blob: a8a40bef20572d739cc7bfaa40cce91463a2e273 [file] [log] [blame]
Chris Lattner2da04b32007-08-24 05:35:26 +00001//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner5b12ab82007-12-29 19:59:25 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattner2da04b32007-08-24 05:35:26 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
Daniel Dunbarad319a72008-08-11 05:00:27 +000016#include "clang/AST/ASTContext.h"
Daniel Dunbar6630e102008-08-12 05:08:18 +000017#include "clang/AST/DeclObjC.h"
Daniel Dunbarad319a72008-08-11 05:00:27 +000018#include "clang/AST/StmtVisitor.h"
Chris Lattnerff2367c2008-04-20 00:50:39 +000019#include "clang/Basic/TargetInfo.h"
Chris Lattner2da04b32007-08-24 05:35:26 +000020#include "llvm/Constants.h"
21#include "llvm/Function.h"
Anders Carlssond8499822007-10-29 05:01:08 +000022#include "llvm/GlobalVariable.h"
Anders Carlsson7e13ab82007-10-15 20:28:48 +000023#include "llvm/Intrinsics.h"
Chris Lattner2da04b32007-08-24 05:35:26 +000024#include "llvm/Support/Compiler.h"
Chris Lattner35710d182008-11-12 08:38:24 +000025#include "llvm/Support/CFG.h"
Chris Lattner1800c182008-01-03 07:05:49 +000026#include <cstdarg>
Ted Kremenekf182e812007-12-10 23:44:32 +000027
Chris Lattner2da04b32007-08-24 05:35:26 +000028using namespace clang;
29using namespace CodeGen;
30using llvm::Value;
31
32//===----------------------------------------------------------------------===//
33// Scalar Expression Emitter
34//===----------------------------------------------------------------------===//
35
36struct BinOpInfo {
37 Value *LHS;
38 Value *RHS;
Chris Lattner3d966d62007-08-24 21:00:35 +000039 QualType Ty; // Computation Type.
Chris Lattner2da04b32007-08-24 05:35:26 +000040 const BinaryOperator *E;
41};
42
43namespace {
44class VISIBILITY_HIDDEN ScalarExprEmitter
45 : public StmtVisitor<ScalarExprEmitter, Value*> {
46 CodeGenFunction &CGF;
Daniel Dunbarcb463852008-11-01 01:53:16 +000047 CGBuilderTy &Builder;
Chris Lattnera087ff92008-03-01 08:45:05 +000048
Chris Lattner2da04b32007-08-24 05:35:26 +000049public:
50
Chris Lattnera087ff92008-03-01 08:45:05 +000051 ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
Daniel Dunbar66912a12008-08-20 00:28:19 +000052 Builder(CGF.Builder) {
Chris Lattner2da04b32007-08-24 05:35:26 +000053 }
Chris Lattner2da04b32007-08-24 05:35:26 +000054
55 //===--------------------------------------------------------------------===//
56 // Utilities
57 //===--------------------------------------------------------------------===//
58
59 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
60 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
61
62 Value *EmitLoadOfLValue(LValue LV, QualType T) {
Chris Lattner4647a212007-08-31 22:49:20 +000063 return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
Chris Lattner2da04b32007-08-24 05:35:26 +000064 }
65
66 /// EmitLoadOfLValue - Given an expression with complex type that represents a
67 /// value l-value, this method emits the address of the l-value, then loads
68 /// and returns the result.
69 Value *EmitLoadOfLValue(const Expr *E) {
70 // FIXME: Volatile
71 return EmitLoadOfLValue(EmitLValue(E), E->getType());
72 }
73
Chris Lattnere0044382007-08-26 16:42:57 +000074 /// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner2e928882007-08-26 17:25:57 +000075 /// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattnere0044382007-08-26 16:42:57 +000076 Value *EmitConversionToBool(Value *Src, QualType DstTy);
77
Chris Lattner3474c202007-08-26 06:48:56 +000078 /// EmitScalarConversion - Emit a conversion from the specified type to the
79 /// specified destination type, both of which are LLVM scalar types.
Chris Lattner42e6b812007-08-26 16:34:22 +000080 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
81
82 /// EmitComplexToScalarConversion - Emit a conversion from the specified
83 /// complex type to the specified destination type, where the destination
84 /// type is an LLVM scalar type.
85 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
86 QualType SrcTy, QualType DstTy);
Chris Lattner3474c202007-08-26 06:48:56 +000087
Chris Lattner2da04b32007-08-24 05:35:26 +000088 //===--------------------------------------------------------------------===//
89 // Visitor Methods
90 //===--------------------------------------------------------------------===//
91
92 Value *VisitStmt(Stmt *S) {
Ted Kremenekd4e5fba2007-12-11 21:27:55 +000093 S->dump(CGF.getContext().getSourceManager());
Chris Lattner2da04b32007-08-24 05:35:26 +000094 assert(0 && "Stmt can't have complex result type!");
95 return 0;
96 }
97 Value *VisitExpr(Expr *S);
98 Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
99
100 // Leaves.
101 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
102 return llvm::ConstantInt::get(E->getValue());
103 }
104 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
Chris Lattner1886e712008-04-20 00:45:53 +0000105 return llvm::ConstantFP::get(E->getValue());
Chris Lattner2da04b32007-08-24 05:35:26 +0000106 }
107 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
108 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
109 }
Nate Begeman4c18c232007-11-15 05:40:03 +0000110 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
111 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
112 }
Argyrios Kyrtzidisce4528f2008-08-23 19:35:47 +0000113 Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
114 return llvm::Constant::getNullValue(ConvertType(E->getType()));
115 }
Chris Lattner2da04b32007-08-24 05:35:26 +0000116 Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
117 return llvm::ConstantInt::get(ConvertType(E->getType()),
Steve Naroff32e44c02007-10-15 20:41:53 +0000118 CGF.getContext().typesAreCompatible(
119 E->getArgType1(), E->getArgType2()));
Chris Lattner2da04b32007-08-24 05:35:26 +0000120 }
Sebastian Redl6f282892008-11-11 17:56:53 +0000121 Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
Daniel Dunbar88402ce2008-08-04 16:51:22 +0000122 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
Daniel Dunbar8bc821a2008-08-16 01:41:47 +0000123 llvm::Value *V =
124 llvm::ConstantInt::get(llvm::Type::Int32Ty,
125 CGF.GetIDForAddrOfLabel(E->getLabel()));
126
127 return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
Daniel Dunbar88402ce2008-08-04 16:51:22 +0000128 }
Chris Lattner2da04b32007-08-24 05:35:26 +0000129
130 // l-values.
131 Value *VisitDeclRefExpr(DeclRefExpr *E) {
132 if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
133 return llvm::ConstantInt::get(EC->getInitVal());
134 return EmitLoadOfLValue(E);
135 }
Daniel Dunbar55310df2008-08-27 06:57:25 +0000136 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
137 return CGF.EmitObjCSelectorExpr(E);
138 }
139 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
140 return CGF.EmitObjCProtocolExpr(E);
141 }
142 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
143 return EmitLoadOfLValue(E);
144 }
Daniel Dunbarc8317a42008-08-23 10:51:21 +0000145 Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
Daniel Dunbar9e22c0d2008-08-29 08:11:39 +0000146 return EmitLoadOfLValue(E);
Daniel Dunbar55310df2008-08-27 06:57:25 +0000147 }
148 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
149 return CGF.EmitObjCMessageExpr(E).getScalarVal();
Daniel Dunbarc8317a42008-08-23 10:51:21 +0000150 }
151
Chris Lattner2da04b32007-08-24 05:35:26 +0000152 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
Eli Friedmana1b4ed82008-05-14 19:38:39 +0000153 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
Chris Lattner2da04b32007-08-24 05:35:26 +0000154 Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
Nate Begemance4d7fc2008-04-18 23:10:10 +0000155 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
Chris Lattner084bc322008-10-26 23:53:12 +0000156 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
157 return EmitLoadOfLValue(E);
158 }
Chris Lattner2da04b32007-08-24 05:35:26 +0000159 Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
Chris Lattner6307f192008-08-10 01:53:14 +0000160 Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
Devang Patel43fc86d2007-10-24 17:18:43 +0000161
162 Value *VisitInitListExpr(InitListExpr *E) {
Anders Carlssona297e7a2007-12-05 07:36:10 +0000163 unsigned NumInitElements = E->getNumInits();
164
Anders Carlssona297e7a2007-12-05 07:36:10 +0000165 const llvm::VectorType *VType =
Anders Carlsson6f2a10e2008-01-29 01:15:48 +0000166 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
167
168 // We have a scalar in braces. Just use the first element.
169 if (!VType)
170 return Visit(E->getInit(0));
Anders Carlssona297e7a2007-12-05 07:36:10 +0000171
Chris Lattner084bc322008-10-26 23:53:12 +0000172 if (E->hadDesignators()) {
173 CGF.ErrorUnsupported(E, "initializer list with designators");
174 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
175 }
176
Anders Carlssona297e7a2007-12-05 07:36:10 +0000177 unsigned NumVectorElements = VType->getNumElements();
178 const llvm::Type *ElementType = VType->getElementType();
Anders Carlssona297e7a2007-12-05 07:36:10 +0000179
180 // Emit individual vector element stores.
181 llvm::Value *V = llvm::UndefValue::get(VType);
182
Anders Carlssonaa5c9192007-12-18 02:45:33 +0000183 // Emit initializers
184 unsigned i;
185 for (i = 0; i < NumInitElements; ++i) {
Devang Patelb67e5962007-10-24 18:05:48 +0000186 Value *NewV = Visit(E->getInit(i));
187 Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
188 V = Builder.CreateInsertElement(V, NewV, Idx);
Devang Patel43fc86d2007-10-24 17:18:43 +0000189 }
Anders Carlssona297e7a2007-12-05 07:36:10 +0000190
191 // Emit remaining default initializers
192 for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
193 Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
194 llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
195 V = Builder.CreateInsertElement(V, NewV, Idx);
196 }
197
Devang Patelb67e5962007-10-24 18:05:48 +0000198 return V;
Devang Patel43fc86d2007-10-24 17:18:43 +0000199 }
Chris Lattneraa9c7ae2008-04-08 04:40:51 +0000200
Chris Lattner2da04b32007-08-24 05:35:26 +0000201 Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
202 Value *VisitCastExpr(const CastExpr *E) {
203 return EmitCastExpr(E->getSubExpr(), E->getType());
204 }
205 Value *EmitCastExpr(const Expr *E, QualType T);
206
207 Value *VisitCallExpr(const CallExpr *E) {
Chris Lattner4647a212007-08-31 22:49:20 +0000208 return CGF.EmitCallExpr(E).getScalarVal();
Chris Lattner2da04b32007-08-24 05:35:26 +0000209 }
Daniel Dunbar97db84c2008-08-23 03:46:30 +0000210
Chris Lattner04a913b2007-08-31 22:09:40 +0000211 Value *VisitStmtExpr(const StmtExpr *E);
212
Chris Lattner2da04b32007-08-24 05:35:26 +0000213 // Unary Operators.
214 Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
215 Value *VisitUnaryPostDec(const UnaryOperator *E) {
216 return VisitPrePostIncDec(E, false, false);
217 }
218 Value *VisitUnaryPostInc(const UnaryOperator *E) {
219 return VisitPrePostIncDec(E, true, false);
220 }
221 Value *VisitUnaryPreDec(const UnaryOperator *E) {
222 return VisitPrePostIncDec(E, false, true);
223 }
224 Value *VisitUnaryPreInc(const UnaryOperator *E) {
225 return VisitPrePostIncDec(E, true, true);
226 }
227 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
228 return EmitLValue(E->getSubExpr()).getAddress();
229 }
230 Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
231 Value *VisitUnaryPlus(const UnaryOperator *E) {
232 return Visit(E->getSubExpr());
233 }
234 Value *VisitUnaryMinus (const UnaryOperator *E);
235 Value *VisitUnaryNot (const UnaryOperator *E);
236 Value *VisitUnaryLNot (const UnaryOperator *E);
Chris Lattner9f0ad962007-08-24 21:20:17 +0000237 Value *VisitUnaryReal (const UnaryOperator *E);
238 Value *VisitUnaryImag (const UnaryOperator *E);
Chris Lattner2da04b32007-08-24 05:35:26 +0000239 Value *VisitUnaryExtension(const UnaryOperator *E) {
240 return Visit(E->getSubExpr());
241 }
Anders Carlssona8dc3e62008-01-29 15:56:48 +0000242 Value *VisitUnaryOffsetOf(const UnaryOperator *E);
Chris Lattneraa9c7ae2008-04-08 04:40:51 +0000243 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
244 return Visit(DAE->getExpr());
245 }
Anders Carlssona8dc3e62008-01-29 15:56:48 +0000246
Chris Lattner2da04b32007-08-24 05:35:26 +0000247 // Binary Operators.
Chris Lattner2da04b32007-08-24 05:35:26 +0000248 Value *EmitMul(const BinOpInfo &Ops) {
249 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
250 }
251 Value *EmitDiv(const BinOpInfo &Ops);
252 Value *EmitRem(const BinOpInfo &Ops);
253 Value *EmitAdd(const BinOpInfo &Ops);
254 Value *EmitSub(const BinOpInfo &Ops);
255 Value *EmitShl(const BinOpInfo &Ops);
256 Value *EmitShr(const BinOpInfo &Ops);
257 Value *EmitAnd(const BinOpInfo &Ops) {
258 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
259 }
260 Value *EmitXor(const BinOpInfo &Ops) {
261 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
262 }
263 Value *EmitOr (const BinOpInfo &Ops) {
264 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
265 }
266
Chris Lattner3d966d62007-08-24 21:00:35 +0000267 BinOpInfo EmitBinOps(const BinaryOperator *E);
Chris Lattnerb6334692007-08-26 21:41:21 +0000268 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner3d966d62007-08-24 21:00:35 +0000269 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
270
271 // Binary operators and binary compound assignment operators.
272#define HANDLEBINOP(OP) \
Chris Lattnerb6334692007-08-26 21:41:21 +0000273 Value *VisitBin ## OP(const BinaryOperator *E) { \
274 return Emit ## OP(EmitBinOps(E)); \
275 } \
276 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
277 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
Chris Lattner3d966d62007-08-24 21:00:35 +0000278 }
279 HANDLEBINOP(Mul);
280 HANDLEBINOP(Div);
281 HANDLEBINOP(Rem);
282 HANDLEBINOP(Add);
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000283 HANDLEBINOP(Sub);
Chris Lattner3d966d62007-08-24 21:00:35 +0000284 HANDLEBINOP(Shl);
285 HANDLEBINOP(Shr);
286 HANDLEBINOP(And);
287 HANDLEBINOP(Xor);
288 HANDLEBINOP(Or);
289#undef HANDLEBINOP
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000290
Chris Lattner2da04b32007-08-24 05:35:26 +0000291 // Comparisons.
292 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
293 unsigned SICmpOpc, unsigned FCmpOpc);
294#define VISITCOMP(CODE, UI, SI, FP) \
295 Value *VisitBin##CODE(const BinaryOperator *E) { \
296 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
297 llvm::FCmpInst::FP); }
298 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
299 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
300 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
301 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
302 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
303 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
304#undef VISITCOMP
305
306 Value *VisitBinAssign (const BinaryOperator *E);
307
308 Value *VisitBinLAnd (const BinaryOperator *E);
309 Value *VisitBinLOr (const BinaryOperator *E);
Chris Lattner2da04b32007-08-24 05:35:26 +0000310 Value *VisitBinComma (const BinaryOperator *E);
311
312 // Other Operators.
313 Value *VisitConditionalOperator(const ConditionalOperator *CO);
314 Value *VisitChooseExpr(ChooseExpr *CE);
Nate Begeman1e36a852008-01-17 17:46:27 +0000315 Value *VisitOverloadExpr(OverloadExpr *OE);
Anders Carlsson7e13ab82007-10-15 20:28:48 +0000316 Value *VisitVAArgExpr(VAArgExpr *VE);
Chris Lattner2da04b32007-08-24 05:35:26 +0000317 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
318 return CGF.EmitObjCStringLiteral(E);
319 }
Anders Carlssond8499822007-10-29 05:01:08 +0000320 Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
Chris Lattner2da04b32007-08-24 05:35:26 +0000321};
322} // end anonymous namespace.
323
324//===----------------------------------------------------------------------===//
325// Utilities
326//===----------------------------------------------------------------------===//
327
Chris Lattnere0044382007-08-26 16:42:57 +0000328/// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner2e928882007-08-26 17:25:57 +0000329/// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattnere0044382007-08-26 16:42:57 +0000330Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
331 assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
332
333 if (SrcType->isRealFloatingType()) {
334 // Compare against 0.0 for fp scalars.
335 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
Chris Lattnere0044382007-08-26 16:42:57 +0000336 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
337 }
338
Daniel Dunbaref957f32008-08-25 10:38:11 +0000339 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
Chris Lattnere0044382007-08-26 16:42:57 +0000340 "Unknown scalar type to convert");
341
342 // Because of the type rules of C, we often end up computing a logical value,
343 // then zero extending it to int, then wanting it as a logical value again.
344 // Optimize this common case.
345 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
346 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
347 Value *Result = ZI->getOperand(0);
Eli Friedman7031d732008-01-29 18:13:51 +0000348 // If there aren't any more uses, zap the instruction to save space.
349 // Note that there can be more uses, for example if this
350 // is the result of an assignment.
351 if (ZI->use_empty())
352 ZI->eraseFromParent();
Chris Lattnere0044382007-08-26 16:42:57 +0000353 return Result;
354 }
355 }
356
357 // Compare against an integer or pointer null.
358 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
359 return Builder.CreateICmpNE(Src, Zero, "tobool");
360}
361
Chris Lattner3474c202007-08-26 06:48:56 +0000362/// EmitScalarConversion - Emit a conversion from the specified type to the
363/// specified destination type, both of which are LLVM scalar types.
Chris Lattner42e6b812007-08-26 16:34:22 +0000364Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
365 QualType DstType) {
Chris Lattner0f398c42008-07-26 22:37:01 +0000366 SrcType = CGF.getContext().getCanonicalType(SrcType);
367 DstType = CGF.getContext().getCanonicalType(DstType);
Chris Lattner3474c202007-08-26 06:48:56 +0000368 if (SrcType == DstType) return Src;
Chris Lattner08c611e2007-08-26 07:21:11 +0000369
370 if (DstType->isVoidType()) return 0;
Chris Lattner3474c202007-08-26 06:48:56 +0000371
372 // Handle conversions to bool first, they are special: comparisons against 0.
Chris Lattnerc141c1b2007-08-26 16:52:28 +0000373 if (DstType->isBooleanType())
374 return EmitConversionToBool(Src, SrcType);
Chris Lattner3474c202007-08-26 06:48:56 +0000375
376 const llvm::Type *DstTy = ConvertType(DstType);
377
378 // Ignore conversions like int -> uint.
379 if (Src->getType() == DstTy)
380 return Src;
381
Daniel Dunbar427f8732008-08-25 09:51:32 +0000382 // Handle pointer conversions next: pointers can only be converted
383 // to/from other pointers and integers. Check for pointer types in
384 // terms of LLVM, as some native types (like Obj-C id) may map to a
385 // pointer type.
386 if (isa<llvm::PointerType>(DstTy)) {
Chris Lattner3474c202007-08-26 06:48:56 +0000387 // The source value may be an integer, or a pointer.
388 if (isa<llvm::PointerType>(Src->getType()))
389 return Builder.CreateBitCast(Src, DstTy, "conv");
390 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
391 return Builder.CreateIntToPtr(Src, DstTy, "conv");
392 }
393
Daniel Dunbar427f8732008-08-25 09:51:32 +0000394 if (isa<llvm::PointerType>(Src->getType())) {
Chris Lattner3474c202007-08-26 06:48:56 +0000395 // Must be an ptr to int cast.
396 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
Anders Carlssone89b84a2007-10-31 23:18:02 +0000397 return Builder.CreatePtrToInt(Src, DstTy, "conv");
Chris Lattner3474c202007-08-26 06:48:56 +0000398 }
399
Nate Begemance4d7fc2008-04-18 23:10:10 +0000400 // A scalar can be splatted to an extended vector of the same element type
401 if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
Chris Lattner6cba8e92008-02-02 04:51:41 +0000402 cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
Nate Begeman330aaa72007-12-30 02:59:45 +0000403 return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
404 true);
Nate Begeman330aaa72007-12-30 02:59:45 +0000405
Chris Lattner6cba8e92008-02-02 04:51:41 +0000406 // Allow bitcast from vector to integer/fp of the same size.
Anders Carlssona297e7a2007-12-05 07:36:10 +0000407 if (isa<llvm::VectorType>(Src->getType()) ||
Chris Lattner6cba8e92008-02-02 04:51:41 +0000408 isa<llvm::VectorType>(DstTy))
Anders Carlssona297e7a2007-12-05 07:36:10 +0000409 return Builder.CreateBitCast(Src, DstTy, "conv");
Anders Carlssona297e7a2007-12-05 07:36:10 +0000410
Chris Lattner3474c202007-08-26 06:48:56 +0000411 // Finally, we have the arithmetic types: real int/float.
412 if (isa<llvm::IntegerType>(Src->getType())) {
413 bool InputSigned = SrcType->isSignedIntegerType();
Anders Carlssonc9d41e72007-12-26 18:20:19 +0000414 if (isa<llvm::IntegerType>(DstTy))
415 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
416 else if (InputSigned)
417 return Builder.CreateSIToFP(Src, DstTy, "conv");
418 else
419 return Builder.CreateUIToFP(Src, DstTy, "conv");
Chris Lattner3474c202007-08-26 06:48:56 +0000420 }
421
422 assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
423 if (isa<llvm::IntegerType>(DstTy)) {
Anders Carlssonc9d41e72007-12-26 18:20:19 +0000424 if (DstType->isSignedIntegerType())
425 return Builder.CreateFPToSI(Src, DstTy, "conv");
426 else
427 return Builder.CreateFPToUI(Src, DstTy, "conv");
Chris Lattner3474c202007-08-26 06:48:56 +0000428 }
429
430 assert(DstTy->isFloatingPoint() && "Unknown real conversion");
Anders Carlssonc9d41e72007-12-26 18:20:19 +0000431 if (DstTy->getTypeID() < Src->getType()->getTypeID())
432 return Builder.CreateFPTrunc(Src, DstTy, "conv");
433 else
434 return Builder.CreateFPExt(Src, DstTy, "conv");
Chris Lattner3474c202007-08-26 06:48:56 +0000435}
436
Chris Lattner42e6b812007-08-26 16:34:22 +0000437/// EmitComplexToScalarConversion - Emit a conversion from the specified
438/// complex type to the specified destination type, where the destination
439/// type is an LLVM scalar type.
440Value *ScalarExprEmitter::
441EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
442 QualType SrcTy, QualType DstTy) {
Chris Lattnerc141c1b2007-08-26 16:52:28 +0000443 // Get the source element type.
Chris Lattner0f398c42008-07-26 22:37:01 +0000444 SrcTy = SrcTy->getAsComplexType()->getElementType();
Chris Lattnerc141c1b2007-08-26 16:52:28 +0000445
446 // Handle conversions to bool first, they are special: comparisons against 0.
447 if (DstTy->isBooleanType()) {
448 // Complex != 0 -> (Real != 0) | (Imag != 0)
449 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
450 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
451 return Builder.CreateOr(Src.first, Src.second, "tobool");
452 }
453
Chris Lattner42e6b812007-08-26 16:34:22 +0000454 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
455 // the imaginary part of the complex value is discarded and the value of the
456 // real part is converted according to the conversion rules for the
457 // corresponding real type.
Chris Lattner42e6b812007-08-26 16:34:22 +0000458 return EmitScalarConversion(Src.first, SrcTy, DstTy);
459}
460
461
Chris Lattner2da04b32007-08-24 05:35:26 +0000462//===----------------------------------------------------------------------===//
463// Visitor Methods
464//===----------------------------------------------------------------------===//
465
466Value *ScalarExprEmitter::VisitExpr(Expr *E) {
Daniel Dunbara7c8cf62008-08-16 00:56:44 +0000467 CGF.ErrorUnsupported(E, "scalar expression");
Chris Lattner2da04b32007-08-24 05:35:26 +0000468 if (E->getType()->isVoidType())
469 return 0;
470 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
471}
472
Eli Friedmana1b4ed82008-05-14 19:38:39 +0000473Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
474 llvm::SmallVector<llvm::Constant*, 32> indices;
475 for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
476 indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
477 }
478 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
479 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
480 Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
481 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
482}
483
Chris Lattner2da04b32007-08-24 05:35:26 +0000484Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
485 // Emit subscript expressions in rvalue context's. For most cases, this just
486 // loads the lvalue formed by the subscript expr. However, we have to be
487 // careful, because the base of a vector subscript is occasionally an rvalue,
488 // so we can't get it as an lvalue.
489 if (!E->getBase()->getType()->isVectorType())
490 return EmitLoadOfLValue(E);
491
492 // Handle the vector case. The base must be a vector, the index must be an
493 // integer value.
494 Value *Base = Visit(E->getBase());
495 Value *Idx = Visit(E->getIdx());
496
497 // FIXME: Convert Idx to i32 type.
498 return Builder.CreateExtractElement(Base, Idx, "vecext");
499}
500
501/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
502/// also handle things like function to pointer-to-function decay, and array to
503/// pointer decay.
504Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
505 const Expr *Op = E->getSubExpr();
506
507 // If this is due to array->pointer conversion, emit the array expression as
508 // an l-value.
509 if (Op->getType()->isArrayType()) {
510 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
511 // will not true when we add support for VLAs.
Chris Lattner42e6b812007-08-26 16:34:22 +0000512 Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
Chris Lattner2da04b32007-08-24 05:35:26 +0000513
Daniel Dunbara7998072008-08-29 17:28:43 +0000514 if (!(isa<llvm::PointerType>(V->getType()) &&
515 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
516 ->getElementType()))) {
Daniel Dunbarf2cf6d12008-09-04 03:43:08 +0000517 CGF.ErrorUnsupported(E, "variable-length array cast", true);
Daniel Dunbara7998072008-08-29 17:28:43 +0000518 if (E->getType()->isVoidType())
519 return 0;
520 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
521 }
Chris Lattner3e593cd2008-03-19 05:19:41 +0000522 V = Builder.CreateStructGEP(V, 0, "arraydecay");
Chris Lattnerc6208a72007-12-12 04:13:20 +0000523
524 // The resultant pointer type can be implicitly casted to other pointer
Chris Lattnerd2583252008-07-23 06:31:27 +0000525 // types as well (e.g. void*) and can be implicitly converted to integer.
526 const llvm::Type *DestTy = ConvertType(E->getType());
527 if (V->getType() != DestTy) {
528 if (isa<llvm::PointerType>(DestTy))
529 V = Builder.CreateBitCast(V, DestTy, "ptrconv");
530 else {
531 assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
532 V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
533 }
534 }
Chris Lattnerc6208a72007-12-12 04:13:20 +0000535 return V;
536
Anders Carlsson24ebce62007-10-12 23:56:29 +0000537 } else if (E->getType()->isReferenceType()) {
Anders Carlsson24ebce62007-10-12 23:56:29 +0000538 return EmitLValue(Op).getAddress();
Chris Lattner2da04b32007-08-24 05:35:26 +0000539 }
540
541 return EmitCastExpr(Op, E->getType());
542}
543
544
545// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
546// have to handle a more broad range of conversions than explicit casts, as they
547// handle things like function to ptr-to-function decay etc.
548Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
Chris Lattner5de3b172007-08-26 07:26:12 +0000549 // Handle cases where the source is an non-complex type.
Chris Lattnerdf53e202008-02-16 23:55:16 +0000550
551 if (!CGF.hasAggregateLLVMType(E->getType())) {
Chris Lattner3474c202007-08-26 06:48:56 +0000552 Value *Src = Visit(const_cast<Expr*>(E));
553
Chris Lattner3474c202007-08-26 06:48:56 +0000554 // Use EmitScalarConversion to perform the conversion.
555 return EmitScalarConversion(Src, E->getType(), DestTy);
556 }
Chris Lattnerdf53e202008-02-16 23:55:16 +0000557
Chris Lattnerf3bc75a2008-04-04 16:54:41 +0000558 if (E->getType()->isAnyComplexType()) {
Chris Lattnerdf53e202008-02-16 23:55:16 +0000559 // Handle cases where the source is a complex type.
560 return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
561 DestTy);
562 }
Chris Lattner46c71612007-08-26 07:16:41 +0000563
Chris Lattnerdf53e202008-02-16 23:55:16 +0000564 // Okay, this is a cast from an aggregate. It must be a cast to void. Just
565 // evaluate the result and return.
566 CGF.EmitAggExpr(E, 0, false);
567 return 0;
Chris Lattner2da04b32007-08-24 05:35:26 +0000568}
569
Chris Lattner04a913b2007-08-31 22:09:40 +0000570Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
Chris Lattner7e800972008-07-26 20:23:23 +0000571 return CGF.EmitCompoundStmt(*E->getSubStmt(),
572 !E->getType()->isVoidType()).getScalarVal();
Chris Lattner04a913b2007-08-31 22:09:40 +0000573}
574
575
Chris Lattner2da04b32007-08-24 05:35:26 +0000576//===----------------------------------------------------------------------===//
577// Unary Operators
578//===----------------------------------------------------------------------===//
579
580Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
Chris Lattner100198f2007-08-24 16:24:49 +0000581 bool isInc, bool isPre) {
Chris Lattner2da04b32007-08-24 05:35:26 +0000582 LValue LV = EmitLValue(E->getSubExpr());
583 // FIXME: Handle volatile!
Chris Lattnera01d8982007-08-26 05:10:16 +0000584 Value *InVal = CGF.EmitLoadOfLValue(LV, // false
Chris Lattner4647a212007-08-31 22:49:20 +0000585 E->getSubExpr()->getType()).getScalarVal();
Chris Lattner2da04b32007-08-24 05:35:26 +0000586
587 int AmountVal = isInc ? 1 : -1;
588
589 Value *NextVal;
Chris Lattnera01d8982007-08-26 05:10:16 +0000590 if (isa<llvm::PointerType>(InVal->getType())) {
591 // FIXME: This isn't right for VLAs.
592 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
Chris Lattner3e593cd2008-03-19 05:19:41 +0000593 NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
Chris Lattnera01d8982007-08-26 05:10:16 +0000594 } else {
595 // Add the inc/dec to the real part.
596 if (isa<llvm::IntegerType>(InVal->getType()))
597 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
Chris Lattnerd3d8aca2007-09-13 06:19:18 +0000598 else if (InVal->getType() == llvm::Type::FloatTy)
Devang Patelffe1e212007-10-30 20:59:40 +0000599 NextVal =
Chris Lattner1886e712008-04-20 00:45:53 +0000600 llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
Chris Lattnerff2367c2008-04-20 00:50:39 +0000601 else if (InVal->getType() == llvm::Type::DoubleTy)
Devang Patelffe1e212007-10-30 20:59:40 +0000602 NextVal =
Chris Lattner1886e712008-04-20 00:45:53 +0000603 llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
Chris Lattnerff2367c2008-04-20 00:50:39 +0000604 else {
605 llvm::APFloat F(static_cast<float>(AmountVal));
Dale Johannesenc48814b2008-10-09 23:02:32 +0000606 bool ignored;
607 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
608 &ignored);
Chris Lattnerff2367c2008-04-20 00:50:39 +0000609 NextVal = llvm::ConstantFP::get(F);
Chris Lattnerd3d8aca2007-09-13 06:19:18 +0000610 }
Chris Lattnera01d8982007-08-26 05:10:16 +0000611 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
612 }
Chris Lattner2da04b32007-08-24 05:35:26 +0000613
614 // Store the updated result through the lvalue.
615 CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
616 E->getSubExpr()->getType());
617
618 // If this is a postinc, return the value read from memory, otherwise use the
619 // updated value.
620 return isPre ? NextVal : InVal;
621}
622
623
624Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
625 Value *Op = Visit(E->getSubExpr());
626 return Builder.CreateNeg(Op, "neg");
627}
628
629Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
630 Value *Op = Visit(E->getSubExpr());
631 return Builder.CreateNot(Op, "neg");
632}
633
634Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
635 // Compare operand to zero.
636 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
637
638 // Invert value.
639 // TODO: Could dynamically modify easy computations here. For example, if
640 // the operand is an icmp ne, turn into icmp eq.
641 BoolVal = Builder.CreateNot(BoolVal, "lnot");
642
643 // ZExt result to int.
644 return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
645}
646
Sebastian Redl6f282892008-11-11 17:56:53 +0000647/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
648/// argument of the sizeof expression as an integer.
649Value *
650ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
651 QualType RetType = E->getType();
Chris Lattner3b418d82008-02-21 05:45:29 +0000652 assert(RetType->isIntegerType() && "Result type must be an integer!");
653 uint32_t ResultWidth =
Chris Lattner37e05872008-03-05 18:54:05 +0000654 static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
Chris Lattner3b418d82008-02-21 05:45:29 +0000655
Sebastian Redl6f282892008-11-11 17:56:53 +0000656 QualType TypeToSize = E->getTypeOfArgument();
Daniel Dunbaree8bbb32008-07-22 01:35:47 +0000657 // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
658 // for function types.
Daniel Dunbara2fbefc2008-07-22 19:44:18 +0000659 // FIXME: what is alignof a function type in gcc?
Daniel Dunbaree8bbb32008-07-22 01:35:47 +0000660 if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
Chris Lattner3b418d82008-02-21 05:45:29 +0000661 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
662
Chris Lattner2da04b32007-08-24 05:35:26 +0000663 /// FIXME: This doesn't handle VLAs yet!
Chris Lattner37e05872008-03-05 18:54:05 +0000664 std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
Chris Lattner2da04b32007-08-24 05:35:26 +0000665
Sebastian Redl6f282892008-11-11 17:56:53 +0000666 uint64_t Val = E->isSizeOf() ? Info.first : Info.second;
Chris Lattner2da04b32007-08-24 05:35:26 +0000667 Val /= 8; // Return size in bytes, not bits.
668
Chris Lattner2da04b32007-08-24 05:35:26 +0000669 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
670}
671
Chris Lattner9f0ad962007-08-24 21:20:17 +0000672Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
673 Expr *Op = E->getSubExpr();
Chris Lattnerf3bc75a2008-04-04 16:54:41 +0000674 if (Op->getType()->isAnyComplexType())
Chris Lattner9f0ad962007-08-24 21:20:17 +0000675 return CGF.EmitComplexExpr(Op).first;
676 return Visit(Op);
677}
678Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
679 Expr *Op = E->getSubExpr();
Chris Lattnerf3bc75a2008-04-04 16:54:41 +0000680 if (Op->getType()->isAnyComplexType())
Chris Lattner9f0ad962007-08-24 21:20:17 +0000681 return CGF.EmitComplexExpr(Op).second;
Chris Lattnerb5e12622007-08-26 05:29:21 +0000682
683 // __imag on a scalar returns zero. Emit it the subexpr to ensure side
684 // effects are evaluated.
685 CGF.EmitScalarExpr(Op);
686 return llvm::Constant::getNullValue(ConvertType(E->getType()));
Chris Lattner9f0ad962007-08-24 21:20:17 +0000687}
688
Anders Carlssona8dc3e62008-01-29 15:56:48 +0000689Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
690{
691 int64_t Val = E->evaluateOffsetOf(CGF.getContext());
692
693 assert(E->getType()->isIntegerType() && "Result type must be an integer!");
694
Chris Lattner37e05872008-03-05 18:54:05 +0000695 uint32_t ResultWidth =
696 static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
Anders Carlssona8dc3e62008-01-29 15:56:48 +0000697 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
698}
Chris Lattner9f0ad962007-08-24 21:20:17 +0000699
Chris Lattner2da04b32007-08-24 05:35:26 +0000700//===----------------------------------------------------------------------===//
701// Binary Operators
702//===----------------------------------------------------------------------===//
703
704BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
705 BinOpInfo Result;
706 Result.LHS = Visit(E->getLHS());
707 Result.RHS = Visit(E->getRHS());
Chris Lattner3d966d62007-08-24 21:00:35 +0000708 Result.Ty = E->getType();
Chris Lattner2da04b32007-08-24 05:35:26 +0000709 Result.E = E;
710 return Result;
711}
712
Chris Lattnerb6334692007-08-26 21:41:21 +0000713Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner3d966d62007-08-24 21:00:35 +0000714 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
715 QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
716
717 BinOpInfo OpInfo;
718
719 // Load the LHS and RHS operands.
720 LValue LHSLV = EmitLValue(E->getLHS());
721 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattnere56d3e1a2007-08-26 22:37:40 +0000722
723 // Determine the computation type. If the RHS is complex, then this is one of
724 // the add/sub/mul/div operators. All of these operators can be computed in
725 // with just their real component even though the computation domain really is
726 // complex.
Chris Lattnerb6334692007-08-26 21:41:21 +0000727 QualType ComputeType = E->getComputationType();
Chris Lattner3d966d62007-08-24 21:00:35 +0000728
Chris Lattnere56d3e1a2007-08-26 22:37:40 +0000729 // If the computation type is complex, then the RHS is complex. Emit the RHS.
730 if (const ComplexType *CT = ComputeType->getAsComplexType()) {
731 ComputeType = CT->getElementType();
732
733 // Emit the RHS, only keeping the real component.
734 OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
735 RHSTy = RHSTy->getAsComplexType()->getElementType();
736 } else {
737 // Otherwise the RHS is a simple scalar value.
738 OpInfo.RHS = Visit(E->getRHS());
739 }
740
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000741 QualType LComputeTy, RComputeTy, ResultTy;
742
743 // Compound assignment does not contain enough information about all
744 // the types involved for pointer arithmetic cases. Figure it out
745 // here for now.
746 if (E->getLHS()->getType()->isPointerType()) {
747 // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
748 assert((E->getOpcode() == BinaryOperator::AddAssign ||
749 E->getOpcode() == BinaryOperator::SubAssign) &&
750 "Invalid compound assignment operator on pointer type.");
751 LComputeTy = E->getLHS()->getType();
752
753 if (E->getRHS()->getType()->isPointerType()) {
754 // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
755 // extension, the conversion from the pointer difference back to
756 // the LHS type is handled at the end.
757 assert(E->getOpcode() == BinaryOperator::SubAssign &&
758 "Invalid compound assignment operator on pointer type.");
759 RComputeTy = E->getLHS()->getType();
760 ResultTy = CGF.getContext().getPointerDiffType();
761 } else {
762 RComputeTy = E->getRHS()->getType();
763 ResultTy = LComputeTy;
764 }
765 } else if (E->getRHS()->getType()->isPointerType()) {
766 // Degenerate case of (int += ptr) allowed by GCC implicit cast
767 // extension.
768 assert(E->getOpcode() == BinaryOperator::AddAssign &&
769 "Invalid compound assignment operator on pointer type.");
770 LComputeTy = E->getLHS()->getType();
771 RComputeTy = E->getRHS()->getType();
772 ResultTy = RComputeTy;
773 } else {
774 LComputeTy = RComputeTy = ResultTy = ComputeType;
Chris Lattner3d966d62007-08-24 21:00:35 +0000775 }
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000776
777 // Convert the LHS/RHS values to the computation type.
778 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
779 OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
780 OpInfo.Ty = ResultTy;
Chris Lattner3d966d62007-08-24 21:00:35 +0000781 OpInfo.E = E;
782
783 // Expand the binary operator.
784 Value *Result = (this->*Func)(OpInfo);
785
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000786 // Convert the result back to the LHS type.
787 Result = EmitScalarConversion(Result, ResultTy, LHSTy);
Chris Lattner3d966d62007-08-24 21:00:35 +0000788
Daniel Dunbar9b1335e2008-11-19 09:36:46 +0000789 // Store the result value into the LHS lvalue. Bit-fields are
Daniel Dunbar7689f6b2008-11-19 11:54:05 +0000790 // handled specially because the result is altered by the store,
791 // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
792 // the left operand after the assignment...'.
Eli Friedman292e98c2008-05-25 14:13:57 +0000793 if (LHSLV.isBitfield())
Daniel Dunbar9b1335e2008-11-19 09:36:46 +0000794 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
795 &Result);
796 else
797 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
798
Chris Lattner3d966d62007-08-24 21:00:35 +0000799 return Result;
800}
801
802
Chris Lattner2da04b32007-08-24 05:35:26 +0000803Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
Nate Begeman628028b2007-12-30 01:28:16 +0000804 if (Ops.LHS->getType()->isFPOrFPVector())
Chris Lattner2da04b32007-08-24 05:35:26 +0000805 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
Chris Lattner3d966d62007-08-24 21:00:35 +0000806 else if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner2da04b32007-08-24 05:35:26 +0000807 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
808 else
809 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
810}
811
812Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
813 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattner3d966d62007-08-24 21:00:35 +0000814 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner2da04b32007-08-24 05:35:26 +0000815 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
816 else
817 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
818}
819
820
821Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
Chris Lattner3d966d62007-08-24 21:00:35 +0000822 if (!Ops.Ty->isPointerType())
Chris Lattner2da04b32007-08-24 05:35:26 +0000823 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
Chris Lattner3d966d62007-08-24 21:00:35 +0000824
825 // FIXME: What about a pointer to a VLA?
Chris Lattner20455f22008-01-03 06:36:51 +0000826 Value *Ptr, *Idx;
827 Expr *IdxExp;
828 if (isa<llvm::PointerType>(Ops.LHS->getType())) { // pointer + int
829 Ptr = Ops.LHS;
830 Idx = Ops.RHS;
831 IdxExp = Ops.E->getRHS();
832 } else { // int + pointer
833 Ptr = Ops.RHS;
834 Idx = Ops.LHS;
835 IdxExp = Ops.E->getLHS();
836 }
837
838 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
839 if (Width < CGF.LLVMPointerWidth) {
840 // Zero or sign extend the pointer value based on whether the index is
841 // signed or not.
842 const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
Chris Lattner0f398c42008-07-26 22:37:01 +0000843 if (IdxExp->getType()->isSignedIntegerType())
Chris Lattner20455f22008-01-03 06:36:51 +0000844 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
845 else
846 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
847 }
848
849 return Builder.CreateGEP(Ptr, Idx, "add.ptr");
Chris Lattner2da04b32007-08-24 05:35:26 +0000850}
851
852Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
853 if (!isa<llvm::PointerType>(Ops.LHS->getType()))
854 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
Chris Lattner3d966d62007-08-24 21:00:35 +0000855
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000856 if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
857 // pointer - int
858 Value *Idx = Ops.RHS;
859 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
860 if (Width < CGF.LLVMPointerWidth) {
861 // Zero or sign extend the pointer value based on whether the index is
862 // signed or not.
863 const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
864 if (Ops.E->getRHS()->getType()->isSignedIntegerType())
865 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
866 else
867 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
868 }
869 Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
870
871 // FIXME: The pointer could point to a VLA.
872 // The GNU void* - int case is automatically handled here because
873 // our LLVM type for void* is i8*.
874 return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
Daniel Dunbar5aa55d52008-08-05 00:47:03 +0000875 } else {
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000876 // pointer - pointer
877 Value *LHS = Ops.LHS;
878 Value *RHS = Ops.RHS;
Chris Lattner3d966d62007-08-24 21:00:35 +0000879
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000880 const QualType LHSType = Ops.E->getLHS()->getType();
881 const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
882 uint64_t ElementSize;
Daniel Dunbar5aa55d52008-08-05 00:47:03 +0000883
Daniel Dunbarbfb1cd72008-08-06 02:00:38 +0000884 // Handle GCC extension for pointer arithmetic on void* types.
885 if (LHSElementType->isVoidType()) {
886 ElementSize = 1;
887 } else {
888 ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
889 }
890
891 const llvm::Type *ResultType = ConvertType(Ops.Ty);
892 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
893 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
894 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
895
896 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
897 // remainder. As such, we handle common power-of-two cases here to generate
898 // better code. See PR2247.
899 if (llvm::isPowerOf2_64(ElementSize)) {
900 Value *ShAmt =
901 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
902 return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
903 }
904
905 // Otherwise, do a full sdiv.
906 Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
907 return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
Chris Lattner2da04b32007-08-24 05:35:26 +0000908 }
Chris Lattner2da04b32007-08-24 05:35:26 +0000909}
910
911Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
912 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
913 // RHS to the same size as the LHS.
914 Value *RHS = Ops.RHS;
915 if (Ops.LHS->getType() != RHS->getType())
916 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
917
918 return Builder.CreateShl(Ops.LHS, RHS, "shl");
919}
920
921Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
922 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
923 // RHS to the same size as the LHS.
924 Value *RHS = Ops.RHS;
925 if (Ops.LHS->getType() != RHS->getType())
926 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
927
Chris Lattner3d966d62007-08-24 21:00:35 +0000928 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner2da04b32007-08-24 05:35:26 +0000929 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
930 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
931}
932
933Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
934 unsigned SICmpOpc, unsigned FCmpOpc) {
Chris Lattner42e6b812007-08-26 16:34:22 +0000935 Value *Result;
Chris Lattner2da04b32007-08-24 05:35:26 +0000936 QualType LHSTy = E->getLHS()->getType();
Nate Begemanfe79ca22008-07-25 20:16:05 +0000937 if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
Chris Lattner2da04b32007-08-24 05:35:26 +0000938 Value *LHS = Visit(E->getLHS());
939 Value *RHS = Visit(E->getRHS());
940
941 if (LHS->getType()->isFloatingPoint()) {
Nate Begemanfe79ca22008-07-25 20:16:05 +0000942 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
Chris Lattner2da04b32007-08-24 05:35:26 +0000943 LHS, RHS, "cmp");
Eli Friedman3c285242008-05-29 15:09:15 +0000944 } else if (LHSTy->isSignedIntegerType()) {
945 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
Chris Lattner2da04b32007-08-24 05:35:26 +0000946 LHS, RHS, "cmp");
947 } else {
Eli Friedman3c285242008-05-29 15:09:15 +0000948 // Unsigned integers and pointers.
949 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
Chris Lattner2da04b32007-08-24 05:35:26 +0000950 LHS, RHS, "cmp");
951 }
Nate Begemanfe79ca22008-07-25 20:16:05 +0000952 } else if (LHSTy->isVectorType()) {
953 Value *LHS = Visit(E->getLHS());
954 Value *RHS = Visit(E->getRHS());
955
956 if (LHS->getType()->isFPOrFPVector()) {
957 Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
958 LHS, RHS, "cmp");
959 } else if (LHSTy->isUnsignedIntegerType()) {
960 Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
961 LHS, RHS, "cmp");
962 } else {
963 // Signed integers and pointers.
964 Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
965 LHS, RHS, "cmp");
966 }
967 return Result;
Chris Lattner2da04b32007-08-24 05:35:26 +0000968 } else {
969 // Complex Comparison: can only be an equality comparison.
970 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
971 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
972
Chris Lattner0f398c42008-07-26 22:37:01 +0000973 QualType CETy = LHSTy->getAsComplexType()->getElementType();
Chris Lattner2da04b32007-08-24 05:35:26 +0000974
Chris Lattner42e6b812007-08-26 16:34:22 +0000975 Value *ResultR, *ResultI;
Chris Lattner2da04b32007-08-24 05:35:26 +0000976 if (CETy->isRealFloatingType()) {
977 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
978 LHS.first, RHS.first, "cmp.r");
979 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
980 LHS.second, RHS.second, "cmp.i");
981 } else {
982 // Complex comparisons can only be equality comparisons. As such, signed
983 // and unsigned opcodes are the same.
984 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
985 LHS.first, RHS.first, "cmp.r");
986 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
987 LHS.second, RHS.second, "cmp.i");
988 }
989
990 if (E->getOpcode() == BinaryOperator::EQ) {
991 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
992 } else {
993 assert(E->getOpcode() == BinaryOperator::NE &&
994 "Complex comparison other than == or != ?");
995 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
996 }
997 }
998
999 // ZExt result to int.
1000 return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
1001}
1002
1003Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1004 LValue LHS = EmitLValue(E->getLHS());
1005 Value *RHS = Visit(E->getRHS());
1006
Daniel Dunbar9b1335e2008-11-19 09:36:46 +00001007 // Store the value into the LHS. Bit-fields are handled specially
Daniel Dunbar7689f6b2008-11-19 11:54:05 +00001008 // because the result is altered by the store, i.e., [C99 6.5.16p1]
1009 // 'An assignment expression has the value of the left operand after
1010 // the assignment...'.
Chris Lattner2da04b32007-08-24 05:35:26 +00001011 // FIXME: Volatility!
Eli Friedman292e98c2008-05-25 14:13:57 +00001012 if (LHS.isBitfield())
Daniel Dunbar9b1335e2008-11-19 09:36:46 +00001013 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1014 &RHS);
1015 else
1016 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
Daniel Dunbar9e22c0d2008-08-29 08:11:39 +00001017
Chris Lattner2da04b32007-08-24 05:35:26 +00001018 // Return the RHS.
1019 return RHS;
1020}
1021
1022Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
Chris Lattner8b084582008-11-12 08:26:50 +00001023 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1024 // If we have 1 && X, just emit X without inserting the control flow.
1025 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1026 if (Cond == 1) { // If we have 1 && X, just emit X.
Chris Lattner5b1964b2008-11-11 07:41:27 +00001027 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1028 // ZExt result to int.
1029 return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1030 }
Chris Lattner8b084582008-11-12 08:26:50 +00001031
1032 // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1033 if (!CGF.ContainsLabel(E->getRHS()))
1034 return llvm::Constant::getNullValue(CGF.LLVMIntTy);
Chris Lattner5b1964b2008-11-11 07:41:27 +00001035 }
1036
Daniel Dunbara612e792008-11-13 01:38:36 +00001037 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1038 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
Chris Lattner8b084582008-11-12 08:26:50 +00001039
Chris Lattner35710d182008-11-12 08:38:24 +00001040 // Branch on the LHS first. If it is false, go to the failure (cont) block.
1041 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1042
1043 // Any edges into the ContBlock are now from an (indeterminate number of)
1044 // edges from this first condition. All of these values will be false. Start
1045 // setting up the PHI node in the Cont Block for this.
1046 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1047 PN->reserveOperandSpace(2); // Normal case, two inputs.
1048 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1049 PI != PE; ++PI)
1050 PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
Chris Lattner2da04b32007-08-24 05:35:26 +00001051
1052 CGF.EmitBlock(RHSBlock);
1053 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1054
1055 // Reaquire the RHS block, as there may be subblocks inserted.
1056 RHSBlock = Builder.GetInsertBlock();
Chris Lattner35710d182008-11-12 08:38:24 +00001057
1058 // Emit an unconditional branch from this block to ContBlock. Insert an entry
1059 // into the phi node for the edge with the value of RHSCond.
Chris Lattner2da04b32007-08-24 05:35:26 +00001060 CGF.EmitBlock(ContBlock);
Chris Lattner2da04b32007-08-24 05:35:26 +00001061 PN->addIncoming(RHSCond, RHSBlock);
1062
1063 // ZExt result to int.
1064 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1065}
1066
1067Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
Chris Lattner8b084582008-11-12 08:26:50 +00001068 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1069 // If we have 0 || X, just emit X without inserting the control flow.
1070 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1071 if (Cond == -1) { // If we have 0 || X, just emit X.
Chris Lattner5b1964b2008-11-11 07:41:27 +00001072 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1073 // ZExt result to int.
1074 return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1075 }
Chris Lattner8b084582008-11-12 08:26:50 +00001076
1077 // 1 || RHS: If it is safe, just elide the RHS, and return 0.
1078 if (!CGF.ContainsLabel(E->getRHS()))
1079 return llvm::Constant::getNullValue(CGF.LLVMIntTy);
Chris Lattner5b1964b2008-11-11 07:41:27 +00001080 }
1081
Daniel Dunbara612e792008-11-13 01:38:36 +00001082 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1083 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
Chris Lattner2da04b32007-08-24 05:35:26 +00001084
Chris Lattner35710d182008-11-12 08:38:24 +00001085 // Branch on the LHS first. If it is true, go to the success (cont) block.
1086 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1087
1088 // Any edges into the ContBlock are now from an (indeterminate number of)
1089 // edges from this first condition. All of these values will be true. Start
1090 // setting up the PHI node in the Cont Block for this.
1091 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1092 PN->reserveOperandSpace(2); // Normal case, two inputs.
1093 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1094 PI != PE; ++PI)
1095 PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1096
1097 // Emit the RHS condition as a bool value.
Chris Lattner2da04b32007-08-24 05:35:26 +00001098 CGF.EmitBlock(RHSBlock);
1099 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1100
1101 // Reaquire the RHS block, as there may be subblocks inserted.
1102 RHSBlock = Builder.GetInsertBlock();
Chris Lattner2da04b32007-08-24 05:35:26 +00001103
Chris Lattner35710d182008-11-12 08:38:24 +00001104 // Emit an unconditional branch from this block to ContBlock. Insert an entry
1105 // into the phi node for the edge with the value of RHSCond.
1106 CGF.EmitBlock(ContBlock);
Chris Lattner2da04b32007-08-24 05:35:26 +00001107 PN->addIncoming(RHSCond, RHSBlock);
1108
1109 // ZExt result to int.
1110 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1111}
1112
1113Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1114 CGF.EmitStmt(E->getLHS());
Daniel Dunbar5c7e3932008-11-11 23:11:34 +00001115 CGF.EnsureInsertPoint();
Chris Lattner2da04b32007-08-24 05:35:26 +00001116 return Visit(E->getRHS());
1117}
1118
1119//===----------------------------------------------------------------------===//
1120// Other Operators
1121//===----------------------------------------------------------------------===//
1122
Chris Lattner3fd91f832008-11-12 08:55:54 +00001123/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1124/// expression is cheap enough and side-effect-free enough to evaluate
1125/// unconditionally instead of conditionally. This is used to convert control
1126/// flow into selects in some cases.
1127static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1128 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1129 return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1130
1131 // TODO: Allow anything we can constant fold to an integer or fp constant.
1132 if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1133 isa<FloatingLiteral>(E))
1134 return true;
1135
1136 // Non-volatile automatic variables too, to get "cond ? X : Y" where
1137 // X and Y are local variables.
1138 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1139 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1140 if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1141 return true;
1142
1143 return false;
1144}
1145
1146
Chris Lattner2da04b32007-08-24 05:35:26 +00001147Value *ScalarExprEmitter::
1148VisitConditionalOperator(const ConditionalOperator *E) {
Chris Lattnercd439292008-11-12 08:04:58 +00001149 // If the condition constant folds and can be elided, try to avoid emitting
1150 // the condition and the dead arm.
1151 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
Chris Lattnerd53e2332008-11-11 18:56:45 +00001152 Expr *Live = E->getLHS(), *Dead = E->getRHS();
Chris Lattnercd439292008-11-12 08:04:58 +00001153 if (Cond == -1)
Chris Lattnerd53e2332008-11-11 18:56:45 +00001154 std::swap(Live, Dead);
Chris Lattnercd439292008-11-12 08:04:58 +00001155
1156 // If the dead side doesn't have labels we need, and if the Live side isn't
1157 // the gnu missing ?: extension (which we could handle, but don't bother
1158 // to), just emit the Live part.
1159 if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
1160 Live) // Live part isn't missing.
1161 return Visit(Live);
Chris Lattnerd53e2332008-11-11 18:56:45 +00001162 }
1163
Chris Lattner3fd91f832008-11-12 08:55:54 +00001164
1165 // If this is a really simple expression (like x ? 4 : 5), emit this as a
1166 // select instead of as control flow. We can only do this if it is cheap and
Chris Lattner9ce8a532008-11-16 06:16:27 +00001167 // safe to evaluate the LHS and RHS unconditionally.
Chris Lattner3fd91f832008-11-12 08:55:54 +00001168 if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1169 isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1170 llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1171 llvm::Value *LHS = Visit(E->getLHS());
1172 llvm::Value *RHS = Visit(E->getRHS());
1173 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1174 }
1175
1176
Daniel Dunbard2a53a72008-11-12 10:13:37 +00001177 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1178 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
Daniel Dunbara612e792008-11-13 01:38:36 +00001179 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
Chris Lattner51e71182008-11-12 08:08:13 +00001180 Value *CondVal = 0;
Chris Lattnercd439292008-11-12 08:04:58 +00001181
Chris Lattner51e71182008-11-12 08:08:13 +00001182 // If we have the GNU missing condition extension, evaluate the conditional
1183 // and then convert it to bool the hard way. We do this explicitly
1184 // because we need the unconverted value for the missing middle value of
1185 // the ?:.
1186 if (E->getLHS() == 0) {
1187 CondVal = CGF.EmitScalarExpr(E->getCond());
1188 Value *CondBoolVal =
1189 CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1190 CGF.getContext().BoolTy);
1191 Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1192 } else {
1193 // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1194 // the branch on bool.
1195 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1196 }
Chris Lattner2da04b32007-08-24 05:35:26 +00001197
1198 CGF.EmitBlock(LHSBlock);
1199
1200 // Handle the GNU extension for missing LHS.
Chris Lattner2ab40a62007-11-26 01:40:58 +00001201 Value *LHS;
1202 if (E->getLHS())
Eli Friedmand5a48382008-05-16 20:38:39 +00001203 LHS = Visit(E->getLHS());
Chris Lattner2ab40a62007-11-26 01:40:58 +00001204 else // Perform promotions, to handle cases like "short ?: int"
1205 LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1206
Chris Lattner2da04b32007-08-24 05:35:26 +00001207 LHSBlock = Builder.GetInsertBlock();
Daniel Dunbarc56e6762008-11-11 09:41:28 +00001208 CGF.EmitBranch(ContBlock);
Chris Lattner2da04b32007-08-24 05:35:26 +00001209
1210 CGF.EmitBlock(RHSBlock);
1211
Eli Friedmand5a48382008-05-16 20:38:39 +00001212 Value *RHS = Visit(E->getRHS());
Chris Lattner2da04b32007-08-24 05:35:26 +00001213 RHSBlock = Builder.GetInsertBlock();
Daniel Dunbarc56e6762008-11-11 09:41:28 +00001214 CGF.EmitBranch(ContBlock);
Chris Lattner2da04b32007-08-24 05:35:26 +00001215
1216 CGF.EmitBlock(ContBlock);
1217
Nuno Lopes7bd6e582008-06-04 19:15:45 +00001218 if (!LHS || !RHS) {
Chris Lattnerb6a7b582007-11-30 17:56:23 +00001219 assert(E->getType()->isVoidType() && "Non-void value should have a value");
1220 return 0;
1221 }
1222
Chris Lattner2da04b32007-08-24 05:35:26 +00001223 // Create a PHI node for the real part.
1224 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1225 PN->reserveOperandSpace(2);
1226 PN->addIncoming(LHS, LHSBlock);
1227 PN->addIncoming(RHS, RHSBlock);
1228 return PN;
1229}
1230
1231Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
Chris Lattner2da04b32007-08-24 05:35:26 +00001232 // Emit the LHS or RHS as appropriate.
Devang Patelffe1e212007-10-30 20:59:40 +00001233 return
1234 Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
Chris Lattner2da04b32007-08-24 05:35:26 +00001235}
1236
Nate Begeman1e36a852008-01-17 17:46:27 +00001237Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
Nate Begeman936b2072008-01-30 20:50:20 +00001238 return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
Ted Kremenek08e17112008-06-17 02:43:46 +00001239 E->arg_end(CGF.getContext())).getScalarVal();
Nate Begeman1e36a852008-01-17 17:46:27 +00001240}
1241
Chris Lattnerb6a7b582007-11-30 17:56:23 +00001242Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
Anders Carlsson7e13ab82007-10-15 20:28:48 +00001243 llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1244
Anders Carlsson13abd7e2008-11-04 05:30:00 +00001245 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1246
1247 // If EmitVAArg fails, we fall back to the LLVM instruction.
1248 if (!ArgPtr)
1249 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1250
1251 // FIXME: volatile?
1252 return Builder.CreateLoad(ArgPtr);
Anders Carlsson7e13ab82007-10-15 20:28:48 +00001253}
1254
Chris Lattnerb6a7b582007-11-30 17:56:23 +00001255Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
Anders Carlssond8499822007-10-29 05:01:08 +00001256 std::string str;
Daniel Dunbarfc1066d2008-10-17 20:21:44 +00001257 CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
Anders Carlssond8499822007-10-29 05:01:08 +00001258
1259 llvm::Constant *C = llvm::ConstantArray::get(str);
1260 C = new llvm::GlobalVariable(C->getType(), true,
1261 llvm::GlobalValue::InternalLinkage,
1262 C, ".str", &CGF.CGM.getModule());
1263 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1264 llvm::Constant *Zeros[] = { Zero, Zero };
1265 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1266
1267 return C;
1268}
1269
Chris Lattner2da04b32007-08-24 05:35:26 +00001270//===----------------------------------------------------------------------===//
1271// Entry Point into this File
1272//===----------------------------------------------------------------------===//
1273
1274/// EmitComplexExpr - Emit the computation of the specified expression of
1275/// complex type, ignoring the result.
1276Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1277 assert(E && !hasAggregateLLVMType(E->getType()) &&
1278 "Invalid scalar expression to emit");
1279
1280 return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1281}
Chris Lattner3474c202007-08-26 06:48:56 +00001282
1283/// EmitScalarConversion - Emit a conversion from the specified type to the
1284/// specified destination type, both of which are LLVM scalar types.
Chris Lattner42e6b812007-08-26 16:34:22 +00001285Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1286 QualType DstTy) {
Chris Lattner3474c202007-08-26 06:48:56 +00001287 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1288 "Invalid scalar expression to emit");
1289 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1290}
Chris Lattner42e6b812007-08-26 16:34:22 +00001291
1292/// EmitComplexToScalarConversion - Emit a conversion from the specified
1293/// complex type to the specified destination type, where the destination
1294/// type is an LLVM scalar type.
1295Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1296 QualType SrcTy,
1297 QualType DstTy) {
Chris Lattnerf3bc75a2008-04-04 16:54:41 +00001298 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
Chris Lattner42e6b812007-08-26 16:34:22 +00001299 "Invalid complex -> scalar conversion");
1300 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1301 DstTy);
1302}
Anders Carlssonb9eb82c2007-12-10 19:35:18 +00001303
1304Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1305 assert(V1->getType() == V2->getType() &&
1306 "Vector operands must be of the same type");
Anders Carlssonb9eb82c2007-12-10 19:35:18 +00001307 unsigned NumElements =
1308 cast<llvm::VectorType>(V1->getType())->getNumElements();
1309
1310 va_list va;
1311 va_start(va, V2);
1312
1313 llvm::SmallVector<llvm::Constant*, 16> Args;
Anders Carlssonb9eb82c2007-12-10 19:35:18 +00001314 for (unsigned i = 0; i < NumElements; i++) {
1315 int n = va_arg(va, int);
Anders Carlssonb9eb82c2007-12-10 19:35:18 +00001316 assert(n >= 0 && n < (int)NumElements * 2 &&
1317 "Vector shuffle index out of bounds!");
Anders Carlssonb9eb82c2007-12-10 19:35:18 +00001318 Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1319 }
1320
1321 const char *Name = va_arg(va, const char *);
1322 va_end(va);
1323
1324 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1325
1326 return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1327}
1328
Anders Carlssonf5f65442007-12-15 21:23:30 +00001329llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
Chris Lattner62843782008-07-26 20:15:14 +00001330 unsigned NumVals, bool isSplat) {
Anders Carlssonf5f65442007-12-15 21:23:30 +00001331 llvm::Value *Vec
Chris Lattner62843782008-07-26 20:15:14 +00001332 = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
Anders Carlssonf5f65442007-12-15 21:23:30 +00001333
Chris Lattner62843782008-07-26 20:15:14 +00001334 for (unsigned i = 0, e = NumVals; i != e; ++i) {
Nate Begeman330aaa72007-12-30 02:59:45 +00001335 llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
Anders Carlssonf5f65442007-12-15 21:23:30 +00001336 llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
Nate Begeman330aaa72007-12-30 02:59:45 +00001337 Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
Anders Carlssonf5f65442007-12-15 21:23:30 +00001338 }
1339
1340 return Vec;
1341}