blob: 096da949e77b807056a3c3fbbf723f9de0a0f160 [file] [log] [blame]
Krzysztof Parzyszek21b53a52015-07-08 14:47:34 +00001//===--- HexagonGenInsert.cpp ---------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexinsert"
11
12#include "llvm/Pass.h"
13#include "llvm/PassRegistry.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/PostOrderIterator.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Support/Timer.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30
31#include "Hexagon.h"
32#include "HexagonRegisterInfo.h"
33#include "HexagonTargetMachine.h"
34#include "HexagonBitTracker.h"
35
36#include <map>
37#include <vector>
38
39using namespace llvm;
40
41static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
42 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
43// The distance cutoff is selected based on the precheckin-perf results:
44// cutoffs 20, 25, 35, and 40 are worse than 30.
45static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
46 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
47 "generation."));
48
49static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
50 cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
51static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
52 cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
53 "generation"));
54
55static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
56 cl::ZeroOrMore);
57static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
58 cl::ZeroOrMore);
59// Whether to construct constant values via "insert". Could eliminate constant
60// extenders, but often not practical.
61static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
62 cl::ZeroOrMore);
63
64namespace {
65 // The preprocessor gets confused when the DEBUG macro is passed larger
66 // chunks of code. Use this function to detect debugging.
67 inline bool isDebug() {
68#ifndef NDEBUG
69 return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE);
70#else
71 return false;
72#endif
73 }
74}
75
76
77namespace {
78 // Set of virtual registers, based on BitVector.
79 struct RegisterSet : private BitVector {
80 RegisterSet() : BitVector() {}
81 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
82 RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
83
84 using BitVector::clear;
85
86 unsigned find_first() const {
87 int First = BitVector::find_first();
88 if (First < 0)
89 return 0;
90 return x2v(First);
91 }
92
93 unsigned find_next(unsigned Prev) const {
94 int Next = BitVector::find_next(v2x(Prev));
95 if (Next < 0)
96 return 0;
97 return x2v(Next);
98 }
99
100 RegisterSet &insert(unsigned R) {
101 unsigned Idx = v2x(R);
102 ensure(Idx);
103 return static_cast<RegisterSet&>(BitVector::set(Idx));
104 }
105 RegisterSet &remove(unsigned R) {
106 unsigned Idx = v2x(R);
107 if (Idx >= size())
108 return *this;
109 return static_cast<RegisterSet&>(BitVector::reset(Idx));
110 }
111
112 RegisterSet &insert(const RegisterSet &Rs) {
113 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
114 }
115 RegisterSet &remove(const RegisterSet &Rs) {
116 return static_cast<RegisterSet&>(BitVector::reset(Rs));
117 }
118
119 reference operator[](unsigned R) {
120 unsigned Idx = v2x(R);
121 ensure(Idx);
122 return BitVector::operator[](Idx);
123 }
124 bool operator[](unsigned R) const {
125 unsigned Idx = v2x(R);
126 assert(Idx < size());
127 return BitVector::operator[](Idx);
128 }
129 bool has(unsigned R) const {
130 unsigned Idx = v2x(R);
131 if (Idx >= size())
132 return false;
133 return BitVector::test(Idx);
134 }
135
136 bool empty() const {
137 return !BitVector::any();
138 }
139 bool includes(const RegisterSet &Rs) const {
140 // A.BitVector::test(B) <=> A-B != {}
141 return !Rs.BitVector::test(*this);
142 }
143 bool intersects(const RegisterSet &Rs) const {
144 return BitVector::anyCommon(Rs);
145 }
146
147 private:
148 void ensure(unsigned Idx) {
149 if (size() <= Idx)
150 resize(std::max(Idx+1, 32U));
151 }
152 static inline unsigned v2x(unsigned v) {
153 return TargetRegisterInfo::virtReg2Index(v);
154 }
155 static inline unsigned x2v(unsigned x) {
156 return TargetRegisterInfo::index2VirtReg(x);
157 }
158 };
159
160
161 struct PrintRegSet {
162 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
163 : RS(S), TRI(RI) {}
164 friend raw_ostream &operator<< (raw_ostream &OS,
165 const PrintRegSet &P);
166 private:
167 const RegisterSet &RS;
168 const TargetRegisterInfo *TRI;
169 };
170
171 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
172 OS << '{';
173 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
174 OS << ' ' << PrintReg(R, P.TRI);
175 OS << " }";
176 return OS;
177 }
178}
179
180
181namespace {
182 // A convenience class to associate unsigned numbers (such as virtual
183 // registers) with unsigned numbers.
184 struct UnsignedMap : public DenseMap<unsigned,unsigned> {
185 UnsignedMap() : BaseType() {}
186 private:
187 typedef DenseMap<unsigned,unsigned> BaseType;
188 };
189
190 // A utility to establish an ordering between virtual registers:
191 // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
192 // This is meant as a cache for the ordering of virtual registers defined
193 // by a potentially expensive comparison function, or obtained by a proce-
194 // dure that should not be repeated each time two registers are compared.
195 struct RegisterOrdering : public UnsignedMap {
196 RegisterOrdering() : UnsignedMap() {}
197 unsigned operator[](unsigned VR) const {
198 const_iterator F = find(VR);
199 assert(F != end());
200 return F->second;
201 }
202 // Add operator(), so that objects of this class can be used as
203 // comparators in std::sort et al.
204 bool operator() (unsigned VR1, unsigned VR2) const {
205 return operator[](VR1) < operator[](VR2);
206 }
207 };
208}
209
210
211namespace {
212 // Ordering of bit values. This class does not have operator[], but
213 // is supplies a comparison operator() for use in std:: algorithms.
214 // The order is as follows:
215 // - 0 < 1 < ref
216 // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
217 // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
218 struct BitValueOrdering {
219 BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
220 bool operator() (const BitTracker::BitValue &V1,
221 const BitTracker::BitValue &V2) const;
222 const RegisterOrdering &BaseOrd;
223 };
224}
225
226
227bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
228 const BitTracker::BitValue &V2) const {
229 if (V1 == V2)
230 return false;
231 // V1==0 => true, V2==0 => false
232 if (V1.is(0) || V2.is(0))
233 return V1.is(0);
234 // Neither of V1,V2 is 0, and V1!=V2.
235 // V2==1 => false, V1==1 => true
236 if (V2.is(1) || V1.is(1))
237 return !V2.is(1);
238 // Both V1,V2 are refs.
239 unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
240 if (Ind1 != Ind2)
241 return Ind1 < Ind2;
242 // If V1.Pos==V2.Pos
243 assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
244 return V1.RefI.Pos < V2.RefI.Pos;
245}
246
247
248namespace {
249 // Cache for the BitTracker's cell map. Map lookup has a logarithmic
250 // complexity, this class will memoize the lookup results to reduce
251 // the access time for repeated lookups of the same cell.
252 struct CellMapShadow {
253 CellMapShadow(const BitTracker &T) : BT(T) {}
254 const BitTracker::RegisterCell &lookup(unsigned VR) {
255 unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
256 // Grow the vector to at least 32 elements.
257 if (RInd >= CVect.size())
258 CVect.resize(std::max(RInd+16, 32U), 0);
259 const BitTracker::RegisterCell *CP = CVect[RInd];
260 if (CP == 0)
261 CP = CVect[RInd] = &BT.lookup(VR);
262 return *CP;
263 }
264
265 const BitTracker &BT;
266
267 private:
268 typedef std::vector<const BitTracker::RegisterCell*> CellVectType;
269 CellVectType CVect;
270 };
271}
272
273
274namespace {
275 // Comparator class for lexicographic ordering of virtual registers
276 // according to the corresponding BitTracker::RegisterCell objects.
277 struct RegisterCellLexCompare {
278 RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
279 : BitOrd(BO), CM(M) {}
280 bool operator() (unsigned VR1, unsigned VR2) const;
281 private:
282 const BitValueOrdering &BitOrd;
283 CellMapShadow &CM;
284 };
285
286 // Comparator class for lexicographic ordering of virtual registers
287 // according to the specified bits of the corresponding BitTracker::
288 // RegisterCell objects.
289 // Specifically, this class will be used to compare bit B of a register
290 // cell for a selected virtual register R with bit N of any register
291 // other than R.
292 struct RegisterCellBitCompareSel {
293 RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
294 const BitValueOrdering &BO, CellMapShadow &M)
295 : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
296 bool operator() (unsigned VR1, unsigned VR2) const;
297 private:
298 const unsigned SelR, SelB;
299 const unsigned BitN;
300 const BitValueOrdering &BitOrd;
301 CellMapShadow &CM;
302 };
303}
304
305
306bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
307 // Ordering of registers, made up from two given orderings:
308 // - the ordering of the register numbers, and
309 // - the ordering of register cells.
310 // Def. R1 < R2 if:
311 // - cell(R1) < cell(R2), or
312 // - cell(R1) == cell(R2), and index(R1) < index(R2).
313 //
314 // For register cells, the ordering is lexicographic, with index 0 being
315 // the most significant.
316 if (VR1 == VR2)
317 return false;
318
319 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
320 uint16_t W1 = RC1.width(), W2 = RC2.width();
321 for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
322 const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
323 if (V1 != V2)
324 return BitOrd(V1, V2);
325 }
326 // Cells are equal up until the common length.
327 if (W1 != W2)
328 return W1 < W2;
329
330 return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
331}
332
333
334bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
335 if (VR1 == VR2)
336 return false;
337 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
338 const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
339 uint16_t W1 = RC1.width(), W2 = RC2.width();
340 uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
341 uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
342 // If Bit1 exceeds the width of VR1, then:
343 // - return false, if at the same time Bit2 exceeds VR2, or
344 // - return true, otherwise.
345 // (I.e. "a bit value that does not exist is less than any bit value
346 // that does exist".)
347 if (W1 <= Bit1)
348 return Bit2 < W2;
349 // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
350 if (W2 <= Bit2)
351 return false;
352
353 const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
354 if (V1 != V2)
355 return BitOrd(V1, V2);
356 return false;
357}
358
359
360namespace {
361 class OrderedRegisterList {
362 typedef std::vector<unsigned> ListType;
363 public:
364 OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
365 void insert(unsigned VR);
366 void remove(unsigned VR);
367 unsigned operator[](unsigned Idx) const {
368 assert(Idx < Seq.size());
369 return Seq[Idx];
370 }
371 unsigned size() const {
372 return Seq.size();
373 }
374
375 typedef ListType::iterator iterator;
376 typedef ListType::const_iterator const_iterator;
377 iterator begin() { return Seq.begin(); }
378 iterator end() { return Seq.end(); }
379 const_iterator begin() const { return Seq.begin(); }
380 const_iterator end() const { return Seq.end(); }
381
382 // Convenience function to convert an iterator to the corresponding index.
383 unsigned idx(iterator It) const { return It-begin(); }
384 private:
385 ListType Seq;
386 const RegisterOrdering &Ord;
387 };
388
389
390 struct PrintORL {
391 PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
392 : RL(L), TRI(RI) {}
393 friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
394 private:
395 const OrderedRegisterList &RL;
396 const TargetRegisterInfo *TRI;
397 };
398
399 raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
400 OS << '(';
401 OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
402 for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
403 if (I != B)
404 OS << ", ";
405 OS << PrintReg(*I, P.TRI);
406 }
407 OS << ')';
408 return OS;
409 }
410}
411
412
413void OrderedRegisterList::insert(unsigned VR) {
414 iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
415 if (L == Seq.end())
416 Seq.push_back(VR);
417 else
418 Seq.insert(L, VR);
419}
420
421
422void OrderedRegisterList::remove(unsigned VR) {
423 iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
424 assert(L != Seq.end());
425 Seq.erase(L);
426}
427
428
429namespace {
430 // A record of the insert form. The fields correspond to the operands
431 // of the "insert" instruction:
432 // ... = insert(SrcR, InsR, #Wdh, #Off)
433 struct IFRecord {
434 IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
435 : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
436 unsigned SrcR, InsR;
437 uint16_t Wdh, Off;
438 };
439
440 struct PrintIFR {
441 PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
442 : IFR(R), TRI(RI) {}
443 private:
444 const IFRecord &IFR;
445 const TargetRegisterInfo *TRI;
446 friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
447 };
448
449 raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
450 unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
451 OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
452 << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
453 return OS;
454 }
455
456 typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet;
457}
458
459
460namespace llvm {
461 void initializeHexagonGenInsertPass(PassRegistry&);
462 FunctionPass *createHexagonGenInsert();
463}
464
465
466namespace {
467 class HexagonGenInsert : public MachineFunctionPass {
468 public:
469 static char ID;
470 HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) {
471 initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
472 }
473 virtual const char *getPassName() const {
474 return "Hexagon generate \"insert\" instructions";
475 }
476 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
477 AU.addRequired<MachineDominatorTree>();
478 AU.addPreserved<MachineDominatorTree>();
479 MachineFunctionPass::getAnalysisUsage(AU);
480 }
481 virtual bool runOnMachineFunction(MachineFunction &MF);
482
483 private:
484 typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType;
485
486 void buildOrderingMF(RegisterOrdering &RO) const;
487 void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
488 bool isIntClass(const TargetRegisterClass *RC) const;
489 bool isConstant(unsigned VR) const;
490 bool isSmallConstant(unsigned VR) const;
491 bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
492 uint16_t L, uint16_t S) const;
493 bool findSelfReference(unsigned VR) const;
494 bool findNonSelfReference(unsigned VR) const;
495 void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
496 void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
497 unsigned distance(const MachineBasicBlock *FromB,
498 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
499 PairMapType &M) const;
500 unsigned distance(MachineBasicBlock::const_iterator FromI,
501 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
502 PairMapType &M) const;
503 bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
504 void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
505 void findRemovableRegisters(unsigned VR, IFRecord IF,
506 RegisterSet &RMs) const;
507 void computeRemovableRegisters();
508
509 void pruneEmptyLists();
510 void pruneCoveredSets(unsigned VR);
511 void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
512 void pruneRegCopies(unsigned VR);
513 void pruneCandidates();
514 void selectCandidates();
515 bool generateInserts();
516
517 bool removeDeadCode(MachineDomTreeNode *N);
518
519 // IFRecord coupled with a set of potentially removable registers:
520 typedef std::vector<IFRecordWithRegSet> IFListType;
521 typedef DenseMap<unsigned,IFListType> IFMapType; // vreg -> IFListType
522
523 void dump_map() const;
524
525 const HexagonInstrInfo *HII;
526 const HexagonRegisterInfo *HRI;
527
528 MachineFunction *MFN;
529 MachineRegisterInfo *MRI;
530 MachineDominatorTree *MDT;
531 CellMapShadow *CMS;
532
533 RegisterOrdering BaseOrd;
534 RegisterOrdering CellOrd;
535 IFMapType IFMap;
536 };
537
538 char HexagonGenInsert::ID = 0;
539}
540
541
542void HexagonGenInsert::dump_map() const {
543 typedef IFMapType::const_iterator iterator;
544 for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
545 dbgs() << " " << PrintReg(I->first, HRI) << ":\n";
546 const IFListType &LL = I->second;
547 for (unsigned i = 0, n = LL.size(); i < n; ++i)
548 dbgs() << " " << PrintIFR(LL[i].first, HRI) << ", "
549 << PrintRegSet(LL[i].second, HRI) << '\n';
550 }
551}
552
553
554void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
555 unsigned Index = 0;
556 typedef MachineFunction::const_iterator mf_iterator;
557 for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
558 const MachineBasicBlock &B = *A;
559 if (!CMS->BT.reached(&B))
560 continue;
561 typedef MachineBasicBlock::const_iterator mb_iterator;
562 for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
563 const MachineInstr *MI = &*I;
564 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
565 const MachineOperand &MO = MI->getOperand(i);
566 if (MO.isReg() && MO.isDef()) {
567 unsigned R = MO.getReg();
568 assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
569 if (TargetRegisterInfo::isVirtualRegister(R))
570 RO.insert(std::make_pair(R, Index++));
571 }
572 }
573 }
574 }
575 // Since some virtual registers may have had their def and uses eliminated,
576 // they are no longer referenced in the code, and so they will not appear
577 // in the map.
578}
579
580
581void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
582 RegisterOrdering &RO) const {
583 // Create a vector of all virtual registers (collect them from the base
584 // ordering RB), and then sort it using the RegisterCell comparator.
585 BitValueOrdering BVO(RB);
586 RegisterCellLexCompare LexCmp(BVO, *CMS);
587 typedef std::vector<unsigned> SortableVectorType;
588 SortableVectorType VRs;
589 for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
590 VRs.push_back(I->first);
591 std::sort(VRs.begin(), VRs.end(), LexCmp);
592 // Transfer the results to the outgoing register ordering.
593 for (unsigned i = 0, n = VRs.size(); i < n; ++i)
594 RO.insert(std::make_pair(VRs[i], i));
595}
596
597
598inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
599 return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
600}
601
602
603bool HexagonGenInsert::isConstant(unsigned VR) const {
604 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
605 uint16_t W = RC.width();
606 for (uint16_t i = 0; i < W; ++i) {
607 const BitTracker::BitValue &BV = RC[i];
608 if (BV.is(0) || BV.is(1))
609 continue;
610 return false;
611 }
612 return true;
613}
614
615
616bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
617 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
618 uint16_t W = RC.width();
619 if (W > 64)
620 return false;
621 uint64_t V = 0, B = 1;
622 for (uint16_t i = 0; i < W; ++i) {
623 const BitTracker::BitValue &BV = RC[i];
624 if (BV.is(1))
625 V |= B;
626 else if (!BV.is(0))
627 return false;
628 B <<= 1;
629 }
630
631 // For 32-bit registers, consider: Rd = #s16.
632 if (W == 32)
633 return isInt<16>(V);
634
635 // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
636 return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
637}
638
639
640bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
641 unsigned InsR, uint16_t L, uint16_t S) const {
642 const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
643 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
644 const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
645 // Only integet (32-/64-bit) register classes.
646 if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
647 return false;
648 // The "source" register must be of the same class as DstR.
649 if (DstRC != SrcRC)
650 return false;
651 if (DstRC == InsRC)
652 return true;
653 // A 64-bit register can only be generated from other 64-bit registers.
654 if (DstRC == &Hexagon::DoubleRegsRegClass)
655 return false;
656 // Otherwise, the L and S cannot span 32-bit word boundary.
657 if (S < 32 && S+L > 32)
658 return false;
659 return true;
660}
661
662
663bool HexagonGenInsert::findSelfReference(unsigned VR) const {
664 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
665 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
666 const BitTracker::BitValue &V = RC[i];
667 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
668 return true;
669 }
670 return false;
671}
672
673
674bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
675 BitTracker::RegisterCell RC = CMS->lookup(VR);
676 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
677 const BitTracker::BitValue &V = RC[i];
678 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
679 return true;
680 }
681 return false;
682}
683
684
685void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
686 RegisterSet &Defs) const {
687 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
688 const MachineOperand &MO = MI->getOperand(i);
689 if (!MO.isReg() || !MO.isDef())
690 continue;
691 unsigned R = MO.getReg();
692 if (!TargetRegisterInfo::isVirtualRegister(R))
693 continue;
694 Defs.insert(R);
695 }
696}
697
698
699void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
700 RegisterSet &Uses) const {
701 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
702 const MachineOperand &MO = MI->getOperand(i);
703 if (!MO.isReg() || !MO.isUse())
704 continue;
705 unsigned R = MO.getReg();
706 if (!TargetRegisterInfo::isVirtualRegister(R))
707 continue;
708 Uses.insert(R);
709 }
710}
711
712
713unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
714 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
715 PairMapType &M) const {
716 // Forward distance from the end of a block to the beginning of it does
717 // not make sense. This function should not be called with FromB == ToB.
718 assert(FromB != ToB);
719
720 unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
721 // If we have already computed it, return the cached result.
722 PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
723 if (F != M.end())
724 return F->second;
725 unsigned ToRPO = RPO.lookup(ToN);
726
727 unsigned MaxD = 0;
728 typedef MachineBasicBlock::const_pred_iterator pred_iterator;
729 for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
730 const MachineBasicBlock *PB = *I;
731 // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
732 // along that path will be 0, and we don't need to do any calculations
733 // on it.
734 if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
735 continue;
736 unsigned D = PB->size() + distance(FromB, PB, RPO, M);
737 if (D > MaxD)
738 MaxD = D;
739 }
740
741 // Memoize the result for later lookup.
742 M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
743 return MaxD;
744}
745
746
747unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
748 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
749 PairMapType &M) const {
750 const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
751 if (FB == TB)
752 return std::distance(FromI, ToI);
753 unsigned D1 = std::distance(TB->begin(), ToI);
754 unsigned D2 = distance(FB, TB, RPO, M);
755 unsigned D3 = std::distance(FromI, FB->end());
756 return D1+D2+D3;
757}
758
759
760bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
761 OrderedRegisterList &AVs) {
762 if (isDebug()) {
763 dbgs() << LLVM_FUNCTION_NAME << ": " << PrintReg(VR, HRI)
764 << " AVs: " << PrintORL(AVs, HRI) << "\n";
765 }
766 if (AVs.size() == 0)
767 return false;
768
769 typedef OrderedRegisterList::iterator iterator;
770 BitValueOrdering BVO(BaseOrd);
771 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
772 uint16_t W = RC.width();
773
774 typedef std::pair<unsigned,uint16_t> RSRecord; // (reg,shift)
775 typedef std::vector<RSRecord> RSListType;
776 // Have a map, with key being the matching prefix length, and the value
777 // being the list of pairs (R,S), where R's prefix matches VR at S.
778 // (DenseMap<uint16_t,RSListType> fails to instantiate.)
779 typedef DenseMap<unsigned,RSListType> LRSMapType;
780 LRSMapType LM;
781
782 // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
783 // and find matching prefixes from AVs with the rotated RC. Such a prefix
784 // would match a string of bits (of length L) in RC starting at S.
785 for (uint16_t S = 0; S < W; ++S) {
786 iterator B = AVs.begin(), E = AVs.end();
787 // The registers in AVs are ordered according to the lexical order of
788 // the corresponding register cells. This means that the range of regis-
789 // ters in AVs that match a prefix of length L+1 will be contained in
790 // the range that matches a prefix of length L. This means that we can
791 // keep narrowing the search space as the prefix length goes up. This
792 // helps reduce the overall complexity of the search.
793 uint16_t L;
794 for (L = 0; L < W-S; ++L) {
795 // Compare against VR's bits starting at S, which emulates rotation
796 // of VR by S.
797 RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
798 iterator NewB = std::lower_bound(B, E, VR, RCB);
799 iterator NewE = std::upper_bound(NewB, E, VR, RCB);
800 // For the registers that are eliminated from the next range, L is
801 // the longest prefix matching VR at position S (their prefixes
802 // differ from VR at S+L). If L>0, record this information for later
803 // use.
804 if (L > 0) {
805 for (iterator I = B; I != NewB; ++I)
806 LM[L].push_back(std::make_pair(*I, S));
807 for (iterator I = NewE; I != E; ++I)
808 LM[L].push_back(std::make_pair(*I, S));
809 }
810 B = NewB, E = NewE;
811 if (B == E)
812 break;
813 }
814 // Record the final register range. If this range is non-empty, then
815 // L=W-S.
816 assert(B == E || L == W-S);
817 if (B != E) {
818 for (iterator I = B; I != E; ++I)
819 LM[L].push_back(std::make_pair(*I, S));
820 // If B!=E, then we found a range of registers whose prefixes cover the
821 // rest of VR from position S. There is no need to further advance S.
822 break;
823 }
824 }
825
826 if (isDebug()) {
827 dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
828 for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
829 dbgs() << " L=" << I->first << ':';
830 const RSListType &LL = I->second;
831 for (unsigned i = 0, n = LL.size(); i < n; ++i)
832 dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
833 << LL[i].second << ')';
834 dbgs() << '\n';
835 }
836 }
837
838
839 bool Recorded = false;
840
841 for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
842 unsigned SrcR = *I;
843 int FDi = -1, LDi = -1; // First/last different bit.
844 const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
845 uint16_t AW = AC.width();
846 for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
847 if (RC[i] == AC[i])
848 continue;
849 if (FDi == -1)
850 FDi = i;
851 LDi = i;
852 }
853 if (FDi == -1)
854 continue; // TODO (future): Record identical registers.
855 // Look for a register whose prefix could patch the range [FD..LD]
856 // where VR and SrcR differ.
857 uint16_t FD = FDi, LD = LDi; // Switch to unsigned type.
858 uint16_t MinL = LD-FD+1;
859 for (uint16_t L = MinL; L < W; ++L) {
860 LRSMapType::iterator F = LM.find(L);
861 if (F == LM.end())
862 continue;
863 RSListType &LL = F->second;
864 for (unsigned i = 0, n = LL.size(); i < n; ++i) {
865 uint16_t S = LL[i].second;
866 // MinL is the minimum length of the prefix. Any length above MinL
867 // allows some flexibility as to where the prefix can start:
868 // given the extra length EL=L-MinL, the prefix must start between
869 // max(0,FD-EL) and FD.
870 if (S > FD) // Starts too late.
871 continue;
872 uint16_t EL = L-MinL;
873 uint16_t LowS = (EL < FD) ? FD-EL : 0;
874 if (S < LowS) // Starts too early.
875 continue;
876 unsigned InsR = LL[i].first;
877 if (!isValidInsertForm(VR, SrcR, InsR, L, S))
878 continue;
879 if (isDebug()) {
880 dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
881 << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
882 << S << ")\n";
883 }
884 IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
885 IFMap[VR].push_back(RR);
886 Recorded = true;
887 }
888 }
889 }
890
891 return Recorded;
892}
893
894
895void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
896 OrderedRegisterList &AVs) {
897 if (isDebug())
898 dbgs() << "visiting block BB#" << B->getNumber() << "\n";
899
900 // First, check if this block is reachable at all. If not, the bit tracker
901 // will not have any information about registers in it.
902 if (!CMS->BT.reached(B))
903 return;
904
905 bool DoConst = OptConst;
906 // Keep a separate set of registers defined in this block, so that we
907 // can remove them from the list of available registers once all DT
908 // successors have been processed.
909 RegisterSet BlockDefs, InsDefs;
910 for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
911 MachineInstr *MI = &*I;
912 InsDefs.clear();
913 getInstrDefs(MI, InsDefs);
914 // Leave those alone. They are more transparent than "insert".
915 bool Skip = MI->isCopy() || MI->isRegSequence();
916
917 if (!Skip) {
918 // Visit all defined registers, and attempt to find the corresponding
919 // "insert" representations.
920 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
921 // Do not collect registers that are known to be compile-time cons-
922 // tants, unless requested.
923 if (!DoConst && isConstant(VR))
924 continue;
925 // If VR's cell contains a reference to VR, then VR cannot be defined
926 // via "insert". If VR is a constant that can be generated in a single
927 // instruction (without constant extenders), generating it via insert
928 // makes no sense.
929 if (findSelfReference(VR) || isSmallConstant(VR))
930 continue;
931
932 findRecordInsertForms(VR, AVs);
933 }
934 }
935
936 // Insert the defined registers into the list of available registers
937 // after they have been processed.
938 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
939 AVs.insert(VR);
940 BlockDefs.insert(InsDefs);
941 }
942
943 MachineDomTreeNode *N = MDT->getNode(B);
944 typedef GraphTraits<MachineDomTreeNode*> GTN;
945 typedef GTN::ChildIteratorType ChildIter;
946 for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
947 MachineBasicBlock *SB = (*I)->getBlock();
948 collectInBlock(SB, AVs);
949 }
950
951 for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
952 AVs.remove(VR);
953}
954
955
956void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
957 RegisterSet &RMs) const {
958 // For a given register VR and a insert form, find the registers that are
959 // used by the current definition of VR, and which would no longer be
960 // needed for it after the definition of VR is replaced with the insert
961 // form. These are the registers that could potentially become dead.
962 RegisterSet Regs[2];
963
964 unsigned S = 0; // Register set selector.
965 Regs[S].insert(VR);
966
967 while (!Regs[S].empty()) {
968 // Breadth-first search.
969 unsigned OtherS = 1-S;
970 Regs[OtherS].clear();
971 for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
972 Regs[S].remove(R);
973 if (R == IF.SrcR || R == IF.InsR)
974 continue;
975 // Check if a given register has bits that are references to any other
976 // registers. This is to detect situations where the instruction that
977 // defines register R takes register Q as an operand, but R itself does
978 // not contain any bits from Q. Loads are examples of how this could
979 // happen:
980 // R = load Q
981 // In this case (assuming we do not have any knowledge about the loaded
982 // value), we must not treat R as a "conveyance" of the bits from Q.
983 // (The information in BT about R's bits would have them as constants,
984 // in case of zero-extending loads, or refs to R.)
985 if (!findNonSelfReference(R))
986 continue;
987 RMs.insert(R);
988 const MachineInstr *DefI = MRI->getVRegDef(R);
989 assert(DefI);
990 // Do not iterate past PHI nodes to avoid infinite loops. This can
991 // make the final set a bit less accurate, but the removable register
992 // sets are an approximation anyway.
993 if (DefI->isPHI())
994 continue;
995 getInstrUses(DefI, Regs[OtherS]);
996 }
997 S = OtherS;
998 }
999 // The register VR is added to the list as a side-effect of the algorithm,
1000 // but it is not "potentially removable". A potentially removable register
1001 // is one that may become unused (dead) after conversion to the insert form
1002 // IF, and obviously VR (or its replacement) will not become dead by apply-
1003 // ing IF.
1004 RMs.remove(VR);
1005}
1006
1007
1008void HexagonGenInsert::computeRemovableRegisters() {
1009 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1010 IFListType &LL = I->second;
1011 for (unsigned i = 0, n = LL.size(); i < n; ++i)
1012 findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1013 }
1014}
1015
1016
1017void HexagonGenInsert::pruneEmptyLists() {
1018 // Remove all entries from the map, where the register has no insert forms
1019 // associated with it.
1020 typedef SmallVector<IFMapType::iterator,16> IterListType;
1021 IterListType Prune;
1022 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1023 if (I->second.size() == 0)
1024 Prune.push_back(I);
1025 }
1026 for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1027 IFMap.erase(Prune[i]);
1028}
1029
1030
1031void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1032 IFMapType::iterator F = IFMap.find(VR);
1033 assert(F != IFMap.end());
1034 IFListType &LL = F->second;
1035
1036 // First, examine the IF candidates for register VR whose removable-regis-
1037 // ter sets are empty. This means that a given candidate will not help eli-
1038 // minate any registers, but since "insert" is not a constant-extendable
1039 // instruction, using such a candidate may reduce code size if the defini-
1040 // tion of VR is constant-extended.
1041 // If there exists a candidate with a non-empty set, the ones with empty
1042 // sets will not be used and can be removed.
1043 MachineInstr *DefVR = MRI->getVRegDef(VR);
1044 bool DefEx = HII->isConstExtended(DefVR);
1045 bool HasNE = false;
1046 for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1047 if (LL[i].second.empty())
1048 continue;
1049 HasNE = true;
1050 break;
1051 }
1052 if (!DefEx || HasNE) {
1053 // The definition of VR is not constant-extended, or there is a candidate
1054 // with a non-empty set. Remove all candidates with empty sets.
1055 auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1056 return IR.second.empty();
1057 };
1058 auto End = std::remove_if(LL.begin(), LL.end(), IsEmpty);
1059 if (End != LL.end())
1060 LL.erase(End, LL.end());
1061 } else {
1062 // The definition of VR is constant-extended, and all candidates have
1063 // empty removable-register sets. Pick the maximum candidate, and remove
1064 // all others. The "maximum" does not have any special meaning here, it
1065 // is only so that the candidate that will remain on the list is selec-
1066 // ted deterministically.
1067 IFRecord MaxIF = LL[0].first;
1068 for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1069 // If LL[MaxI] < LL[i], then MaxI = i.
1070 const IFRecord &IF = LL[i].first;
1071 unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1072 unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1073 if (M0 > R0)
1074 continue;
1075 if (M0 == R0) {
1076 if (M1 > R1)
1077 continue;
1078 if (M1 == R1) {
1079 if (MaxIF.Wdh > IF.Wdh)
1080 continue;
1081 if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1082 continue;
1083 }
1084 }
1085 // MaxIF < IF.
1086 MaxIF = IF;
1087 }
1088 // Remove everything except the maximum candidate. All register sets
1089 // are empty, so no need to preserve anything.
1090 LL.clear();
1091 LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1092 }
1093
1094 // Now, remove those whose sets of potentially removable registers are
1095 // contained in another IF candidate for VR. For example, given these
1096 // candidates for vreg45,
1097 // %vreg45:
1098 // (%vreg44,%vreg41,#9,#8), { %vreg42 }
1099 // (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
1100 // remove the first one, since it is contained in the second one.
1101 for (unsigned i = 0, n = LL.size(); i < n; ) {
1102 const RegisterSet &RMi = LL[i].second;
1103 unsigned j = 0;
1104 while (j < n) {
1105 if (j != i && LL[j].second.includes(RMi))
1106 break;
1107 j++;
1108 }
1109 if (j == n) { // RMi not contained in anything else.
1110 i++;
1111 continue;
1112 }
1113 LL.erase(LL.begin()+i);
1114 n = LL.size();
1115 }
1116}
1117
1118
1119void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1120 PairMapType &M) {
1121 IFMapType::iterator F = IFMap.find(VR);
1122 assert(F != IFMap.end());
1123 IFListType &LL = F->second;
1124 unsigned Cutoff = VRegDistCutoff;
1125 const MachineInstr *DefV = MRI->getVRegDef(VR);
1126
1127 for (unsigned i = LL.size(); i > 0; --i) {
1128 unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1129 const MachineInstr *DefS = MRI->getVRegDef(SR);
1130 const MachineInstr *DefI = MRI->getVRegDef(IR);
1131 unsigned DSV = distance(DefS, DefV, RPO, M);
1132 if (DSV < Cutoff) {
1133 unsigned DIV = distance(DefI, DefV, RPO, M);
1134 if (DIV < Cutoff)
1135 continue;
1136 }
1137 LL.erase(LL.begin()+(i-1));
1138 }
1139}
1140
1141
1142void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1143 IFMapType::iterator F = IFMap.find(VR);
1144 assert(F != IFMap.end());
1145 IFListType &LL = F->second;
1146
1147 auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1148 return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1149 };
1150 auto End = std::remove_if(LL.begin(), LL.end(), IsCopy);
1151 if (End != LL.end())
1152 LL.erase(End, LL.end());
1153}
1154
1155
1156void HexagonGenInsert::pruneCandidates() {
1157 // Remove candidates that are not beneficial, regardless of the final
1158 // selection method.
1159 // First, remove candidates whose potentially removable set is a subset
1160 // of another candidate's set.
1161 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1162 pruneCoveredSets(I->first);
1163
1164 UnsignedMap RPO;
1165 typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
1166 RPOTType RPOT(MFN);
1167 unsigned RPON = 0;
1168 for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1169 RPO[(*I)->getNumber()] = RPON++;
1170
1171 PairMapType Memo; // Memoization map for distance calculation.
1172 // Remove candidates that would use registers defined too far away.
1173 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1174 pruneUsesTooFar(I->first, RPO, Memo);
1175
1176 pruneEmptyLists();
1177
1178 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1179 pruneRegCopies(I->first);
1180}
1181
1182
1183namespace {
1184 // Class for comparing IF candidates for registers that have multiple of
1185 // them. The smaller the candidate, according to this ordering, the better.
1186 // First, compare the number of zeros in the associated potentially remova-
1187 // ble register sets. "Zero" indicates that the register is very likely to
1188 // become dead after this transformation.
1189 // Second, compare "averages", i.e. use-count per size. The lower wins.
1190 // After that, it does not really matter which one is smaller. Resolve
1191 // the tie in some deterministic way.
1192 struct IFOrdering {
1193 IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1194 : UseC(UC), BaseOrd(BO) {}
1195 bool operator() (const IFRecordWithRegSet &A,
1196 const IFRecordWithRegSet &B) const;
1197 private:
1198 void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1199 unsigned &Sum) const;
1200 const UnsignedMap &UseC;
1201 const RegisterOrdering &BaseOrd;
1202 };
1203}
1204
1205
1206bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1207 const IFRecordWithRegSet &B) const {
1208 unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1209 unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1210 stats(A.second, SizeA, ZeroA, SumA);
1211 stats(B.second, SizeB, ZeroB, SumB);
1212
1213 // We will pick the minimum element. The more zeros, the better.
1214 if (ZeroA != ZeroB)
1215 return ZeroA > ZeroB;
1216 // Compare SumA/SizeA with SumB/SizeB, lower is better.
1217 uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1218 if (AvgA != AvgB)
1219 return AvgA < AvgB;
1220
1221 // The sets compare identical so far. Resort to comparing the IF records.
1222 // The actual values don't matter, this is only for determinism.
1223 unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1224 if (OSA != OSB)
1225 return OSA < OSB;
1226 unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1227 if (OIA != OIB)
1228 return OIA < OIB;
1229 if (A.first.Wdh != B.first.Wdh)
1230 return A.first.Wdh < B.first.Wdh;
1231 return A.first.Off < B.first.Off;
1232}
1233
1234
1235void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1236 unsigned &Sum) const {
1237 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1238 UnsignedMap::const_iterator F = UseC.find(R);
1239 assert(F != UseC.end());
1240 unsigned UC = F->second;
1241 if (UC == 0)
1242 Zero++;
1243 Sum += UC;
1244 Size++;
1245 }
1246}
1247
1248
1249void HexagonGenInsert::selectCandidates() {
1250 // Some registers may have multiple valid candidates. Pick the best one
1251 // (or decide not to use any).
1252
1253 // Compute the "removability" measure of R:
1254 // For each potentially removable register R, record the number of regis-
1255 // ters with IF candidates, where R appears in at least one set.
1256 RegisterSet AllRMs;
1257 UnsignedMap UseC, RemC;
1258 IFMapType::iterator End = IFMap.end();
1259
1260 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1261 const IFListType &LL = I->second;
1262 RegisterSet TT;
1263 for (unsigned i = 0, n = LL.size(); i < n; ++i)
1264 TT.insert(LL[i].second);
1265 for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1266 RemC[R]++;
1267 AllRMs.insert(TT);
1268 }
1269
1270 for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1271 typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
1272 typedef SmallSet<const MachineInstr*,16> InstrSet;
1273 InstrSet UIs;
1274 // Count as the number of instructions in which R is used, not the
1275 // number of operands.
1276 use_iterator E = MRI->use_nodbg_end();
1277 for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1278 UIs.insert(I->getParent());
1279 unsigned C = UIs.size();
1280 // Calculate a measure, which is the number of instructions using R,
1281 // minus the "removability" count computed earlier.
1282 unsigned D = RemC[R];
1283 UseC[R] = (C > D) ? C-D : 0; // doz
1284 }
1285
1286
1287 bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1288 if (!SelectAll0 && !SelectHas0)
1289 SelectAll0 = true;
1290
1291 // The smaller the number UseC for a given register R, the "less used"
1292 // R is aside from the opportunities for removal offered by generating
1293 // "insert" instructions.
1294 // Iterate over the IF map, and for those registers that have multiple
1295 // candidates, pick the minimum one according to IFOrdering.
1296 IFOrdering IFO(UseC, BaseOrd);
1297 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1298 IFListType &LL = I->second;
1299 if (LL.empty())
1300 continue;
1301 // Get the minimum element, remember it and clear the list. If the
1302 // element found is adequate, we will put it back on the list, other-
1303 // wise the list will remain empty, and the entry for this register
1304 // will be removed (i.e. this register will not be replaced by insert).
1305 IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1306 assert(MinI != LL.end());
1307 IFRecordWithRegSet M = *MinI;
1308 LL.clear();
1309
1310 // We want to make sure that this replacement will have a chance to be
1311 // beneficial, and that means that we want to have indication that some
1312 // register will be removed. The most likely registers to be eliminated
1313 // are the use operands in the definition of I->first. Accept/reject a
1314 // candidate based on how many of its uses it can potentially eliminate.
1315
1316 RegisterSet Us;
1317 const MachineInstr *DefI = MRI->getVRegDef(I->first);
1318 getInstrUses(DefI, Us);
1319 bool Accept = false;
1320
1321 if (SelectAll0) {
1322 bool All0 = true;
1323 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1324 if (UseC[R] == 0)
1325 continue;
1326 All0 = false;
1327 break;
1328 }
1329 Accept = All0;
1330 } else if (SelectHas0) {
1331 bool Has0 = false;
1332 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1333 if (UseC[R] != 0)
1334 continue;
1335 Has0 = true;
1336 break;
1337 }
1338 Accept = Has0;
1339 }
1340 if (Accept)
1341 LL.push_back(M);
1342 }
1343
1344 // Remove candidates that add uses of removable registers, unless the
1345 // removable registers are among replacement candidates.
1346 // Recompute the removable registers, since some candidates may have
1347 // been eliminated.
1348 AllRMs.clear();
1349 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1350 const IFListType &LL = I->second;
1351 if (LL.size() > 0)
1352 AllRMs.insert(LL[0].second);
1353 }
1354 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1355 IFListType &LL = I->second;
1356 if (LL.size() == 0)
1357 continue;
1358 unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1359 if (AllRMs[SR] || AllRMs[IR])
1360 LL.clear();
1361 }
1362
1363 pruneEmptyLists();
1364}
1365
1366
1367bool HexagonGenInsert::generateInserts() {
1368 // Create a new register for each one from IFMap, and store them in the
1369 // map.
1370 UnsignedMap RegMap;
1371 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1372 unsigned VR = I->first;
1373 const TargetRegisterClass *RC = MRI->getRegClass(VR);
1374 unsigned NewVR = MRI->createVirtualRegister(RC);
1375 RegMap[VR] = NewVR;
1376 }
1377
1378 // We can generate the "insert" instructions using potentially stale re-
1379 // gisters: SrcR and InsR for a given VR may be among other registers that
1380 // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1381 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1382 MachineInstr *MI = MRI->getVRegDef(I->first);
1383 MachineBasicBlock &B = *MI->getParent();
1384 DebugLoc DL = MI->getDebugLoc();
1385 unsigned NewR = RegMap[I->first];
1386 bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1387 const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1388 : HII->get(Hexagon::S2_insertp);
1389 IFRecord IF = I->second[0].first;
1390 unsigned Wdh = IF.Wdh, Off = IF.Off;
1391 unsigned InsS = 0;
1392 if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1393 InsS = Hexagon::subreg_loreg;
1394 if (Off >= 32) {
1395 InsS = Hexagon::subreg_hireg;
1396 Off -= 32;
1397 }
1398 }
1399 // Advance to the proper location for inserting instructions. This could
1400 // be B.end().
1401 MachineBasicBlock::iterator At = MI;
1402 if (MI->isPHI())
1403 At = B.getFirstNonPHI();
1404
1405 BuildMI(B, At, DL, D, NewR)
1406 .addReg(IF.SrcR)
1407 .addReg(IF.InsR, 0, InsS)
1408 .addImm(Wdh)
1409 .addImm(Off);
1410
1411 MRI->clearKillFlags(IF.SrcR);
1412 MRI->clearKillFlags(IF.InsR);
1413 }
1414
1415 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1416 MachineInstr *DefI = MRI->getVRegDef(I->first);
1417 MRI->replaceRegWith(I->first, RegMap[I->first]);
1418 DefI->eraseFromParent();
1419 }
1420
1421 return true;
1422}
1423
1424
1425bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1426 bool Changed = false;
1427 typedef GraphTraits<MachineDomTreeNode*> GTN;
1428 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1429 Changed |= removeDeadCode(*I);
1430
1431 MachineBasicBlock *B = N->getBlock();
1432 std::vector<MachineInstr*> Instrs;
1433 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1434 Instrs.push_back(&*I);
1435
1436 for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1437 MachineInstr *MI = *I;
1438 unsigned Opc = MI->getOpcode();
1439 // Do not touch lifetime markers. This is why the target-independent DCE
1440 // cannot be used.
1441 if (Opc == TargetOpcode::LIFETIME_START ||
1442 Opc == TargetOpcode::LIFETIME_END)
1443 continue;
1444 bool Store = false;
1445 if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1446 continue;
1447
1448 bool AllDead = true;
1449 SmallVector<unsigned,2> Regs;
1450 for (ConstMIOperands Op(MI); Op.isValid(); ++Op) {
1451 if (!Op->isReg() || !Op->isDef())
1452 continue;
1453 unsigned R = Op->getReg();
1454 if (!TargetRegisterInfo::isVirtualRegister(R) ||
1455 !MRI->use_nodbg_empty(R)) {
1456 AllDead = false;
1457 break;
1458 }
1459 Regs.push_back(R);
1460 }
1461 if (!AllDead)
1462 continue;
1463
1464 B->erase(MI);
1465 for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1466 MRI->markUsesInDebugValueAsUndef(Regs[I]);
1467 Changed = true;
1468 }
1469
1470 return Changed;
1471}
1472
1473
1474bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1475 bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1476 bool Changed = false;
1477 TimerGroup __G("hexinsert");
1478 NamedRegionTimer __T("hexinsert", Timing && !TimingDetail);
1479
1480 // Sanity check: one, but not both.
1481 assert(!OptSelectAll0 || !OptSelectHas0);
1482
1483 IFMap.clear();
1484 BaseOrd.clear();
1485 CellOrd.clear();
1486
1487 const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1488 HII = ST.getInstrInfo();
1489 HRI = ST.getRegisterInfo();
1490 MFN = &MF;
1491 MRI = &MF.getRegInfo();
1492 MDT = &getAnalysis<MachineDominatorTree>();
1493
1494 // Clean up before any further processing, so that dead code does not
1495 // get used in a newly generated "insert" instruction. Have a custom
1496 // version of DCE that preserves lifetime markers. Without it, merging
1497 // of stack objects can fail to recognize and merge disjoint objects
1498 // leading to unnecessary stack growth.
1499 Changed |= removeDeadCode(MDT->getRootNode());
1500
1501 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1502 BitTracker BTLoc(HE, MF);
1503 BTLoc.trace(isDebug());
1504 BTLoc.run();
1505 CellMapShadow MS(BTLoc);
1506 CMS = &MS;
1507
1508 buildOrderingMF(BaseOrd);
1509 buildOrderingBT(BaseOrd, CellOrd);
1510
1511 if (isDebug()) {
1512 dbgs() << "Cell ordering:\n";
1513 for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1514 I != E; ++I) {
1515 unsigned VR = I->first, Pos = I->second;
1516 dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
1517 }
1518 }
1519
1520 // Collect candidates for conversion into the insert forms.
1521 MachineBasicBlock *RootB = MDT->getRoot();
1522 OrderedRegisterList AvailR(CellOrd);
1523
1524 {
1525 NamedRegionTimer _T("collection", "hexinsert", TimingDetail);
1526 collectInBlock(RootB, AvailR);
1527 // Complete the information gathered in IFMap.
1528 computeRemovableRegisters();
1529 }
1530
1531 if (isDebug()) {
1532 dbgs() << "Candidates after collection:\n";
1533 dump_map();
1534 }
1535
1536 if (IFMap.empty())
1537 return false;
1538
1539 {
1540 NamedRegionTimer _T("pruning", "hexinsert", TimingDetail);
1541 pruneCandidates();
1542 }
1543
1544 if (isDebug()) {
1545 dbgs() << "Candidates after pruning:\n";
1546 dump_map();
1547 }
1548
1549 if (IFMap.empty())
1550 return false;
1551
1552 {
1553 NamedRegionTimer _T("selection", "hexinsert", TimingDetail);
1554 selectCandidates();
1555 }
1556
1557 if (isDebug()) {
1558 dbgs() << "Candidates after selection:\n";
1559 dump_map();
1560 }
1561
1562 // Filter out vregs beyond the cutoff.
1563 if (VRegIndexCutoff.getPosition()) {
1564 unsigned Cutoff = VRegIndexCutoff;
1565 typedef SmallVector<IFMapType::iterator,16> IterListType;
1566 IterListType Out;
1567 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1568 unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1569 if (Idx >= Cutoff)
1570 Out.push_back(I);
1571 }
1572 for (unsigned i = 0, n = Out.size(); i < n; ++i)
1573 IFMap.erase(Out[i]);
1574 }
1575
1576 {
1577 NamedRegionTimer _T("generation", "hexinsert", TimingDetail);
1578 Changed = generateInserts();
1579 }
1580
1581 return Changed;
1582}
1583
1584
1585FunctionPass *llvm::createHexagonGenInsert() {
1586 return new HexagonGenInsert();
1587}
1588
1589
1590//===----------------------------------------------------------------------===//
1591// Public Constructor Functions
1592//===----------------------------------------------------------------------===//
1593
1594INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1595 "Hexagon generate \"insert\" instructions", false, false)
1596INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1597INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1598 "Hexagon generate \"insert\" instructions", false, false)