blob: fd6b2427891d10e4f3fa1d28003ab96c2392e51a [file] [log] [blame]
Jessica Paquette596f4832017-03-06 21:31:18 +00001//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// Replaces repeated sequences of instructions with function calls.
12///
13/// This works by placing every instruction from every basic block in a
14/// suffix tree, and repeatedly querying that tree for repeated sequences of
15/// instructions. If a sequence of instructions appears often, then it ought
16/// to be beneficial to pull out into a function.
17///
18/// This was originally presented at the 2016 LLVM Developers' Meeting in the
19/// talk "Reducing Code Size Using Outlining". For a high-level overview of
20/// how this pass works, the talk is available on YouTube at
21///
22/// https://www.youtube.com/watch?v=yorld-WSOeU
23///
24/// The slides for the talk are available at
25///
26/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
27///
28/// The talk provides an overview of how the outliner finds candidates and
29/// ultimately outlines them. It describes how the main data structure for this
30/// pass, the suffix tree, is queried and purged for candidates. It also gives
31/// a simplified suffix tree construction algorithm for suffix trees based off
32/// of the algorithm actually used here, Ukkonen's algorithm.
33///
34/// For the original RFC for this pass, please see
35///
36/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
37///
38/// For more information on the suffix tree data structure, please see
39/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
40///
41//===----------------------------------------------------------------------===//
42#include "llvm/ADT/DenseMap.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/Twine.h"
45#include "llvm/CodeGen/MachineFrameInfo.h"
46#include "llvm/CodeGen/MachineFunction.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/Passes.h"
50#include "llvm/IR/IRBuilder.h"
51#include "llvm/Support/Allocator.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetInstrInfo.h"
55#include "llvm/Target/TargetMachine.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include <functional>
59#include <map>
60#include <sstream>
61#include <tuple>
62#include <vector>
63
64#define DEBUG_TYPE "machine-outliner"
65
66using namespace llvm;
67
68STATISTIC(NumOutlined, "Number of candidates outlined");
69STATISTIC(FunctionsCreated, "Number of functions created");
70
71namespace {
72
Jessica Paquetteacffa282017-03-23 21:27:38 +000073/// \brief An individual sequence of instructions to be replaced with a call to
74/// an outlined function.
75struct Candidate {
76
77 /// Set to false if the candidate overlapped with another candidate.
78 bool InCandidateList = true;
79
80 /// The start index of this \p Candidate.
81 size_t StartIdx;
82
83 /// The number of instructions in this \p Candidate.
84 size_t Len;
85
86 /// The index of this \p Candidate's \p OutlinedFunction in the list of
87 /// \p OutlinedFunctions.
88 size_t FunctionIdx;
89
90 /// \brief The number of instructions that would be saved by outlining every
91 /// candidate of this type.
92 ///
93 /// This is a fixed value which is not updated during the candidate pruning
94 /// process. It is only used for deciding which candidate to keep if two
95 /// candidates overlap. The true benefit is stored in the OutlinedFunction
96 /// for some given candidate.
97 unsigned Benefit = 0;
98
99 Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
100 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
101
102 Candidate() {}
103
104 /// \brief Used to ensure that \p Candidates are outlined in an order that
105 /// preserves the start and end indices of other \p Candidates.
106 bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
107};
108
109/// \brief The information necessary to create an outlined function for some
110/// class of candidate.
111struct OutlinedFunction {
112
113 /// The actual outlined function created.
114 /// This is initialized after we go through and create the actual function.
115 MachineFunction *MF = nullptr;
116
117 /// A number assigned to this function which appears at the end of its name.
118 size_t Name;
119
120 /// The number of candidates for this OutlinedFunction.
121 size_t OccurrenceCount = 0;
122
123 /// \brief The sequence of integers corresponding to the instructions in this
124 /// function.
125 std::vector<unsigned> Sequence;
126
127 /// The number of instructions this function would save.
128 unsigned Benefit = 0;
129
130 /// \brief Set to true if candidates for this outlined function should be
131 /// replaced with tail calls to this OutlinedFunction.
132 bool IsTailCall = false;
133
134 OutlinedFunction(size_t Name, size_t OccurrenceCount,
135 const std::vector<unsigned> &Sequence,
136 unsigned Benefit, bool IsTailCall)
137 : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
138 Benefit(Benefit), IsTailCall(IsTailCall)
139 {}
140};
141
Jessica Paquette596f4832017-03-06 21:31:18 +0000142/// Represents an undefined index in the suffix tree.
143const size_t EmptyIdx = -1;
144
145/// A node in a suffix tree which represents a substring or suffix.
146///
147/// Each node has either no children or at least two children, with the root
148/// being a exception in the empty tree.
149///
150/// Children are represented as a map between unsigned integers and nodes. If
151/// a node N has a child M on unsigned integer k, then the mapping represented
152/// by N is a proper prefix of the mapping represented by M. Note that this,
153/// although similar to a trie is somewhat different: each node stores a full
154/// substring of the full mapping rather than a single character state.
155///
156/// Each internal node contains a pointer to the internal node representing
157/// the same string, but with the first character chopped off. This is stored
158/// in \p Link. Each leaf node stores the start index of its respective
159/// suffix in \p SuffixIdx.
160struct SuffixTreeNode {
161
162 /// The children of this node.
163 ///
164 /// A child existing on an unsigned integer implies that from the mapping
165 /// represented by the current node, there is a way to reach another
166 /// mapping by tacking that character on the end of the current string.
167 DenseMap<unsigned, SuffixTreeNode *> Children;
168
169 /// A flag set to false if the node has been pruned from the tree.
170 bool IsInTree = true;
171
172 /// The start index of this node's substring in the main string.
173 size_t StartIdx = EmptyIdx;
174
175 /// The end index of this node's substring in the main string.
176 ///
177 /// Every leaf node must have its \p EndIdx incremented at the end of every
178 /// step in the construction algorithm. To avoid having to update O(N)
179 /// nodes individually at the end of every step, the end index is stored
180 /// as a pointer.
181 size_t *EndIdx = nullptr;
182
183 /// For leaves, the start index of the suffix represented by this node.
184 ///
185 /// For all other nodes, this is ignored.
186 size_t SuffixIdx = EmptyIdx;
187
188 /// \brief For internal nodes, a pointer to the internal node representing
189 /// the same sequence with the first character chopped off.
190 ///
191 /// This has two major purposes in the suffix tree. The first is as a
192 /// shortcut in Ukkonen's construction algorithm. One of the things that
193 /// Ukkonen's algorithm does to achieve linear-time construction is
194 /// keep track of which node the next insert should be at. This makes each
195 /// insert O(1), and there are a total of O(N) inserts. The suffix link
196 /// helps with inserting children of internal nodes.
197 ///
198 /// Say we add a child to an internal node with associated mapping S. The
199 /// next insertion must be at the node representing S - its first character.
200 /// This is given by the way that we iteratively build the tree in Ukkonen's
201 /// algorithm. The main idea is to look at the suffixes of each prefix in the
202 /// string, starting with the longest suffix of the prefix, and ending with
203 /// the shortest. Therefore, if we keep pointers between such nodes, we can
204 /// move to the next insertion point in O(1) time. If we don't, then we'd
205 /// have to query from the root, which takes O(N) time. This would make the
206 /// construction algorithm O(N^2) rather than O(N).
207 ///
208 /// The suffix link is also used during the tree pruning process to let us
209 /// quickly throw out a bunch of potential overlaps. Say we have a sequence
210 /// S we want to outline. Then each of its suffixes contribute to at least
211 /// one overlapping case. Therefore, we can follow the suffix links
212 /// starting at the node associated with S to the root and "delete" those
213 /// nodes, save for the root. For each candidate, this removes
214 /// O(|candidate|) overlaps from the search space. We don't actually
215 /// completely invalidate these nodes though; doing that is far too
216 /// aggressive. Consider the following pathological string:
217 ///
218 /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
219 ///
220 /// If we, for the sake of example, outlined 1 2 3, then we would throw
221 /// out all instances of 2 3. This isn't desirable. To get around this,
222 /// when we visit a link node, we decrement its occurrence count by the
223 /// number of sequences we outlined in the current step. In the pathological
224 /// example, the 2 3 node would have an occurrence count of 8, while the
225 /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
226 /// would survive to the next round allowing us to outline the extra
227 /// instances of 2 3.
228 SuffixTreeNode *Link = nullptr;
229
230 /// The parent of this node. Every node except for the root has a parent.
231 SuffixTreeNode *Parent = nullptr;
232
233 /// The number of times this node's string appears in the tree.
234 ///
235 /// This is equal to the number of leaf children of the string. It represents
236 /// the number of suffixes that the node's string is a prefix of.
237 size_t OccurrenceCount = 0;
238
Jessica Paquetteacffa282017-03-23 21:27:38 +0000239 /// The length of the string formed by concatenating the edge labels from the
240 /// root to this node.
241 size_t ConcatLen = 0;
242
Jessica Paquette596f4832017-03-06 21:31:18 +0000243 /// Returns true if this node is a leaf.
244 bool isLeaf() const { return SuffixIdx != EmptyIdx; }
245
246 /// Returns true if this node is the root of its owning \p SuffixTree.
247 bool isRoot() const { return StartIdx == EmptyIdx; }
248
249 /// Return the number of elements in the substring associated with this node.
250 size_t size() const {
251
252 // Is it the root? If so, it's the empty string so return 0.
253 if (isRoot())
254 return 0;
255
256 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
257
258 // Size = the number of elements in the string.
259 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
260 return *EndIdx - StartIdx + 1;
261 }
262
263 SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
264 SuffixTreeNode *Parent)
265 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
266
267 SuffixTreeNode() {}
268};
269
270/// A data structure for fast substring queries.
271///
272/// Suffix trees represent the suffixes of their input strings in their leaves.
273/// A suffix tree is a type of compressed trie structure where each node
274/// represents an entire substring rather than a single character. Each leaf
275/// of the tree is a suffix.
276///
277/// A suffix tree can be seen as a type of state machine where each state is a
278/// substring of the full string. The tree is structured so that, for a string
279/// of length N, there are exactly N leaves in the tree. This structure allows
280/// us to quickly find repeated substrings of the input string.
281///
282/// In this implementation, a "string" is a vector of unsigned integers.
283/// These integers may result from hashing some data type. A suffix tree can
284/// contain 1 or many strings, which can then be queried as one large string.
285///
286/// The suffix tree is implemented using Ukkonen's algorithm for linear-time
287/// suffix tree construction. Ukkonen's algorithm is explained in more detail
288/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
289/// paper is available at
290///
291/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
292class SuffixTree {
293private:
294 /// Each element is an integer representing an instruction in the module.
295 ArrayRef<unsigned> Str;
296
297 /// Maintains each node in the tree.
Jessica Paquetted4cb9c62017-03-08 23:55:33 +0000298 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
Jessica Paquette596f4832017-03-06 21:31:18 +0000299
300 /// The root of the suffix tree.
301 ///
302 /// The root represents the empty string. It is maintained by the
303 /// \p NodeAllocator like every other node in the tree.
304 SuffixTreeNode *Root = nullptr;
305
Jessica Paquetteacffa282017-03-23 21:27:38 +0000306 /// Stores each leaf node in the tree.
307 ///
308 /// This is used for finding outlining candidates.
Jessica Paquette596f4832017-03-06 21:31:18 +0000309 std::vector<SuffixTreeNode *> LeafVector;
310
311 /// Maintains the end indices of the internal nodes in the tree.
312 ///
313 /// Each internal node is guaranteed to never have its end index change
314 /// during the construction algorithm; however, leaves must be updated at
315 /// every step. Therefore, we need to store leaf end indices by reference
316 /// to avoid updating O(N) leaves at every step of construction. Thus,
317 /// every internal node must be allocated its own end index.
318 BumpPtrAllocator InternalEndIdxAllocator;
319
320 /// The end index of each leaf in the tree.
321 size_t LeafEndIdx = -1;
322
323 /// \brief Helper struct which keeps track of the next insertion point in
324 /// Ukkonen's algorithm.
325 struct ActiveState {
326 /// The next node to insert at.
327 SuffixTreeNode *Node;
328
329 /// The index of the first character in the substring currently being added.
330 size_t Idx = EmptyIdx;
331
332 /// The length of the substring we have to add at the current step.
333 size_t Len = 0;
334 };
335
336 /// \brief The point the next insertion will take place at in the
337 /// construction algorithm.
338 ActiveState Active;
339
340 /// Allocate a leaf node and add it to the tree.
341 ///
342 /// \param Parent The parent of this node.
343 /// \param StartIdx The start index of this node's associated string.
344 /// \param Edge The label on the edge leaving \p Parent to this node.
345 ///
346 /// \returns A pointer to the allocated leaf node.
347 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
348 unsigned Edge) {
349
350 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
351
Jessica Paquetted4cb9c62017-03-08 23:55:33 +0000352 SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
353 &LeafEndIdx,
354 nullptr,
355 &Parent);
Jessica Paquette596f4832017-03-06 21:31:18 +0000356 Parent.Children[Edge] = N;
357
358 return N;
359 }
360
361 /// Allocate an internal node and add it to the tree.
362 ///
363 /// \param Parent The parent of this node. Only null when allocating the root.
364 /// \param StartIdx The start index of this node's associated string.
365 /// \param EndIdx The end index of this node's associated string.
366 /// \param Edge The label on the edge leaving \p Parent to this node.
367 ///
368 /// \returns A pointer to the allocated internal node.
369 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
370 size_t EndIdx, unsigned Edge) {
371
372 assert(StartIdx <= EndIdx && "String can't start after it ends!");
373 assert(!(!Parent && StartIdx != EmptyIdx) &&
374 "Non-root internal nodes must have parents!");
375
376 size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
Jessica Paquetted4cb9c62017-03-08 23:55:33 +0000377 SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
378 E,
379 Root,
380 Parent);
Jessica Paquette596f4832017-03-06 21:31:18 +0000381 if (Parent)
382 Parent->Children[Edge] = N;
383
384 return N;
385 }
386
387 /// \brief Set the suffix indices of the leaves to the start indices of their
388 /// respective suffixes. Also stores each leaf in \p LeafVector at its
389 /// respective suffix index.
390 ///
391 /// \param[in] CurrNode The node currently being visited.
392 /// \param CurrIdx The current index of the string being visited.
393 void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
394
395 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
396
Jessica Paquetteacffa282017-03-23 21:27:38 +0000397 // Store the length of the concatenation of all strings from the root to
398 // this node.
399 if (!CurrNode.isRoot()) {
400 if (CurrNode.ConcatLen == 0)
401 CurrNode.ConcatLen = CurrNode.size();
402
403 if (CurrNode.Parent)
404 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
405 }
406
Jessica Paquette596f4832017-03-06 21:31:18 +0000407 // Traverse the tree depth-first.
408 for (auto &ChildPair : CurrNode.Children) {
409 assert(ChildPair.second && "Node had a null child!");
410 setSuffixIndices(*ChildPair.second,
411 CurrIdx + ChildPair.second->size());
412 }
413
414 // Is this node a leaf?
415 if (IsLeaf) {
416 // If yes, give it a suffix index and bump its parent's occurrence count.
417 CurrNode.SuffixIdx = Str.size() - CurrIdx;
418 assert(CurrNode.Parent && "CurrNode had no parent!");
419 CurrNode.Parent->OccurrenceCount++;
420
421 // Store the leaf in the leaf vector for pruning later.
422 LeafVector[CurrNode.SuffixIdx] = &CurrNode;
423 }
424 }
425
426 /// \brief Construct the suffix tree for the prefix of the input ending at
427 /// \p EndIdx.
428 ///
429 /// Used to construct the full suffix tree iteratively. At the end of each
430 /// step, the constructed suffix tree is either a valid suffix tree, or a
431 /// suffix tree with implicit suffixes. At the end of the final step, the
432 /// suffix tree is a valid tree.
433 ///
434 /// \param EndIdx The end index of the current prefix in the main string.
435 /// \param SuffixesToAdd The number of suffixes that must be added
436 /// to complete the suffix tree at the current phase.
437 ///
438 /// \returns The number of suffixes that have not been added at the end of
439 /// this step.
440 unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
441 SuffixTreeNode *NeedsLink = nullptr;
442
443 while (SuffixesToAdd > 0) {
444
445 // Are we waiting to add anything other than just the last character?
446 if (Active.Len == 0) {
447 // If not, then say the active index is the end index.
448 Active.Idx = EndIdx;
449 }
450
451 assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
452
453 // The first character in the current substring we're looking at.
454 unsigned FirstChar = Str[Active.Idx];
455
456 // Have we inserted anything starting with FirstChar at the current node?
457 if (Active.Node->Children.count(FirstChar) == 0) {
458 // If not, then we can just insert a leaf and move too the next step.
459 insertLeaf(*Active.Node, EndIdx, FirstChar);
460
461 // The active node is an internal node, and we visited it, so it must
462 // need a link if it doesn't have one.
463 if (NeedsLink) {
464 NeedsLink->Link = Active.Node;
465 NeedsLink = nullptr;
466 }
467 } else {
468 // There's a match with FirstChar, so look for the point in the tree to
469 // insert a new node.
470 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
471
472 size_t SubstringLen = NextNode->size();
473
474 // Is the current suffix we're trying to insert longer than the size of
475 // the child we want to move to?
476 if (Active.Len >= SubstringLen) {
477 // If yes, then consume the characters we've seen and move to the next
478 // node.
479 Active.Idx += SubstringLen;
480 Active.Len -= SubstringLen;
481 Active.Node = NextNode;
482 continue;
483 }
484
485 // Otherwise, the suffix we're trying to insert must be contained in the
486 // next node we want to move to.
487 unsigned LastChar = Str[EndIdx];
488
489 // Is the string we're trying to insert a substring of the next node?
490 if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
491 // If yes, then we're done for this step. Remember our insertion point
492 // and move to the next end index. At this point, we have an implicit
493 // suffix tree.
494 if (NeedsLink && !Active.Node->isRoot()) {
495 NeedsLink->Link = Active.Node;
496 NeedsLink = nullptr;
497 }
498
499 Active.Len++;
500 break;
501 }
502
503 // The string we're trying to insert isn't a substring of the next node,
504 // but matches up to a point. Split the node.
505 //
506 // For example, say we ended our search at a node n and we're trying to
507 // insert ABD. Then we'll create a new node s for AB, reduce n to just
508 // representing C, and insert a new leaf node l to represent d. This
509 // allows us to ensure that if n was a leaf, it remains a leaf.
510 //
511 // | ABC ---split---> | AB
512 // n s
513 // C / \ D
514 // n l
515
516 // The node s from the diagram
517 SuffixTreeNode *SplitNode =
518 insertInternalNode(Active.Node,
519 NextNode->StartIdx,
520 NextNode->StartIdx + Active.Len - 1,
521 FirstChar);
522
523 // Insert the new node representing the new substring into the tree as
524 // a child of the split node. This is the node l from the diagram.
525 insertLeaf(*SplitNode, EndIdx, LastChar);
526
527 // Make the old node a child of the split node and update its start
528 // index. This is the node n from the diagram.
529 NextNode->StartIdx += Active.Len;
530 NextNode->Parent = SplitNode;
531 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
532
533 // SplitNode is an internal node, update the suffix link.
534 if (NeedsLink)
535 NeedsLink->Link = SplitNode;
536
537 NeedsLink = SplitNode;
538 }
539
540 // We've added something new to the tree, so there's one less suffix to
541 // add.
542 SuffixesToAdd--;
543
544 if (Active.Node->isRoot()) {
545 if (Active.Len > 0) {
546 Active.Len--;
547 Active.Idx = EndIdx - SuffixesToAdd + 1;
548 }
549 } else {
550 // Start the next phase at the next smallest suffix.
551 Active.Node = Active.Node->Link;
552 }
553 }
554
555 return SuffixesToAdd;
556 }
557
Jessica Paquette596f4832017-03-06 21:31:18 +0000558public:
559
Jessica Paquetteacffa282017-03-23 21:27:38 +0000560 /// Find all repeated substrings that satisfy \p BenefitFn.
Jessica Paquette596f4832017-03-06 21:31:18 +0000561 ///
Jessica Paquetteacffa282017-03-23 21:27:38 +0000562 /// If a substring appears at least twice, then it must be represented by
563 /// an internal node which appears in at least two suffixes. Each suffix is
564 /// represented by a leaf node. To do this, we visit each internal node in
565 /// the tree, using the leaf children of each internal node. If an internal
566 /// node represents a beneficial substring, then we use each of its leaf
567 /// children to find the locations of its substring.
Jessica Paquette596f4832017-03-06 21:31:18 +0000568 ///
Jessica Paquetteacffa282017-03-23 21:27:38 +0000569 /// \param[out] CandidateList Filled with candidates representing each
570 /// beneficial substring.
571 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
572 /// type of candidate.
573 /// \param BenefitFn The function to satisfy.
Jessica Paquette596f4832017-03-06 21:31:18 +0000574 ///
Jessica Paquetteacffa282017-03-23 21:27:38 +0000575 /// \returns The length of the longest candidate found.
576 size_t findCandidates(std::vector<Candidate> &CandidateList,
577 std::vector<OutlinedFunction> &FunctionList,
578 const std::function<unsigned(SuffixTreeNode &, size_t, unsigned)>
579 &BenefitFn) {
Jessica Paquette596f4832017-03-06 21:31:18 +0000580
Jessica Paquetteacffa282017-03-23 21:27:38 +0000581 CandidateList.clear();
582 FunctionList.clear();
583 size_t FnIdx = 0;
584 size_t MaxLen = 0;
Jessica Paquette596f4832017-03-06 21:31:18 +0000585
Jessica Paquetteacffa282017-03-23 21:27:38 +0000586 for (SuffixTreeNode* Leaf : LeafVector) {
587 assert(Leaf && "Leaves in LeafVector cannot be null!");
588 if (!Leaf->IsInTree)
589 continue;
Jessica Paquette596f4832017-03-06 21:31:18 +0000590
Jessica Paquetteacffa282017-03-23 21:27:38 +0000591 assert(Leaf->Parent && "All leaves must have parents!");
592 SuffixTreeNode &Parent = *(Leaf->Parent);
Jessica Paquette596f4832017-03-06 21:31:18 +0000593
Jessica Paquetteacffa282017-03-23 21:27:38 +0000594 // If it doesn't appear enough, or we already outlined from it, skip it.
595 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
596 continue;
Jessica Paquette596f4832017-03-06 21:31:18 +0000597
Jessica Paquetteacffa282017-03-23 21:27:38 +0000598 size_t StringLen = Leaf->ConcatLen - Leaf->size();
Jessica Paquette596f4832017-03-06 21:31:18 +0000599
Jessica Paquetteacffa282017-03-23 21:27:38 +0000600 // How many instructions would outlining this string save?
601 unsigned Benefit = BenefitFn(Parent,
602 StringLen, Str[Leaf->SuffixIdx + StringLen - 1]);
Jessica Paquette596f4832017-03-06 21:31:18 +0000603
Jessica Paquetteacffa282017-03-23 21:27:38 +0000604 // If it's not beneficial, skip it.
605 if (Benefit < 1)
606 continue;
Jessica Paquette596f4832017-03-06 21:31:18 +0000607
Jessica Paquetteacffa282017-03-23 21:27:38 +0000608 if (StringLen > MaxLen)
609 MaxLen = StringLen;
Jessica Paquette596f4832017-03-06 21:31:18 +0000610
Jessica Paquetteacffa282017-03-23 21:27:38 +0000611 unsigned OccurrenceCount = 0;
612 for (auto &ChildPair : Parent.Children) {
613 SuffixTreeNode *M = ChildPair.second;
Jessica Paquette596f4832017-03-06 21:31:18 +0000614
Jessica Paquetteacffa282017-03-23 21:27:38 +0000615 // Is it a leaf? If so, we have an occurrence of this candidate.
616 if (M && M->IsInTree && M->isLeaf()) {
617 OccurrenceCount++;
618 CandidateList.emplace_back(M->SuffixIdx, StringLen, FnIdx);
619 CandidateList.back().Benefit = Benefit;
620 M->IsInTree = false;
Jessica Paquette596f4832017-03-06 21:31:18 +0000621 }
622 }
623
Jessica Paquetteacffa282017-03-23 21:27:38 +0000624 // Save the function for the new candidate sequence.
625 std::vector<unsigned> CandidateSequence;
626 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
627 CandidateSequence.push_back(Str[i]);
628
629 FunctionList.emplace_back(FnIdx, OccurrenceCount, CandidateSequence,
630 Benefit, false);
631
632 // Move to the next function.
633 FnIdx++;
634 Parent.IsInTree = false;
Jessica Paquette596f4832017-03-06 21:31:18 +0000635 }
636
Jessica Paquetteacffa282017-03-23 21:27:38 +0000637 return MaxLen;
Jessica Paquette596f4832017-03-06 21:31:18 +0000638 }
Jessica Paquetteacffa282017-03-23 21:27:38 +0000639
Jessica Paquette596f4832017-03-06 21:31:18 +0000640 /// Construct a suffix tree from a sequence of unsigned integers.
641 ///
642 /// \param Str The string to construct the suffix tree for.
643 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
644 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
645 Root->IsInTree = true;
646 Active.Node = Root;
647 LeafVector = std::vector<SuffixTreeNode*>(Str.size());
648
649 // Keep track of the number of suffixes we have to add of the current
650 // prefix.
651 size_t SuffixesToAdd = 0;
652 Active.Node = Root;
653
654 // Construct the suffix tree iteratively on each prefix of the string.
655 // PfxEndIdx is the end index of the current prefix.
656 // End is one past the last element in the string.
657 for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
658 SuffixesToAdd++;
659 LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
660 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
661 }
662
663 // Set the suffix indices of each leaf.
664 assert(Root && "Root node can't be nullptr!");
665 setSuffixIndices(*Root, 0);
666 }
667};
668
Jessica Paquette596f4832017-03-06 21:31:18 +0000669/// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
670struct InstructionMapper {
671
672 /// \brief The next available integer to assign to a \p MachineInstr that
673 /// cannot be outlined.
674 ///
675 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
676 unsigned IllegalInstrNumber = -3;
677
678 /// \brief The next available integer to assign to a \p MachineInstr that can
679 /// be outlined.
680 unsigned LegalInstrNumber = 0;
681
682 /// Correspondence from \p MachineInstrs to unsigned integers.
683 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
684 InstructionIntegerMap;
685
686 /// Corresponcence from unsigned integers to \p MachineInstrs.
687 /// Inverse of \p InstructionIntegerMap.
688 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
689
690 /// The vector of unsigned integers that the module is mapped to.
691 std::vector<unsigned> UnsignedVec;
692
693 /// \brief Stores the location of the instruction associated with the integer
694 /// at index i in \p UnsignedVec for each index i.
695 std::vector<MachineBasicBlock::iterator> InstrList;
696
697 /// \brief Maps \p *It to a legal integer.
698 ///
699 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
700 /// \p IntegerInstructionMap, and \p LegalInstrNumber.
701 ///
702 /// \returns The integer that \p *It was mapped to.
703 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
704
705 // Get the integer for this instruction or give it the current
706 // LegalInstrNumber.
707 InstrList.push_back(It);
708 MachineInstr &MI = *It;
709 bool WasInserted;
710 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
711 ResultIt;
712 std::tie(ResultIt, WasInserted) =
713 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
714 unsigned MINumber = ResultIt->second;
715
716 // There was an insertion.
717 if (WasInserted) {
718 LegalInstrNumber++;
719 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
720 }
721
722 UnsignedVec.push_back(MINumber);
723
724 // Make sure we don't overflow or use any integers reserved by the DenseMap.
725 if (LegalInstrNumber >= IllegalInstrNumber)
726 report_fatal_error("Instruction mapping overflow!");
727
728 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
729 && "Tried to assign DenseMap tombstone or empty key to instruction.");
730 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
731 && "Tried to assign DenseMap tombstone or empty key to instruction.");
732
733 return MINumber;
734 }
735
736 /// Maps \p *It to an illegal integer.
737 ///
738 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
739 ///
740 /// \returns The integer that \p *It was mapped to.
741 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
742 unsigned MINumber = IllegalInstrNumber;
743
744 InstrList.push_back(It);
745 UnsignedVec.push_back(IllegalInstrNumber);
746 IllegalInstrNumber--;
747
748 assert(LegalInstrNumber < IllegalInstrNumber &&
749 "Instruction mapping overflow!");
750
751 assert(IllegalInstrNumber !=
752 DenseMapInfo<unsigned>::getEmptyKey() &&
753 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
754
755 assert(IllegalInstrNumber !=
756 DenseMapInfo<unsigned>::getTombstoneKey() &&
757 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
758
759 return MINumber;
760 }
761
762 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
763 /// and appends it to \p UnsignedVec and \p InstrList.
764 ///
765 /// Two instructions are assigned the same integer if they are identical.
766 /// If an instruction is deemed unsafe to outline, then it will be assigned an
767 /// unique integer. The resulting mapping is placed into a suffix tree and
768 /// queried for candidates.
769 ///
770 /// \param MBB The \p MachineBasicBlock to be translated into integers.
771 /// \param TRI \p TargetRegisterInfo for the module.
772 /// \param TII \p TargetInstrInfo for the module.
773 void convertToUnsignedVec(MachineBasicBlock &MBB,
774 const TargetRegisterInfo &TRI,
775 const TargetInstrInfo &TII) {
776 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
777 It++) {
778
779 // Keep track of where this instruction is in the module.
780 switch(TII.getOutliningType(*It)) {
781 case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
782 mapToIllegalUnsigned(It);
783 break;
784
785 case TargetInstrInfo::MachineOutlinerInstrType::Legal:
786 mapToLegalUnsigned(It);
787 break;
788
789 case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
790 break;
791 }
792 }
793
794 // After we're done every insertion, uniquely terminate this part of the
795 // "string". This makes sure we won't match across basic block or function
796 // boundaries since the "end" is encoded uniquely and thus appears in no
797 // repeated substring.
798 InstrList.push_back(MBB.end());
799 UnsignedVec.push_back(IllegalInstrNumber);
800 IllegalInstrNumber--;
801 }
802
803 InstructionMapper() {
804 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
805 // changed.
806 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
807 "DenseMapInfo<unsigned>'s empty key isn't -1!");
808 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
809 "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
810 }
811};
812
813/// \brief An interprocedural pass which finds repeated sequences of
814/// instructions and replaces them with calls to functions.
815///
816/// Each instruction is mapped to an unsigned integer and placed in a string.
817/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
818/// is then repeatedly queried for repeated sequences of instructions. Each
819/// non-overlapping repeated sequence is then placed in its own
820/// \p MachineFunction and each instance is then replaced with a call to that
821/// function.
822struct MachineOutliner : public ModulePass {
823
824 static char ID;
825
826 StringRef getPassName() const override { return "Machine Outliner"; }
827
828 void getAnalysisUsage(AnalysisUsage &AU) const override {
829 AU.addRequired<MachineModuleInfo>();
830 AU.addPreserved<MachineModuleInfo>();
831 AU.setPreservesAll();
832 ModulePass::getAnalysisUsage(AU);
833 }
834
835 MachineOutliner() : ModulePass(ID) {
836 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
837 }
838
839 /// \brief Replace the sequences of instructions represented by the
840 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
841 /// described in \p FunctionList.
842 ///
843 /// \param M The module we are outlining from.
844 /// \param CandidateList A list of candidates to be outlined.
845 /// \param FunctionList A list of functions to be inserted into the module.
846 /// \param Mapper Contains the instruction mappings for the module.
847 bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
848 std::vector<OutlinedFunction> &FunctionList,
849 InstructionMapper &Mapper);
850
851 /// Creates a function for \p OF and inserts it into the module.
852 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
853 InstructionMapper &Mapper);
854
855 /// Find potential outlining candidates and store them in \p CandidateList.
856 ///
857 /// For each type of potential candidate, also build an \p OutlinedFunction
858 /// struct containing the information to build the function for that
859 /// candidate.
860 ///
861 /// \param[out] CandidateList Filled with outlining candidates for the module.
862 /// \param[out] FunctionList Filled with functions corresponding to each type
863 /// of \p Candidate.
864 /// \param ST The suffix tree for the module.
865 /// \param TII TargetInstrInfo for the module.
866 ///
867 /// \returns The length of the longest candidate found. 0 if there are none.
868 unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
869 std::vector<OutlinedFunction> &FunctionList,
Jessica Paquettec984e212017-03-13 18:39:33 +0000870 SuffixTree &ST,
871 InstructionMapper &Mapper,
872 const TargetInstrInfo &TII);
Jessica Paquette596f4832017-03-06 21:31:18 +0000873
874 /// \brief Remove any overlapping candidates that weren't handled by the
875 /// suffix tree's pruning method.
876 ///
877 /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
878 /// If a short candidate is chosen for outlining, then a longer candidate
879 /// which has that short candidate as a suffix is chosen, the tree's pruning
880 /// method will not find it. Thus, we need to prune before outlining as well.
881 ///
882 /// \param[in,out] CandidateList A list of outlining candidates.
883 /// \param[in,out] FunctionList A list of functions to be outlined.
884 /// \param MaxCandidateLen The length of the longest candidate.
885 /// \param TII TargetInstrInfo for the module.
886 void pruneOverlaps(std::vector<Candidate> &CandidateList,
887 std::vector<OutlinedFunction> &FunctionList,
888 unsigned MaxCandidateLen,
889 const TargetInstrInfo &TII);
890
891 /// Construct a suffix tree on the instructions in \p M and outline repeated
892 /// strings from that tree.
893 bool runOnModule(Module &M) override;
894};
895
896} // Anonymous namespace.
897
898char MachineOutliner::ID = 0;
899
900namespace llvm {
901ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
902}
903
Matthias Braun1527baa2017-05-25 21:26:32 +0000904INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE,
Jessica Paquette596f4832017-03-06 21:31:18 +0000905 "Machine Function Outliner", false, false)
906
907void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
908 std::vector<OutlinedFunction> &FunctionList,
909 unsigned MaxCandidateLen,
910 const TargetInstrInfo &TII) {
Jessica Paquetteacffa282017-03-23 21:27:38 +0000911 // TODO: Experiment with interval trees or other interval-checking structures
912 // to lower the time complexity of this function.
913 // TODO: Can we do better than the simple greedy choice?
914 // Check for overlaps in the range.
915 // This is O(MaxCandidateLen * CandidateList.size()).
Jessica Paquette596f4832017-03-06 21:31:18 +0000916 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
917 It++) {
918 Candidate &C1 = *It;
919 OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
920
921 // If we removed this candidate, skip it.
922 if (!C1.InCandidateList)
923 continue;
924
Jessica Paquetteacffa282017-03-23 21:27:38 +0000925 // Is it still worth it to outline C1?
926 if (F1.Benefit < 1 || F1.OccurrenceCount < 2) {
927 assert(F1.OccurrenceCount > 0 &&
928 "Can't remove OutlinedFunction with no occurrences!");
929 F1.OccurrenceCount--;
Jessica Paquette596f4832017-03-06 21:31:18 +0000930 C1.InCandidateList = false;
931 continue;
932 }
933
934 // The minimum start index of any candidate that could overlap with this
935 // one.
936 unsigned FarthestPossibleIdx = 0;
937
938 // Either the index is 0, or it's at most MaxCandidateLen indices away.
939 if (C1.StartIdx > MaxCandidateLen)
940 FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
941
Jessica Paquetteacffa282017-03-23 21:27:38 +0000942 // Compare against the candidates in the list that start at at most
943 // FarthestPossibleIdx indices away from C1. There are at most
944 // MaxCandidateLen of these.
Jessica Paquette596f4832017-03-06 21:31:18 +0000945 for (auto Sit = It + 1; Sit != Et; Sit++) {
946 Candidate &C2 = *Sit;
947 OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
948
949 // Is this candidate too far away to overlap?
Jessica Paquette596f4832017-03-06 21:31:18 +0000950 if (C2.StartIdx < FarthestPossibleIdx)
951 break;
952
953 // Did we already remove this candidate in a previous step?
954 if (!C2.InCandidateList)
955 continue;
956
957 // Is the function beneficial to outline?
958 if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
959 // If not, remove this candidate and move to the next one.
Jessica Paquetteacffa282017-03-23 21:27:38 +0000960 assert(F2.OccurrenceCount > 0 &&
961 "Can't remove OutlinedFunction with no occurrences!");
962 F2.OccurrenceCount--;
Jessica Paquette596f4832017-03-06 21:31:18 +0000963 C2.InCandidateList = false;
964 continue;
965 }
966
967 size_t C2End = C2.StartIdx + C2.Len - 1;
968
969 // Do C1 and C2 overlap?
970 //
971 // Not overlapping:
972 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
973 //
974 // We sorted our candidate list so C2Start <= C1Start. We know that
975 // C2End > C2Start since each candidate has length >= 2. Therefore, all we
976 // have to check is C2End < C2Start to see if we overlap.
977 if (C2End < C1.StartIdx)
978 continue;
979
Jessica Paquetteacffa282017-03-23 21:27:38 +0000980 // C1 and C2 overlap.
981 // We need to choose the better of the two.
982 //
983 // Approximate this by picking the one which would have saved us the
984 // most instructions before any pruning.
985 if (C1.Benefit >= C2.Benefit) {
Jessica Paquette596f4832017-03-06 21:31:18 +0000986
Jessica Paquetteacffa282017-03-23 21:27:38 +0000987 // C1 is better, so remove C2 and update C2's OutlinedFunction to
988 // reflect the removal.
989 assert(F2.OccurrenceCount > 0 &&
990 "Can't remove OutlinedFunction with no occurrences!");
991 F2.OccurrenceCount--;
992 F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
993 F2.OccurrenceCount,
994 F2.IsTailCall
995 );
Jessica Paquette596f4832017-03-06 21:31:18 +0000996
Jessica Paquetteacffa282017-03-23 21:27:38 +0000997 C2.InCandidateList = false;
Jessica Paquette596f4832017-03-06 21:31:18 +0000998
Jessica Paquetteacffa282017-03-23 21:27:38 +0000999 DEBUG (
1000 dbgs() << "- Removed C2. \n";
1001 dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
1002 dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
1003 );
1004
1005 } else {
1006 // C2 is better, so remove C1 and update C1's OutlinedFunction to
1007 // reflect the removal.
1008 assert(F1.OccurrenceCount > 0 &&
1009 "Can't remove OutlinedFunction with no occurrences!");
1010 F1.OccurrenceCount--;
1011 F1.Benefit = TII.getOutliningBenefit(F1.Sequence.size(),
1012 F1.OccurrenceCount,
1013 F1.IsTailCall
1014 );
1015 C1.InCandidateList = false;
1016
1017 DEBUG (
1018 dbgs() << "- Removed C1. \n";
1019 dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount << "\n";
1020 dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";
1021 );
1022
1023 // C1 is out, so we don't have to compare it against anyone else.
1024 break;
1025 }
Jessica Paquette596f4832017-03-06 21:31:18 +00001026 }
1027 }
1028}
1029
1030unsigned
1031MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
1032 std::vector<OutlinedFunction> &FunctionList,
1033 SuffixTree &ST,
Jessica Paquettec984e212017-03-13 18:39:33 +00001034 InstructionMapper &Mapper,
Jessica Paquette596f4832017-03-06 21:31:18 +00001035 const TargetInstrInfo &TII) {
1036
1037 std::vector<unsigned> CandidateSequence; // Current outlining candidate.
Jessica Paquetteacffa282017-03-23 21:27:38 +00001038 size_t MaxCandidateLen = 0; // Length of the longest candidate.
Jessica Paquette596f4832017-03-06 21:31:18 +00001039
1040 // Function for maximizing query in the suffix tree.
1041 // This allows us to define more fine-grained types of things to outline in
1042 // the target without putting target-specific info in the suffix tree.
Jessica Paquette5096a342017-03-23 22:17:20 +00001043 auto BenefitFn = [&TII, &Mapper](const SuffixTreeNode &Curr,
1044 size_t StringLen, unsigned EndVal) {
Jessica Paquette596f4832017-03-06 21:31:18 +00001045
Jessica Paquetteacffa282017-03-23 21:27:38 +00001046 // The root represents the empty string.
1047 if (Curr.isRoot())
Jessica Paquette596f4832017-03-06 21:31:18 +00001048 return 0u;
1049
Jessica Paquetteacffa282017-03-23 21:27:38 +00001050 // Is this long enough to outline?
1051 // TODO: Let the target decide how "long" a string is in terms of the sizes
1052 // of the instructions in the string. For example, if a call instruction
1053 // is smaller than a one instruction string, we should outline that string.
Jessica Paquette596f4832017-03-06 21:31:18 +00001054 if (StringLen < 2)
1055 return 0u;
1056
Jessica Paquetteacffa282017-03-23 21:27:38 +00001057 size_t Occurrences = Curr.OccurrenceCount;
Jessica Paquette596f4832017-03-06 21:31:18 +00001058
Jessica Paquetteacffa282017-03-23 21:27:38 +00001059 // Anything we want to outline has to appear at least twice.
Jessica Paquette596f4832017-03-06 21:31:18 +00001060 if (Occurrences < 2)
1061 return 0u;
1062
Jessica Paquettec984e212017-03-13 18:39:33 +00001063 // Check if the last instruction in the sequence is a return.
1064 MachineInstr *LastInstr =
Jessica Paquetteacffa282017-03-23 21:27:38 +00001065 Mapper.IntegerInstructionMap[EndVal];
Jessica Paquettec984e212017-03-13 18:39:33 +00001066 assert(LastInstr && "Last instruction in sequence was unmapped!");
1067
1068 // The only way a terminator could be mapped as legal is if it was safe to
1069 // tail call.
1070 bool IsTailCall = LastInstr->isTerminator();
Jessica Paquettec984e212017-03-13 18:39:33 +00001071 return TII.getOutliningBenefit(StringLen, Occurrences, IsTailCall);
Jessica Paquette596f4832017-03-06 21:31:18 +00001072 };
1073
Jessica Paquetteacffa282017-03-23 21:27:38 +00001074 MaxCandidateLen = ST.findCandidates(CandidateList, FunctionList, BenefitFn);
Jessica Paquette596f4832017-03-06 21:31:18 +00001075
Jessica Paquetteacffa282017-03-23 21:27:38 +00001076 for (auto &OF : FunctionList)
1077 OF.IsTailCall = Mapper.
1078 IntegerInstructionMap[OF.Sequence.back()]->isTerminator();
Jessica Paquette596f4832017-03-06 21:31:18 +00001079
1080 // Sort the candidates in decending order. This will simplify the outlining
1081 // process when we have to remove the candidates from the mapping by
1082 // allowing us to cut them out without keeping track of an offset.
1083 std::stable_sort(CandidateList.begin(), CandidateList.end());
1084
1085 return MaxCandidateLen;
1086}
1087
1088MachineFunction *
1089MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1090 InstructionMapper &Mapper) {
1091
1092 // Create the function name. This should be unique. For now, just hash the
1093 // module name and include it in the function name plus the number of this
1094 // function.
1095 std::ostringstream NameStream;
1096 NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
1097
1098 // Create the function using an IR-level function.
1099 LLVMContext &C = M.getContext();
1100 Function *F = dyn_cast<Function>(
Serge Guelton59a2d7b2017-04-11 15:01:18 +00001101 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
Jessica Paquette596f4832017-03-06 21:31:18 +00001102 assert(F && "Function was null!");
1103
1104 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1105 // which gives us better results when we outline from linkonceodr functions.
1106 F->setLinkage(GlobalValue::PrivateLinkage);
1107 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1108
1109 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1110 IRBuilder<> Builder(EntryBB);
1111 Builder.CreateRetVoid();
1112
1113 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
Matthias Braun7bda1952017-06-06 00:44:35 +00001114 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
Jessica Paquette596f4832017-03-06 21:31:18 +00001115 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1116 const TargetSubtargetInfo &STI = MF.getSubtarget();
1117 const TargetInstrInfo &TII = *STI.getInstrInfo();
1118
1119 // Insert the new function into the module.
1120 MF.insert(MF.begin(), &MBB);
1121
Jessica Paquettec984e212017-03-13 18:39:33 +00001122 TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall);
Jessica Paquette596f4832017-03-06 21:31:18 +00001123
1124 // Copy over the instructions for the function using the integer mappings in
1125 // its sequence.
1126 for (unsigned Str : OF.Sequence) {
1127 MachineInstr *NewMI =
1128 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1129 NewMI->dropMemRefs();
1130
1131 // Don't keep debug information for outlined instructions.
1132 // FIXME: This means outlined functions are currently undebuggable.
1133 NewMI->setDebugLoc(DebugLoc());
1134 MBB.insert(MBB.end(), NewMI);
1135 }
1136
Jessica Paquettec984e212017-03-13 18:39:33 +00001137 TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall);
Jessica Paquette596f4832017-03-06 21:31:18 +00001138
1139 return &MF;
1140}
1141
1142bool MachineOutliner::outline(Module &M,
1143 const ArrayRef<Candidate> &CandidateList,
1144 std::vector<OutlinedFunction> &FunctionList,
1145 InstructionMapper &Mapper) {
1146
1147 bool OutlinedSomething = false;
1148
1149 // Replace the candidates with calls to their respective outlined functions.
1150 for (const Candidate &C : CandidateList) {
1151
1152 // Was the candidate removed during pruneOverlaps?
1153 if (!C.InCandidateList)
1154 continue;
1155
1156 // If not, then look at its OutlinedFunction.
1157 OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1158
1159 // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1160 if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
1161 continue;
1162
1163 // If not, then outline it.
1164 assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1165 MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
1166 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
1167 unsigned EndIdx = C.StartIdx + C.Len - 1;
1168
1169 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1170 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1171 assert(EndIt != MBB->end() && "EndIt out of bounds!");
1172
1173 EndIt++; // Erase needs one past the end index.
1174
1175 // Does this candidate have a function yet?
Jessica Paquetteacffa282017-03-23 21:27:38 +00001176 if (!OF.MF) {
Jessica Paquette596f4832017-03-06 21:31:18 +00001177 OF.MF = createOutlinedFunction(M, OF, Mapper);
Jessica Paquetteacffa282017-03-23 21:27:38 +00001178 FunctionsCreated++;
1179 }
Jessica Paquette596f4832017-03-06 21:31:18 +00001180
1181 MachineFunction *MF = OF.MF;
1182 const TargetSubtargetInfo &STI = MF->getSubtarget();
1183 const TargetInstrInfo &TII = *STI.getInstrInfo();
1184
1185 // Insert a call to the new function and erase the old sequence.
Jessica Paquettec984e212017-03-13 18:39:33 +00001186 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall);
Jessica Paquette596f4832017-03-06 21:31:18 +00001187 StartIt = Mapper.InstrList[C.StartIdx];
1188 MBB->erase(StartIt, EndIt);
1189
1190 OutlinedSomething = true;
1191
1192 // Statistics.
1193 NumOutlined++;
1194 }
1195
1196 DEBUG (
1197 dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
1198 );
1199
1200 return OutlinedSomething;
1201}
1202
1203bool MachineOutliner::runOnModule(Module &M) {
1204
1205 // Is there anything in the module at all?
1206 if (M.empty())
1207 return false;
1208
1209 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
Matthias Braun7bda1952017-06-06 00:44:35 +00001210 const TargetSubtargetInfo &STI = MMI.getOrCreateMachineFunction(*M.begin())
Jessica Paquette596f4832017-03-06 21:31:18 +00001211 .getSubtarget();
1212 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1213 const TargetInstrInfo *TII = STI.getInstrInfo();
1214
1215 InstructionMapper Mapper;
1216
1217 // Build instruction mappings for each function in the module.
1218 for (Function &F : M) {
Matthias Braun7bda1952017-06-06 00:44:35 +00001219 MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
Jessica Paquette596f4832017-03-06 21:31:18 +00001220
1221 // Is the function empty? Safe to outline from?
1222 if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
1223 continue;
1224
1225 // If it is, look at each MachineBasicBlock in the function.
1226 for (MachineBasicBlock &MBB : MF) {
1227
1228 // Is there anything in MBB?
1229 if (MBB.empty())
1230 continue;
1231
1232 // If yes, map it.
1233 Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1234 }
1235 }
1236
1237 // Construct a suffix tree, use it to find candidates, and then outline them.
1238 SuffixTree ST(Mapper.UnsignedVec);
1239 std::vector<Candidate> CandidateList;
1240 std::vector<OutlinedFunction> FunctionList;
1241
Jessica Paquetteacffa282017-03-23 21:27:38 +00001242 // Find all of the outlining candidates.
Jessica Paquette596f4832017-03-06 21:31:18 +00001243 unsigned MaxCandidateLen =
Jessica Paquettec984e212017-03-13 18:39:33 +00001244 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
Jessica Paquette596f4832017-03-06 21:31:18 +00001245
Jessica Paquetteacffa282017-03-23 21:27:38 +00001246 // Remove candidates that overlap with other candidates.
Jessica Paquette596f4832017-03-06 21:31:18 +00001247 pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
Jessica Paquetteacffa282017-03-23 21:27:38 +00001248
1249 // Outline each of the candidates and return true if something was outlined.
Jessica Paquette596f4832017-03-06 21:31:18 +00001250 return outline(M, CandidateList, FunctionList, Mapper);
1251}