *, 8> ShiftVecAmts;
574 for (int Idx : ShiftAmts) {
575 if (Idx < 0)
576 ShiftVecAmts.push_back(UndefValue::get(SVT));
577 else
578 ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
579 }
580 auto ShiftVec = ConstantVector::get(ShiftVecAmts);
581
582 if (ShiftLeft)
583 return Builder.CreateShl(Vec, ShiftVec);
584
585 if (LogicalShift)
586 return Builder.CreateLShr(Vec, ShiftVec);
587
588 return Builder.CreateAShr(Vec, ShiftVec);
589}
590
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000591static Value *simplifyX86muldq(const IntrinsicInst &II,
592 InstCombiner::BuilderTy &Builder) {
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000593 Value *Arg0 = II.getArgOperand(0);
594 Value *Arg1 = II.getArgOperand(1);
595 Type *ResTy = II.getType();
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000596 assert(Arg0->getType()->getScalarSizeInBits() == 32 &&
597 Arg1->getType()->getScalarSizeInBits() == 32 &&
598 ResTy->getScalarSizeInBits() == 64 && "Unexpected muldq/muludq types");
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000599
Simon Pilgrimbb13fda2017-01-23 12:07:32 +0000600 // muldq/muludq(undef, undef) -> zero (matches generic mul behavior)
Simon Pilgrim78f86302017-01-24 11:07:41 +0000601 if (isa<UndefValue>(Arg0) || isa<UndefValue>(Arg1))
Simon Pilgrimbb13fda2017-01-23 12:07:32 +0000602 return ConstantAggregateZero::get(ResTy);
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000603
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000604 // Constant folding.
605 // PMULDQ = (mul(vXi64 sext(shuffle<0,2,..>(Arg0)),
606 // vXi64 sext(shuffle<0,2,..>(Arg1))))
607 // PMULUDQ = (mul(vXi64 zext(shuffle<0,2,..>(Arg0)),
608 // vXi64 zext(shuffle<0,2,..>(Arg1))))
609 if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
610 return nullptr;
611
612 unsigned NumElts = ResTy->getVectorNumElements();
613 assert(Arg0->getType()->getVectorNumElements() == (2 * NumElts) &&
614 Arg1->getType()->getVectorNumElements() == (2 * NumElts) &&
615 "Unexpected muldq/muludq types");
616
617 unsigned IntrinsicID = II.getIntrinsicID();
618 bool IsSigned = (Intrinsic::x86_sse41_pmuldq == IntrinsicID ||
619 Intrinsic::x86_avx2_pmul_dq == IntrinsicID ||
620 Intrinsic::x86_avx512_pmul_dq_512 == IntrinsicID);
621
622 SmallVector<unsigned, 16> ShuffleMask;
623 for (unsigned i = 0; i != NumElts; ++i)
624 ShuffleMask.push_back(i * 2);
625
626 auto *LHS = Builder.CreateShuffleVector(Arg0, Arg0, ShuffleMask);
627 auto *RHS = Builder.CreateShuffleVector(Arg1, Arg1, ShuffleMask);
628
629 if (IsSigned) {
630 LHS = Builder.CreateSExt(LHS, ResTy);
631 RHS = Builder.CreateSExt(RHS, ResTy);
632 } else {
633 LHS = Builder.CreateZExt(LHS, ResTy);
634 RHS = Builder.CreateZExt(RHS, ResTy);
635 }
636
637 return Builder.CreateMul(LHS, RHS);
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000638}
639
Simon Pilgrim6f6b2792017-01-25 14:37:24 +0000640static Value *simplifyX86pack(IntrinsicInst &II, InstCombiner &IC,
641 InstCombiner::BuilderTy &Builder, bool IsSigned) {
642 Value *Arg0 = II.getArgOperand(0);
643 Value *Arg1 = II.getArgOperand(1);
644 Type *ResTy = II.getType();
645
646 // Fast all undef handling.
647 if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
648 return UndefValue::get(ResTy);
649
650 Type *ArgTy = Arg0->getType();
651 unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
652 unsigned NumDstElts = ResTy->getVectorNumElements();
653 unsigned NumSrcElts = ArgTy->getVectorNumElements();
654 assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types");
655
656 unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
657 unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
658 unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
659 assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) &&
660 "Unexpected packing types");
661
662 // Constant folding.
663 auto *Cst0 = dyn_cast<Constant>(Arg0);
664 auto *Cst1 = dyn_cast<Constant>(Arg1);
665 if (!Cst0 || !Cst1)
666 return nullptr;
667
668 SmallVector<Constant *, 32> Vals;
669 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
670 for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
671 unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
672 auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0;
673 auto *COp = Cst->getAggregateElement(SrcIdx);
674 if (COp && isa<UndefValue>(COp)) {
675 Vals.push_back(UndefValue::get(ResTy->getScalarType()));
676 continue;
677 }
678
679 auto *CInt = dyn_cast_or_null<ConstantInt>(COp);
680 if (!CInt)
681 return nullptr;
682
683 APInt Val = CInt->getValue();
684 assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() &&
685 "Unexpected constant bitwidth");
686
687 if (IsSigned) {
688 // PACKSS: Truncate signed value with signed saturation.
689 // Source values less than dst minint are saturated to minint.
690 // Source values greater than dst maxint are saturated to maxint.
691 if (Val.isSignedIntN(DstScalarSizeInBits))
692 Val = Val.trunc(DstScalarSizeInBits);
693 else if (Val.isNegative())
694 Val = APInt::getSignedMinValue(DstScalarSizeInBits);
695 else
696 Val = APInt::getSignedMaxValue(DstScalarSizeInBits);
697 } else {
698 // PACKUS: Truncate signed value with unsigned saturation.
699 // Source values less than zero are saturated to zero.
700 // Source values greater than dst maxuint are saturated to maxuint.
701 if (Val.isIntN(DstScalarSizeInBits))
702 Val = Val.trunc(DstScalarSizeInBits);
703 else if (Val.isNegative())
704 Val = APInt::getNullValue(DstScalarSizeInBits);
705 else
706 Val = APInt::getAllOnesValue(DstScalarSizeInBits);
707 }
708
709 Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val));
710 }
711 }
712
713 return ConstantVector::get(Vals);
714}
715
Simon Pilgrim91e3ac82016-06-07 08:18:35 +0000716static Value *simplifyX86movmsk(const IntrinsicInst &II,
717 InstCombiner::BuilderTy &Builder) {
718 Value *Arg = II.getArgOperand(0);
719 Type *ResTy = II.getType();
720 Type *ArgTy = Arg->getType();
721
722 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
723 if (isa<UndefValue>(Arg))
724 return Constant::getNullValue(ResTy);
725
726 // We can't easily peek through x86_mmx types.
727 if (!ArgTy->isVectorTy())
728 return nullptr;
729
730 auto *C = dyn_cast<Constant>(Arg);
731 if (!C)
732 return nullptr;
733
734 // Extract signbits of the vector input and pack into integer result.
735 APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
736 for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
737 auto *COp = C->getAggregateElement(I);
738 if (!COp)
739 return nullptr;
740 if (isa<UndefValue>(COp))
741 continue;
742
743 auto *CInt = dyn_cast<ConstantInt>(COp);
744 auto *CFp = dyn_cast<ConstantFP>(COp);
745 if (!CInt && !CFp)
746 return nullptr;
747
748 if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
749 Result.setBit(I);
750 }
751
752 return Constant::getIntegerValue(ResTy, Result);
753}
754
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000755static Value *simplifyX86insertps(const IntrinsicInst &II,
Sanjay Patelc86867c2015-04-16 17:52:13 +0000756 InstCombiner::BuilderTy &Builder) {
Sanjay Patel03c03f52016-01-28 00:03:16 +0000757 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
758 if (!CInt)
759 return nullptr;
Simon Pilgrim54fcd622015-07-25 20:41:00 +0000760
Sanjay Patel03c03f52016-01-28 00:03:16 +0000761 VectorType *VecTy = cast<VectorType>(II.getType());
762 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
Sanjay Patelc86867c2015-04-16 17:52:13 +0000763
Sanjay Patel03c03f52016-01-28 00:03:16 +0000764 // The immediate permute control byte looks like this:
765 // [3:0] - zero mask for each 32-bit lane
766 // [5:4] - select one 32-bit destination lane
767 // [7:6] - select one 32-bit source lane
Sanjay Patelc86867c2015-04-16 17:52:13 +0000768
Sanjay Patel03c03f52016-01-28 00:03:16 +0000769 uint8_t Imm = CInt->getZExtValue();
770 uint8_t ZMask = Imm & 0xf;
771 uint8_t DestLane = (Imm >> 4) & 0x3;
772 uint8_t SourceLane = (Imm >> 6) & 0x3;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000773
Sanjay Patel03c03f52016-01-28 00:03:16 +0000774 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
Sanjay Patelc86867c2015-04-16 17:52:13 +0000775
Sanjay Patel03c03f52016-01-28 00:03:16 +0000776 // If all zero mask bits are set, this was just a weird way to
777 // generate a zero vector.
778 if (ZMask == 0xf)
779 return ZeroVector;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000780
Sanjay Patel03c03f52016-01-28 00:03:16 +0000781 // Initialize by passing all of the first source bits through.
Craig Topper99d1eab2016-06-12 00:41:19 +0000782 uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000783
Sanjay Patel03c03f52016-01-28 00:03:16 +0000784 // We may replace the second operand with the zero vector.
785 Value *V1 = II.getArgOperand(1);
786
787 if (ZMask) {
788 // If the zero mask is being used with a single input or the zero mask
789 // overrides the destination lane, this is a shuffle with the zero vector.
790 if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
791 (ZMask & (1 << DestLane))) {
792 V1 = ZeroVector;
793 // We may still move 32-bits of the first source vector from one lane
794 // to another.
795 ShuffleMask[DestLane] = SourceLane;
796 // The zero mask may override the previous insert operation.
797 for (unsigned i = 0; i < 4; ++i)
798 if ((ZMask >> i) & 0x1)
799 ShuffleMask[i] = i + 4;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000800 } else {
Sanjay Patel03c03f52016-01-28 00:03:16 +0000801 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
802 return nullptr;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000803 }
Sanjay Patel03c03f52016-01-28 00:03:16 +0000804 } else {
805 // Replace the selected destination lane with the selected source lane.
806 ShuffleMask[DestLane] = SourceLane + 4;
Sanjay Patelc86867c2015-04-16 17:52:13 +0000807 }
Sanjay Patel03c03f52016-01-28 00:03:16 +0000808
809 return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
Sanjay Patelc86867c2015-04-16 17:52:13 +0000810}
811
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000812/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
813/// or conversion to a shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000814static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000815 ConstantInt *CILength, ConstantInt *CIIndex,
816 InstCombiner::BuilderTy &Builder) {
817 auto LowConstantHighUndef = [&](uint64_t Val) {
818 Type *IntTy64 = Type::getInt64Ty(II.getContext());
819 Constant *Args[] = {ConstantInt::get(IntTy64, Val),
820 UndefValue::get(IntTy64)};
821 return ConstantVector::get(Args);
822 };
823
824 // See if we're dealing with constant values.
825 Constant *C0 = dyn_cast<Constant>(Op0);
826 ConstantInt *CI0 =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +0000827 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000828 : nullptr;
829
830 // Attempt to constant fold.
831 if (CILength && CIIndex) {
832 // From AMD documentation: "The bit index and field length are each six
833 // bits in length other bits of the field are ignored."
834 APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
835 APInt APLength = CILength->getValue().zextOrTrunc(6);
836
837 unsigned Index = APIndex.getZExtValue();
838
839 // From AMD documentation: "a value of zero in the field length is
840 // defined as length of 64".
841 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
842
843 // From AMD documentation: "If the sum of the bit index + length field
844 // is greater than 64, the results are undefined".
845 unsigned End = Index + Length;
846
847 // Note that both field index and field length are 8-bit quantities.
848 // Since variables 'Index' and 'Length' are unsigned values
849 // obtained from zero-extending field index and field length
850 // respectively, their sum should never wrap around.
851 if (End > 64)
852 return UndefValue::get(II.getType());
853
854 // If we are inserting whole bytes, we can convert this to a shuffle.
855 // Lowering can recognize EXTRQI shuffle masks.
856 if ((Length % 8) == 0 && (Index % 8) == 0) {
857 // Convert bit indices to byte indices.
858 Length /= 8;
859 Index /= 8;
860
861 Type *IntTy8 = Type::getInt8Ty(II.getContext());
862 Type *IntTy32 = Type::getInt32Ty(II.getContext());
863 VectorType *ShufTy = VectorType::get(IntTy8, 16);
864
865 SmallVector<Constant *, 16> ShuffleMask;
866 for (int i = 0; i != (int)Length; ++i)
867 ShuffleMask.push_back(
868 Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
869 for (int i = Length; i != 8; ++i)
870 ShuffleMask.push_back(
871 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
872 for (int i = 8; i != 16; ++i)
873 ShuffleMask.push_back(UndefValue::get(IntTy32));
874
875 Value *SV = Builder.CreateShuffleVector(
876 Builder.CreateBitCast(Op0, ShufTy),
877 ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
878 return Builder.CreateBitCast(SV, II.getType());
879 }
880
881 // Constant Fold - shift Index'th bit to lowest position and mask off
882 // Length bits.
883 if (CI0) {
884 APInt Elt = CI0->getValue();
885 Elt = Elt.lshr(Index).zextOrTrunc(Length);
886 return LowConstantHighUndef(Elt.getZExtValue());
887 }
888
889 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
890 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
891 Value *Args[] = {Op0, CILength, CIIndex};
Sanjay Patelaf674fb2015-12-14 17:24:23 +0000892 Module *M = II.getModule();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000893 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
894 return Builder.CreateCall(F, Args);
895 }
896 }
897
898 // Constant Fold - extraction from zero is always {zero, undef}.
899 if (CI0 && CI0->equalsInt(0))
900 return LowConstantHighUndef(0);
901
902 return nullptr;
903}
904
905/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
906/// folding or conversion to a shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000907static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000908 APInt APLength, APInt APIndex,
909 InstCombiner::BuilderTy &Builder) {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000910 // From AMD documentation: "The bit index and field length are each six bits
911 // in length other bits of the field are ignored."
912 APIndex = APIndex.zextOrTrunc(6);
913 APLength = APLength.zextOrTrunc(6);
914
915 // Attempt to constant fold.
916 unsigned Index = APIndex.getZExtValue();
917
918 // From AMD documentation: "a value of zero in the field length is
919 // defined as length of 64".
920 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
921
922 // From AMD documentation: "If the sum of the bit index + length field
923 // is greater than 64, the results are undefined".
924 unsigned End = Index + Length;
925
926 // Note that both field index and field length are 8-bit quantities.
927 // Since variables 'Index' and 'Length' are unsigned values
928 // obtained from zero-extending field index and field length
929 // respectively, their sum should never wrap around.
930 if (End > 64)
931 return UndefValue::get(II.getType());
932
933 // If we are inserting whole bytes, we can convert this to a shuffle.
934 // Lowering can recognize INSERTQI shuffle masks.
935 if ((Length % 8) == 0 && (Index % 8) == 0) {
936 // Convert bit indices to byte indices.
937 Length /= 8;
938 Index /= 8;
939
940 Type *IntTy8 = Type::getInt8Ty(II.getContext());
941 Type *IntTy32 = Type::getInt32Ty(II.getContext());
942 VectorType *ShufTy = VectorType::get(IntTy8, 16);
943
944 SmallVector<Constant *, 16> ShuffleMask;
945 for (int i = 0; i != (int)Index; ++i)
946 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
947 for (int i = 0; i != (int)Length; ++i)
948 ShuffleMask.push_back(
949 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
950 for (int i = Index + Length; i != 8; ++i)
951 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
952 for (int i = 8; i != 16; ++i)
953 ShuffleMask.push_back(UndefValue::get(IntTy32));
954
955 Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
956 Builder.CreateBitCast(Op1, ShufTy),
957 ConstantVector::get(ShuffleMask));
958 return Builder.CreateBitCast(SV, II.getType());
959 }
960
961 // See if we're dealing with constant values.
962 Constant *C0 = dyn_cast<Constant>(Op0);
963 Constant *C1 = dyn_cast<Constant>(Op1);
964 ConstantInt *CI00 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +0000965 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000966 : nullptr;
967 ConstantInt *CI10 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +0000968 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000969 : nullptr;
970
971 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
972 if (CI00 && CI10) {
973 APInt V00 = CI00->getValue();
974 APInt V10 = CI10->getValue();
975 APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
976 V00 = V00 & ~Mask;
977 V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
978 APInt Val = V00 | V10;
979 Type *IntTy64 = Type::getInt64Ty(II.getContext());
980 Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
981 UndefValue::get(IntTy64)};
982 return ConstantVector::get(Args);
983 }
984
985 // If we were an INSERTQ call, we'll save demanded elements if we convert to
986 // INSERTQI.
987 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
988 Type *IntTy8 = Type::getInt8Ty(II.getContext());
989 Constant *CILength = ConstantInt::get(IntTy8, Length, false);
990 Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
991
992 Value *Args[] = {Op0, Op1, CILength, CIIndex};
Sanjay Patelaf674fb2015-12-14 17:24:23 +0000993 Module *M = II.getModule();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000994 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
995 return Builder.CreateCall(F, Args);
996 }
997
998 return nullptr;
999}
1000
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001001/// Attempt to convert pshufb* to shufflevector if the mask is constant.
1002static Value *simplifyX86pshufb(const IntrinsicInst &II,
1003 InstCombiner::BuilderTy &Builder) {
Simon Pilgrimbf60cc42016-04-29 21:34:54 +00001004 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
1005 if (!V)
1006 return nullptr;
1007
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001008 auto *VecTy = cast<VectorType>(II.getType());
1009 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
1010 unsigned NumElts = VecTy->getNumElements();
Craig Topper9a63d7a2016-12-11 00:23:50 +00001011 assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001012 "Unexpected number of elements in shuffle mask!");
Simon Pilgrimbf60cc42016-04-29 21:34:54 +00001013
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001014 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Topper9a63d7a2016-12-11 00:23:50 +00001015 Constant *Indexes[64] = {nullptr};
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001016
Simon Pilgrimbf60cc42016-04-29 21:34:54 +00001017 // Each byte in the shuffle control mask forms an index to permute the
1018 // corresponding byte in the destination operand.
1019 for (unsigned I = 0; I < NumElts; ++I) {
1020 Constant *COp = V->getAggregateElement(I);
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001021 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrimbf60cc42016-04-29 21:34:54 +00001022 return nullptr;
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001023
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001024 if (isa<UndefValue>(COp)) {
1025 Indexes[I] = UndefValue::get(MaskEltTy);
1026 continue;
1027 }
1028
Simon Pilgrimbf60cc42016-04-29 21:34:54 +00001029 int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
1030
1031 // If the most significant bit (bit[7]) of each byte of the shuffle
1032 // control mask is set, then zero is written in the result byte.
1033 // The zero vector is in the right-hand side of the resulting
1034 // shufflevector.
1035
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001036 // The value of each index for the high 128-bit lane is the least
1037 // significant 4 bits of the respective shuffle control byte.
1038 Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
1039 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrimbf60cc42016-04-29 21:34:54 +00001040 }
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001041
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001042 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001043 auto V1 = II.getArgOperand(0);
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001044 auto V2 = Constant::getNullValue(VecTy);
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001045 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1046}
1047
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001048/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
1049static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
1050 InstCombiner::BuilderTy &Builder) {
Simon Pilgrim640f9962016-04-30 07:23:30 +00001051 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
1052 if (!V)
1053 return nullptr;
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001054
Craig Topper58917f32016-12-11 01:59:36 +00001055 auto *VecTy = cast<VectorType>(II.getType());
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001056 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
Craig Topper58917f32016-12-11 01:59:36 +00001057 unsigned NumElts = VecTy->getVectorNumElements();
1058 bool IsPD = VecTy->getScalarType()->isDoubleTy();
1059 unsigned NumLaneElts = IsPD ? 2 : 4;
1060 assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001061
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001062 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Topper58917f32016-12-11 01:59:36 +00001063 Constant *Indexes[16] = {nullptr};
Simon Pilgrim640f9962016-04-30 07:23:30 +00001064
1065 // The intrinsics only read one or two bits, clear the rest.
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001066 for (unsigned I = 0; I < NumElts; ++I) {
Simon Pilgrim640f9962016-04-30 07:23:30 +00001067 Constant *COp = V->getAggregateElement(I);
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001068 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrim640f9962016-04-30 07:23:30 +00001069 return nullptr;
1070
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001071 if (isa<UndefValue>(COp)) {
1072 Indexes[I] = UndefValue::get(MaskEltTy);
1073 continue;
1074 }
1075
1076 APInt Index = cast<ConstantInt>(COp)->getValue();
1077 Index = Index.zextOrTrunc(32).getLoBits(2);
Simon Pilgrim640f9962016-04-30 07:23:30 +00001078
1079 // The PD variants uses bit 1 to select per-lane element index, so
1080 // shift down to convert to generic shuffle mask index.
Craig Topper58917f32016-12-11 01:59:36 +00001081 if (IsPD)
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001082 Index = Index.lshr(1);
1083
1084 // The _256 variants are a bit trickier since the mask bits always index
1085 // into the corresponding 128 half. In order to convert to a generic
1086 // shuffle, we have to make that explicit.
Craig Topper58917f32016-12-11 01:59:36 +00001087 Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001088
1089 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001090 }
1091
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001092 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001093 auto V1 = II.getArgOperand(0);
1094 auto V2 = UndefValue::get(V1->getType());
1095 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1096}
1097
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001098/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1099static Value *simplifyX86vpermv(const IntrinsicInst &II,
1100 InstCombiner::BuilderTy &Builder) {
1101 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1102 if (!V)
1103 return nullptr;
1104
Simon Pilgrimca140b12016-05-01 20:43:02 +00001105 auto *VecTy = cast<VectorType>(II.getType());
1106 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001107 unsigned Size = VecTy->getNumElements();
Craig Toppere3280452016-12-25 23:58:57 +00001108 assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1109 "Unexpected shuffle mask size");
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001110
Simon Pilgrimca140b12016-05-01 20:43:02 +00001111 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Toppere3280452016-12-25 23:58:57 +00001112 Constant *Indexes[64] = {nullptr};
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001113
1114 for (unsigned I = 0; I < Size; ++I) {
1115 Constant *COp = V->getAggregateElement(I);
Simon Pilgrimca140b12016-05-01 20:43:02 +00001116 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001117 return nullptr;
1118
Simon Pilgrimca140b12016-05-01 20:43:02 +00001119 if (isa<UndefValue>(COp)) {
1120 Indexes[I] = UndefValue::get(MaskEltTy);
1121 continue;
1122 }
1123
Craig Toppere3280452016-12-25 23:58:57 +00001124 uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1125 Index &= Size - 1;
Simon Pilgrimca140b12016-05-01 20:43:02 +00001126 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001127 }
1128
Simon Pilgrimca140b12016-05-01 20:43:02 +00001129 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001130 auto V1 = II.getArgOperand(0);
1131 auto V2 = UndefValue::get(VecTy);
1132 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1133}
1134
Sanjay Patelccf5f242015-03-20 21:47:56 +00001135/// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
1136/// source vectors, unless a zero bit is set. If a zero bit is set,
1137/// then ignore that half of the mask and clear that half of the vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00001138static Value *simplifyX86vperm2(const IntrinsicInst &II,
Sanjay Patelccf5f242015-03-20 21:47:56 +00001139 InstCombiner::BuilderTy &Builder) {
Sanjay Patel03c03f52016-01-28 00:03:16 +00001140 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
1141 if (!CInt)
1142 return nullptr;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001143
Sanjay Patel03c03f52016-01-28 00:03:16 +00001144 VectorType *VecTy = cast<VectorType>(II.getType());
1145 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001146
Sanjay Patel03c03f52016-01-28 00:03:16 +00001147 // The immediate permute control byte looks like this:
1148 // [1:0] - select 128 bits from sources for low half of destination
1149 // [2] - ignore
1150 // [3] - zero low half of destination
1151 // [5:4] - select 128 bits from sources for high half of destination
1152 // [6] - ignore
1153 // [7] - zero high half of destination
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001154
Sanjay Patel03c03f52016-01-28 00:03:16 +00001155 uint8_t Imm = CInt->getZExtValue();
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001156
Sanjay Patel03c03f52016-01-28 00:03:16 +00001157 bool LowHalfZero = Imm & 0x08;
1158 bool HighHalfZero = Imm & 0x80;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001159
Sanjay Patel03c03f52016-01-28 00:03:16 +00001160 // If both zero mask bits are set, this was just a weird way to
1161 // generate a zero vector.
1162 if (LowHalfZero && HighHalfZero)
1163 return ZeroVector;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001164
Sanjay Patel03c03f52016-01-28 00:03:16 +00001165 // If 0 or 1 zero mask bits are set, this is a simple shuffle.
1166 unsigned NumElts = VecTy->getNumElements();
1167 unsigned HalfSize = NumElts / 2;
Craig Topper99d1eab2016-06-12 00:41:19 +00001168 SmallVector<uint32_t, 8> ShuffleMask(NumElts);
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001169
Sanjay Patel03c03f52016-01-28 00:03:16 +00001170 // The high bit of the selection field chooses the 1st or 2nd operand.
1171 bool LowInputSelect = Imm & 0x02;
1172 bool HighInputSelect = Imm & 0x20;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001173
Sanjay Patel03c03f52016-01-28 00:03:16 +00001174 // The low bit of the selection field chooses the low or high half
1175 // of the selected operand.
1176 bool LowHalfSelect = Imm & 0x01;
1177 bool HighHalfSelect = Imm & 0x10;
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001178
Sanjay Patel03c03f52016-01-28 00:03:16 +00001179 // Determine which operand(s) are actually in use for this instruction.
1180 Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
1181 Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001182
Sanjay Patel03c03f52016-01-28 00:03:16 +00001183 // If needed, replace operands based on zero mask.
1184 V0 = LowHalfZero ? ZeroVector : V0;
1185 V1 = HighHalfZero ? ZeroVector : V1;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001186
Sanjay Patel03c03f52016-01-28 00:03:16 +00001187 // Permute low half of result.
1188 unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
1189 for (unsigned i = 0; i < HalfSize; ++i)
1190 ShuffleMask[i] = StartIndex + i;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001191
Sanjay Patel03c03f52016-01-28 00:03:16 +00001192 // Permute high half of result.
1193 StartIndex = HighHalfSelect ? HalfSize : 0;
1194 StartIndex += NumElts;
1195 for (unsigned i = 0; i < HalfSize; ++i)
1196 ShuffleMask[i + HalfSize] = StartIndex + i;
1197
1198 return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
Sanjay Patelccf5f242015-03-20 21:47:56 +00001199}
1200
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001201/// Decode XOP integer vector comparison intrinsics.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00001202static Value *simplifyX86vpcom(const IntrinsicInst &II,
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00001203 InstCombiner::BuilderTy &Builder,
1204 bool IsSigned) {
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001205 if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
1206 uint64_t Imm = CInt->getZExtValue() & 0x7;
1207 VectorType *VecTy = cast<VectorType>(II.getType());
1208 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1209
1210 switch (Imm) {
1211 case 0x0:
1212 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1213 break;
1214 case 0x1:
1215 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1216 break;
1217 case 0x2:
1218 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1219 break;
1220 case 0x3:
1221 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1222 break;
1223 case 0x4:
1224 Pred = ICmpInst::ICMP_EQ; break;
1225 case 0x5:
1226 Pred = ICmpInst::ICMP_NE; break;
1227 case 0x6:
1228 return ConstantInt::getSigned(VecTy, 0); // FALSE
1229 case 0x7:
1230 return ConstantInt::getSigned(VecTy, -1); // TRUE
1231 }
1232
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00001233 if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
1234 II.getArgOperand(1)))
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001235 return Builder.CreateSExtOrTrunc(Cmp, VecTy);
1236 }
1237 return nullptr;
1238}
1239
Craig Toppere3280452016-12-25 23:58:57 +00001240// Emit a select instruction and appropriate bitcasts to help simplify
1241// masked intrinsics.
1242static Value *emitX86MaskSelect(Value *Mask, Value *Op0, Value *Op1,
1243 InstCombiner::BuilderTy &Builder) {
Craig Topper99163632016-12-30 23:06:28 +00001244 unsigned VWidth = Op0->getType()->getVectorNumElements();
1245
1246 // If the mask is all ones we don't need the select. But we need to check
1247 // only the bit thats will be used in case VWidth is less than 8.
1248 if (auto *C = dyn_cast<ConstantInt>(Mask))
1249 if (C->getValue().zextOrTrunc(VWidth).isAllOnesValue())
1250 return Op0;
1251
Craig Toppere3280452016-12-25 23:58:57 +00001252 auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
1253 cast<IntegerType>(Mask->getType())->getBitWidth());
1254 Mask = Builder.CreateBitCast(Mask, MaskTy);
1255
1256 // If we have less than 8 elements, then the starting mask was an i8 and
1257 // we need to extract down to the right number of elements.
Craig Toppere3280452016-12-25 23:58:57 +00001258 if (VWidth < 8) {
1259 uint32_t Indices[4];
1260 for (unsigned i = 0; i != VWidth; ++i)
1261 Indices[i] = i;
1262 Mask = Builder.CreateShuffleVector(Mask, Mask,
1263 makeArrayRef(Indices, VWidth),
1264 "extract");
1265 }
1266
1267 return Builder.CreateSelect(Mask, Op0, Op1);
1268}
1269
Sanjay Patel0069f562016-01-31 16:35:23 +00001270static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
1271 Value *Arg0 = II.getArgOperand(0);
1272 Value *Arg1 = II.getArgOperand(1);
1273
1274 // fmin(x, x) -> x
1275 if (Arg0 == Arg1)
1276 return Arg0;
1277
1278 const auto *C1 = dyn_cast<ConstantFP>(Arg1);
1279
1280 // fmin(x, nan) -> x
1281 if (C1 && C1->isNaN())
1282 return Arg0;
1283
1284 // This is the value because if undef were NaN, we would return the other
1285 // value and cannot return a NaN unless both operands are.
1286 //
1287 // fmin(undef, x) -> x
1288 if (isa<UndefValue>(Arg0))
1289 return Arg1;
1290
1291 // fmin(x, undef) -> x
1292 if (isa<UndefValue>(Arg1))
1293 return Arg0;
1294
1295 Value *X = nullptr;
1296 Value *Y = nullptr;
1297 if (II.getIntrinsicID() == Intrinsic::minnum) {
1298 // fmin(x, fmin(x, y)) -> fmin(x, y)
1299 // fmin(y, fmin(x, y)) -> fmin(x, y)
1300 if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
1301 if (Arg0 == X || Arg0 == Y)
1302 return Arg1;
1303 }
1304
1305 // fmin(fmin(x, y), x) -> fmin(x, y)
1306 // fmin(fmin(x, y), y) -> fmin(x, y)
1307 if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
1308 if (Arg1 == X || Arg1 == Y)
1309 return Arg0;
1310 }
1311
1312 // TODO: fmin(nnan x, inf) -> x
1313 // TODO: fmin(nnan ninf x, flt_max) -> x
1314 if (C1 && C1->isInfinity()) {
1315 // fmin(x, -inf) -> -inf
1316 if (C1->isNegative())
1317 return Arg1;
1318 }
1319 } else {
1320 assert(II.getIntrinsicID() == Intrinsic::maxnum);
1321 // fmax(x, fmax(x, y)) -> fmax(x, y)
1322 // fmax(y, fmax(x, y)) -> fmax(x, y)
1323 if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
1324 if (Arg0 == X || Arg0 == Y)
1325 return Arg1;
1326 }
1327
1328 // fmax(fmax(x, y), x) -> fmax(x, y)
1329 // fmax(fmax(x, y), y) -> fmax(x, y)
1330 if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
1331 if (Arg1 == X || Arg1 == Y)
1332 return Arg0;
1333 }
1334
1335 // TODO: fmax(nnan x, -inf) -> x
1336 // TODO: fmax(nnan ninf x, -flt_max) -> x
1337 if (C1 && C1->isInfinity()) {
1338 // fmax(x, inf) -> inf
1339 if (!C1->isNegative())
1340 return Arg1;
1341 }
1342 }
1343 return nullptr;
1344}
1345
David Majnemer666aa942016-07-14 06:58:42 +00001346static bool maskIsAllOneOrUndef(Value *Mask) {
1347 auto *ConstMask = dyn_cast<Constant>(Mask);
1348 if (!ConstMask)
1349 return false;
1350 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1351 return true;
1352 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
1353 ++I) {
1354 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1355 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1356 continue;
1357 return false;
1358 }
1359 return true;
1360}
1361
Sanjay Patelb695c552016-02-01 17:00:10 +00001362static Value *simplifyMaskedLoad(const IntrinsicInst &II,
1363 InstCombiner::BuilderTy &Builder) {
David Majnemer666aa942016-07-14 06:58:42 +00001364 // If the mask is all ones or undefs, this is a plain vector load of the 1st
1365 // argument.
1366 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
Sanjay Patelb695c552016-02-01 17:00:10 +00001367 Value *LoadPtr = II.getArgOperand(0);
1368 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1369 return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
1370 }
1371
1372 return nullptr;
1373}
1374
Sanjay Patel04f792b2016-02-01 19:39:52 +00001375static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1376 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1377 if (!ConstMask)
1378 return nullptr;
1379
1380 // If the mask is all zeros, this instruction does nothing.
1381 if (ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001382 return IC.eraseInstFromFunction(II);
Sanjay Patel04f792b2016-02-01 19:39:52 +00001383
1384 // If the mask is all ones, this is a plain vector store of the 1st argument.
1385 if (ConstMask->isAllOnesValue()) {
1386 Value *StorePtr = II.getArgOperand(1);
1387 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
1388 return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1389 }
1390
1391 return nullptr;
1392}
1393
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001394static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
1395 // If the mask is all zeros, return the "passthru" argument of the gather.
1396 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
1397 if (ConstMask && ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001398 return IC.replaceInstUsesWith(II, II.getArgOperand(3));
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001399
1400 return nullptr;
1401}
1402
1403static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
1404 // If the mask is all zeros, a scatter does nothing.
1405 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1406 if (ConstMask && ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001407 return IC.eraseInstFromFunction(II);
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001408
1409 return nullptr;
1410}
1411
Amaury Sechet763c59d2016-08-18 20:43:50 +00001412static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1413 assert((II.getIntrinsicID() == Intrinsic::cttz ||
1414 II.getIntrinsicID() == Intrinsic::ctlz) &&
1415 "Expected cttz or ctlz intrinsic");
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001416 Value *Op0 = II.getArgOperand(0);
1417 // FIXME: Try to simplify vectors of integers.
1418 auto *IT = dyn_cast<IntegerType>(Op0->getType());
1419 if (!IT)
1420 return nullptr;
1421
1422 unsigned BitWidth = IT->getBitWidth();
1423 APInt KnownZero(BitWidth, 0);
1424 APInt KnownOne(BitWidth, 0);
1425 IC.computeKnownBits(Op0, KnownZero, KnownOne, 0, &II);
1426
1427 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1428 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
1429 unsigned NumMaskBits = IsTZ ? KnownOne.countTrailingZeros()
1430 : KnownOne.countLeadingZeros();
1431 APInt Mask = IsTZ ? APInt::getLowBitsSet(BitWidth, NumMaskBits)
1432 : APInt::getHighBitsSet(BitWidth, NumMaskBits);
1433
1434 // If all bits above (ctlz) or below (cttz) the first known one are known
1435 // zero, this value is constant.
1436 // FIXME: This should be in InstSimplify because we're replacing an
1437 // instruction with a constant.
Amaury Sechet763c59d2016-08-18 20:43:50 +00001438 if ((Mask & KnownZero) == Mask) {
1439 auto *C = ConstantInt::get(IT, APInt(BitWidth, NumMaskBits));
1440 return IC.replaceInstUsesWith(II, C);
1441 }
1442
1443 // If the input to cttz/ctlz is known to be non-zero,
1444 // then change the 'ZeroIsUndef' parameter to 'true'
1445 // because we know the zero behavior can't affect the result.
1446 if (KnownOne != 0 || isKnownNonZero(Op0, IC.getDataLayout())) {
1447 if (!match(II.getArgOperand(1), m_One())) {
1448 II.setOperand(1, IC.Builder->getTrue());
1449 return &II;
1450 }
1451 }
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001452
1453 return nullptr;
1454}
1455
Sanjay Patel1ace9932016-02-26 21:04:14 +00001456// TODO: If the x86 backend knew how to convert a bool vector mask back to an
1457// XMM register mask efficiently, we could transform all x86 masked intrinsics
1458// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
Sanjay Patel98a71502016-02-29 23:16:48 +00001459static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1460 Value *Ptr = II.getOperand(0);
1461 Value *Mask = II.getOperand(1);
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001462 Constant *ZeroVec = Constant::getNullValue(II.getType());
Sanjay Patel98a71502016-02-29 23:16:48 +00001463
1464 // Special case a zero mask since that's not a ConstantDataVector.
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001465 // This masked load instruction creates a zero vector.
Sanjay Patel98a71502016-02-29 23:16:48 +00001466 if (isa<ConstantAggregateZero>(Mask))
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001467 return IC.replaceInstUsesWith(II, ZeroVec);
Sanjay Patel98a71502016-02-29 23:16:48 +00001468
1469 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1470 if (!ConstMask)
1471 return nullptr;
1472
1473 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1474 // to allow target-independent optimizations.
1475
1476 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1477 // the LLVM intrinsic definition for the pointer argument.
1478 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1479 PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1480 Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1481
1482 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1483 // on each element's most significant bit (the sign bit).
1484 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1485
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001486 // The pass-through vector for an x86 masked load is a zero vector.
1487 CallInst *NewMaskedLoad =
1488 IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
Sanjay Patel98a71502016-02-29 23:16:48 +00001489 return IC.replaceInstUsesWith(II, NewMaskedLoad);
1490}
1491
1492// TODO: If the x86 backend knew how to convert a bool vector mask back to an
1493// XMM register mask efficiently, we could transform all x86 masked intrinsics
1494// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
Sanjay Patel1ace9932016-02-26 21:04:14 +00001495static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1496 Value *Ptr = II.getOperand(0);
1497 Value *Mask = II.getOperand(1);
1498 Value *Vec = II.getOperand(2);
1499
1500 // Special case a zero mask since that's not a ConstantDataVector:
1501 // this masked store instruction does nothing.
1502 if (isa<ConstantAggregateZero>(Mask)) {
1503 IC.eraseInstFromFunction(II);
1504 return true;
1505 }
1506
Sanjay Patelc4acbae2016-03-12 15:16:59 +00001507 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1508 // anything else at this level.
1509 if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1510 return false;
1511
Sanjay Patel1ace9932016-02-26 21:04:14 +00001512 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1513 if (!ConstMask)
1514 return false;
1515
1516 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1517 // to allow target-independent optimizations.
1518
1519 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1520 // the LLVM intrinsic definition for the pointer argument.
1521 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1522 PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
Sanjay Patel1ace9932016-02-26 21:04:14 +00001523 Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1524
1525 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1526 // on each element's most significant bit (the sign bit).
1527 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1528
1529 IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1530
1531 // 'Replace uses' doesn't work for stores. Erase the original masked store.
1532 IC.eraseInstFromFunction(II);
1533 return true;
1534}
1535
Matt Arsenaultcdb468c2017-02-27 23:08:49 +00001536// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1537//
1538// A single NaN input is folded to minnum, so we rely on that folding for
1539// handling NaNs.
1540static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1541 const APFloat &Src2) {
1542 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1543
1544 APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1545 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1546 if (Cmp0 == APFloat::cmpEqual)
1547 return maxnum(Src1, Src2);
1548
1549 APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1550 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1551 if (Cmp1 == APFloat::cmpEqual)
1552 return maxnum(Src0, Src2);
1553
1554 return maxnum(Src0, Src1);
1555}
1556
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00001557// Returns true iff the 2 intrinsics have the same operands, limiting the
1558// comparison to the first NumOperands.
1559static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1560 unsigned NumOperands) {
1561 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1562 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1563 for (unsigned i = 0; i < NumOperands; i++)
1564 if (I.getArgOperand(i) != E.getArgOperand(i))
1565 return false;
1566 return true;
1567}
1568
1569// Remove trivially empty start/end intrinsic ranges, i.e. a start
1570// immediately followed by an end (ignoring debuginfo or other
1571// start/end intrinsics in between). As this handles only the most trivial
1572// cases, tracking the nesting level is not needed:
1573//
1574// call @llvm.foo.start(i1 0) ; &I
1575// call @llvm.foo.start(i1 0)
1576// call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1577// call @llvm.foo.end(i1 0)
1578static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1579 unsigned EndID, InstCombiner &IC) {
1580 assert(I.getIntrinsicID() == StartID &&
1581 "Start intrinsic does not have expected ID");
1582 BasicBlock::iterator BI(I), BE(I.getParent()->end());
1583 for (++BI; BI != BE; ++BI) {
1584 if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1585 if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1586 continue;
1587 if (E->getIntrinsicID() == EndID &&
1588 haveSameOperands(I, *E, E->getNumArgOperands())) {
1589 IC.eraseInstFromFunction(*E);
1590 IC.eraseInstFromFunction(I);
1591 return true;
1592 }
1593 }
1594 break;
1595 }
1596
1597 return false;
1598}
1599
Justin Lebar698c31b2017-01-27 00:58:58 +00001600// Convert NVVM intrinsics to target-generic LLVM code where possible.
1601static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1602 // Each NVVM intrinsic we can simplify can be replaced with one of:
1603 //
1604 // * an LLVM intrinsic,
1605 // * an LLVM cast operation,
1606 // * an LLVM binary operation, or
1607 // * ad-hoc LLVM IR for the particular operation.
1608
1609 // Some transformations are only valid when the module's
1610 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1611 // transformations are valid regardless of the module's ftz setting.
1612 enum FtzRequirementTy {
1613 FTZ_Any, // Any ftz setting is ok.
1614 FTZ_MustBeOn, // Transformation is valid only if ftz is on.
1615 FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1616 };
1617 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1618 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1619 // simplify.
1620 enum SpecialCase {
1621 SPC_Reciprocal,
1622 };
1623
1624 // SimplifyAction is a poor-man's variant (plus an additional flag) that
1625 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1626 struct SimplifyAction {
1627 // Invariant: At most one of these Optionals has a value.
1628 Optional<Intrinsic::ID> IID;
1629 Optional<Instruction::CastOps> CastOp;
1630 Optional<Instruction::BinaryOps> BinaryOp;
1631 Optional<SpecialCase> Special;
1632
1633 FtzRequirementTy FtzRequirement = FTZ_Any;
1634
1635 SimplifyAction() = default;
1636
1637 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1638 : IID(IID), FtzRequirement(FtzReq) {}
1639
1640 // Cast operations don't have anything to do with FTZ, so we skip that
1641 // argument.
1642 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1643
1644 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1645 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1646
1647 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1648 : Special(Special), FtzRequirement(FtzReq) {}
1649 };
1650
1651 // Try to generate a SimplifyAction describing how to replace our
1652 // IntrinsicInstr with target-generic LLVM IR.
1653 const SimplifyAction Action = [II]() -> SimplifyAction {
1654 switch (II->getIntrinsicID()) {
1655
1656 // NVVM intrinsics that map directly to LLVM intrinsics.
1657 case Intrinsic::nvvm_ceil_d:
1658 return {Intrinsic::ceil, FTZ_Any};
1659 case Intrinsic::nvvm_ceil_f:
1660 return {Intrinsic::ceil, FTZ_MustBeOff};
1661 case Intrinsic::nvvm_ceil_ftz_f:
1662 return {Intrinsic::ceil, FTZ_MustBeOn};
1663 case Intrinsic::nvvm_fabs_d:
1664 return {Intrinsic::fabs, FTZ_Any};
1665 case Intrinsic::nvvm_fabs_f:
1666 return {Intrinsic::fabs, FTZ_MustBeOff};
1667 case Intrinsic::nvvm_fabs_ftz_f:
1668 return {Intrinsic::fabs, FTZ_MustBeOn};
1669 case Intrinsic::nvvm_floor_d:
1670 return {Intrinsic::floor, FTZ_Any};
1671 case Intrinsic::nvvm_floor_f:
1672 return {Intrinsic::floor, FTZ_MustBeOff};
1673 case Intrinsic::nvvm_floor_ftz_f:
1674 return {Intrinsic::floor, FTZ_MustBeOn};
1675 case Intrinsic::nvvm_fma_rn_d:
1676 return {Intrinsic::fma, FTZ_Any};
1677 case Intrinsic::nvvm_fma_rn_f:
1678 return {Intrinsic::fma, FTZ_MustBeOff};
1679 case Intrinsic::nvvm_fma_rn_ftz_f:
1680 return {Intrinsic::fma, FTZ_MustBeOn};
1681 case Intrinsic::nvvm_fmax_d:
1682 return {Intrinsic::maxnum, FTZ_Any};
1683 case Intrinsic::nvvm_fmax_f:
1684 return {Intrinsic::maxnum, FTZ_MustBeOff};
1685 case Intrinsic::nvvm_fmax_ftz_f:
1686 return {Intrinsic::maxnum, FTZ_MustBeOn};
1687 case Intrinsic::nvvm_fmin_d:
1688 return {Intrinsic::minnum, FTZ_Any};
1689 case Intrinsic::nvvm_fmin_f:
1690 return {Intrinsic::minnum, FTZ_MustBeOff};
1691 case Intrinsic::nvvm_fmin_ftz_f:
1692 return {Intrinsic::minnum, FTZ_MustBeOn};
1693 case Intrinsic::nvvm_round_d:
1694 return {Intrinsic::round, FTZ_Any};
1695 case Intrinsic::nvvm_round_f:
1696 return {Intrinsic::round, FTZ_MustBeOff};
1697 case Intrinsic::nvvm_round_ftz_f:
1698 return {Intrinsic::round, FTZ_MustBeOn};
1699 case Intrinsic::nvvm_sqrt_rn_d:
1700 return {Intrinsic::sqrt, FTZ_Any};
1701 case Intrinsic::nvvm_sqrt_f:
1702 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
1703 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
1704 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
1705 // the versions with explicit ftz-ness.
1706 return {Intrinsic::sqrt, FTZ_Any};
1707 case Intrinsic::nvvm_sqrt_rn_f:
1708 return {Intrinsic::sqrt, FTZ_MustBeOff};
1709 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1710 return {Intrinsic::sqrt, FTZ_MustBeOn};
1711 case Intrinsic::nvvm_trunc_d:
1712 return {Intrinsic::trunc, FTZ_Any};
1713 case Intrinsic::nvvm_trunc_f:
1714 return {Intrinsic::trunc, FTZ_MustBeOff};
1715 case Intrinsic::nvvm_trunc_ftz_f:
1716 return {Intrinsic::trunc, FTZ_MustBeOn};
1717
1718 // NVVM intrinsics that map to LLVM cast operations.
1719 //
1720 // Note that llvm's target-generic conversion operators correspond to the rz
1721 // (round to zero) versions of the nvvm conversion intrinsics, even though
1722 // most everything else here uses the rn (round to nearest even) nvvm ops.
1723 case Intrinsic::nvvm_d2i_rz:
1724 case Intrinsic::nvvm_f2i_rz:
1725 case Intrinsic::nvvm_d2ll_rz:
1726 case Intrinsic::nvvm_f2ll_rz:
1727 return {Instruction::FPToSI};
1728 case Intrinsic::nvvm_d2ui_rz:
1729 case Intrinsic::nvvm_f2ui_rz:
1730 case Intrinsic::nvvm_d2ull_rz:
1731 case Intrinsic::nvvm_f2ull_rz:
1732 return {Instruction::FPToUI};
1733 case Intrinsic::nvvm_i2d_rz:
1734 case Intrinsic::nvvm_i2f_rz:
1735 case Intrinsic::nvvm_ll2d_rz:
1736 case Intrinsic::nvvm_ll2f_rz:
1737 return {Instruction::SIToFP};
1738 case Intrinsic::nvvm_ui2d_rz:
1739 case Intrinsic::nvvm_ui2f_rz:
1740 case Intrinsic::nvvm_ull2d_rz:
1741 case Intrinsic::nvvm_ull2f_rz:
1742 return {Instruction::UIToFP};
1743
1744 // NVVM intrinsics that map to LLVM binary ops.
1745 case Intrinsic::nvvm_add_rn_d:
1746 return {Instruction::FAdd, FTZ_Any};
1747 case Intrinsic::nvvm_add_rn_f:
1748 return {Instruction::FAdd, FTZ_MustBeOff};
1749 case Intrinsic::nvvm_add_rn_ftz_f:
1750 return {Instruction::FAdd, FTZ_MustBeOn};
1751 case Intrinsic::nvvm_mul_rn_d:
1752 return {Instruction::FMul, FTZ_Any};
1753 case Intrinsic::nvvm_mul_rn_f:
1754 return {Instruction::FMul, FTZ_MustBeOff};
1755 case Intrinsic::nvvm_mul_rn_ftz_f:
1756 return {Instruction::FMul, FTZ_MustBeOn};
1757 case Intrinsic::nvvm_div_rn_d:
1758 return {Instruction::FDiv, FTZ_Any};
1759 case Intrinsic::nvvm_div_rn_f:
1760 return {Instruction::FDiv, FTZ_MustBeOff};
1761 case Intrinsic::nvvm_div_rn_ftz_f:
1762 return {Instruction::FDiv, FTZ_MustBeOn};
1763
1764 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1765 // need special handling.
1766 //
1767 // We seem to be mising intrinsics for rcp.approx.{ftz.}f32, which is just
1768 // as well.
1769 case Intrinsic::nvvm_rcp_rn_d:
1770 return {SPC_Reciprocal, FTZ_Any};
1771 case Intrinsic::nvvm_rcp_rn_f:
1772 return {SPC_Reciprocal, FTZ_MustBeOff};
1773 case Intrinsic::nvvm_rcp_rn_ftz_f:
1774 return {SPC_Reciprocal, FTZ_MustBeOn};
1775
1776 // We do not currently simplify intrinsics that give an approximate answer.
1777 // These include:
1778 //
1779 // - nvvm_cos_approx_{f,ftz_f}
1780 // - nvvm_ex2_approx_{d,f,ftz_f}
1781 // - nvvm_lg2_approx_{d,f,ftz_f}
1782 // - nvvm_sin_approx_{f,ftz_f}
1783 // - nvvm_sqrt_approx_{f,ftz_f}
1784 // - nvvm_rsqrt_approx_{d,f,ftz_f}
1785 // - nvvm_div_approx_{ftz_d,ftz_f,f}
1786 // - nvvm_rcp_approx_ftz_d
1787 //
1788 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1789 // means that fastmath is enabled in the intrinsic. Unfortunately only
1790 // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1791 // information gets lost and we can't select on it.
1792 //
1793 // TODO: div and rcp are lowered to a binary op, so these we could in theory
1794 // lower them to "fast fdiv".
1795
1796 default:
1797 return {};
1798 }
1799 }();
1800
1801 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1802 // can bail out now. (Notice that in the case that IID is not an NVVM
1803 // intrinsic, we don't have to look up any module metadata, as
1804 // FtzRequirementTy will be FTZ_Any.)
1805 if (Action.FtzRequirement != FTZ_Any) {
1806 bool FtzEnabled =
1807 II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1808 "true";
1809
1810 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1811 return nullptr;
1812 }
1813
1814 // Simplify to target-generic intrinsic.
1815 if (Action.IID) {
1816 SmallVector<Value *, 4> Args(II->arg_operands());
1817 // All the target-generic intrinsics currently of interest to us have one
1818 // type argument, equal to that of the nvvm intrinsic's argument.
Justin Lebare3ac0fb2017-01-27 01:49:39 +00001819 Type *Tys[] = {II->getArgOperand(0)->getType()};
Justin Lebar698c31b2017-01-27 00:58:58 +00001820 return CallInst::Create(
1821 Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1822 }
1823
1824 // Simplify to target-generic binary op.
1825 if (Action.BinaryOp)
1826 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1827 II->getArgOperand(1), II->getName());
1828
1829 // Simplify to target-generic cast op.
1830 if (Action.CastOp)
1831 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1832 II->getName());
1833
1834 // All that's left are the special cases.
1835 if (!Action.Special)
1836 return nullptr;
1837
1838 switch (*Action.Special) {
1839 case SPC_Reciprocal:
1840 // Simplify reciprocal.
1841 return BinaryOperator::Create(
1842 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1843 II->getArgOperand(0), II->getName());
1844 }
Justin Lebar25ebe2d2017-01-27 02:04:07 +00001845 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
Justin Lebar698c31b2017-01-27 00:58:58 +00001846}
1847
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00001848Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1849 removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1850 return nullptr;
1851}
1852
1853Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1854 removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1855 return nullptr;
1856}
1857
Sanjay Patelcd4377c2016-01-20 22:24:38 +00001858/// CallInst simplification. This mostly only handles folding of intrinsic
1859/// instructions. For normal calls, it allows visitCallSite to do the heavy
1860/// lifting.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001861Instruction *InstCombiner::visitCallInst(CallInst &CI) {
David Majnemer15032582015-05-22 03:56:46 +00001862 auto Args = CI.arg_operands();
1863 if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00001864 &TLI, &DT, &AC))
Sanjay Patel4b198802016-02-01 22:23:39 +00001865 return replaceInstUsesWith(CI, V);
David Majnemer15032582015-05-22 03:56:46 +00001866
Justin Bogner99798402016-08-05 01:06:44 +00001867 if (isFreeCall(&CI, &TLI))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001868 return visitFree(CI);
1869
1870 // If the caller function is nounwind, mark the call as nounwind, even if the
1871 // callee isn't.
Sanjay Patel5a470952016-08-11 15:16:06 +00001872 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001873 CI.setDoesNotThrow();
1874 return &CI;
1875 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001876
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001877 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1878 if (!II) return visitCallSite(&CI);
Gabor Greif589a0b92010-06-24 12:58:35 +00001879
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001880 // Intrinsics cannot occur in an invoke, so handle them here instead of in
1881 // visitCallSite.
1882 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
1883 bool Changed = false;
1884
1885 // memmove/cpy/set of zero bytes is a noop.
1886 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
Chris Lattnerc663a672010-10-01 05:51:02 +00001887 if (NumBytes->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001888 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001889
1890 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1891 if (CI->getZExtValue() == 1) {
1892 // Replace the instruction with just byte operations. We would
1893 // transform other cases to loads/stores, but we don't know if
1894 // alignment is sufficient.
1895 }
1896 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001897
Chris Lattnerc663a672010-10-01 05:51:02 +00001898 // No other transformations apply to volatile transfers.
1899 if (MI->isVolatile())
Craig Topperf40110f2014-04-25 05:29:35 +00001900 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001901
1902 // If we have a memmove and the source operation is a constant global,
1903 // then the source and dest pointers can't alias, so we can change this
1904 // into a call to memcpy.
1905 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
1906 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1907 if (GVSrc->isConstant()) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +00001908 Module *M = CI.getModule();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001909 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
Jay Foadb804a2b2011-07-12 14:06:48 +00001910 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1911 CI.getArgOperand(1)->getType(),
1912 CI.getArgOperand(2)->getType() };
Benjamin Kramere6e19332011-07-14 17:45:39 +00001913 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001914 Changed = true;
1915 }
1916 }
1917
1918 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1919 // memmove(x,x,size) -> noop.
1920 if (MTI->getSource() == MTI->getDest())
Sanjay Patel4b198802016-02-01 22:23:39 +00001921 return eraseInstFromFunction(CI);
Eric Christopher7258dcd2010-04-16 23:37:20 +00001922 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001923
Eric Christopher7258dcd2010-04-16 23:37:20 +00001924 // If we can determine a pointer alignment that is bigger than currently
1925 // set, update the alignment.
Pete Cooper67cf9a72015-11-19 05:56:52 +00001926 if (isa<MemTransferInst>(MI)) {
1927 if (Instruction *I = SimplifyMemTransfer(MI))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001928 return I;
1929 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
1930 if (Instruction *I = SimplifyMemSet(MSI))
1931 return I;
1932 }
Gabor Greif590d95e2010-06-24 13:42:49 +00001933
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001934 if (Changed) return II;
1935 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001936
Igor Laevsky4b317fa2017-02-08 14:23:47 +00001937 if (auto *AMI = dyn_cast<ElementAtomicMemCpyInst>(II)) {
1938 if (Constant *C = dyn_cast<Constant>(AMI->getNumElements()))
1939 if (C->isNullValue())
1940 return eraseInstFromFunction(*AMI);
Igor Laevsky900ffa32017-02-08 14:32:04 +00001941
1942 if (Instruction *I = SimplifyElementAtomicMemCpy(AMI))
1943 return I;
Igor Laevsky4b317fa2017-02-08 14:23:47 +00001944 }
1945
Justin Lebar698c31b2017-01-27 00:58:58 +00001946 if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1947 return I;
1948
Sanjay Patel1c600c62016-01-20 16:41:43 +00001949 auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1950 unsigned DemandedWidth) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001951 APInt UndefElts(Width, 0);
1952 APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1953 return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1954 };
1955
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001956 switch (II->getIntrinsicID()) {
1957 default: break;
George Burgess IV3f089142016-12-20 23:46:36 +00001958 case Intrinsic::objectsize:
1959 if (ConstantInt *N =
1960 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1961 return replaceInstUsesWith(CI, N);
Craig Topperf40110f2014-04-25 05:29:35 +00001962 return nullptr;
George Burgess IV3f089142016-12-20 23:46:36 +00001963
Michael Ilseman536cc322012-12-13 03:13:36 +00001964 case Intrinsic::bswap: {
1965 Value *IIOperand = II->getArgOperand(0);
Craig Topperf40110f2014-04-25 05:29:35 +00001966 Value *X = nullptr;
Michael Ilseman536cc322012-12-13 03:13:36 +00001967
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001968 // bswap(bswap(x)) -> x
Michael Ilseman536cc322012-12-13 03:13:36 +00001969 if (match(IIOperand, m_BSwap(m_Value(X))))
Sanjay Patel4b198802016-02-01 22:23:39 +00001970 return replaceInstUsesWith(CI, X);
Jim Grosbach7815f562012-02-03 00:07:04 +00001971
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001972 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
Michael Ilseman536cc322012-12-13 03:13:36 +00001973 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1974 unsigned C = X->getType()->getPrimitiveSizeInBits() -
1975 IIOperand->getType()->getPrimitiveSizeInBits();
1976 Value *CV = ConstantInt::get(X->getType(), C);
1977 Value *V = Builder->CreateLShr(X, CV);
1978 return new TruncInst(V, IIOperand->getType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001979 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001980 break;
Michael Ilseman536cc322012-12-13 03:13:36 +00001981 }
1982
James Molloy2d09c002015-11-12 12:39:41 +00001983 case Intrinsic::bitreverse: {
1984 Value *IIOperand = II->getArgOperand(0);
1985 Value *X = nullptr;
1986
1987 // bitreverse(bitreverse(x)) -> x
1988 if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X))))
Sanjay Patel4b198802016-02-01 22:23:39 +00001989 return replaceInstUsesWith(CI, X);
James Molloy2d09c002015-11-12 12:39:41 +00001990 break;
1991 }
1992
Sanjay Patelb695c552016-02-01 17:00:10 +00001993 case Intrinsic::masked_load:
1994 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00001995 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
Sanjay Patelb695c552016-02-01 17:00:10 +00001996 break;
Sanjay Patel04f792b2016-02-01 19:39:52 +00001997 case Intrinsic::masked_store:
1998 return simplifyMaskedStore(*II, *this);
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001999 case Intrinsic::masked_gather:
2000 return simplifyMaskedGather(*II, *this);
2001 case Intrinsic::masked_scatter:
2002 return simplifyMaskedScatter(*II, *this);
Sanjay Patelb695c552016-02-01 17:00:10 +00002003
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002004 case Intrinsic::powi:
Gabor Greif589a0b92010-06-24 12:58:35 +00002005 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002006 // powi(x, 0) -> 1.0
2007 if (Power->isZero())
Sanjay Patel4b198802016-02-01 22:23:39 +00002008 return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002009 // powi(x, 1) -> x
2010 if (Power->isOne())
Sanjay Patel4b198802016-02-01 22:23:39 +00002011 return replaceInstUsesWith(CI, II->getArgOperand(0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002012 // powi(x, -1) -> 1/x
2013 if (Power->isAllOnesValue())
2014 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
Gabor Greif589a0b92010-06-24 12:58:35 +00002015 II->getArgOperand(0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002016 }
2017 break;
Jim Grosbach7815f562012-02-03 00:07:04 +00002018
Sanjay Patel8e3ab172016-08-05 22:42:46 +00002019 case Intrinsic::cttz:
2020 case Intrinsic::ctlz:
Amaury Sechet763c59d2016-08-18 20:43:50 +00002021 if (auto *I = foldCttzCtlz(*II, *this))
2022 return I;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002023 break;
Sanjoy Dasb0984472015-04-08 04:27:22 +00002024
Nick Lewyckyabe2cc12015-04-13 19:17:37 +00002025 case Intrinsic::uadd_with_overflow:
2026 case Intrinsic::sadd_with_overflow:
2027 case Intrinsic::umul_with_overflow:
2028 case Intrinsic::smul_with_overflow:
Gabor Greif5b1370e2010-06-28 16:50:57 +00002029 if (isa<Constant>(II->getArgOperand(0)) &&
2030 !isa<Constant>(II->getArgOperand(1))) {
Sanjoy Dasb0984472015-04-08 04:27:22 +00002031 // Canonicalize constants into the RHS.
Gabor Greif5b1370e2010-06-28 16:50:57 +00002032 Value *LHS = II->getArgOperand(0);
2033 II->setArgOperand(0, II->getArgOperand(1));
2034 II->setArgOperand(1, LHS);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002035 return II;
2036 }
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002037 LLVM_FALLTHROUGH;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002038
Nick Lewyckyabe2cc12015-04-13 19:17:37 +00002039 case Intrinsic::usub_with_overflow:
2040 case Intrinsic::ssub_with_overflow: {
Sanjoy Dasb0984472015-04-08 04:27:22 +00002041 OverflowCheckFlavor OCF =
2042 IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
2043 assert(OCF != OCF_INVALID && "unexpected!");
Jim Grosbach7815f562012-02-03 00:07:04 +00002044
Sanjoy Dasb0984472015-04-08 04:27:22 +00002045 Value *OperationResult = nullptr;
2046 Constant *OverflowResult = nullptr;
2047 if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
2048 *II, OperationResult, OverflowResult))
2049 return CreateOverflowTuple(II, OperationResult, OverflowResult);
Benjamin Kramera420df22014-07-04 10:22:21 +00002050
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002051 break;
Erik Eckstein096ff7d2014-12-11 08:02:30 +00002052 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002053
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002054 case Intrinsic::minnum:
2055 case Intrinsic::maxnum: {
2056 Value *Arg0 = II->getArgOperand(0);
2057 Value *Arg1 = II->getArgOperand(1);
Sanjay Patel0069f562016-01-31 16:35:23 +00002058 // Canonicalize constants to the RHS.
2059 if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002060 II->setArgOperand(0, Arg1);
2061 II->setArgOperand(1, Arg0);
2062 return II;
2063 }
Sanjay Patel0069f562016-01-31 16:35:23 +00002064 if (Value *V = simplifyMinnumMaxnum(*II))
Sanjay Patel4b198802016-02-01 22:23:39 +00002065 return replaceInstUsesWith(*II, V);
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002066 break;
2067 }
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002068 case Intrinsic::fmuladd: {
Matt Arsenault92057602017-02-16 18:46:24 +00002069 // Canonicalize fast fmuladd to the separate fmul + fadd.
2070 if (II->hasUnsafeAlgebra()) {
2071 BuilderTy::FastMathFlagGuard Guard(*Builder);
2072 Builder->setFastMathFlags(II->getFastMathFlags());
2073 Value *Mul = Builder->CreateFMul(II->getArgOperand(0),
2074 II->getArgOperand(1));
2075 Value *Add = Builder->CreateFAdd(Mul, II->getArgOperand(2));
2076 Add->takeName(II);
2077 return replaceInstUsesWith(*II, Add);
2078 }
2079
2080 LLVM_FALLTHROUGH;
2081 }
2082 case Intrinsic::fma: {
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002083 Value *Src0 = II->getArgOperand(0);
2084 Value *Src1 = II->getArgOperand(1);
2085
Matt Arsenaultb264c942017-01-03 04:32:35 +00002086 // Canonicalize constants into the RHS.
2087 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
2088 II->setArgOperand(0, Src1);
2089 II->setArgOperand(1, Src0);
2090 std::swap(Src0, Src1);
2091 }
2092
2093 Value *LHS = nullptr;
2094 Value *RHS = nullptr;
2095
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002096 // fma fneg(x), fneg(y), z -> fma x, y, z
2097 if (match(Src0, m_FNeg(m_Value(LHS))) &&
2098 match(Src1, m_FNeg(m_Value(RHS)))) {
Matt Arsenault3f509042017-01-10 23:17:52 +00002099 II->setArgOperand(0, LHS);
2100 II->setArgOperand(1, RHS);
2101 return II;
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002102 }
2103
2104 // fma fabs(x), fabs(x), z -> fma x, x, z
2105 if (match(Src0, m_Intrinsic<Intrinsic::fabs>(m_Value(LHS))) &&
2106 match(Src1, m_Intrinsic<Intrinsic::fabs>(m_Value(RHS))) && LHS == RHS) {
Matt Arsenault3f509042017-01-10 23:17:52 +00002107 II->setArgOperand(0, LHS);
2108 II->setArgOperand(1, RHS);
2109 return II;
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002110 }
2111
Matt Arsenaultb264c942017-01-03 04:32:35 +00002112 // fma x, 1, z -> fadd x, z
2113 if (match(Src1, m_FPOne())) {
2114 Instruction *RI = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
2115 RI->copyFastMathFlags(II);
2116 return RI;
2117 }
2118
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002119 break;
2120 }
Matt Arsenault56ff4832017-01-03 22:40:34 +00002121 case Intrinsic::fabs: {
2122 Value *Cond;
2123 Constant *LHS, *RHS;
2124 if (match(II->getArgOperand(0),
2125 m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2126 CallInst *Call0 = Builder->CreateCall(II->getCalledFunction(), {LHS});
2127 CallInst *Call1 = Builder->CreateCall(II->getCalledFunction(), {RHS});
2128 return SelectInst::Create(Cond, Call0, Call1);
2129 }
2130
Matt Arsenault954a6242017-01-23 23:55:08 +00002131 LLVM_FALLTHROUGH;
2132 }
2133 case Intrinsic::ceil:
2134 case Intrinsic::floor:
2135 case Intrinsic::round:
2136 case Intrinsic::nearbyint:
2137 case Intrinsic::trunc: {
Matt Arsenault72333442017-01-17 00:10:40 +00002138 Value *ExtSrc;
2139 if (match(II->getArgOperand(0), m_FPExt(m_Value(ExtSrc))) &&
2140 II->getArgOperand(0)->hasOneUse()) {
2141 // fabs (fpext x) -> fpext (fabs x)
Matt Arsenault954a6242017-01-23 23:55:08 +00002142 Value *F = Intrinsic::getDeclaration(II->getModule(), II->getIntrinsicID(),
Matt Arsenault72333442017-01-17 00:10:40 +00002143 { ExtSrc->getType() });
2144 CallInst *NewFabs = Builder->CreateCall(F, ExtSrc);
2145 NewFabs->copyFastMathFlags(II);
2146 NewFabs->takeName(II);
2147 return new FPExtInst(NewFabs, II->getType());
2148 }
2149
Matt Arsenault56ff4832017-01-03 22:40:34 +00002150 break;
2151 }
Matt Arsenault3bdd75d2017-01-04 22:49:03 +00002152 case Intrinsic::cos:
2153 case Intrinsic::amdgcn_cos: {
2154 Value *SrcSrc;
2155 Value *Src = II->getArgOperand(0);
2156 if (match(Src, m_FNeg(m_Value(SrcSrc))) ||
2157 match(Src, m_Intrinsic<Intrinsic::fabs>(m_Value(SrcSrc)))) {
2158 // cos(-x) -> cos(x)
2159 // cos(fabs(x)) -> cos(x)
2160 II->setArgOperand(0, SrcSrc);
2161 return II;
2162 }
2163
2164 break;
2165 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002166 case Intrinsic::ppc_altivec_lvx:
2167 case Intrinsic::ppc_altivec_lvxl:
Bill Wendlingb902f1d2011-04-13 00:36:11 +00002168 // Turn PPC lvx -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002169 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002170 &DT) >= 16) {
Gabor Greif589a0b92010-06-24 12:58:35 +00002171 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002172 PointerType::getUnqual(II->getType()));
2173 return new LoadInst(Ptr);
2174 }
2175 break;
Bill Schmidt72954782014-11-12 04:19:40 +00002176 case Intrinsic::ppc_vsx_lxvw4x:
2177 case Intrinsic::ppc_vsx_lxvd2x: {
2178 // Turn PPC VSX loads into normal loads.
2179 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
2180 PointerType::getUnqual(II->getType()));
2181 return new LoadInst(Ptr, Twine(""), false, 1);
2182 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002183 case Intrinsic::ppc_altivec_stvx:
2184 case Intrinsic::ppc_altivec_stvxl:
2185 // Turn stvx -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002186 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002187 &DT) >= 16) {
Jim Grosbach7815f562012-02-03 00:07:04 +00002188 Type *OpPtrTy =
Gabor Greifa6d75e22010-06-24 15:51:11 +00002189 PointerType::getUnqual(II->getArgOperand(0)->getType());
2190 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2191 return new StoreInst(II->getArgOperand(0), Ptr);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002192 }
2193 break;
Bill Schmidt72954782014-11-12 04:19:40 +00002194 case Intrinsic::ppc_vsx_stxvw4x:
2195 case Intrinsic::ppc_vsx_stxvd2x: {
2196 // Turn PPC VSX stores into normal stores.
2197 Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2198 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2199 return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
2200 }
Hal Finkel221f4672015-02-26 18:56:03 +00002201 case Intrinsic::ppc_qpx_qvlfs:
2202 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002203 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002204 &DT) >= 16) {
Hal Finkelf0d68d72015-05-11 06:37:03 +00002205 Type *VTy = VectorType::get(Builder->getFloatTy(),
2206 II->getType()->getVectorNumElements());
Hal Finkel221f4672015-02-26 18:56:03 +00002207 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
Hal Finkelf0d68d72015-05-11 06:37:03 +00002208 PointerType::getUnqual(VTy));
2209 Value *Load = Builder->CreateLoad(Ptr);
2210 return new FPExtInst(Load, II->getType());
Hal Finkel221f4672015-02-26 18:56:03 +00002211 }
2212 break;
2213 case Intrinsic::ppc_qpx_qvlfd:
2214 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002215 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002216 &DT) >= 32) {
Hal Finkel221f4672015-02-26 18:56:03 +00002217 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
2218 PointerType::getUnqual(II->getType()));
2219 return new LoadInst(Ptr);
2220 }
2221 break;
2222 case Intrinsic::ppc_qpx_qvstfs:
2223 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002224 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002225 &DT) >= 16) {
Hal Finkelf0d68d72015-05-11 06:37:03 +00002226 Type *VTy = VectorType::get(Builder->getFloatTy(),
2227 II->getArgOperand(0)->getType()->getVectorNumElements());
2228 Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
2229 Type *OpPtrTy = PointerType::getUnqual(VTy);
Hal Finkel221f4672015-02-26 18:56:03 +00002230 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
Hal Finkelf0d68d72015-05-11 06:37:03 +00002231 return new StoreInst(TOp, Ptr);
Hal Finkel221f4672015-02-26 18:56:03 +00002232 }
2233 break;
2234 case Intrinsic::ppc_qpx_qvstfd:
2235 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002236 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002237 &DT) >= 32) {
Hal Finkel221f4672015-02-26 18:56:03 +00002238 Type *OpPtrTy =
2239 PointerType::getUnqual(II->getArgOperand(0)->getType());
2240 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2241 return new StoreInst(II->getArgOperand(0), Ptr);
2242 }
2243 break;
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002244
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002245 case Intrinsic::x86_vcvtph2ps_128:
2246 case Intrinsic::x86_vcvtph2ps_256: {
2247 auto Arg = II->getArgOperand(0);
2248 auto ArgType = cast<VectorType>(Arg->getType());
2249 auto RetType = cast<VectorType>(II->getType());
2250 unsigned ArgWidth = ArgType->getNumElements();
2251 unsigned RetWidth = RetType->getNumElements();
2252 assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
2253 assert(ArgType->isIntOrIntVectorTy() &&
2254 ArgType->getScalarSizeInBits() == 16 &&
2255 "CVTPH2PS input type should be 16-bit integer vector");
2256 assert(RetType->getScalarType()->isFloatTy() &&
2257 "CVTPH2PS output type should be 32-bit float vector");
2258
2259 // Constant folding: Convert to generic half to single conversion.
Simon Pilgrim48ffca02015-09-12 14:00:17 +00002260 if (isa<ConstantAggregateZero>(Arg))
Sanjay Patel4b198802016-02-01 22:23:39 +00002261 return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002262
Simon Pilgrim48ffca02015-09-12 14:00:17 +00002263 if (isa<ConstantDataVector>(Arg)) {
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002264 auto VectorHalfAsShorts = Arg;
2265 if (RetWidth < ArgWidth) {
Craig Topper99d1eab2016-06-12 00:41:19 +00002266 SmallVector<uint32_t, 8> SubVecMask;
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002267 for (unsigned i = 0; i != RetWidth; ++i)
2268 SubVecMask.push_back((int)i);
2269 VectorHalfAsShorts = Builder->CreateShuffleVector(
2270 Arg, UndefValue::get(ArgType), SubVecMask);
2271 }
2272
2273 auto VectorHalfType =
2274 VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
2275 auto VectorHalfs =
2276 Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
2277 auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
Sanjay Patel4b198802016-02-01 22:23:39 +00002278 return replaceInstUsesWith(*II, VectorFloats);
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002279 }
2280
2281 // We only use the lowest lanes of the argument.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002282 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002283 II->setArgOperand(0, V);
2284 return II;
2285 }
2286 break;
2287 }
2288
Chandler Carruthcf414cf2011-01-10 07:19:37 +00002289 case Intrinsic::x86_sse_cvtss2si:
2290 case Intrinsic::x86_sse_cvtss2si64:
2291 case Intrinsic::x86_sse_cvttss2si:
2292 case Intrinsic::x86_sse_cvttss2si64:
2293 case Intrinsic::x86_sse2_cvtsd2si:
2294 case Intrinsic::x86_sse2_cvtsd2si64:
2295 case Intrinsic::x86_sse2_cvttsd2si:
Craig Topperaeaa52c2016-12-14 07:46:12 +00002296 case Intrinsic::x86_sse2_cvttsd2si64:
2297 case Intrinsic::x86_avx512_vcvtss2si32:
2298 case Intrinsic::x86_avx512_vcvtss2si64:
2299 case Intrinsic::x86_avx512_vcvtss2usi32:
2300 case Intrinsic::x86_avx512_vcvtss2usi64:
2301 case Intrinsic::x86_avx512_vcvtsd2si32:
2302 case Intrinsic::x86_avx512_vcvtsd2si64:
2303 case Intrinsic::x86_avx512_vcvtsd2usi32:
2304 case Intrinsic::x86_avx512_vcvtsd2usi64:
2305 case Intrinsic::x86_avx512_cvttss2si:
2306 case Intrinsic::x86_avx512_cvttss2si64:
2307 case Intrinsic::x86_avx512_cvttss2usi:
2308 case Intrinsic::x86_avx512_cvttss2usi64:
2309 case Intrinsic::x86_avx512_cvttsd2si:
2310 case Intrinsic::x86_avx512_cvttsd2si64:
2311 case Intrinsic::x86_avx512_cvttsd2usi:
2312 case Intrinsic::x86_avx512_cvttsd2usi64: {
Chandler Carruthcf414cf2011-01-10 07:19:37 +00002313 // These intrinsics only demand the 0th element of their input vectors. If
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002314 // we can simplify the input based on that, do so now.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002315 Value *Arg = II->getArgOperand(0);
2316 unsigned VWidth = Arg->getType()->getVectorNumElements();
2317 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
Gabor Greif5b1370e2010-06-28 16:50:57 +00002318 II->setArgOperand(0, V);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002319 return II;
2320 }
Simon Pilgrim18617d12015-08-05 08:18:00 +00002321 break;
2322 }
2323
Simon Pilgrim91e3ac82016-06-07 08:18:35 +00002324 case Intrinsic::x86_mmx_pmovmskb:
2325 case Intrinsic::x86_sse_movmsk_ps:
2326 case Intrinsic::x86_sse2_movmsk_pd:
2327 case Intrinsic::x86_sse2_pmovmskb_128:
2328 case Intrinsic::x86_avx_movmsk_pd_256:
2329 case Intrinsic::x86_avx_movmsk_ps_256:
2330 case Intrinsic::x86_avx2_pmovmskb: {
2331 if (Value *V = simplifyX86movmsk(*II, *Builder))
2332 return replaceInstUsesWith(*II, V);
2333 break;
2334 }
2335
Simon Pilgrim471efd22016-02-20 23:17:35 +00002336 case Intrinsic::x86_sse_comieq_ss:
2337 case Intrinsic::x86_sse_comige_ss:
2338 case Intrinsic::x86_sse_comigt_ss:
2339 case Intrinsic::x86_sse_comile_ss:
2340 case Intrinsic::x86_sse_comilt_ss:
2341 case Intrinsic::x86_sse_comineq_ss:
2342 case Intrinsic::x86_sse_ucomieq_ss:
2343 case Intrinsic::x86_sse_ucomige_ss:
2344 case Intrinsic::x86_sse_ucomigt_ss:
2345 case Intrinsic::x86_sse_ucomile_ss:
2346 case Intrinsic::x86_sse_ucomilt_ss:
2347 case Intrinsic::x86_sse_ucomineq_ss:
2348 case Intrinsic::x86_sse2_comieq_sd:
2349 case Intrinsic::x86_sse2_comige_sd:
2350 case Intrinsic::x86_sse2_comigt_sd:
2351 case Intrinsic::x86_sse2_comile_sd:
2352 case Intrinsic::x86_sse2_comilt_sd:
2353 case Intrinsic::x86_sse2_comineq_sd:
2354 case Intrinsic::x86_sse2_ucomieq_sd:
2355 case Intrinsic::x86_sse2_ucomige_sd:
2356 case Intrinsic::x86_sse2_ucomigt_sd:
2357 case Intrinsic::x86_sse2_ucomile_sd:
2358 case Intrinsic::x86_sse2_ucomilt_sd:
Craig Topperd9639532016-12-11 07:42:04 +00002359 case Intrinsic::x86_sse2_ucomineq_sd:
Craig Topperd00db692016-12-31 00:45:06 +00002360 case Intrinsic::x86_avx512_vcomi_ss:
2361 case Intrinsic::x86_avx512_vcomi_sd:
Craig Topperd9639532016-12-11 07:42:04 +00002362 case Intrinsic::x86_avx512_mask_cmp_ss:
2363 case Intrinsic::x86_avx512_mask_cmp_sd: {
Simon Pilgrim471efd22016-02-20 23:17:35 +00002364 // These intrinsics only demand the 0th element of their input vectors. If
2365 // we can simplify the input based on that, do so now.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002366 bool MadeChange = false;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002367 Value *Arg0 = II->getArgOperand(0);
2368 Value *Arg1 = II->getArgOperand(1);
2369 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2370 if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2371 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002372 MadeChange = true;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002373 }
2374 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2375 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002376 MadeChange = true;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002377 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002378 if (MadeChange)
2379 return II;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002380 break;
2381 }
2382
Craig Topper020b2282016-12-27 00:23:16 +00002383 case Intrinsic::x86_avx512_mask_add_ps_512:
2384 case Intrinsic::x86_avx512_mask_div_ps_512:
2385 case Intrinsic::x86_avx512_mask_mul_ps_512:
2386 case Intrinsic::x86_avx512_mask_sub_ps_512:
2387 case Intrinsic::x86_avx512_mask_add_pd_512:
2388 case Intrinsic::x86_avx512_mask_div_pd_512:
2389 case Intrinsic::x86_avx512_mask_mul_pd_512:
2390 case Intrinsic::x86_avx512_mask_sub_pd_512:
2391 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2392 // IR operations.
2393 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2394 if (R->getValue() == 4) {
2395 Value *Arg0 = II->getArgOperand(0);
2396 Value *Arg1 = II->getArgOperand(1);
2397
2398 Value *V;
2399 switch (II->getIntrinsicID()) {
2400 default: llvm_unreachable("Case stmts out of sync!");
2401 case Intrinsic::x86_avx512_mask_add_ps_512:
2402 case Intrinsic::x86_avx512_mask_add_pd_512:
2403 V = Builder->CreateFAdd(Arg0, Arg1);
2404 break;
2405 case Intrinsic::x86_avx512_mask_sub_ps_512:
2406 case Intrinsic::x86_avx512_mask_sub_pd_512:
2407 V = Builder->CreateFSub(Arg0, Arg1);
2408 break;
2409 case Intrinsic::x86_avx512_mask_mul_ps_512:
2410 case Intrinsic::x86_avx512_mask_mul_pd_512:
2411 V = Builder->CreateFMul(Arg0, Arg1);
2412 break;
2413 case Intrinsic::x86_avx512_mask_div_ps_512:
2414 case Intrinsic::x86_avx512_mask_div_pd_512:
2415 V = Builder->CreateFDiv(Arg0, Arg1);
2416 break;
2417 }
2418
2419 // Create a select for the masking.
2420 V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2),
2421 *Builder);
2422 return replaceInstUsesWith(*II, V);
2423 }
2424 }
2425 break;
2426
Craig Topper790d0fa2016-12-11 07:42:01 +00002427 case Intrinsic::x86_avx512_mask_add_ss_round:
2428 case Intrinsic::x86_avx512_mask_div_ss_round:
2429 case Intrinsic::x86_avx512_mask_mul_ss_round:
2430 case Intrinsic::x86_avx512_mask_sub_ss_round:
Craig Topper790d0fa2016-12-11 07:42:01 +00002431 case Intrinsic::x86_avx512_mask_add_sd_round:
2432 case Intrinsic::x86_avx512_mask_div_sd_round:
2433 case Intrinsic::x86_avx512_mask_mul_sd_round:
2434 case Intrinsic::x86_avx512_mask_sub_sd_round:
Craig Topper7b788ada2016-12-26 06:33:19 +00002435 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2436 // IR operations.
2437 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2438 if (R->getValue() == 4) {
Craig Topper7f8540b2016-12-27 01:56:30 +00002439 // Extract the element as scalars.
2440 Value *Arg0 = II->getArgOperand(0);
2441 Value *Arg1 = II->getArgOperand(1);
2442 Value *LHS = Builder->CreateExtractElement(Arg0, (uint64_t)0);
2443 Value *RHS = Builder->CreateExtractElement(Arg1, (uint64_t)0);
Craig Topper7b788ada2016-12-26 06:33:19 +00002444
Craig Topper7f8540b2016-12-27 01:56:30 +00002445 Value *V;
2446 switch (II->getIntrinsicID()) {
2447 default: llvm_unreachable("Case stmts out of sync!");
2448 case Intrinsic::x86_avx512_mask_add_ss_round:
2449 case Intrinsic::x86_avx512_mask_add_sd_round:
2450 V = Builder->CreateFAdd(LHS, RHS);
2451 break;
2452 case Intrinsic::x86_avx512_mask_sub_ss_round:
2453 case Intrinsic::x86_avx512_mask_sub_sd_round:
2454 V = Builder->CreateFSub(LHS, RHS);
2455 break;
2456 case Intrinsic::x86_avx512_mask_mul_ss_round:
2457 case Intrinsic::x86_avx512_mask_mul_sd_round:
2458 V = Builder->CreateFMul(LHS, RHS);
2459 break;
2460 case Intrinsic::x86_avx512_mask_div_ss_round:
2461 case Intrinsic::x86_avx512_mask_div_sd_round:
2462 V = Builder->CreateFDiv(LHS, RHS);
2463 break;
Craig Topper7b788ada2016-12-26 06:33:19 +00002464 }
Craig Topper7f8540b2016-12-27 01:56:30 +00002465
2466 // Handle the masking aspect of the intrinsic.
Craig Topper7f8540b2016-12-27 01:56:30 +00002467 Value *Mask = II->getArgOperand(3);
Craig Topper99163632016-12-30 23:06:28 +00002468 auto *C = dyn_cast<ConstantInt>(Mask);
2469 // We don't need a select if we know the mask bit is a 1.
2470 if (!C || !C->getValue()[0]) {
2471 // Cast the mask to an i1 vector and then extract the lowest element.
2472 auto *MaskTy = VectorType::get(Builder->getInt1Ty(),
Craig Topper7f8540b2016-12-27 01:56:30 +00002473 cast<IntegerType>(Mask->getType())->getBitWidth());
Craig Topper99163632016-12-30 23:06:28 +00002474 Mask = Builder->CreateBitCast(Mask, MaskTy);
2475 Mask = Builder->CreateExtractElement(Mask, (uint64_t)0);
2476 // Extract the lowest element from the passthru operand.
2477 Value *Passthru = Builder->CreateExtractElement(II->getArgOperand(2),
2478 (uint64_t)0);
2479 V = Builder->CreateSelect(Mask, V, Passthru);
2480 }
Craig Topper7f8540b2016-12-27 01:56:30 +00002481
2482 // Insert the result back into the original argument 0.
2483 V = Builder->CreateInsertElement(Arg0, V, (uint64_t)0);
2484
2485 return replaceInstUsesWith(*II, V);
Craig Topper7b788ada2016-12-26 06:33:19 +00002486 }
2487 }
2488 LLVM_FALLTHROUGH;
2489
2490 // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts.
2491 case Intrinsic::x86_avx512_mask_max_ss_round:
2492 case Intrinsic::x86_avx512_mask_min_ss_round:
Craig Topper790d0fa2016-12-11 07:42:01 +00002493 case Intrinsic::x86_avx512_mask_max_sd_round:
Craig Topper268b3ab2016-12-14 06:06:58 +00002494 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topperab5f3552016-12-15 03:49:45 +00002495 case Intrinsic::x86_avx512_mask_vfmadd_ss:
2496 case Intrinsic::x86_avx512_mask_vfmadd_sd:
2497 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
2498 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
2499 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
2500 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
2501 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
2502 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
2503 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
2504 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
Craig Topperdfd268d2016-12-14 05:43:05 +00002505 case Intrinsic::x86_fma_vfmadd_ss:
2506 case Intrinsic::x86_fma_vfmsub_ss:
2507 case Intrinsic::x86_fma_vfnmadd_ss:
2508 case Intrinsic::x86_fma_vfnmsub_ss:
2509 case Intrinsic::x86_fma_vfmadd_sd:
2510 case Intrinsic::x86_fma_vfmsub_sd:
2511 case Intrinsic::x86_fma_vfnmadd_sd:
2512 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00002513 case Intrinsic::x86_sse_cmp_ss:
2514 case Intrinsic::x86_sse_min_ss:
2515 case Intrinsic::x86_sse_max_ss:
2516 case Intrinsic::x86_sse2_cmp_sd:
2517 case Intrinsic::x86_sse2_min_sd:
2518 case Intrinsic::x86_sse2_max_sd:
Craig Toppereb6a20e2016-12-14 03:17:30 +00002519 case Intrinsic::x86_sse41_round_ss:
2520 case Intrinsic::x86_sse41_round_sd:
Craig Topperac75bca2016-12-13 07:45:45 +00002521 case Intrinsic::x86_xop_vfrcz_ss:
2522 case Intrinsic::x86_xop_vfrcz_sd: {
2523 unsigned VWidth = II->getType()->getVectorNumElements();
2524 APInt UndefElts(VWidth, 0);
2525 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2526 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
2527 if (V != II)
2528 return replaceInstUsesWith(*II, V);
2529 return II;
2530 }
2531 break;
2532 }
2533
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002534 // Constant fold ashr( <A x Bi>, Ci ).
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002535 // Constant fold lshr( <A x Bi>, Ci ).
2536 // Constant fold shl( <A x Bi>, Ci ).
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002537 case Intrinsic::x86_sse2_psrai_d:
2538 case Intrinsic::x86_sse2_psrai_w:
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002539 case Intrinsic::x86_avx2_psrai_d:
2540 case Intrinsic::x86_avx2_psrai_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002541 case Intrinsic::x86_avx512_psrai_q_128:
2542 case Intrinsic::x86_avx512_psrai_q_256:
2543 case Intrinsic::x86_avx512_psrai_d_512:
2544 case Intrinsic::x86_avx512_psrai_q_512:
2545 case Intrinsic::x86_avx512_psrai_w_512:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002546 case Intrinsic::x86_sse2_psrli_d:
2547 case Intrinsic::x86_sse2_psrli_q:
2548 case Intrinsic::x86_sse2_psrli_w:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002549 case Intrinsic::x86_avx2_psrli_d:
2550 case Intrinsic::x86_avx2_psrli_q:
2551 case Intrinsic::x86_avx2_psrli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002552 case Intrinsic::x86_avx512_psrli_d_512:
2553 case Intrinsic::x86_avx512_psrli_q_512:
2554 case Intrinsic::x86_avx512_psrli_w_512:
Michael J. Spencerdee4b2c2014-04-24 00:58:18 +00002555 case Intrinsic::x86_sse2_pslli_d:
2556 case Intrinsic::x86_sse2_pslli_q:
2557 case Intrinsic::x86_sse2_pslli_w:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002558 case Intrinsic::x86_avx2_pslli_d:
2559 case Intrinsic::x86_avx2_pslli_q:
2560 case Intrinsic::x86_avx2_pslli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002561 case Intrinsic::x86_avx512_pslli_d_512:
2562 case Intrinsic::x86_avx512_pslli_q_512:
2563 case Intrinsic::x86_avx512_pslli_w_512:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002564 if (Value *V = simplifyX86immShift(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002565 return replaceInstUsesWith(*II, V);
Simon Pilgrim18617d12015-08-05 08:18:00 +00002566 break;
2567
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002568 case Intrinsic::x86_sse2_psra_d:
2569 case Intrinsic::x86_sse2_psra_w:
2570 case Intrinsic::x86_avx2_psra_d:
2571 case Intrinsic::x86_avx2_psra_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002572 case Intrinsic::x86_avx512_psra_q_128:
2573 case Intrinsic::x86_avx512_psra_q_256:
2574 case Intrinsic::x86_avx512_psra_d_512:
2575 case Intrinsic::x86_avx512_psra_q_512:
2576 case Intrinsic::x86_avx512_psra_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002577 case Intrinsic::x86_sse2_psrl_d:
2578 case Intrinsic::x86_sse2_psrl_q:
2579 case Intrinsic::x86_sse2_psrl_w:
2580 case Intrinsic::x86_avx2_psrl_d:
2581 case Intrinsic::x86_avx2_psrl_q:
2582 case Intrinsic::x86_avx2_psrl_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002583 case Intrinsic::x86_avx512_psrl_d_512:
2584 case Intrinsic::x86_avx512_psrl_q_512:
2585 case Intrinsic::x86_avx512_psrl_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002586 case Intrinsic::x86_sse2_psll_d:
2587 case Intrinsic::x86_sse2_psll_q:
2588 case Intrinsic::x86_sse2_psll_w:
2589 case Intrinsic::x86_avx2_psll_d:
2590 case Intrinsic::x86_avx2_psll_q:
Craig Topper8b831cb2016-11-13 01:51:55 +00002591 case Intrinsic::x86_avx2_psll_w:
2592 case Intrinsic::x86_avx512_psll_d_512:
2593 case Intrinsic::x86_avx512_psll_q_512:
2594 case Intrinsic::x86_avx512_psll_w_512: {
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002595 if (Value *V = simplifyX86immShift(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002596 return replaceInstUsesWith(*II, V);
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002597
2598 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2599 // operand to compute the shift amount.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002600 Value *Arg1 = II->getArgOperand(1);
2601 assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002602 "Unexpected packed shift size");
Simon Pilgrim996725e2015-09-19 11:41:53 +00002603 unsigned VWidth = Arg1->getType()->getVectorNumElements();
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002604
Simon Pilgrim996725e2015-09-19 11:41:53 +00002605 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002606 II->setArgOperand(1, V);
2607 return II;
2608 }
2609 break;
2610 }
2611
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002612 case Intrinsic::x86_avx2_psllv_d:
2613 case Intrinsic::x86_avx2_psllv_d_256:
2614 case Intrinsic::x86_avx2_psllv_q:
2615 case Intrinsic::x86_avx2_psllv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002616 case Intrinsic::x86_avx512_psllv_d_512:
2617 case Intrinsic::x86_avx512_psllv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002618 case Intrinsic::x86_avx512_psllv_w_128:
2619 case Intrinsic::x86_avx512_psllv_w_256:
2620 case Intrinsic::x86_avx512_psllv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002621 case Intrinsic::x86_avx2_psrav_d:
2622 case Intrinsic::x86_avx2_psrav_d_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002623 case Intrinsic::x86_avx512_psrav_q_128:
2624 case Intrinsic::x86_avx512_psrav_q_256:
2625 case Intrinsic::x86_avx512_psrav_d_512:
2626 case Intrinsic::x86_avx512_psrav_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002627 case Intrinsic::x86_avx512_psrav_w_128:
2628 case Intrinsic::x86_avx512_psrav_w_256:
2629 case Intrinsic::x86_avx512_psrav_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002630 case Intrinsic::x86_avx2_psrlv_d:
2631 case Intrinsic::x86_avx2_psrlv_d_256:
2632 case Intrinsic::x86_avx2_psrlv_q:
2633 case Intrinsic::x86_avx2_psrlv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002634 case Intrinsic::x86_avx512_psrlv_d_512:
2635 case Intrinsic::x86_avx512_psrlv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002636 case Intrinsic::x86_avx512_psrlv_w_128:
2637 case Intrinsic::x86_avx512_psrlv_w_256:
2638 case Intrinsic::x86_avx512_psrlv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002639 if (Value *V = simplifyX86varShift(*II, *Builder))
2640 return replaceInstUsesWith(*II, V);
2641 break;
2642
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00002643 case Intrinsic::x86_sse2_pmulu_dq:
2644 case Intrinsic::x86_sse41_pmuldq:
2645 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00002646 case Intrinsic::x86_avx2_pmulu_dq:
2647 case Intrinsic::x86_avx512_pmul_dq_512:
2648 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +00002649 if (Value *V = simplifyX86muldq(*II, *Builder))
Simon Pilgrima50a93f2017-01-20 18:20:30 +00002650 return replaceInstUsesWith(*II, V);
2651
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00002652 unsigned VWidth = II->getType()->getVectorNumElements();
2653 APInt UndefElts(VWidth, 0);
2654 APInt DemandedElts = APInt::getAllOnesValue(VWidth);
2655 if (Value *V = SimplifyDemandedVectorElts(II, DemandedElts, UndefElts)) {
2656 if (V != II)
2657 return replaceInstUsesWith(*II, V);
2658 return II;
2659 }
2660 break;
2661 }
2662
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002663 case Intrinsic::x86_sse2_packssdw_128:
2664 case Intrinsic::x86_sse2_packsswb_128:
2665 case Intrinsic::x86_avx2_packssdw:
2666 case Intrinsic::x86_avx2_packsswb:
Craig Topper3731f4d2017-02-16 07:35:23 +00002667 case Intrinsic::x86_avx512_packssdw_512:
2668 case Intrinsic::x86_avx512_packsswb_512:
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002669 if (Value *V = simplifyX86pack(*II, *this, *Builder, true))
2670 return replaceInstUsesWith(*II, V);
2671 break;
2672
2673 case Intrinsic::x86_sse2_packuswb_128:
2674 case Intrinsic::x86_sse41_packusdw:
2675 case Intrinsic::x86_avx2_packusdw:
2676 case Intrinsic::x86_avx2_packuswb:
Craig Topper3731f4d2017-02-16 07:35:23 +00002677 case Intrinsic::x86_avx512_packusdw_512:
2678 case Intrinsic::x86_avx512_packuswb_512:
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002679 if (Value *V = simplifyX86pack(*II, *this, *Builder, false))
2680 return replaceInstUsesWith(*II, V);
2681 break;
2682
Craig Topperb6122122017-01-26 05:17:13 +00002683 case Intrinsic::x86_pclmulqdq: {
2684 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2685 unsigned Imm = C->getZExtValue();
2686
2687 bool MadeChange = false;
2688 Value *Arg0 = II->getArgOperand(0);
2689 Value *Arg1 = II->getArgOperand(1);
2690 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2691 APInt DemandedElts(VWidth, 0);
2692
2693 APInt UndefElts1(VWidth, 0);
2694 DemandedElts = (Imm & 0x01) ? 2 : 1;
2695 if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts,
2696 UndefElts1)) {
2697 II->setArgOperand(0, V);
2698 MadeChange = true;
2699 }
2700
2701 APInt UndefElts2(VWidth, 0);
2702 DemandedElts = (Imm & 0x10) ? 2 : 1;
2703 if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts,
2704 UndefElts2)) {
2705 II->setArgOperand(1, V);
2706 MadeChange = true;
2707 }
2708
2709 // If both input elements are undef, the result is undef.
2710 if (UndefElts1[(Imm & 0x01) ? 1 : 0] ||
2711 UndefElts2[(Imm & 0x10) ? 1 : 0])
2712 return replaceInstUsesWith(*II,
2713 ConstantAggregateZero::get(II->getType()));
2714
2715 if (MadeChange)
2716 return II;
2717 }
2718 break;
2719 }
2720
Sanjay Patelc86867c2015-04-16 17:52:13 +00002721 case Intrinsic::x86_sse41_insertps:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002722 if (Value *V = simplifyX86insertps(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002723 return replaceInstUsesWith(*II, V);
Sanjay Patelc86867c2015-04-16 17:52:13 +00002724 break;
Simon Pilgrim54fcd622015-07-25 20:41:00 +00002725
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002726 case Intrinsic::x86_sse4a_extrq: {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002727 Value *Op0 = II->getArgOperand(0);
2728 Value *Op1 = II->getArgOperand(1);
2729 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2730 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002731 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2732 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2733 VWidth1 == 16 && "Unexpected operand sizes");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002734
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002735 // See if we're dealing with constant values.
2736 Constant *C1 = dyn_cast<Constant>(Op1);
2737 ConstantInt *CILength =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +00002738 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002739 : nullptr;
2740 ConstantInt *CIIndex =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +00002741 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002742 : nullptr;
2743
2744 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002745 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002746 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002747
2748 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2749 // operands and the lowest 16-bits of the second.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002750 bool MadeChange = false;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002751 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2752 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002753 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002754 }
2755 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2756 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002757 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002758 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002759 if (MadeChange)
2760 return II;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002761 break;
2762 }
2763
2764 case Intrinsic::x86_sse4a_extrqi: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002765 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2766 // bits of the lower 64-bits. The upper 64-bits are undefined.
2767 Value *Op0 = II->getArgOperand(0);
2768 unsigned VWidth = Op0->getType()->getVectorNumElements();
2769 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2770 "Unexpected operand size");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002771
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002772 // See if we're dealing with constant values.
2773 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
2774 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
2775
2776 // Attempt to simplify to a constant or shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002777 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002778 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002779
2780 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2781 // operand.
2782 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002783 II->setArgOperand(0, V);
2784 return II;
2785 }
2786 break;
2787 }
2788
2789 case Intrinsic::x86_sse4a_insertq: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002790 Value *Op0 = II->getArgOperand(0);
2791 Value *Op1 = II->getArgOperand(1);
2792 unsigned VWidth = Op0->getType()->getVectorNumElements();
2793 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2794 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2795 Op1->getType()->getVectorNumElements() == 2 &&
2796 "Unexpected operand size");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002797
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002798 // See if we're dealing with constant values.
2799 Constant *C1 = dyn_cast<Constant>(Op1);
2800 ConstantInt *CI11 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +00002801 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002802 : nullptr;
2803
2804 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2805 if (CI11) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00002806 const APInt &V11 = CI11->getValue();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002807 APInt Len = V11.zextOrTrunc(6);
2808 APInt Idx = V11.lshr(8).zextOrTrunc(6);
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002809 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002810 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002811 }
2812
2813 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2814 // operand.
2815 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002816 II->setArgOperand(0, V);
2817 return II;
2818 }
2819 break;
2820 }
2821
Filipe Cabecinhas1a805952014-04-24 00:38:14 +00002822 case Intrinsic::x86_sse4a_insertqi: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002823 // INSERTQI: Extract lowest Length bits from lower half of second source and
2824 // insert over first source starting at Index bit. The upper 64-bits are
2825 // undefined.
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002826 Value *Op0 = II->getArgOperand(0);
2827 Value *Op1 = II->getArgOperand(1);
2828 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2829 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002830 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2831 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2832 VWidth1 == 2 && "Unexpected operand sizes");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002833
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002834 // See if we're dealing with constant values.
2835 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
2836 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
2837
2838 // Attempt to simplify to a constant or shuffle vector.
2839 if (CILength && CIIndex) {
2840 APInt Len = CILength->getValue().zextOrTrunc(6);
2841 APInt Idx = CIIndex->getValue().zextOrTrunc(6);
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002842 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002843 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002844 }
2845
2846 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
2847 // operands.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002848 bool MadeChange = false;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002849 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2850 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002851 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002852 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002853 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
2854 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002855 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002856 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002857 if (MadeChange)
2858 return II;
Filipe Cabecinhas1a805952014-04-24 00:38:14 +00002859 break;
2860 }
2861
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002862 case Intrinsic::x86_sse41_pblendvb:
2863 case Intrinsic::x86_sse41_blendvps:
2864 case Intrinsic::x86_sse41_blendvpd:
2865 case Intrinsic::x86_avx_blendv_ps_256:
2866 case Intrinsic::x86_avx_blendv_pd_256:
2867 case Intrinsic::x86_avx2_pblendvb: {
2868 // Convert blendv* to vector selects if the mask is constant.
2869 // This optimization is convoluted because the intrinsic is defined as
2870 // getting a vector of floats or doubles for the ps and pd versions.
2871 // FIXME: That should be changed.
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002872
2873 Value *Op0 = II->getArgOperand(0);
2874 Value *Op1 = II->getArgOperand(1);
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002875 Value *Mask = II->getArgOperand(2);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002876
2877 // fold (blend A, A, Mask) -> A
2878 if (Op0 == Op1)
Sanjay Patel4b198802016-02-01 22:23:39 +00002879 return replaceInstUsesWith(CI, Op0);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002880
2881 // Zero Mask - select 1st argument.
Simon Pilgrim93f59f52015-08-12 08:23:36 +00002882 if (isa<ConstantAggregateZero>(Mask))
Sanjay Patel4b198802016-02-01 22:23:39 +00002883 return replaceInstUsesWith(CI, Op0);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002884
2885 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
Sanjay Patel368ac5d2016-02-21 17:29:33 +00002886 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
2887 Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002888 return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002889 }
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002890 break;
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002891 }
2892
Andrea Di Biagio0594e2a2015-09-30 16:44:39 +00002893 case Intrinsic::x86_ssse3_pshuf_b_128:
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00002894 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrima22c3a12017-01-18 13:44:04 +00002895 case Intrinsic::x86_avx512_pshuf_b_512:
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00002896 if (Value *V = simplifyX86pshufb(*II, *Builder))
2897 return replaceInstUsesWith(*II, V);
2898 break;
Andrea Di Biagio0594e2a2015-09-30 16:44:39 +00002899
Rafael Espindolabad3f772014-04-21 22:06:04 +00002900 case Intrinsic::x86_avx_vpermilvar_ps:
2901 case Intrinsic::x86_avx_vpermilvar_ps_256:
Craig Topper58917f32016-12-11 01:59:36 +00002902 case Intrinsic::x86_avx512_vpermilvar_ps_512:
Rafael Espindolabad3f772014-04-21 22:06:04 +00002903 case Intrinsic::x86_avx_vpermilvar_pd:
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00002904 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrima22c3a12017-01-18 13:44:04 +00002905 case Intrinsic::x86_avx512_vpermilvar_pd_512:
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00002906 if (Value *V = simplifyX86vpermilvar(*II, *Builder))
2907 return replaceInstUsesWith(*II, V);
2908 break;
Rafael Espindolabad3f772014-04-21 22:06:04 +00002909
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00002910 case Intrinsic::x86_avx2_permd:
2911 case Intrinsic::x86_avx2_permps:
2912 if (Value *V = simplifyX86vpermv(*II, *Builder))
2913 return replaceInstUsesWith(*II, V);
2914 break;
2915
Craig Toppere3280452016-12-25 23:58:57 +00002916 case Intrinsic::x86_avx512_mask_permvar_df_256:
2917 case Intrinsic::x86_avx512_mask_permvar_df_512:
2918 case Intrinsic::x86_avx512_mask_permvar_di_256:
2919 case Intrinsic::x86_avx512_mask_permvar_di_512:
2920 case Intrinsic::x86_avx512_mask_permvar_hi_128:
2921 case Intrinsic::x86_avx512_mask_permvar_hi_256:
2922 case Intrinsic::x86_avx512_mask_permvar_hi_512:
2923 case Intrinsic::x86_avx512_mask_permvar_qi_128:
2924 case Intrinsic::x86_avx512_mask_permvar_qi_256:
2925 case Intrinsic::x86_avx512_mask_permvar_qi_512:
2926 case Intrinsic::x86_avx512_mask_permvar_sf_256:
2927 case Intrinsic::x86_avx512_mask_permvar_sf_512:
2928 case Intrinsic::x86_avx512_mask_permvar_si_256:
2929 case Intrinsic::x86_avx512_mask_permvar_si_512:
2930 if (Value *V = simplifyX86vpermv(*II, *Builder)) {
2931 // We simplified the permuting, now create a select for the masking.
2932 V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2),
2933 *Builder);
2934 return replaceInstUsesWith(*II, V);
2935 }
2936 break;
2937
Sanjay Patelccf5f242015-03-20 21:47:56 +00002938 case Intrinsic::x86_avx_vperm2f128_pd_256:
2939 case Intrinsic::x86_avx_vperm2f128_ps_256:
2940 case Intrinsic::x86_avx_vperm2f128_si_256:
Sanjay Patele304bea2015-03-24 22:39:29 +00002941 case Intrinsic::x86_avx2_vperm2i128:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002942 if (Value *V = simplifyX86vperm2(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002943 return replaceInstUsesWith(*II, V);
Sanjay Patelccf5f242015-03-20 21:47:56 +00002944 break;
2945
Sanjay Patel98a71502016-02-29 23:16:48 +00002946 case Intrinsic::x86_avx_maskload_ps:
Sanjay Patel6f2c01f2016-02-29 23:59:00 +00002947 case Intrinsic::x86_avx_maskload_pd:
2948 case Intrinsic::x86_avx_maskload_ps_256:
2949 case Intrinsic::x86_avx_maskload_pd_256:
2950 case Intrinsic::x86_avx2_maskload_d:
2951 case Intrinsic::x86_avx2_maskload_q:
2952 case Intrinsic::x86_avx2_maskload_d_256:
2953 case Intrinsic::x86_avx2_maskload_q_256:
Sanjay Patel98a71502016-02-29 23:16:48 +00002954 if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
2955 return I;
2956 break;
2957
Sanjay Patelc4acbae2016-03-12 15:16:59 +00002958 case Intrinsic::x86_sse2_maskmov_dqu:
Sanjay Patel1ace9932016-02-26 21:04:14 +00002959 case Intrinsic::x86_avx_maskstore_ps:
2960 case Intrinsic::x86_avx_maskstore_pd:
2961 case Intrinsic::x86_avx_maskstore_ps_256:
2962 case Intrinsic::x86_avx_maskstore_pd_256:
Sanjay Patelfc7e7eb2016-02-26 21:51:44 +00002963 case Intrinsic::x86_avx2_maskstore_d:
2964 case Intrinsic::x86_avx2_maskstore_q:
2965 case Intrinsic::x86_avx2_maskstore_d_256:
2966 case Intrinsic::x86_avx2_maskstore_q_256:
Sanjay Patel1ace9932016-02-26 21:04:14 +00002967 if (simplifyX86MaskedStore(*II, *this))
2968 return nullptr;
2969 break;
2970
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00002971 case Intrinsic::x86_xop_vpcomb:
2972 case Intrinsic::x86_xop_vpcomd:
2973 case Intrinsic::x86_xop_vpcomq:
2974 case Intrinsic::x86_xop_vpcomw:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002975 if (Value *V = simplifyX86vpcom(*II, *Builder, true))
Sanjay Patel4b198802016-02-01 22:23:39 +00002976 return replaceInstUsesWith(*II, V);
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00002977 break;
2978
2979 case Intrinsic::x86_xop_vpcomub:
2980 case Intrinsic::x86_xop_vpcomud:
2981 case Intrinsic::x86_xop_vpcomuq:
2982 case Intrinsic::x86_xop_vpcomuw:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002983 if (Value *V = simplifyX86vpcom(*II, *Builder, false))
Sanjay Patel4b198802016-02-01 22:23:39 +00002984 return replaceInstUsesWith(*II, V);
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00002985 break;
2986
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002987 case Intrinsic::ppc_altivec_vperm:
2988 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
Bill Schmidta1184632014-06-05 19:46:04 +00002989 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
2990 // a vectorshuffle for little endian, we must undo the transformation
2991 // performed on vec_perm in altivec.h. That is, we must complement
2992 // the permutation mask with respect to 31 and reverse the order of
2993 // V1 and V2.
Chris Lattner0256be92012-01-27 03:08:05 +00002994 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
2995 assert(Mask->getType()->getVectorNumElements() == 16 &&
2996 "Bad type for intrinsic!");
Jim Grosbach7815f562012-02-03 00:07:04 +00002997
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002998 // Check that all of the elements are integer constants or undefs.
2999 bool AllEltsOk = true;
3000 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner0256be92012-01-27 03:08:05 +00003001 Constant *Elt = Mask->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +00003002 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003003 AllEltsOk = false;
3004 break;
3005 }
3006 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003007
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003008 if (AllEltsOk) {
3009 // Cast the input vectors to byte vectors.
Gabor Greif3e44ea12010-07-22 10:37:47 +00003010 Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
3011 Mask->getType());
3012 Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
3013 Mask->getType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003014 Value *Result = UndefValue::get(Op0->getType());
Jim Grosbach7815f562012-02-03 00:07:04 +00003015
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003016 // Only extract each element once.
3017 Value *ExtractedElts[32];
3018 memset(ExtractedElts, 0, sizeof(ExtractedElts));
Jim Grosbach7815f562012-02-03 00:07:04 +00003019
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003020 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner0256be92012-01-27 03:08:05 +00003021 if (isa<UndefValue>(Mask->getAggregateElement(i)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003022 continue;
Jim Grosbach7815f562012-02-03 00:07:04 +00003023 unsigned Idx =
Chris Lattner0256be92012-01-27 03:08:05 +00003024 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003025 Idx &= 31; // Match the hardware behavior.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003026 if (DL.isLittleEndian())
Bill Schmidta1184632014-06-05 19:46:04 +00003027 Idx = 31 - Idx;
Jim Grosbach7815f562012-02-03 00:07:04 +00003028
Craig Topperf40110f2014-04-25 05:29:35 +00003029 if (!ExtractedElts[Idx]) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003030 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3031 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
Jim Grosbach7815f562012-02-03 00:07:04 +00003032 ExtractedElts[Idx] =
Bill Schmidta1184632014-06-05 19:46:04 +00003033 Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
Benjamin Kramer547b6c52011-09-27 20:39:19 +00003034 Builder->getInt32(Idx&15));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003035 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003036
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003037 // Insert this value into the result vector.
3038 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
Benjamin Kramer547b6c52011-09-27 20:39:19 +00003039 Builder->getInt32(i));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003040 }
3041 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3042 }
3043 }
3044 break;
3045
Bob Wilsona4e231c2010-10-22 21:41:48 +00003046 case Intrinsic::arm_neon_vld1:
3047 case Intrinsic::arm_neon_vld2:
3048 case Intrinsic::arm_neon_vld3:
3049 case Intrinsic::arm_neon_vld4:
3050 case Intrinsic::arm_neon_vld2lane:
3051 case Intrinsic::arm_neon_vld3lane:
3052 case Intrinsic::arm_neon_vld4lane:
3053 case Intrinsic::arm_neon_vst1:
3054 case Intrinsic::arm_neon_vst2:
3055 case Intrinsic::arm_neon_vst3:
3056 case Intrinsic::arm_neon_vst4:
3057 case Intrinsic::arm_neon_vst2lane:
3058 case Intrinsic::arm_neon_vst3lane:
3059 case Intrinsic::arm_neon_vst4lane: {
Justin Bogner99798402016-08-05 01:06:44 +00003060 unsigned MemAlign =
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003061 getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
Bob Wilsona4e231c2010-10-22 21:41:48 +00003062 unsigned AlignArg = II->getNumArgOperands() - 1;
3063 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
3064 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
3065 II->setArgOperand(AlignArg,
3066 ConstantInt::get(Type::getInt32Ty(II->getContext()),
3067 MemAlign, false));
3068 return II;
3069 }
3070 break;
3071 }
3072
Lang Hames3a90fab2012-05-01 00:20:38 +00003073 case Intrinsic::arm_neon_vmulls:
Tim Northover00ed9962014-03-29 10:18:08 +00003074 case Intrinsic::arm_neon_vmullu:
Tim Northover3b0846e2014-05-24 12:50:23 +00003075 case Intrinsic::aarch64_neon_smull:
3076 case Intrinsic::aarch64_neon_umull: {
Lang Hames3a90fab2012-05-01 00:20:38 +00003077 Value *Arg0 = II->getArgOperand(0);
3078 Value *Arg1 = II->getArgOperand(1);
3079
3080 // Handle mul by zero first:
3081 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
Sanjay Patel4b198802016-02-01 22:23:39 +00003082 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
Lang Hames3a90fab2012-05-01 00:20:38 +00003083 }
3084
3085 // Check for constant LHS & RHS - in this case we just simplify.
Tim Northover00ed9962014-03-29 10:18:08 +00003086 bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
Tim Northover3b0846e2014-05-24 12:50:23 +00003087 II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
Lang Hames3a90fab2012-05-01 00:20:38 +00003088 VectorType *NewVT = cast<VectorType>(II->getType());
Benjamin Kramer92040952014-02-13 18:23:24 +00003089 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3090 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3091 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3092 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3093
Sanjay Patel4b198802016-02-01 22:23:39 +00003094 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
Lang Hames3a90fab2012-05-01 00:20:38 +00003095 }
3096
Alp Tokercb402912014-01-24 17:20:08 +00003097 // Couldn't simplify - canonicalize constant to the RHS.
Lang Hames3a90fab2012-05-01 00:20:38 +00003098 std::swap(Arg0, Arg1);
3099 }
3100
3101 // Handle mul by one:
Benjamin Kramer92040952014-02-13 18:23:24 +00003102 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
Lang Hames3a90fab2012-05-01 00:20:38 +00003103 if (ConstantInt *Splat =
Benjamin Kramer92040952014-02-13 18:23:24 +00003104 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3105 if (Splat->isOne())
3106 return CastInst::CreateIntegerCast(Arg0, II->getType(),
3107 /*isSigned=*/!Zext);
Lang Hames3a90fab2012-05-01 00:20:38 +00003108
3109 break;
3110 }
3111
Matt Arsenaultbef34e22016-01-22 21:30:34 +00003112 case Intrinsic::amdgcn_rcp: {
Matt Arsenaulta0050b02014-06-19 01:19:19 +00003113 if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
3114 const APFloat &ArgVal = C->getValueAPF();
3115 APFloat Val(ArgVal.getSemantics(), 1.0);
3116 APFloat::opStatus Status = Val.divide(ArgVal,
3117 APFloat::rmNearestTiesToEven);
3118 // Only do this if it was exact and therefore not dependent on the
3119 // rounding mode.
3120 if (Status == APFloat::opOK)
Sanjay Patel4b198802016-02-01 22:23:39 +00003121 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
Matt Arsenaulta0050b02014-06-19 01:19:19 +00003122 }
3123
3124 break;
3125 }
Matt Arsenault2fe4fbc2016-03-30 22:28:52 +00003126 case Intrinsic::amdgcn_frexp_mant:
3127 case Intrinsic::amdgcn_frexp_exp: {
Matt Arsenault5cd4f8f2016-03-30 22:28:26 +00003128 Value *Src = II->getArgOperand(0);
3129 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3130 int Exp;
3131 APFloat Significand = frexp(C->getValueAPF(), Exp,
3132 APFloat::rmNearestTiesToEven);
3133
Matt Arsenault2fe4fbc2016-03-30 22:28:52 +00003134 if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
3135 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3136 Significand));
3137 }
3138
3139 // Match instruction special case behavior.
3140 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3141 Exp = 0;
3142
3143 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3144 }
3145
3146 if (isa<UndefValue>(Src))
3147 return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
Matt Arsenault5cd4f8f2016-03-30 22:28:26 +00003148
3149 break;
3150 }
Matt Arsenault46a03822016-09-03 07:06:58 +00003151 case Intrinsic::amdgcn_class: {
3152 enum {
3153 S_NAN = 1 << 0, // Signaling NaN
3154 Q_NAN = 1 << 1, // Quiet NaN
3155 N_INFINITY = 1 << 2, // Negative infinity
3156 N_NORMAL = 1 << 3, // Negative normal
3157 N_SUBNORMAL = 1 << 4, // Negative subnormal
3158 N_ZERO = 1 << 5, // Negative zero
3159 P_ZERO = 1 << 6, // Positive zero
3160 P_SUBNORMAL = 1 << 7, // Positive subnormal
3161 P_NORMAL = 1 << 8, // Positive normal
3162 P_INFINITY = 1 << 9 // Positive infinity
3163 };
3164
3165 const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3166 N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3167
3168 Value *Src0 = II->getArgOperand(0);
3169 Value *Src1 = II->getArgOperand(1);
3170 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3171 if (!CMask) {
3172 if (isa<UndefValue>(Src0))
3173 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3174
3175 if (isa<UndefValue>(Src1))
3176 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3177 break;
3178 }
3179
3180 uint32_t Mask = CMask->getZExtValue();
3181
3182 // If all tests are made, it doesn't matter what the value is.
3183 if ((Mask & FullMask) == FullMask)
3184 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3185
3186 if ((Mask & FullMask) == 0)
3187 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3188
3189 if (Mask == (S_NAN | Q_NAN)) {
3190 // Equivalent of isnan. Replace with standard fcmp.
3191 Value *FCmp = Builder->CreateFCmpUNO(Src0, Src0);
3192 FCmp->takeName(II);
3193 return replaceInstUsesWith(*II, FCmp);
3194 }
3195
3196 const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3197 if (!CVal) {
3198 if (isa<UndefValue>(Src0))
3199 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3200
3201 // Clamp mask to used bits
3202 if ((Mask & FullMask) != Mask) {
3203 CallInst *NewCall = Builder->CreateCall(II->getCalledFunction(),
3204 { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3205 );
3206
3207 NewCall->takeName(II);
3208 return replaceInstUsesWith(*II, NewCall);
3209 }
3210
3211 break;
3212 }
3213
3214 const APFloat &Val = CVal->getValueAPF();
3215
3216 bool Result =
3217 ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3218 ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3219 ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3220 ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3221 ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3222 ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3223 ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3224 ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3225 ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3226 ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3227
3228 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3229 }
Matt Arsenault1f17c662017-02-22 00:27:34 +00003230 case Intrinsic::amdgcn_cvt_pkrtz: {
3231 Value *Src0 = II->getArgOperand(0);
3232 Value *Src1 = II->getArgOperand(1);
3233 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3234 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3235 const fltSemantics &HalfSem
3236 = II->getType()->getScalarType()->getFltSemantics();
3237 bool LosesInfo;
3238 APFloat Val0 = C0->getValueAPF();
3239 APFloat Val1 = C1->getValueAPF();
3240 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3241 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3242
3243 Constant *Folded = ConstantVector::get({
3244 ConstantFP::get(II->getContext(), Val0),
3245 ConstantFP::get(II->getContext(), Val1) });
3246 return replaceInstUsesWith(*II, Folded);
3247 }
3248 }
3249
3250 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3251 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3252
3253 break;
3254 }
Matt Arsenaultf5262252017-02-22 23:04:58 +00003255 case Intrinsic::amdgcn_ubfe:
3256 case Intrinsic::amdgcn_sbfe: {
3257 // Decompose simple cases into standard shifts.
3258 Value *Src = II->getArgOperand(0);
3259 if (isa<UndefValue>(Src))
3260 return replaceInstUsesWith(*II, Src);
3261
3262 unsigned Width;
3263 Type *Ty = II->getType();
3264 unsigned IntSize = Ty->getIntegerBitWidth();
3265
3266 ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3267 if (CWidth) {
3268 Width = CWidth->getZExtValue();
3269 if ((Width & (IntSize - 1)) == 0)
3270 return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3271
3272 if (Width >= IntSize) {
3273 // Hardware ignores high bits, so remove those.
3274 II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
3275 Width & (IntSize - 1)));
3276 return II;
3277 }
3278 }
3279
3280 unsigned Offset;
3281 ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3282 if (COffset) {
3283 Offset = COffset->getZExtValue();
3284 if (Offset >= IntSize) {
3285 II->setArgOperand(1, ConstantInt::get(COffset->getType(),
3286 Offset & (IntSize - 1)));
3287 return II;
3288 }
3289 }
3290
3291 bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe;
3292
3293 // TODO: Also emit sub if only width is constant.
3294 if (!CWidth && COffset && Offset == 0) {
3295 Constant *KSize = ConstantInt::get(COffset->getType(), IntSize);
3296 Value *ShiftVal = Builder->CreateSub(KSize, II->getArgOperand(2));
3297 ShiftVal = Builder->CreateZExt(ShiftVal, II->getType());
3298
3299 Value *Shl = Builder->CreateShl(Src, ShiftVal);
3300 Value *RightShift = Signed ?
3301 Builder->CreateAShr(Shl, ShiftVal) :
3302 Builder->CreateLShr(Shl, ShiftVal);
3303 RightShift->takeName(II);
3304 return replaceInstUsesWith(*II, RightShift);
3305 }
3306
3307 if (!CWidth || !COffset)
3308 break;
3309
3310 // TODO: This allows folding to undef when the hardware has specific
3311 // behavior?
3312 if (Offset + Width < IntSize) {
3313 Value *Shl = Builder->CreateShl(Src, IntSize - Offset - Width);
3314 Value *RightShift = Signed ?
3315 Builder->CreateAShr(Shl, IntSize - Width) :
3316 Builder->CreateLShr(Shl, IntSize - Width);
3317 RightShift->takeName(II);
3318 return replaceInstUsesWith(*II, RightShift);
3319 }
3320
3321 Value *RightShift = Signed ?
3322 Builder->CreateAShr(Src, Offset) :
3323 Builder->CreateLShr(Src, Offset);
3324
3325 RightShift->takeName(II);
3326 return replaceInstUsesWith(*II, RightShift);
3327 }
Matt Arsenaultd4bca1e2017-02-23 00:44:03 +00003328 case Intrinsic::amdgcn_exp:
3329 case Intrinsic::amdgcn_exp_compr: {
3330 ConstantInt *En = dyn_cast<ConstantInt>(II->getArgOperand(1));
3331 if (!En) // Illegal.
3332 break;
3333
3334 unsigned EnBits = En->getZExtValue();
3335 if (EnBits == 0xf)
3336 break; // All inputs enabled.
3337
3338 bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr;
3339 bool Changed = false;
3340 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3341 if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3342 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3343 Value *Src = II->getArgOperand(I + 2);
3344 if (!isa<UndefValue>(Src)) {
3345 II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
3346 Changed = true;
3347 }
3348 }
3349 }
3350
3351 if (Changed)
3352 return II;
3353
3354 break;
Matt Arsenaultcdb468c2017-02-27 23:08:49 +00003355
3356 }
3357 case Intrinsic::amdgcn_fmed3: {
3358 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3359 // for the shader.
3360
3361 Value *Src0 = II->getArgOperand(0);
3362 Value *Src1 = II->getArgOperand(1);
3363 Value *Src2 = II->getArgOperand(2);
3364
3365 bool Swap = false;
3366 // Canonicalize constants to RHS operands.
3367 //
3368 // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3369 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3370 std::swap(Src0, Src1);
3371 Swap = true;
3372 }
3373
3374 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3375 std::swap(Src1, Src2);
3376 Swap = true;
3377 }
3378
3379 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3380 std::swap(Src0, Src1);
3381 Swap = true;
3382 }
3383
3384 if (Swap) {
3385 II->setArgOperand(0, Src0);
3386 II->setArgOperand(1, Src1);
3387 II->setArgOperand(2, Src2);
3388 return II;
3389 }
3390
3391 if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3392 CallInst *NewCall = Builder->CreateMinNum(Src0, Src1);
3393 NewCall->copyFastMathFlags(II);
3394 NewCall->takeName(II);
3395 return replaceInstUsesWith(*II, NewCall);
3396 }
3397
3398 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3399 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3400 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3401 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3402 C2->getValueAPF());
3403 return replaceInstUsesWith(*II,
3404 ConstantFP::get(Builder->getContext(), Result));
3405 }
3406 }
3407 }
3408
3409 break;
Matt Arsenaultd4bca1e2017-02-23 00:44:03 +00003410 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003411 case Intrinsic::stackrestore: {
3412 // If the save is right next to the restore, remove the restore. This can
3413 // happen when variable allocas are DCE'd.
Gabor Greif589a0b92010-06-24 12:58:35 +00003414 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003415 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003416 if (&*++SS->getIterator() == II)
Sanjay Patel4b198802016-02-01 22:23:39 +00003417 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003418 }
3419 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003420
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003421 // Scan down this block to see if there is another stack restore in the
3422 // same block without an intervening call/alloca.
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003423 BasicBlock::iterator BI(II);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003424 TerminatorInst *TI = II->getParent()->getTerminator();
3425 bool CannotRemove = false;
3426 for (++BI; &*BI != TI; ++BI) {
Nuno Lopes55fff832012-06-21 15:45:28 +00003427 if (isa<AllocaInst>(BI)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003428 CannotRemove = true;
3429 break;
3430 }
3431 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
3432 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
3433 // If there is a stackrestore below this one, remove this one.
3434 if (II->getIntrinsicID() == Intrinsic::stackrestore)
Sanjay Patel4b198802016-02-01 22:23:39 +00003435 return eraseInstFromFunction(CI);
Reid Kleckner892ae2e2016-02-27 00:53:54 +00003436
3437 // Bail if we cross over an intrinsic with side effects, such as
3438 // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3439 if (II->mayHaveSideEffects()) {
3440 CannotRemove = true;
3441 break;
3442 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003443 } else {
3444 // If we found a non-intrinsic call, we can't remove the stack
3445 // restore.
3446 CannotRemove = true;
3447 break;
3448 }
3449 }
3450 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003451
Bill Wendlingf891bf82011-07-31 06:30:59 +00003452 // If the stack restore is in a return, resume, or unwind block and if there
3453 // are no allocas or calls between the restore and the return, nuke the
3454 // restore.
Bill Wendlingd5d95b02012-02-06 21:16:41 +00003455 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
Sanjay Patel4b198802016-02-01 22:23:39 +00003456 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003457 break;
3458 }
Vitaly Bukaf0500b62016-07-28 22:50:48 +00003459 case Intrinsic::lifetime_start:
Vitaly Buka0ab23cf2016-07-28 22:59:03 +00003460 // Asan needs to poison memory to detect invalid access which is possible
3461 // even for empty lifetime range.
3462 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3463 break;
3464
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00003465 if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
3466 Intrinsic::lifetime_end, *this))
3467 return nullptr;
Arnaud A. de Grandmaison849f3bf2015-10-01 14:54:31 +00003468 break;
Hal Finkelf5867a72014-07-25 21:45:17 +00003469 case Intrinsic::assume: {
David Majnemerfcc58112016-04-08 16:37:12 +00003470 Value *IIOperand = II->getArgOperand(0);
3471 // Remove an assume if it is immediately followed by an identical assume.
3472 if (match(II->getNextNode(),
3473 m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3474 return eraseInstFromFunction(CI);
3475
Hal Finkelf5867a72014-07-25 21:45:17 +00003476 // Canonicalize assume(a && b) -> assume(a); assume(b);
Hal Finkel74c2f352014-09-07 12:44:26 +00003477 // Note: New assumption intrinsics created here are registered by
3478 // the InstCombineIRInserter object.
David Majnemerfcc58112016-04-08 16:37:12 +00003479 Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
Hal Finkelf5867a72014-07-25 21:45:17 +00003480 if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
3481 Builder->CreateCall(AssumeIntrinsic, A, II->getName());
3482 Builder->CreateCall(AssumeIntrinsic, B, II->getName());
Sanjay Patel4b198802016-02-01 22:23:39 +00003483 return eraseInstFromFunction(*II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003484 }
3485 // assume(!(a || b)) -> assume(!a); assume(!b);
3486 if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
Hal Finkel74c2f352014-09-07 12:44:26 +00003487 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
3488 II->getName());
3489 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
3490 II->getName());
Sanjay Patel4b198802016-02-01 22:23:39 +00003491 return eraseInstFromFunction(*II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003492 }
Hal Finkel04a15612014-10-04 21:27:06 +00003493
Philip Reames66c6de62014-11-11 23:33:19 +00003494 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3495 // (if assume is valid at the load)
Sanjay Patelf0d1e7732017-01-03 22:25:31 +00003496 CmpInst::Predicate Pred;
3497 Instruction *LHS;
3498 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3499 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3500 LHS->getType()->isPointerTy() &&
3501 isValidAssumeForContext(II, LHS, &DT)) {
3502 MDNode *MD = MDNode::get(II->getContext(), None);
3503 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3504 return eraseInstFromFunction(*II);
3505
Chandler Carruth24969102015-02-10 08:07:32 +00003506 // TODO: apply nonnull return attributes to calls and invokes
Philip Reames66c6de62014-11-11 23:33:19 +00003507 // TODO: apply range metadata for range check patterns?
3508 }
Sanjay Patelf0d1e7732017-01-03 22:25:31 +00003509
Hal Finkel04a15612014-10-04 21:27:06 +00003510 // If there is a dominating assume with the same condition as this one,
3511 // then this one is redundant, and should be removed.
Hal Finkel45646882014-10-05 00:53:02 +00003512 APInt KnownZero(1, 0), KnownOne(1, 0);
3513 computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
3514 if (KnownOne.isAllOnesValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00003515 return eraseInstFromFunction(*II);
Hal Finkel04a15612014-10-04 21:27:06 +00003516
Hal Finkel8a9a7832017-01-11 13:24:24 +00003517 // Update the cache of affected values for this assumption (we might be
3518 // here because we just simplified the condition).
3519 AC.updateAffectedValues(II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003520 break;
3521 }
Philip Reames9db26ff2014-12-29 23:27:30 +00003522 case Intrinsic::experimental_gc_relocate: {
3523 // Translate facts known about a pointer before relocating into
3524 // facts about the relocate value, while being careful to
3525 // preserve relocation semantics.
Manuel Jacob83eefa62016-01-05 04:03:00 +00003526 Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
Philip Reames9db26ff2014-12-29 23:27:30 +00003527
3528 // Remove the relocation if unused, note that this check is required
3529 // to prevent the cases below from looping forever.
3530 if (II->use_empty())
Sanjay Patel4b198802016-02-01 22:23:39 +00003531 return eraseInstFromFunction(*II);
Philip Reames9db26ff2014-12-29 23:27:30 +00003532
3533 // Undef is undef, even after relocation.
3534 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
3535 // most practical collectors, but there was discussion in the review thread
3536 // about whether it was legal for all possible collectors.
Philip Reamesea4d8e82016-02-09 21:09:22 +00003537 if (isa<UndefValue>(DerivedPtr))
3538 // Use undef of gc_relocate's type to replace it.
3539 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
Philip Reames9db26ff2014-12-29 23:27:30 +00003540
Philip Reamesea4d8e82016-02-09 21:09:22 +00003541 if (auto *PT = dyn_cast<PointerType>(II->getType())) {
3542 // The relocation of null will be null for most any collector.
3543 // TODO: provide a hook for this in GCStrategy. There might be some
3544 // weird collector this property does not hold for.
3545 if (isa<ConstantPointerNull>(DerivedPtr))
3546 // Use null-pointer of gc_relocate's type to replace it.
3547 return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00003548
Philip Reamesea4d8e82016-02-09 21:09:22 +00003549 // isKnownNonNull -> nonnull attribute
Justin Bogner99798402016-08-05 01:06:44 +00003550 if (isKnownNonNullAt(DerivedPtr, II, &DT))
Philip Reamesea4d8e82016-02-09 21:09:22 +00003551 II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
Ramkumar Ramachandra8fcb4982015-02-14 19:37:54 +00003552 }
Philip Reames9db26ff2014-12-29 23:27:30 +00003553
3554 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3555 // Canonicalize on the type from the uses to the defs
Ramkumar Ramachandra8fcb4982015-02-14 19:37:54 +00003556
Philip Reames9db26ff2014-12-29 23:27:30 +00003557 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
Philip Reamesea4d8e82016-02-09 21:09:22 +00003558 break;
Philip Reames9db26ff2014-12-29 23:27:30 +00003559 }
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003560
3561 case Intrinsic::experimental_guard: {
Sanjoy Dase0e57952017-02-01 16:34:55 +00003562 // Is this guard followed by another guard?
3563 Instruction *NextInst = II->getNextNode();
3564 Value *NextCond = nullptr;
3565 if (match(NextInst,
3566 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3567 Value *CurrCond = II->getArgOperand(0);
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003568
Sanjoy Dase0e57952017-02-01 16:34:55 +00003569 // Remove a guard that it is immediately preceeded by an identical guard.
3570 if (CurrCond == NextCond)
3571 return eraseInstFromFunction(*NextInst);
3572
3573 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3574 II->setArgOperand(0, Builder->CreateAnd(CurrCond, NextCond));
3575 return eraseInstFromFunction(*NextInst);
3576 }
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003577 break;
3578 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003579 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003580 return visitCallSite(II);
3581}
3582
Davide Italianoaec46172017-01-31 18:09:05 +00003583// Fence instruction simplification
3584Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
3585 // Remove identical consecutive fences.
3586 if (auto *NFI = dyn_cast<FenceInst>(FI.getNextNode()))
3587 if (FI.isIdenticalTo(NFI))
3588 return eraseInstFromFunction(FI);
3589 return nullptr;
3590}
3591
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003592// InvokeInst simplification
3593//
3594Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
3595 return visitCallSite(&II);
3596}
3597
Sanjay Patelcd4377c2016-01-20 22:24:38 +00003598/// If this cast does not affect the value passed through the varargs area, we
3599/// can eliminate the use of the cast.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003600static bool isSafeToEliminateVarargsCast(const CallSite CS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003601 const DataLayout &DL,
3602 const CastInst *const CI,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003603 const int ix) {
3604 if (!CI->isLosslessCast())
3605 return false;
3606
Philip Reames1a1bdb22014-12-02 18:50:36 +00003607 // If this is a GC intrinsic, avoid munging types. We need types for
3608 // statepoint reconstruction in SelectionDAG.
3609 // TODO: This is probably something which should be expanded to all
3610 // intrinsics since the entire point of intrinsics is that
3611 // they are understandable by the optimizer.
3612 if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
3613 return false;
3614
Reid Kleckner26af2ca2014-01-28 02:38:36 +00003615 // The size of ByVal or InAlloca arguments is derived from the type, so we
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003616 // can't change to a type with a different size. If the size were
3617 // passed explicitly we could avoid this check.
Reid Kleckner26af2ca2014-01-28 02:38:36 +00003618 if (!CS.isByValOrInAllocaArgument(ix))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003619 return true;
3620
Jim Grosbach7815f562012-02-03 00:07:04 +00003621 Type* SrcTy =
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003622 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +00003623 Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003624 if (!SrcTy->isSized() || !DstTy->isSized())
3625 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003626 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003627 return false;
3628 return true;
3629}
3630
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003631Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
Craig Topperf40110f2014-04-25 05:29:35 +00003632 if (!CI->getCalledFunction()) return nullptr;
Eric Christophera7fb58f2010-03-06 10:50:38 +00003633
Chandler Carruthba4c5172015-01-21 11:23:40 +00003634 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
Sanjay Patel4b198802016-02-01 22:23:39 +00003635 replaceInstUsesWith(*From, With);
Chandler Carruthba4c5172015-01-21 11:23:40 +00003636 };
Justin Bogner99798402016-08-05 01:06:44 +00003637 LibCallSimplifier Simplifier(DL, &TLI, InstCombineRAUW);
Chandler Carruthba4c5172015-01-21 11:23:40 +00003638 if (Value *With = Simplifier.optimizeCall(CI)) {
Meador Ingee3f2b262012-11-30 04:05:06 +00003639 ++NumSimplified;
Sanjay Patel4b198802016-02-01 22:23:39 +00003640 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
Meador Ingee3f2b262012-11-30 04:05:06 +00003641 }
Meador Ingedf796f82012-10-13 16:45:24 +00003642
Craig Topperf40110f2014-04-25 05:29:35 +00003643 return nullptr;
Eric Christophera7fb58f2010-03-06 10:50:38 +00003644}
3645
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003646static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
Duncan Sandsa0984362011-09-06 13:37:06 +00003647 // Strip off at most one level of pointer casts, looking for an alloca. This
3648 // is good enough in practice and simpler than handling any number of casts.
3649 Value *Underlying = TrampMem->stripPointerCasts();
3650 if (Underlying != TrampMem &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00003651 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
Craig Topperf40110f2014-04-25 05:29:35 +00003652 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003653 if (!isa<AllocaInst>(Underlying))
Craig Topperf40110f2014-04-25 05:29:35 +00003654 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003655
Craig Topperf40110f2014-04-25 05:29:35 +00003656 IntrinsicInst *InitTrampoline = nullptr;
Chandler Carruthcdf47882014-03-09 03:16:01 +00003657 for (User *U : TrampMem->users()) {
3658 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Duncan Sandsa0984362011-09-06 13:37:06 +00003659 if (!II)
Craig Topperf40110f2014-04-25 05:29:35 +00003660 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003661 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3662 if (InitTrampoline)
3663 // More than one init_trampoline writes to this value. Give up.
Craig Topperf40110f2014-04-25 05:29:35 +00003664 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003665 InitTrampoline = II;
3666 continue;
3667 }
3668 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3669 // Allow any number of calls to adjust.trampoline.
3670 continue;
Craig Topperf40110f2014-04-25 05:29:35 +00003671 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003672 }
3673
3674 // No call to init.trampoline found.
3675 if (!InitTrampoline)
Craig Topperf40110f2014-04-25 05:29:35 +00003676 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003677
3678 // Check that the alloca is being used in the expected way.
3679 if (InitTrampoline->getOperand(0) != TrampMem)
Craig Topperf40110f2014-04-25 05:29:35 +00003680 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003681
3682 return InitTrampoline;
3683}
3684
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003685static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
Duncan Sandsa0984362011-09-06 13:37:06 +00003686 Value *TrampMem) {
3687 // Visit all the previous instructions in the basic block, and try to find a
3688 // init.trampoline which has a direct path to the adjust.trampoline.
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003689 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3690 E = AdjustTramp->getParent()->begin();
3691 I != E;) {
3692 Instruction *Inst = &*--I;
Duncan Sandsa0984362011-09-06 13:37:06 +00003693 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3694 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3695 II->getOperand(0) == TrampMem)
3696 return II;
3697 if (Inst->mayWriteToMemory())
Craig Topperf40110f2014-04-25 05:29:35 +00003698 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003699 }
Craig Topperf40110f2014-04-25 05:29:35 +00003700 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003701}
3702
3703// Given a call to llvm.adjust.trampoline, find and return the corresponding
3704// call to llvm.init.trampoline if the call to the trampoline can be optimized
3705// to a direct call to a function. Otherwise return NULL.
3706//
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003707static IntrinsicInst *findInitTrampoline(Value *Callee) {
Duncan Sandsa0984362011-09-06 13:37:06 +00003708 Callee = Callee->stripPointerCasts();
3709 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3710 if (!AdjustTramp ||
3711 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
Craig Topperf40110f2014-04-25 05:29:35 +00003712 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003713
3714 Value *TrampMem = AdjustTramp->getOperand(0);
3715
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003716 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
Duncan Sandsa0984362011-09-06 13:37:06 +00003717 return IT;
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003718 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
Duncan Sandsa0984362011-09-06 13:37:06 +00003719 return IT;
Craig Topperf40110f2014-04-25 05:29:35 +00003720 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003721}
3722
Sanjay Patelcd4377c2016-01-20 22:24:38 +00003723/// Improvements for call and invoke instructions.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003724Instruction *InstCombiner::visitCallSite(CallSite CS) {
Justin Bogner99798402016-08-05 01:06:44 +00003725 if (isAllocLikeFn(CS.getInstruction(), &TLI))
Nuno Lopes95cc4f32012-07-09 18:38:20 +00003726 return visitAllocSite(*CS.getInstruction());
Nuno Lopesdc6085e2012-06-21 21:25:05 +00003727
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003728 bool Changed = false;
3729
Philip Reamesc25df112015-06-16 20:24:25 +00003730 // Mark any parameters that are known to be non-null with the nonnull
3731 // attribute. This is helpful for inlining calls to functions with null
3732 // checks on their arguments.
Akira Hatanaka237916b2015-12-02 06:58:49 +00003733 SmallVector<unsigned, 4> Indices;
Philip Reamesc25df112015-06-16 20:24:25 +00003734 unsigned ArgNo = 0;
Akira Hatanaka237916b2015-12-02 06:58:49 +00003735
Philip Reamesc25df112015-06-16 20:24:25 +00003736 for (Value *V : CS.args()) {
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00003737 if (V->getType()->isPointerTy() &&
3738 !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) &&
Justin Bogner99798402016-08-05 01:06:44 +00003739 isKnownNonNullAt(V, CS.getInstruction(), &DT))
Akira Hatanaka237916b2015-12-02 06:58:49 +00003740 Indices.push_back(ArgNo + 1);
Philip Reamesc25df112015-06-16 20:24:25 +00003741 ArgNo++;
3742 }
Akira Hatanaka237916b2015-12-02 06:58:49 +00003743
Philip Reamesc25df112015-06-16 20:24:25 +00003744 assert(ArgNo == CS.arg_size() && "sanity check");
3745
Akira Hatanaka237916b2015-12-02 06:58:49 +00003746 if (!Indices.empty()) {
3747 AttributeSet AS = CS.getAttributes();
3748 LLVMContext &Ctx = CS.getInstruction()->getContext();
3749 AS = AS.addAttribute(Ctx, Indices,
3750 Attribute::get(Ctx, Attribute::NonNull));
3751 CS.setAttributes(AS);
3752 Changed = true;
3753 }
3754
Chris Lattner73989652010-12-20 08:25:06 +00003755 // If the callee is a pointer to a function, attempt to move any casts to the
3756 // arguments of the call/invoke.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003757 Value *Callee = CS.getCalledValue();
Chris Lattner73989652010-12-20 08:25:06 +00003758 if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
Craig Topperf40110f2014-04-25 05:29:35 +00003759 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003760
Justin Lebar9d943972016-03-14 20:18:54 +00003761 if (Function *CalleeF = dyn_cast<Function>(Callee)) {
3762 // Remove the convergent attr on calls when the callee is not convergent.
Matt Arsenault802ebcb2016-06-20 19:04:44 +00003763 if (CS.isConvergent() && !CalleeF->isConvergent() &&
3764 !CalleeF->isIntrinsic()) {
Justin Lebar9d943972016-03-14 20:18:54 +00003765 DEBUG(dbgs() << "Removing convergent attr from instr "
3766 << CS.getInstruction() << "\n");
3767 CS.setNotConvergent();
3768 return CS.getInstruction();
3769 }
3770
Chris Lattner846a52e2010-02-01 18:11:34 +00003771 // If the call and callee calling conventions don't match, this call must
3772 // be unreachable, as the call is undefined.
3773 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
3774 // Only do this for calls to a function with a body. A prototype may
3775 // not actually end up matching the implementation's calling conv for a
3776 // variety of reasons (e.g. it may be written in assembly).
3777 !CalleeF->isDeclaration()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003778 Instruction *OldCall = CS.getInstruction();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003779 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
Jim Grosbach7815f562012-02-03 00:07:04 +00003780 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003781 OldCall);
Chad Rosiere28ae302012-12-13 00:18:46 +00003782 // If OldCall does not return void then replaceAllUsesWith undef.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003783 // This allows ValueHandlers and custom metadata to adjust itself.
3784 if (!OldCall->getType()->isVoidTy())
Sanjay Patel4b198802016-02-01 22:23:39 +00003785 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
Chris Lattner2cecedf2010-02-01 18:04:58 +00003786 if (isa<CallInst>(OldCall))
Sanjay Patel4b198802016-02-01 22:23:39 +00003787 return eraseInstFromFunction(*OldCall);
Jim Grosbach7815f562012-02-03 00:07:04 +00003788
Chris Lattner2cecedf2010-02-01 18:04:58 +00003789 // We cannot remove an invoke, because it would change the CFG, just
3790 // change the callee to a null pointer.
Gabor Greiffebf6ab2010-03-20 21:00:25 +00003791 cast<InvokeInst>(OldCall)->setCalledFunction(
Chris Lattner2cecedf2010-02-01 18:04:58 +00003792 Constant::getNullValue(CalleeF->getType()));
Craig Topperf40110f2014-04-25 05:29:35 +00003793 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003794 }
Justin Lebar9d943972016-03-14 20:18:54 +00003795 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003796
3797 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
Gabor Greif589a0b92010-06-24 12:58:35 +00003798 // If CS does not return void then replaceAllUsesWith undef.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003799 // This allows ValueHandlers and custom metadata to adjust itself.
3800 if (!CS.getInstruction()->getType()->isVoidTy())
Sanjay Patel4b198802016-02-01 22:23:39 +00003801 replaceInstUsesWith(*CS.getInstruction(),
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00003802 UndefValue::get(CS.getInstruction()->getType()));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003803
Nuno Lopes771e7bd2012-06-21 23:52:14 +00003804 if (isa<InvokeInst>(CS.getInstruction())) {
3805 // Can't remove an invoke because we cannot change the CFG.
Craig Topperf40110f2014-04-25 05:29:35 +00003806 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003807 }
Nuno Lopes771e7bd2012-06-21 23:52:14 +00003808
3809 // This instruction is not reachable, just remove it. We insert a store to
3810 // undef so that we know that this code is not reachable, despite the fact
3811 // that we can't modify the CFG here.
3812 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
3813 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
3814 CS.getInstruction());
3815
Sanjay Patel4b198802016-02-01 22:23:39 +00003816 return eraseInstFromFunction(*CS.getInstruction());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003817 }
3818
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003819 if (IntrinsicInst *II = findInitTrampoline(Callee))
Duncan Sandsa0984362011-09-06 13:37:06 +00003820 return transformCallThroughTrampoline(CS, II);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003821
Chris Lattner229907c2011-07-18 04:54:35 +00003822 PointerType *PTy = cast<PointerType>(Callee->getType());
3823 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003824 if (FTy->isVarArg()) {
Eli Friedman7534b4682011-11-29 01:18:23 +00003825 int ix = FTy->getNumParams();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003826 // See if we can optimize any arguments passed through the varargs area of
3827 // the call.
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00003828 for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003829 E = CS.arg_end(); I != E; ++I, ++ix) {
3830 CastInst *CI = dyn_cast<CastInst>(*I);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003831 if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003832 *I = CI->getOperand(0);
3833 Changed = true;
3834 }
3835 }
3836 }
3837
3838 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
3839 // Inline asm calls cannot throw - mark them 'nounwind'.
3840 CS.setDoesNotThrow();
3841 Changed = true;
3842 }
3843
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003844 // Try to optimize the call if possible, we require DataLayout for most of
Eric Christophera7fb58f2010-03-06 10:50:38 +00003845 // this. None of these calls are seen as possibly dead so go ahead and
3846 // delete the instruction now.
3847 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003848 Instruction *I = tryOptimizeCall(CI);
Eric Christopher1810d772010-03-06 10:59:25 +00003849 // If we changed something return the result, etc. Otherwise let
3850 // the fallthrough check.
Sanjay Patel4b198802016-02-01 22:23:39 +00003851 if (I) return eraseInstFromFunction(*I);
Eric Christophera7fb58f2010-03-06 10:50:38 +00003852 }
3853
Craig Topperf40110f2014-04-25 05:29:35 +00003854 return Changed ? CS.getInstruction() : nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003855}
3856
Sanjay Patelcd4377c2016-01-20 22:24:38 +00003857/// If the callee is a constexpr cast of a function, attempt to move the cast to
3858/// the arguments of the call/invoke.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003859bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Sanjay Patele3c335c2016-08-11 15:21:21 +00003860 auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
Craig Topperf40110f2014-04-25 05:29:35 +00003861 if (!Callee)
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003862 return false;
Sanjay Patel38ae83d2016-08-11 15:23:56 +00003863
3864 // The prototype of a thunk is a lie. Don't directly call such a function.
David Majnemer4c0a6e92015-01-21 22:32:04 +00003865 if (Callee->hasFnAttribute("thunk"))
3866 return false;
Sanjay Patel38ae83d2016-08-11 15:23:56 +00003867
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003868 Instruction *Caller = CS.getInstruction();
Bill Wendlinge94d8432012-12-07 23:16:57 +00003869 const AttributeSet &CallerPAL = CS.getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003870
3871 // Okay, this is a cast from a function to a different type. Unless doing so
3872 // would cause a type conversion of one of our arguments, change this call to
3873 // be a direct call with arguments casted to the appropriate types.
3874 //
Chris Lattner229907c2011-07-18 04:54:35 +00003875 FunctionType *FT = Callee->getFunctionType();
3876 Type *OldRetTy = Caller->getType();
3877 Type *NewRetTy = FT->getReturnType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003878
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003879 // Check to see if we are changing the return type...
3880 if (OldRetTy != NewRetTy) {
Nick Lewyckya6a17d72014-01-18 22:47:12 +00003881
3882 if (NewRetTy->isStructTy())
3883 return false; // TODO: Handle multiple return values.
3884
David Majnemer9b6b8222015-01-06 08:41:31 +00003885 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
Matt Arsenaulte6952f22013-09-17 21:10:14 +00003886 if (Callee->isDeclaration())
3887 return false; // Cannot transform this return value.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003888
Matt Arsenaulte6952f22013-09-17 21:10:14 +00003889 if (!Caller->use_empty() &&
3890 // void -> non-void is handled specially
3891 !NewRetTy->isVoidTy())
Frederic Rissc1892e22014-10-23 04:08:42 +00003892 return false; // Cannot transform this return value.
Matt Arsenaulte6952f22013-09-17 21:10:14 +00003893 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003894
3895 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Bill Wendling658d24d2013-01-18 21:53:16 +00003896 AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
Pete Cooper2777d8872015-05-06 23:19:56 +00003897 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003898 return false; // Attribute not compatible with transformed value.
3899 }
3900
3901 // If the callsite is an invoke instruction, and the return value is used by
3902 // a PHI node in a successor, we cannot change the return type of the call
3903 // because there is no place to put the cast instruction (without breaking
3904 // the critical edge). Bail out in this case.
3905 if (!Caller->use_empty())
3906 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
Chandler Carruthcdf47882014-03-09 03:16:01 +00003907 for (User *U : II->users())
3908 if (PHINode *PN = dyn_cast<PHINode>(U))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003909 if (PN->getParent() == II->getNormalDest() ||
3910 PN->getParent() == II->getUnwindDest())
3911 return false;
3912 }
3913
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00003914 unsigned NumActualArgs = CS.arg_size();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003915 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
3916
David Majnemer9b6b8222015-01-06 08:41:31 +00003917 // Prevent us turning:
3918 // declare void @takes_i32_inalloca(i32* inalloca)
3919 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3920 //
3921 // into:
3922 // call void @takes_i32_inalloca(i32* null)
David Majnemerd61a6fd2015-03-11 18:03:05 +00003923 //
3924 // Similarly, avoid folding away bitcasts of byval calls.
3925 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
3926 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
David Majnemer9b6b8222015-01-06 08:41:31 +00003927 return false;
3928
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003929 CallSite::arg_iterator AI = CS.arg_begin();
3930 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00003931 Type *ParamTy = FT->getParamType(i);
3932 Type *ActTy = (*AI)->getType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003933
David Majnemer9b6b8222015-01-06 08:41:31 +00003934 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003935 return false; // Cannot transform this parameter value.
3936
Bill Wendling49bc76c2013-01-23 06:14:59 +00003937 if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
Pete Cooper2777d8872015-05-06 23:19:56 +00003938 overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003939 return false; // Attribute not compatible with transformed value.
Jim Grosbach7815f562012-02-03 00:07:04 +00003940
Reid Kleckner26af2ca2014-01-28 02:38:36 +00003941 if (CS.isInAllocaArgument(i))
3942 return false; // Cannot transform to and from inalloca.
3943
Chris Lattner27ca8eb2010-12-20 08:36:38 +00003944 // If the parameter is passed as a byval argument, then we have to have a
3945 // sized type and the sized type has to have the same size as the old type.
Bill Wendling49bc76c2013-01-23 06:14:59 +00003946 if (ParamTy != ActTy &&
3947 CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
3948 Attribute::ByVal)) {
Chris Lattner229907c2011-07-18 04:54:35 +00003949 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003950 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
Chris Lattner27ca8eb2010-12-20 08:36:38 +00003951 return false;
Jim Grosbach7815f562012-02-03 00:07:04 +00003952
Matt Arsenaultfa252722013-09-27 22:18:51 +00003953 Type *CurElTy = ActTy->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003954 if (DL.getTypeAllocSize(CurElTy) !=
3955 DL.getTypeAllocSize(ParamPTy->getElementType()))
Chris Lattner27ca8eb2010-12-20 08:36:38 +00003956 return false;
3957 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003958 }
3959
Chris Lattneradf38b32011-02-24 05:10:56 +00003960 if (Callee->isDeclaration()) {
3961 // Do not delete arguments unless we have a function body.
3962 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
3963 return false;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003964
Chris Lattneradf38b32011-02-24 05:10:56 +00003965 // If the callee is just a declaration, don't change the varargsness of the
3966 // call. We don't want to introduce a varargs call where one doesn't
3967 // already exist.
Chris Lattner229907c2011-07-18 04:54:35 +00003968 PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
Chris Lattneradf38b32011-02-24 05:10:56 +00003969 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
3970 return false;
Jim Grosbache84ae7b2012-02-03 00:00:55 +00003971
3972 // If both the callee and the cast type are varargs, we still have to make
3973 // sure the number of fixed parameters are the same or we have the same
3974 // ABI issues as if we introduce a varargs call.
Jim Grosbach1df8cdc2012-02-03 00:26:07 +00003975 if (FT->isVarArg() &&
3976 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
3977 FT->getNumParams() !=
Jim Grosbache84ae7b2012-02-03 00:00:55 +00003978 cast<FunctionType>(APTy->getElementType())->getNumParams())
3979 return false;
Chris Lattneradf38b32011-02-24 05:10:56 +00003980 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003981
Jim Grosbach0ab54182012-02-03 00:00:50 +00003982 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
3983 !CallerPAL.isEmpty())
3984 // In this case we have more arguments than the new function type, but we
3985 // won't be dropping them. Check that these extra arguments have attributes
3986 // that are compatible with being a vararg call argument.
3987 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
Bill Wendling57625a42013-01-25 23:09:36 +00003988 unsigned Index = CallerPAL.getSlotIndex(i - 1);
3989 if (Index <= FT->getNumParams())
Jim Grosbach0ab54182012-02-03 00:00:50 +00003990 break;
Bill Wendling57625a42013-01-25 23:09:36 +00003991
Bill Wendlingd97b75d2012-12-19 08:57:40 +00003992 // Check if it has an attribute that's incompatible with varargs.
Bill Wendling57625a42013-01-25 23:09:36 +00003993 AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
3994 if (PAttrs.hasAttribute(Index, Attribute::StructRet))
Jim Grosbach0ab54182012-02-03 00:00:50 +00003995 return false;
3996 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003997
Jim Grosbach7815f562012-02-03 00:07:04 +00003998
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003999 // Okay, we decided that this is a safe thing to do: go ahead and start
Chris Lattneradf38b32011-02-24 05:10:56 +00004000 // inserting cast instructions as necessary.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004001 std::vector<Value*> Args;
4002 Args.reserve(NumActualArgs);
Bill Wendling3575c8c2013-01-27 02:08:22 +00004003 SmallVector<AttributeSet, 8> attrVec;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004004 attrVec.reserve(NumCommonArgs);
4005
4006 // Get any return attributes.
Bill Wendling658d24d2013-01-18 21:53:16 +00004007 AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004008
4009 // If the return value is not being used, the type may not be compatible
4010 // with the existing attributes. Wipe out any problematic attributes.
Pete Cooper2777d8872015-05-06 23:19:56 +00004011 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004012
4013 // Add the new return attributes.
Bill Wendling70f39172012-10-09 00:01:21 +00004014 if (RAttrs.hasAttributes())
Bill Wendling3575c8c2013-01-27 02:08:22 +00004015 attrVec.push_back(AttributeSet::get(Caller->getContext(),
4016 AttributeSet::ReturnIndex, RAttrs));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004017
4018 AI = CS.arg_begin();
4019 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00004020 Type *ParamTy = FT->getParamType(i);
Matt Arsenaultcacbb232013-07-30 20:45:05 +00004021
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004022 if ((*AI)->getType() == ParamTy) {
4023 Args.push_back(*AI);
4024 } else {
David Majnemer9b6b8222015-01-06 08:41:31 +00004025 Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004026 }
4027
4028 // Add any parameter attributes.
Bill Wendling49bc76c2013-01-23 06:14:59 +00004029 AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
Bill Wendling76d2cd22012-10-14 08:54:26 +00004030 if (PAttrs.hasAttributes())
Bill Wendling3575c8c2013-01-27 02:08:22 +00004031 attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
4032 PAttrs));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004033 }
4034
4035 // If the function takes more arguments than the call was taking, add them
4036 // now.
4037 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
4038 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4039
4040 // If we are removing arguments to the function, emit an obnoxious warning.
4041 if (FT->getNumParams() < NumActualArgs) {
Nick Lewycky90053a12012-12-26 22:00:35 +00004042 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4043 if (FT->isVarArg()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004044 // Add all of the arguments in their promoted form to the arg list.
4045 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00004046 Type *PTy = getPromotedType((*AI)->getType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004047 if (PTy != (*AI)->getType()) {
4048 // Must promote to pass through va_arg area!
4049 Instruction::CastOps opcode =
4050 CastInst::getCastOpcode(*AI, false, PTy, false);
Benjamin Kramer547b6c52011-09-27 20:39:19 +00004051 Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004052 } else {
4053 Args.push_back(*AI);
4054 }
4055
4056 // Add any parameter attributes.
Bill Wendling49bc76c2013-01-23 06:14:59 +00004057 AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
Bill Wendling76d2cd22012-10-14 08:54:26 +00004058 if (PAttrs.hasAttributes())
Bill Wendling3575c8c2013-01-27 02:08:22 +00004059 attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
4060 PAttrs));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004061 }
4062 }
4063 }
4064
Bill Wendlingbd4ea162013-01-21 21:57:28 +00004065 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
Bill Wendling77543892013-01-18 21:11:39 +00004066 if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
Bill Wendling3575c8c2013-01-27 02:08:22 +00004067 attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004068
4069 if (NewRetTy->isVoidTy())
4070 Caller->setName(""); // Void type should not have a name.
4071
Bill Wendlinge94d8432012-12-07 23:16:57 +00004072 const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
Bill Wendlingbd4ea162013-01-21 21:57:28 +00004073 attrVec);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004074
Sanjoy Das76293462015-11-25 00:42:19 +00004075 SmallVector<OperandBundleDef, 1> OpBundles;
Sanjoy Dasc521c7b2015-11-25 00:42:24 +00004076 CS.getOperandBundlesAsDefs(OpBundles);
Sanjoy Das76293462015-11-25 00:42:19 +00004077
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004078 Instruction *NC;
4079 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Sanjoy Das76293462015-11-25 00:42:19 +00004080 NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(),
4081 Args, OpBundles);
Eli Friedman96254a02011-05-18 01:28:27 +00004082 NC->takeName(II);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004083 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
4084 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
4085 } else {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004086 CallInst *CI = cast<CallInst>(Caller);
Sanjoy Das76293462015-11-25 00:42:19 +00004087 NC = Builder->CreateCall(Callee, Args, OpBundles);
Eli Friedman96254a02011-05-18 01:28:27 +00004088 NC->takeName(CI);
David Majnemerd5648c72016-11-25 22:35:09 +00004089 cast<CallInst>(NC)->setTailCallKind(CI->getTailCallKind());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004090 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
4091 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
4092 }
4093
4094 // Insert a cast of the return type as necessary.
4095 Value *NV = NC;
4096 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4097 if (!NV->getType()->isVoidTy()) {
David Majnemer9b6b8222015-01-06 08:41:31 +00004098 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
Eli Friedman35211c62011-05-27 00:19:40 +00004099 NC->setDebugLoc(Caller->getDebugLoc());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004100
4101 // If this is an invoke instruction, we should insert it after the first
4102 // non-phi, instruction in the normal successor block.
4103 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Bill Wendling07efd6f2011-08-25 01:08:34 +00004104 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004105 InsertNewInstBefore(NC, *I);
4106 } else {
Chris Lattner73989652010-12-20 08:25:06 +00004107 // Otherwise, it's a call, just insert cast right after the call.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004108 InsertNewInstBefore(NC, *Caller);
4109 }
4110 Worklist.AddUsersToWorkList(*Caller);
4111 } else {
4112 NV = UndefValue::get(Caller->getType());
4113 }
4114 }
4115
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004116 if (!Caller->use_empty())
Sanjay Patel4b198802016-02-01 22:23:39 +00004117 replaceInstUsesWith(*Caller, NV);
Frederic Rissc1892e22014-10-23 04:08:42 +00004118 else if (Caller->hasValueHandle()) {
4119 if (OldRetTy == NV->getType())
4120 ValueHandleBase::ValueIsRAUWd(Caller, NV);
4121 else
4122 // We cannot call ValueIsRAUWd with a different type, and the
4123 // actual tracked value will disappear.
4124 ValueHandleBase::ValueIsDeleted(Caller);
4125 }
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00004126
Sanjay Patel4b198802016-02-01 22:23:39 +00004127 eraseInstFromFunction(*Caller);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004128 return true;
4129}
4130
Sanjay Patelcd4377c2016-01-20 22:24:38 +00004131/// Turn a call to a function created by init_trampoline / adjust_trampoline
4132/// intrinsic pair into a direct call to the underlying function.
Duncan Sandsa0984362011-09-06 13:37:06 +00004133Instruction *
4134InstCombiner::transformCallThroughTrampoline(CallSite CS,
4135 IntrinsicInst *Tramp) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004136 Value *Callee = CS.getCalledValue();
Chris Lattner229907c2011-07-18 04:54:35 +00004137 PointerType *PTy = cast<PointerType>(Callee->getType());
4138 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Bill Wendlinge94d8432012-12-07 23:16:57 +00004139 const AttributeSet &Attrs = CS.getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004140
4141 // If the call already has the 'nest' attribute somewhere then give up -
4142 // otherwise 'nest' would occur twice after splicing in the chain.
Bill Wendling6e95ae82012-12-31 00:49:59 +00004143 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Craig Topperf40110f2014-04-25 05:29:35 +00004144 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004145
Duncan Sandsa0984362011-09-06 13:37:06 +00004146 assert(Tramp &&
4147 "transformCallThroughTrampoline called with incorrect CallSite.");
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004148
Gabor Greif3e44ea12010-07-22 10:37:47 +00004149 Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
Manuel Jacob5f6eaac2016-01-16 20:30:46 +00004150 FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004151
Bill Wendlinge94d8432012-12-07 23:16:57 +00004152 const AttributeSet &NestAttrs = NestF->getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004153 if (!NestAttrs.isEmpty()) {
4154 unsigned NestIdx = 1;
Craig Topperf40110f2014-04-25 05:29:35 +00004155 Type *NestTy = nullptr;
Bill Wendling49bc76c2013-01-23 06:14:59 +00004156 AttributeSet NestAttr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004157
4158 // Look for a parameter marked with the 'nest' attribute.
4159 for (FunctionType::param_iterator I = NestFTy->param_begin(),
4160 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Bill Wendling49bc76c2013-01-23 06:14:59 +00004161 if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004162 // Record the parameter type and any other attributes.
4163 NestTy = *I;
4164 NestAttr = NestAttrs.getParamAttributes(NestIdx);
4165 break;
4166 }
4167
4168 if (NestTy) {
4169 Instruction *Caller = CS.getInstruction();
4170 std::vector<Value*> NewArgs;
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00004171 NewArgs.reserve(CS.arg_size() + 1);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004172
Bill Wendling3575c8c2013-01-27 02:08:22 +00004173 SmallVector<AttributeSet, 8> NewAttrs;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004174 NewAttrs.reserve(Attrs.getNumSlots() + 1);
4175
4176 // Insert the nest argument into the call argument list, which may
4177 // mean appending it. Likewise for attributes.
4178
4179 // Add any result attributes.
Bill Wendling658d24d2013-01-18 21:53:16 +00004180 if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
Bill Wendling3575c8c2013-01-27 02:08:22 +00004181 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
4182 Attrs.getRetAttributes()));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004183
4184 {
4185 unsigned Idx = 1;
4186 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
4187 do {
4188 if (Idx == NestIdx) {
4189 // Add the chain argument and attributes.
Gabor Greif589a0b92010-06-24 12:58:35 +00004190 Value *NestVal = Tramp->getArgOperand(2);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004191 if (NestVal->getType() != NestTy)
Eli Friedman41e509a2011-05-18 23:58:37 +00004192 NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004193 NewArgs.push_back(NestVal);
Bill Wendling3575c8c2013-01-27 02:08:22 +00004194 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
4195 NestAttr));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004196 }
4197
4198 if (I == E)
4199 break;
4200
4201 // Add the original argument and attributes.
4202 NewArgs.push_back(*I);
Bill Wendling49bc76c2013-01-23 06:14:59 +00004203 AttributeSet Attr = Attrs.getParamAttributes(Idx);
4204 if (Attr.hasAttributes(Idx)) {
Bill Wendling3575c8c2013-01-27 02:08:22 +00004205 AttrBuilder B(Attr, Idx);
4206 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
4207 Idx + (Idx >= NestIdx), B));
Bill Wendling49bc76c2013-01-23 06:14:59 +00004208 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004209
Richard Trieu7a083812016-02-18 22:09:30 +00004210 ++Idx;
4211 ++I;
Eugene Zelenkocdc71612016-08-11 17:20:18 +00004212 } while (true);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004213 }
4214
4215 // Add any function attributes.
Bill Wendling77543892013-01-18 21:11:39 +00004216 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
Bill Wendling3575c8c2013-01-27 02:08:22 +00004217 NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
4218 Attrs.getFnAttributes()));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004219
4220 // The trampoline may have been bitcast to a bogus type (FTy).
4221 // Handle this by synthesizing a new function type, equal to FTy
4222 // with the chain parameter inserted.
4223
Jay Foadb804a2b2011-07-12 14:06:48 +00004224 std::vector<Type*> NewTypes;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004225 NewTypes.reserve(FTy->getNumParams()+1);
4226
4227 // Insert the chain's type into the list of parameter types, which may
4228 // mean appending it.
4229 {
4230 unsigned Idx = 1;
4231 FunctionType::param_iterator I = FTy->param_begin(),
4232 E = FTy->param_end();
4233
4234 do {
4235 if (Idx == NestIdx)
4236 // Add the chain's type.
4237 NewTypes.push_back(NestTy);
4238
4239 if (I == E)
4240 break;
4241
4242 // Add the original type.
4243 NewTypes.push_back(*I);
4244
Richard Trieu7a083812016-02-18 22:09:30 +00004245 ++Idx;
4246 ++I;
Eugene Zelenkocdc71612016-08-11 17:20:18 +00004247 } while (true);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004248 }
4249
4250 // Replace the trampoline call with a direct call. Let the generic
4251 // code sort out any function type mismatches.
Jim Grosbach7815f562012-02-03 00:07:04 +00004252 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004253 FTy->isVarArg());
4254 Constant *NewCallee =
4255 NestF->getType() == PointerType::getUnqual(NewFTy) ?
Jim Grosbach7815f562012-02-03 00:07:04 +00004256 NestF : ConstantExpr::getBitCast(NestF,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004257 PointerType::getUnqual(NewFTy));
Jim Grosbachbdbd7342013-04-05 21:20:12 +00004258 const AttributeSet &NewPAL =
4259 AttributeSet::get(FTy->getContext(), NewAttrs);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004260
David Majnemer231a68c2016-04-29 08:07:20 +00004261 SmallVector<OperandBundleDef, 1> OpBundles;
4262 CS.getOperandBundlesAsDefs(OpBundles);
4263
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004264 Instruction *NewCaller;
4265 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4266 NewCaller = InvokeInst::Create(NewCallee,
4267 II->getNormalDest(), II->getUnwindDest(),
David Majnemer231a68c2016-04-29 08:07:20 +00004268 NewArgs, OpBundles);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004269 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4270 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4271 } else {
David Majnemer231a68c2016-04-29 08:07:20 +00004272 NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
David Majnemerd5648c72016-11-25 22:35:09 +00004273 cast<CallInst>(NewCaller)->setTailCallKind(
4274 cast<CallInst>(Caller)->getTailCallKind());
4275 cast<CallInst>(NewCaller)->setCallingConv(
4276 cast<CallInst>(Caller)->getCallingConv());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004277 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4278 }
Eli Friedman49346012011-05-18 19:57:14 +00004279
4280 return NewCaller;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004281 }
4282 }
4283
4284 // Replace the trampoline call with a direct call. Since there is no 'nest'
4285 // parameter, there is no need to adjust the argument list. Let the generic
4286 // code sort out any function type mismatches.
4287 Constant *NewCallee =
Jim Grosbach7815f562012-02-03 00:07:04 +00004288 NestF->getType() == PTy ? NestF :
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004289 ConstantExpr::getBitCast(NestF, PTy);
4290 CS.setCalledFunction(NewCallee);
4291 return CS.getInstruction();
4292}