Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1 | //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// |
| 10 | /// \file |
| 11 | /// Replaces repeated sequences of instructions with function calls. |
| 12 | /// |
| 13 | /// This works by placing every instruction from every basic block in a |
| 14 | /// suffix tree, and repeatedly querying that tree for repeated sequences of |
| 15 | /// instructions. If a sequence of instructions appears often, then it ought |
| 16 | /// to be beneficial to pull out into a function. |
| 17 | /// |
| 18 | /// This was originally presented at the 2016 LLVM Developers' Meeting in the |
| 19 | /// talk "Reducing Code Size Using Outlining". For a high-level overview of |
| 20 | /// how this pass works, the talk is available on YouTube at |
| 21 | /// |
| 22 | /// https://www.youtube.com/watch?v=yorld-WSOeU |
| 23 | /// |
| 24 | /// The slides for the talk are available at |
| 25 | /// |
| 26 | /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf |
| 27 | /// |
| 28 | /// The talk provides an overview of how the outliner finds candidates and |
| 29 | /// ultimately outlines them. It describes how the main data structure for this |
| 30 | /// pass, the suffix tree, is queried and purged for candidates. It also gives |
| 31 | /// a simplified suffix tree construction algorithm for suffix trees based off |
| 32 | /// of the algorithm actually used here, Ukkonen's algorithm. |
| 33 | /// |
| 34 | /// For the original RFC for this pass, please see |
| 35 | /// |
| 36 | /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html |
| 37 | /// |
| 38 | /// For more information on the suffix tree data structure, please see |
| 39 | /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf |
| 40 | /// |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | #include "llvm/ADT/DenseMap.h" |
| 43 | #include "llvm/ADT/Statistic.h" |
| 44 | #include "llvm/ADT/Twine.h" |
| 45 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 46 | #include "llvm/CodeGen/MachineFunction.h" |
| 47 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 48 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 49 | #include "llvm/CodeGen/Passes.h" |
| 50 | #include "llvm/IR/IRBuilder.h" |
| 51 | #include "llvm/Support/Allocator.h" |
| 52 | #include "llvm/Support/Debug.h" |
| 53 | #include "llvm/Support/raw_ostream.h" |
| 54 | #include "llvm/Target/TargetInstrInfo.h" |
| 55 | #include "llvm/Target/TargetMachine.h" |
| 56 | #include "llvm/Target/TargetRegisterInfo.h" |
| 57 | #include "llvm/Target/TargetSubtargetInfo.h" |
| 58 | #include <functional> |
| 59 | #include <map> |
| 60 | #include <sstream> |
| 61 | #include <tuple> |
| 62 | #include <vector> |
| 63 | |
| 64 | #define DEBUG_TYPE "machine-outliner" |
| 65 | |
| 66 | using namespace llvm; |
| 67 | |
| 68 | STATISTIC(NumOutlined, "Number of candidates outlined"); |
| 69 | STATISTIC(FunctionsCreated, "Number of functions created"); |
| 70 | |
| 71 | namespace { |
| 72 | |
| 73 | /// Represents an undefined index in the suffix tree. |
| 74 | const size_t EmptyIdx = -1; |
| 75 | |
| 76 | /// A node in a suffix tree which represents a substring or suffix. |
| 77 | /// |
| 78 | /// Each node has either no children or at least two children, with the root |
| 79 | /// being a exception in the empty tree. |
| 80 | /// |
| 81 | /// Children are represented as a map between unsigned integers and nodes. If |
| 82 | /// a node N has a child M on unsigned integer k, then the mapping represented |
| 83 | /// by N is a proper prefix of the mapping represented by M. Note that this, |
| 84 | /// although similar to a trie is somewhat different: each node stores a full |
| 85 | /// substring of the full mapping rather than a single character state. |
| 86 | /// |
| 87 | /// Each internal node contains a pointer to the internal node representing |
| 88 | /// the same string, but with the first character chopped off. This is stored |
| 89 | /// in \p Link. Each leaf node stores the start index of its respective |
| 90 | /// suffix in \p SuffixIdx. |
| 91 | struct SuffixTreeNode { |
| 92 | |
| 93 | /// The children of this node. |
| 94 | /// |
| 95 | /// A child existing on an unsigned integer implies that from the mapping |
| 96 | /// represented by the current node, there is a way to reach another |
| 97 | /// mapping by tacking that character on the end of the current string. |
| 98 | DenseMap<unsigned, SuffixTreeNode *> Children; |
| 99 | |
| 100 | /// A flag set to false if the node has been pruned from the tree. |
| 101 | bool IsInTree = true; |
| 102 | |
| 103 | /// The start index of this node's substring in the main string. |
| 104 | size_t StartIdx = EmptyIdx; |
| 105 | |
| 106 | /// The end index of this node's substring in the main string. |
| 107 | /// |
| 108 | /// Every leaf node must have its \p EndIdx incremented at the end of every |
| 109 | /// step in the construction algorithm. To avoid having to update O(N) |
| 110 | /// nodes individually at the end of every step, the end index is stored |
| 111 | /// as a pointer. |
| 112 | size_t *EndIdx = nullptr; |
| 113 | |
| 114 | /// For leaves, the start index of the suffix represented by this node. |
| 115 | /// |
| 116 | /// For all other nodes, this is ignored. |
| 117 | size_t SuffixIdx = EmptyIdx; |
| 118 | |
| 119 | /// \brief For internal nodes, a pointer to the internal node representing |
| 120 | /// the same sequence with the first character chopped off. |
| 121 | /// |
| 122 | /// This has two major purposes in the suffix tree. The first is as a |
| 123 | /// shortcut in Ukkonen's construction algorithm. One of the things that |
| 124 | /// Ukkonen's algorithm does to achieve linear-time construction is |
| 125 | /// keep track of which node the next insert should be at. This makes each |
| 126 | /// insert O(1), and there are a total of O(N) inserts. The suffix link |
| 127 | /// helps with inserting children of internal nodes. |
| 128 | /// |
| 129 | /// Say we add a child to an internal node with associated mapping S. The |
| 130 | /// next insertion must be at the node representing S - its first character. |
| 131 | /// This is given by the way that we iteratively build the tree in Ukkonen's |
| 132 | /// algorithm. The main idea is to look at the suffixes of each prefix in the |
| 133 | /// string, starting with the longest suffix of the prefix, and ending with |
| 134 | /// the shortest. Therefore, if we keep pointers between such nodes, we can |
| 135 | /// move to the next insertion point in O(1) time. If we don't, then we'd |
| 136 | /// have to query from the root, which takes O(N) time. This would make the |
| 137 | /// construction algorithm O(N^2) rather than O(N). |
| 138 | /// |
| 139 | /// The suffix link is also used during the tree pruning process to let us |
| 140 | /// quickly throw out a bunch of potential overlaps. Say we have a sequence |
| 141 | /// S we want to outline. Then each of its suffixes contribute to at least |
| 142 | /// one overlapping case. Therefore, we can follow the suffix links |
| 143 | /// starting at the node associated with S to the root and "delete" those |
| 144 | /// nodes, save for the root. For each candidate, this removes |
| 145 | /// O(|candidate|) overlaps from the search space. We don't actually |
| 146 | /// completely invalidate these nodes though; doing that is far too |
| 147 | /// aggressive. Consider the following pathological string: |
| 148 | /// |
| 149 | /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 |
| 150 | /// |
| 151 | /// If we, for the sake of example, outlined 1 2 3, then we would throw |
| 152 | /// out all instances of 2 3. This isn't desirable. To get around this, |
| 153 | /// when we visit a link node, we decrement its occurrence count by the |
| 154 | /// number of sequences we outlined in the current step. In the pathological |
| 155 | /// example, the 2 3 node would have an occurrence count of 8, while the |
| 156 | /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node |
| 157 | /// would survive to the next round allowing us to outline the extra |
| 158 | /// instances of 2 3. |
| 159 | SuffixTreeNode *Link = nullptr; |
| 160 | |
| 161 | /// The parent of this node. Every node except for the root has a parent. |
| 162 | SuffixTreeNode *Parent = nullptr; |
| 163 | |
| 164 | /// The number of times this node's string appears in the tree. |
| 165 | /// |
| 166 | /// This is equal to the number of leaf children of the string. It represents |
| 167 | /// the number of suffixes that the node's string is a prefix of. |
| 168 | size_t OccurrenceCount = 0; |
| 169 | |
| 170 | /// Returns true if this node is a leaf. |
| 171 | bool isLeaf() const { return SuffixIdx != EmptyIdx; } |
| 172 | |
| 173 | /// Returns true if this node is the root of its owning \p SuffixTree. |
| 174 | bool isRoot() const { return StartIdx == EmptyIdx; } |
| 175 | |
| 176 | /// Return the number of elements in the substring associated with this node. |
| 177 | size_t size() const { |
| 178 | |
| 179 | // Is it the root? If so, it's the empty string so return 0. |
| 180 | if (isRoot()) |
| 181 | return 0; |
| 182 | |
| 183 | assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); |
| 184 | |
| 185 | // Size = the number of elements in the string. |
| 186 | // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. |
| 187 | return *EndIdx - StartIdx + 1; |
| 188 | } |
| 189 | |
| 190 | SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, |
| 191 | SuffixTreeNode *Parent) |
| 192 | : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} |
| 193 | |
| 194 | SuffixTreeNode() {} |
| 195 | }; |
| 196 | |
| 197 | /// A data structure for fast substring queries. |
| 198 | /// |
| 199 | /// Suffix trees represent the suffixes of their input strings in their leaves. |
| 200 | /// A suffix tree is a type of compressed trie structure where each node |
| 201 | /// represents an entire substring rather than a single character. Each leaf |
| 202 | /// of the tree is a suffix. |
| 203 | /// |
| 204 | /// A suffix tree can be seen as a type of state machine where each state is a |
| 205 | /// substring of the full string. The tree is structured so that, for a string |
| 206 | /// of length N, there are exactly N leaves in the tree. This structure allows |
| 207 | /// us to quickly find repeated substrings of the input string. |
| 208 | /// |
| 209 | /// In this implementation, a "string" is a vector of unsigned integers. |
| 210 | /// These integers may result from hashing some data type. A suffix tree can |
| 211 | /// contain 1 or many strings, which can then be queried as one large string. |
| 212 | /// |
| 213 | /// The suffix tree is implemented using Ukkonen's algorithm for linear-time |
| 214 | /// suffix tree construction. Ukkonen's algorithm is explained in more detail |
| 215 | /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The |
| 216 | /// paper is available at |
| 217 | /// |
| 218 | /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf |
| 219 | class SuffixTree { |
| 220 | private: |
| 221 | /// Each element is an integer representing an instruction in the module. |
| 222 | ArrayRef<unsigned> Str; |
| 223 | |
| 224 | /// Maintains each node in the tree. |
Jessica Paquette | d4cb9c6 | 2017-03-08 23:55:33 +0000 | [diff] [blame^] | 225 | SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 226 | |
| 227 | /// The root of the suffix tree. |
| 228 | /// |
| 229 | /// The root represents the empty string. It is maintained by the |
| 230 | /// \p NodeAllocator like every other node in the tree. |
| 231 | SuffixTreeNode *Root = nullptr; |
| 232 | |
| 233 | /// Stores each leaf in the tree for better pruning. |
| 234 | std::vector<SuffixTreeNode *> LeafVector; |
| 235 | |
| 236 | /// Maintains the end indices of the internal nodes in the tree. |
| 237 | /// |
| 238 | /// Each internal node is guaranteed to never have its end index change |
| 239 | /// during the construction algorithm; however, leaves must be updated at |
| 240 | /// every step. Therefore, we need to store leaf end indices by reference |
| 241 | /// to avoid updating O(N) leaves at every step of construction. Thus, |
| 242 | /// every internal node must be allocated its own end index. |
| 243 | BumpPtrAllocator InternalEndIdxAllocator; |
| 244 | |
| 245 | /// The end index of each leaf in the tree. |
| 246 | size_t LeafEndIdx = -1; |
| 247 | |
| 248 | /// \brief Helper struct which keeps track of the next insertion point in |
| 249 | /// Ukkonen's algorithm. |
| 250 | struct ActiveState { |
| 251 | /// The next node to insert at. |
| 252 | SuffixTreeNode *Node; |
| 253 | |
| 254 | /// The index of the first character in the substring currently being added. |
| 255 | size_t Idx = EmptyIdx; |
| 256 | |
| 257 | /// The length of the substring we have to add at the current step. |
| 258 | size_t Len = 0; |
| 259 | }; |
| 260 | |
| 261 | /// \brief The point the next insertion will take place at in the |
| 262 | /// construction algorithm. |
| 263 | ActiveState Active; |
| 264 | |
| 265 | /// Allocate a leaf node and add it to the tree. |
| 266 | /// |
| 267 | /// \param Parent The parent of this node. |
| 268 | /// \param StartIdx The start index of this node's associated string. |
| 269 | /// \param Edge The label on the edge leaving \p Parent to this node. |
| 270 | /// |
| 271 | /// \returns A pointer to the allocated leaf node. |
| 272 | SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, |
| 273 | unsigned Edge) { |
| 274 | |
| 275 | assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); |
| 276 | |
Jessica Paquette | d4cb9c6 | 2017-03-08 23:55:33 +0000 | [diff] [blame^] | 277 | SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, |
| 278 | &LeafEndIdx, |
| 279 | nullptr, |
| 280 | &Parent); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 281 | Parent.Children[Edge] = N; |
| 282 | |
| 283 | return N; |
| 284 | } |
| 285 | |
| 286 | /// Allocate an internal node and add it to the tree. |
| 287 | /// |
| 288 | /// \param Parent The parent of this node. Only null when allocating the root. |
| 289 | /// \param StartIdx The start index of this node's associated string. |
| 290 | /// \param EndIdx The end index of this node's associated string. |
| 291 | /// \param Edge The label on the edge leaving \p Parent to this node. |
| 292 | /// |
| 293 | /// \returns A pointer to the allocated internal node. |
| 294 | SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, |
| 295 | size_t EndIdx, unsigned Edge) { |
| 296 | |
| 297 | assert(StartIdx <= EndIdx && "String can't start after it ends!"); |
| 298 | assert(!(!Parent && StartIdx != EmptyIdx) && |
| 299 | "Non-root internal nodes must have parents!"); |
| 300 | |
| 301 | size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); |
Jessica Paquette | d4cb9c6 | 2017-03-08 23:55:33 +0000 | [diff] [blame^] | 302 | SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, |
| 303 | E, |
| 304 | Root, |
| 305 | Parent); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 306 | if (Parent) |
| 307 | Parent->Children[Edge] = N; |
| 308 | |
| 309 | return N; |
| 310 | } |
| 311 | |
| 312 | /// \brief Set the suffix indices of the leaves to the start indices of their |
| 313 | /// respective suffixes. Also stores each leaf in \p LeafVector at its |
| 314 | /// respective suffix index. |
| 315 | /// |
| 316 | /// \param[in] CurrNode The node currently being visited. |
| 317 | /// \param CurrIdx The current index of the string being visited. |
| 318 | void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { |
| 319 | |
| 320 | bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); |
| 321 | |
| 322 | // Traverse the tree depth-first. |
| 323 | for (auto &ChildPair : CurrNode.Children) { |
| 324 | assert(ChildPair.second && "Node had a null child!"); |
| 325 | setSuffixIndices(*ChildPair.second, |
| 326 | CurrIdx + ChildPair.second->size()); |
| 327 | } |
| 328 | |
| 329 | // Is this node a leaf? |
| 330 | if (IsLeaf) { |
| 331 | // If yes, give it a suffix index and bump its parent's occurrence count. |
| 332 | CurrNode.SuffixIdx = Str.size() - CurrIdx; |
| 333 | assert(CurrNode.Parent && "CurrNode had no parent!"); |
| 334 | CurrNode.Parent->OccurrenceCount++; |
| 335 | |
| 336 | // Store the leaf in the leaf vector for pruning later. |
| 337 | LeafVector[CurrNode.SuffixIdx] = &CurrNode; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | /// \brief Construct the suffix tree for the prefix of the input ending at |
| 342 | /// \p EndIdx. |
| 343 | /// |
| 344 | /// Used to construct the full suffix tree iteratively. At the end of each |
| 345 | /// step, the constructed suffix tree is either a valid suffix tree, or a |
| 346 | /// suffix tree with implicit suffixes. At the end of the final step, the |
| 347 | /// suffix tree is a valid tree. |
| 348 | /// |
| 349 | /// \param EndIdx The end index of the current prefix in the main string. |
| 350 | /// \param SuffixesToAdd The number of suffixes that must be added |
| 351 | /// to complete the suffix tree at the current phase. |
| 352 | /// |
| 353 | /// \returns The number of suffixes that have not been added at the end of |
| 354 | /// this step. |
| 355 | unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { |
| 356 | SuffixTreeNode *NeedsLink = nullptr; |
| 357 | |
| 358 | while (SuffixesToAdd > 0) { |
| 359 | |
| 360 | // Are we waiting to add anything other than just the last character? |
| 361 | if (Active.Len == 0) { |
| 362 | // If not, then say the active index is the end index. |
| 363 | Active.Idx = EndIdx; |
| 364 | } |
| 365 | |
| 366 | assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); |
| 367 | |
| 368 | // The first character in the current substring we're looking at. |
| 369 | unsigned FirstChar = Str[Active.Idx]; |
| 370 | |
| 371 | // Have we inserted anything starting with FirstChar at the current node? |
| 372 | if (Active.Node->Children.count(FirstChar) == 0) { |
| 373 | // If not, then we can just insert a leaf and move too the next step. |
| 374 | insertLeaf(*Active.Node, EndIdx, FirstChar); |
| 375 | |
| 376 | // The active node is an internal node, and we visited it, so it must |
| 377 | // need a link if it doesn't have one. |
| 378 | if (NeedsLink) { |
| 379 | NeedsLink->Link = Active.Node; |
| 380 | NeedsLink = nullptr; |
| 381 | } |
| 382 | } else { |
| 383 | // There's a match with FirstChar, so look for the point in the tree to |
| 384 | // insert a new node. |
| 385 | SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; |
| 386 | |
| 387 | size_t SubstringLen = NextNode->size(); |
| 388 | |
| 389 | // Is the current suffix we're trying to insert longer than the size of |
| 390 | // the child we want to move to? |
| 391 | if (Active.Len >= SubstringLen) { |
| 392 | // If yes, then consume the characters we've seen and move to the next |
| 393 | // node. |
| 394 | Active.Idx += SubstringLen; |
| 395 | Active.Len -= SubstringLen; |
| 396 | Active.Node = NextNode; |
| 397 | continue; |
| 398 | } |
| 399 | |
| 400 | // Otherwise, the suffix we're trying to insert must be contained in the |
| 401 | // next node we want to move to. |
| 402 | unsigned LastChar = Str[EndIdx]; |
| 403 | |
| 404 | // Is the string we're trying to insert a substring of the next node? |
| 405 | if (Str[NextNode->StartIdx + Active.Len] == LastChar) { |
| 406 | // If yes, then we're done for this step. Remember our insertion point |
| 407 | // and move to the next end index. At this point, we have an implicit |
| 408 | // suffix tree. |
| 409 | if (NeedsLink && !Active.Node->isRoot()) { |
| 410 | NeedsLink->Link = Active.Node; |
| 411 | NeedsLink = nullptr; |
| 412 | } |
| 413 | |
| 414 | Active.Len++; |
| 415 | break; |
| 416 | } |
| 417 | |
| 418 | // The string we're trying to insert isn't a substring of the next node, |
| 419 | // but matches up to a point. Split the node. |
| 420 | // |
| 421 | // For example, say we ended our search at a node n and we're trying to |
| 422 | // insert ABD. Then we'll create a new node s for AB, reduce n to just |
| 423 | // representing C, and insert a new leaf node l to represent d. This |
| 424 | // allows us to ensure that if n was a leaf, it remains a leaf. |
| 425 | // |
| 426 | // | ABC ---split---> | AB |
| 427 | // n s |
| 428 | // C / \ D |
| 429 | // n l |
| 430 | |
| 431 | // The node s from the diagram |
| 432 | SuffixTreeNode *SplitNode = |
| 433 | insertInternalNode(Active.Node, |
| 434 | NextNode->StartIdx, |
| 435 | NextNode->StartIdx + Active.Len - 1, |
| 436 | FirstChar); |
| 437 | |
| 438 | // Insert the new node representing the new substring into the tree as |
| 439 | // a child of the split node. This is the node l from the diagram. |
| 440 | insertLeaf(*SplitNode, EndIdx, LastChar); |
| 441 | |
| 442 | // Make the old node a child of the split node and update its start |
| 443 | // index. This is the node n from the diagram. |
| 444 | NextNode->StartIdx += Active.Len; |
| 445 | NextNode->Parent = SplitNode; |
| 446 | SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; |
| 447 | |
| 448 | // SplitNode is an internal node, update the suffix link. |
| 449 | if (NeedsLink) |
| 450 | NeedsLink->Link = SplitNode; |
| 451 | |
| 452 | NeedsLink = SplitNode; |
| 453 | } |
| 454 | |
| 455 | // We've added something new to the tree, so there's one less suffix to |
| 456 | // add. |
| 457 | SuffixesToAdd--; |
| 458 | |
| 459 | if (Active.Node->isRoot()) { |
| 460 | if (Active.Len > 0) { |
| 461 | Active.Len--; |
| 462 | Active.Idx = EndIdx - SuffixesToAdd + 1; |
| 463 | } |
| 464 | } else { |
| 465 | // Start the next phase at the next smallest suffix. |
| 466 | Active.Node = Active.Node->Link; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | return SuffixesToAdd; |
| 471 | } |
| 472 | |
| 473 | /// \brief Return the start index and length of a string which maximizes a |
| 474 | /// benefit function by traversing the tree depth-first. |
| 475 | /// |
| 476 | /// Helper function for \p bestRepeatedSubstring. |
| 477 | /// |
| 478 | /// \param CurrNode The node currently being visited. |
| 479 | /// \param CurrLen Length of the current string. |
| 480 | /// \param[out] BestLen Length of the most beneficial substring. |
| 481 | /// \param[out] MaxBenefit Benefit of the most beneficial substring. |
| 482 | /// \param[out] BestStartIdx Start index of the most beneficial substring. |
| 483 | /// \param BenefitFn The function the query should return a maximum string |
| 484 | /// for. |
| 485 | void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen, |
| 486 | size_t &MaxBenefit, size_t &BestStartIdx, |
| 487 | const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)> |
| 488 | &BenefitFn) { |
| 489 | |
| 490 | if (!CurrNode.IsInTree) |
| 491 | return; |
| 492 | |
| 493 | // Can we traverse further down the tree? |
| 494 | if (!CurrNode.isLeaf()) { |
| 495 | // If yes, continue the traversal. |
| 496 | for (auto &ChildPair : CurrNode.Children) { |
| 497 | if (ChildPair.second && ChildPair.second->IsInTree) |
| 498 | findBest(*ChildPair.second, CurrLen + ChildPair.second->size(), |
| 499 | BestLen, MaxBenefit, BestStartIdx, BenefitFn); |
| 500 | } |
| 501 | } else { |
| 502 | // We hit a leaf. |
| 503 | size_t StringLen = CurrLen - CurrNode.size(); |
| 504 | unsigned Benefit = BenefitFn(CurrNode, StringLen); |
| 505 | |
| 506 | // Did we do better than in the last step? |
| 507 | if (Benefit <= MaxBenefit) |
| 508 | return; |
| 509 | |
| 510 | // We did better, so update the best string. |
| 511 | MaxBenefit = Benefit; |
| 512 | BestStartIdx = CurrNode.SuffixIdx; |
| 513 | BestLen = StringLen; |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | public: |
| 518 | |
| 519 | /// \brief Return a substring of the tree with maximum benefit if such a |
| 520 | /// substring exists. |
| 521 | /// |
| 522 | /// Clears the input vector and fills it with a maximum substring or empty. |
| 523 | /// |
| 524 | /// \param[in,out] Best The most beneficial substring in the tree. Empty |
| 525 | /// if it does not exist. |
| 526 | /// \param BenefitFn The function the query should return a maximum string |
| 527 | /// for. |
| 528 | void bestRepeatedSubstring(std::vector<unsigned> &Best, |
| 529 | const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)> |
| 530 | &BenefitFn) { |
| 531 | Best.clear(); |
| 532 | size_t Length = 0; // Becomes the length of the best substring. |
| 533 | size_t Benefit = 0; // Becomes the benefit of the best substring. |
| 534 | size_t StartIdx = 0; // Becomes the start index of the best substring. |
| 535 | findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn); |
| 536 | |
| 537 | for (size_t Idx = 0; Idx < Length; Idx++) |
| 538 | Best.push_back(Str[Idx + StartIdx]); |
| 539 | } |
| 540 | |
| 541 | /// Perform a depth-first search for \p QueryString on the suffix tree. |
| 542 | /// |
| 543 | /// \param QueryString The string to search for. |
| 544 | /// \param CurrIdx The current index in \p QueryString that is being matched |
| 545 | /// against. |
| 546 | /// \param CurrNode The suffix tree node being searched in. |
| 547 | /// |
| 548 | /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a |
| 549 | /// node exists, and \p nullptr otherwise. |
| 550 | SuffixTreeNode *findString(const std::vector<unsigned> &QueryString, |
| 551 | size_t &CurrIdx, SuffixTreeNode *CurrNode) { |
| 552 | |
| 553 | // The search ended at a nonexistent or pruned node. Quit. |
| 554 | if (!CurrNode || !CurrNode->IsInTree) |
| 555 | return nullptr; |
| 556 | |
| 557 | unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on. |
| 558 | SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query. |
| 559 | |
| 560 | if (CurrNode->isRoot()) { |
| 561 | // If we're at the root we have to check if there's a child, and move to |
| 562 | // that child. Don't consume the character since \p Root represents the |
| 563 | // empty string. |
| 564 | if (NextNode && NextNode->IsInTree) |
| 565 | return findString(QueryString, CurrIdx, NextNode); |
| 566 | return nullptr; |
| 567 | } |
| 568 | |
| 569 | size_t StrIdx = CurrNode->StartIdx; |
| 570 | size_t MaxIdx = QueryString.size(); |
| 571 | bool ContinueSearching = false; |
| 572 | |
| 573 | // Match as far as possible into the string. If there's a mismatch, quit. |
| 574 | for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) { |
| 575 | Edge = QueryString[CurrIdx]; |
| 576 | |
| 577 | // We matched perfectly, but still have a remainder to search. |
| 578 | if (StrIdx > *(CurrNode->EndIdx)) { |
| 579 | ContinueSearching = true; |
| 580 | break; |
| 581 | } |
| 582 | |
| 583 | if (Edge != Str[StrIdx]) |
| 584 | return nullptr; |
| 585 | } |
| 586 | |
| 587 | NextNode = CurrNode->Children[Edge]; |
| 588 | |
| 589 | // Move to the node which matches what we're looking for and continue |
| 590 | // searching. |
| 591 | if (ContinueSearching) |
| 592 | return findString(QueryString, CurrIdx, NextNode); |
| 593 | |
| 594 | // We matched perfectly so we're done. |
| 595 | return CurrNode; |
| 596 | } |
| 597 | |
| 598 | /// \brief Remove a node from a tree and all nodes representing proper |
| 599 | /// suffixes of that node's string. |
| 600 | /// |
| 601 | /// This is used in the outlining algorithm to reduce the number of |
| 602 | /// overlapping candidates |
| 603 | /// |
| 604 | /// \param N The suffix tree node to start pruning from. |
| 605 | /// \param Len The length of the string to be pruned. |
| 606 | /// |
| 607 | /// \returns True if this candidate didn't overlap with a previously chosen |
| 608 | /// candidate. |
| 609 | bool prune(SuffixTreeNode *N, size_t Len) { |
| 610 | |
| 611 | bool NoOverlap = true; |
| 612 | std::vector<unsigned> IndicesToPrune; |
| 613 | |
| 614 | // Look at each of N's children. |
| 615 | for (auto &ChildPair : N->Children) { |
| 616 | SuffixTreeNode *M = ChildPair.second; |
| 617 | |
| 618 | // Is this a leaf child? |
| 619 | if (M && M->IsInTree && M->isLeaf()) { |
| 620 | // Save each leaf child's suffix indices and remove them from the tree. |
| 621 | IndicesToPrune.push_back(M->SuffixIdx); |
| 622 | M->IsInTree = false; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | // Remove each suffix we have to prune from the tree. Each of these will be |
| 627 | // I + some offset for I in IndicesToPrune and some offset < Len. |
| 628 | unsigned Offset = 1; |
| 629 | for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) { |
| 630 | for (unsigned I : IndicesToPrune) { |
| 631 | |
| 632 | unsigned PruneIdx = I + Offset; |
| 633 | |
| 634 | // Is this index actually in the string? |
| 635 | if (PruneIdx < LeafVector.size()) { |
| 636 | // If yes, we have to try and prune it. |
| 637 | // Was the current leaf already pruned by another candidate? |
| 638 | if (LeafVector[PruneIdx]->IsInTree) { |
| 639 | // If not, prune it. |
| 640 | LeafVector[PruneIdx]->IsInTree = false; |
| 641 | } else { |
| 642 | // If yes, signify that we've found an overlap, but keep pruning. |
| 643 | NoOverlap = false; |
| 644 | } |
| 645 | |
| 646 | // Update the parent of the current leaf's occurrence count. |
| 647 | SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent; |
| 648 | |
| 649 | // Is the parent still in the tree? |
| 650 | if (Parent->OccurrenceCount > 0) { |
| 651 | Parent->OccurrenceCount--; |
| 652 | Parent->IsInTree = (Parent->OccurrenceCount > 1); |
| 653 | } |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | // Move to the next character in the string. |
| 658 | Offset++; |
| 659 | } |
| 660 | |
| 661 | // We know we can never outline anything which starts one index back from |
| 662 | // the indices we want to outline. This is because our minimum outlining |
| 663 | // length is always 2. |
| 664 | for (unsigned I : IndicesToPrune) { |
| 665 | if (I > 0) { |
| 666 | |
| 667 | unsigned PruneIdx = I-1; |
| 668 | SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent; |
| 669 | |
| 670 | // Was the leaf one index back from I already pruned? |
| 671 | if (LeafVector[PruneIdx]->IsInTree) { |
| 672 | // If not, prune it. |
| 673 | LeafVector[PruneIdx]->IsInTree = false; |
| 674 | } else { |
| 675 | // If yes, signify that we've found an overlap, but keep pruning. |
| 676 | NoOverlap = false; |
| 677 | } |
| 678 | |
| 679 | // Update the parent of the current leaf's occurrence count. |
| 680 | if (Parent->OccurrenceCount > 0) { |
| 681 | Parent->OccurrenceCount--; |
| 682 | Parent->IsInTree = (Parent->OccurrenceCount > 1); |
| 683 | } |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | // Finally, remove N from the tree and set its occurrence count to 0. |
| 688 | N->IsInTree = false; |
| 689 | N->OccurrenceCount = 0; |
| 690 | |
| 691 | return NoOverlap; |
| 692 | } |
| 693 | |
| 694 | /// \brief Find each occurrence of of a string in \p QueryString and prune |
| 695 | /// their nodes. |
| 696 | /// |
| 697 | /// \param QueryString The string to search for. |
| 698 | /// \param[out] Occurrences The start indices of each occurrence. |
| 699 | /// |
| 700 | /// \returns Whether or not the occurrence overlaps with a previous candidate. |
| 701 | bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString, |
| 702 | std::vector<size_t> &Occurrences) { |
| 703 | size_t Dummy = 0; |
| 704 | SuffixTreeNode *N = findString(QueryString, Dummy, Root); |
| 705 | |
| 706 | if (!N || !N->IsInTree) |
| 707 | return false; |
| 708 | |
| 709 | // If this is an internal node, occurrences are the number of leaf children |
| 710 | // of the node. |
| 711 | for (auto &ChildPair : N->Children) { |
| 712 | SuffixTreeNode *M = ChildPair.second; |
| 713 | |
| 714 | // Is it a leaf? If so, we have an occurrence. |
| 715 | if (M && M->IsInTree && M->isLeaf()) |
| 716 | Occurrences.push_back(M->SuffixIdx); |
| 717 | } |
| 718 | |
| 719 | // If we're in a leaf, then this node is the only occurrence. |
| 720 | if (N->isLeaf()) |
| 721 | Occurrences.push_back(N->SuffixIdx); |
| 722 | |
| 723 | return prune(N, QueryString.size()); |
| 724 | } |
| 725 | |
| 726 | /// Construct a suffix tree from a sequence of unsigned integers. |
| 727 | /// |
| 728 | /// \param Str The string to construct the suffix tree for. |
| 729 | SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { |
| 730 | Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); |
| 731 | Root->IsInTree = true; |
| 732 | Active.Node = Root; |
| 733 | LeafVector = std::vector<SuffixTreeNode*>(Str.size()); |
| 734 | |
| 735 | // Keep track of the number of suffixes we have to add of the current |
| 736 | // prefix. |
| 737 | size_t SuffixesToAdd = 0; |
| 738 | Active.Node = Root; |
| 739 | |
| 740 | // Construct the suffix tree iteratively on each prefix of the string. |
| 741 | // PfxEndIdx is the end index of the current prefix. |
| 742 | // End is one past the last element in the string. |
| 743 | for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { |
| 744 | SuffixesToAdd++; |
| 745 | LeafEndIdx = PfxEndIdx; // Extend each of the leaves. |
| 746 | SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); |
| 747 | } |
| 748 | |
| 749 | // Set the suffix indices of each leaf. |
| 750 | assert(Root && "Root node can't be nullptr!"); |
| 751 | setSuffixIndices(*Root, 0); |
| 752 | } |
| 753 | }; |
| 754 | |
| 755 | /// \brief An individual sequence of instructions to be replaced with a call to |
| 756 | /// an outlined function. |
| 757 | struct Candidate { |
| 758 | |
| 759 | /// Set to false if the candidate overlapped with another candidate. |
| 760 | bool InCandidateList = true; |
| 761 | |
| 762 | /// The start index of this \p Candidate. |
| 763 | size_t StartIdx; |
| 764 | |
| 765 | /// The number of instructions in this \p Candidate. |
| 766 | size_t Len; |
| 767 | |
| 768 | /// The index of this \p Candidate's \p OutlinedFunction in the list of |
| 769 | /// \p OutlinedFunctions. |
| 770 | size_t FunctionIdx; |
| 771 | |
| 772 | Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx) |
| 773 | : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} |
| 774 | |
| 775 | Candidate() {} |
| 776 | |
| 777 | /// \brief Used to ensure that \p Candidates are outlined in an order that |
| 778 | /// preserves the start and end indices of other \p Candidates. |
| 779 | bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } |
| 780 | }; |
| 781 | |
| 782 | /// \brief The information necessary to create an outlined function for some |
| 783 | /// class of candidate. |
| 784 | struct OutlinedFunction { |
| 785 | |
| 786 | /// The actual outlined function created. |
| 787 | /// This is initialized after we go through and create the actual function. |
| 788 | MachineFunction *MF = nullptr; |
| 789 | |
| 790 | /// A number assigned to this function which appears at the end of its name. |
| 791 | size_t Name; |
| 792 | |
| 793 | /// The number of times that this function has appeared. |
| 794 | size_t OccurrenceCount = 0; |
| 795 | |
| 796 | /// \brief The sequence of integers corresponding to the instructions in this |
| 797 | /// function. |
| 798 | std::vector<unsigned> Sequence; |
| 799 | |
| 800 | /// The number of instructions this function would save. |
| 801 | unsigned Benefit = 0; |
| 802 | |
| 803 | OutlinedFunction(size_t Name, size_t OccurrenceCount, |
| 804 | const std::vector<unsigned> &Sequence, |
| 805 | unsigned Benefit) |
| 806 | : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), |
| 807 | Benefit(Benefit) |
| 808 | {} |
| 809 | }; |
| 810 | |
| 811 | /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. |
| 812 | struct InstructionMapper { |
| 813 | |
| 814 | /// \brief The next available integer to assign to a \p MachineInstr that |
| 815 | /// cannot be outlined. |
| 816 | /// |
| 817 | /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. |
| 818 | unsigned IllegalInstrNumber = -3; |
| 819 | |
| 820 | /// \brief The next available integer to assign to a \p MachineInstr that can |
| 821 | /// be outlined. |
| 822 | unsigned LegalInstrNumber = 0; |
| 823 | |
| 824 | /// Correspondence from \p MachineInstrs to unsigned integers. |
| 825 | DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> |
| 826 | InstructionIntegerMap; |
| 827 | |
| 828 | /// Corresponcence from unsigned integers to \p MachineInstrs. |
| 829 | /// Inverse of \p InstructionIntegerMap. |
| 830 | DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; |
| 831 | |
| 832 | /// The vector of unsigned integers that the module is mapped to. |
| 833 | std::vector<unsigned> UnsignedVec; |
| 834 | |
| 835 | /// \brief Stores the location of the instruction associated with the integer |
| 836 | /// at index i in \p UnsignedVec for each index i. |
| 837 | std::vector<MachineBasicBlock::iterator> InstrList; |
| 838 | |
| 839 | /// \brief Maps \p *It to a legal integer. |
| 840 | /// |
| 841 | /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, |
| 842 | /// \p IntegerInstructionMap, and \p LegalInstrNumber. |
| 843 | /// |
| 844 | /// \returns The integer that \p *It was mapped to. |
| 845 | unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { |
| 846 | |
| 847 | // Get the integer for this instruction or give it the current |
| 848 | // LegalInstrNumber. |
| 849 | InstrList.push_back(It); |
| 850 | MachineInstr &MI = *It; |
| 851 | bool WasInserted; |
| 852 | DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator |
| 853 | ResultIt; |
| 854 | std::tie(ResultIt, WasInserted) = |
| 855 | InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); |
| 856 | unsigned MINumber = ResultIt->second; |
| 857 | |
| 858 | // There was an insertion. |
| 859 | if (WasInserted) { |
| 860 | LegalInstrNumber++; |
| 861 | IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); |
| 862 | } |
| 863 | |
| 864 | UnsignedVec.push_back(MINumber); |
| 865 | |
| 866 | // Make sure we don't overflow or use any integers reserved by the DenseMap. |
| 867 | if (LegalInstrNumber >= IllegalInstrNumber) |
| 868 | report_fatal_error("Instruction mapping overflow!"); |
| 869 | |
| 870 | assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() |
| 871 | && "Tried to assign DenseMap tombstone or empty key to instruction."); |
| 872 | assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() |
| 873 | && "Tried to assign DenseMap tombstone or empty key to instruction."); |
| 874 | |
| 875 | return MINumber; |
| 876 | } |
| 877 | |
| 878 | /// Maps \p *It to an illegal integer. |
| 879 | /// |
| 880 | /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. |
| 881 | /// |
| 882 | /// \returns The integer that \p *It was mapped to. |
| 883 | unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { |
| 884 | unsigned MINumber = IllegalInstrNumber; |
| 885 | |
| 886 | InstrList.push_back(It); |
| 887 | UnsignedVec.push_back(IllegalInstrNumber); |
| 888 | IllegalInstrNumber--; |
| 889 | |
| 890 | assert(LegalInstrNumber < IllegalInstrNumber && |
| 891 | "Instruction mapping overflow!"); |
| 892 | |
| 893 | assert(IllegalInstrNumber != |
| 894 | DenseMapInfo<unsigned>::getEmptyKey() && |
| 895 | "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); |
| 896 | |
| 897 | assert(IllegalInstrNumber != |
| 898 | DenseMapInfo<unsigned>::getTombstoneKey() && |
| 899 | "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); |
| 900 | |
| 901 | return MINumber; |
| 902 | } |
| 903 | |
| 904 | /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds |
| 905 | /// and appends it to \p UnsignedVec and \p InstrList. |
| 906 | /// |
| 907 | /// Two instructions are assigned the same integer if they are identical. |
| 908 | /// If an instruction is deemed unsafe to outline, then it will be assigned an |
| 909 | /// unique integer. The resulting mapping is placed into a suffix tree and |
| 910 | /// queried for candidates. |
| 911 | /// |
| 912 | /// \param MBB The \p MachineBasicBlock to be translated into integers. |
| 913 | /// \param TRI \p TargetRegisterInfo for the module. |
| 914 | /// \param TII \p TargetInstrInfo for the module. |
| 915 | void convertToUnsignedVec(MachineBasicBlock &MBB, |
| 916 | const TargetRegisterInfo &TRI, |
| 917 | const TargetInstrInfo &TII) { |
| 918 | for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; |
| 919 | It++) { |
| 920 | |
| 921 | // Keep track of where this instruction is in the module. |
| 922 | switch(TII.getOutliningType(*It)) { |
| 923 | case TargetInstrInfo::MachineOutlinerInstrType::Illegal: |
| 924 | mapToIllegalUnsigned(It); |
| 925 | break; |
| 926 | |
| 927 | case TargetInstrInfo::MachineOutlinerInstrType::Legal: |
| 928 | mapToLegalUnsigned(It); |
| 929 | break; |
| 930 | |
| 931 | case TargetInstrInfo::MachineOutlinerInstrType::Invisible: |
| 932 | break; |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | // After we're done every insertion, uniquely terminate this part of the |
| 937 | // "string". This makes sure we won't match across basic block or function |
| 938 | // boundaries since the "end" is encoded uniquely and thus appears in no |
| 939 | // repeated substring. |
| 940 | InstrList.push_back(MBB.end()); |
| 941 | UnsignedVec.push_back(IllegalInstrNumber); |
| 942 | IllegalInstrNumber--; |
| 943 | } |
| 944 | |
| 945 | InstructionMapper() { |
| 946 | // Make sure that the implementation of DenseMapInfo<unsigned> hasn't |
| 947 | // changed. |
| 948 | assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && |
| 949 | "DenseMapInfo<unsigned>'s empty key isn't -1!"); |
| 950 | assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && |
| 951 | "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); |
| 952 | } |
| 953 | }; |
| 954 | |
| 955 | /// \brief An interprocedural pass which finds repeated sequences of |
| 956 | /// instructions and replaces them with calls to functions. |
| 957 | /// |
| 958 | /// Each instruction is mapped to an unsigned integer and placed in a string. |
| 959 | /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree |
| 960 | /// is then repeatedly queried for repeated sequences of instructions. Each |
| 961 | /// non-overlapping repeated sequence is then placed in its own |
| 962 | /// \p MachineFunction and each instance is then replaced with a call to that |
| 963 | /// function. |
| 964 | struct MachineOutliner : public ModulePass { |
| 965 | |
| 966 | static char ID; |
| 967 | |
| 968 | StringRef getPassName() const override { return "Machine Outliner"; } |
| 969 | |
| 970 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 971 | AU.addRequired<MachineModuleInfo>(); |
| 972 | AU.addPreserved<MachineModuleInfo>(); |
| 973 | AU.setPreservesAll(); |
| 974 | ModulePass::getAnalysisUsage(AU); |
| 975 | } |
| 976 | |
| 977 | MachineOutliner() : ModulePass(ID) { |
| 978 | initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); |
| 979 | } |
| 980 | |
| 981 | /// \brief Replace the sequences of instructions represented by the |
| 982 | /// \p Candidates in \p CandidateList with calls to \p MachineFunctions |
| 983 | /// described in \p FunctionList. |
| 984 | /// |
| 985 | /// \param M The module we are outlining from. |
| 986 | /// \param CandidateList A list of candidates to be outlined. |
| 987 | /// \param FunctionList A list of functions to be inserted into the module. |
| 988 | /// \param Mapper Contains the instruction mappings for the module. |
| 989 | bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, |
| 990 | std::vector<OutlinedFunction> &FunctionList, |
| 991 | InstructionMapper &Mapper); |
| 992 | |
| 993 | /// Creates a function for \p OF and inserts it into the module. |
| 994 | MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, |
| 995 | InstructionMapper &Mapper); |
| 996 | |
| 997 | /// Find potential outlining candidates and store them in \p CandidateList. |
| 998 | /// |
| 999 | /// For each type of potential candidate, also build an \p OutlinedFunction |
| 1000 | /// struct containing the information to build the function for that |
| 1001 | /// candidate. |
| 1002 | /// |
| 1003 | /// \param[out] CandidateList Filled with outlining candidates for the module. |
| 1004 | /// \param[out] FunctionList Filled with functions corresponding to each type |
| 1005 | /// of \p Candidate. |
| 1006 | /// \param ST The suffix tree for the module. |
| 1007 | /// \param TII TargetInstrInfo for the module. |
| 1008 | /// |
| 1009 | /// \returns The length of the longest candidate found. 0 if there are none. |
| 1010 | unsigned buildCandidateList(std::vector<Candidate> &CandidateList, |
| 1011 | std::vector<OutlinedFunction> &FunctionList, |
| 1012 | SuffixTree &ST, const TargetInstrInfo &TII); |
| 1013 | |
| 1014 | /// \brief Remove any overlapping candidates that weren't handled by the |
| 1015 | /// suffix tree's pruning method. |
| 1016 | /// |
| 1017 | /// Pruning from the suffix tree doesn't necessarily remove all overlaps. |
| 1018 | /// If a short candidate is chosen for outlining, then a longer candidate |
| 1019 | /// which has that short candidate as a suffix is chosen, the tree's pruning |
| 1020 | /// method will not find it. Thus, we need to prune before outlining as well. |
| 1021 | /// |
| 1022 | /// \param[in,out] CandidateList A list of outlining candidates. |
| 1023 | /// \param[in,out] FunctionList A list of functions to be outlined. |
| 1024 | /// \param MaxCandidateLen The length of the longest candidate. |
| 1025 | /// \param TII TargetInstrInfo for the module. |
| 1026 | void pruneOverlaps(std::vector<Candidate> &CandidateList, |
| 1027 | std::vector<OutlinedFunction> &FunctionList, |
| 1028 | unsigned MaxCandidateLen, |
| 1029 | const TargetInstrInfo &TII); |
| 1030 | |
| 1031 | /// Construct a suffix tree on the instructions in \p M and outline repeated |
| 1032 | /// strings from that tree. |
| 1033 | bool runOnModule(Module &M) override; |
| 1034 | }; |
| 1035 | |
| 1036 | } // Anonymous namespace. |
| 1037 | |
| 1038 | char MachineOutliner::ID = 0; |
| 1039 | |
| 1040 | namespace llvm { |
| 1041 | ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } |
| 1042 | } |
| 1043 | |
| 1044 | INITIALIZE_PASS(MachineOutliner, "machine-outliner", |
| 1045 | "Machine Function Outliner", false, false) |
| 1046 | |
| 1047 | void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, |
| 1048 | std::vector<OutlinedFunction> &FunctionList, |
| 1049 | unsigned MaxCandidateLen, |
| 1050 | const TargetInstrInfo &TII) { |
| 1051 | |
| 1052 | // Check for overlaps in the range. This is O(n^2) worst case, but we can |
| 1053 | // alleviate that somewhat by bounding our search space using the start |
| 1054 | // index of our first candidate and the maximum distance an overlapping |
| 1055 | // candidate could have from the first candidate. |
| 1056 | for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; |
| 1057 | It++) { |
| 1058 | Candidate &C1 = *It; |
| 1059 | OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; |
| 1060 | |
| 1061 | // If we removed this candidate, skip it. |
| 1062 | if (!C1.InCandidateList) |
| 1063 | continue; |
| 1064 | |
| 1065 | // If the candidate's function isn't good to outline anymore, then |
| 1066 | // remove the candidate and skip it. |
| 1067 | if (F1.OccurrenceCount < 2 || F1.Benefit < 1) { |
| 1068 | C1.InCandidateList = false; |
| 1069 | continue; |
| 1070 | } |
| 1071 | |
| 1072 | // The minimum start index of any candidate that could overlap with this |
| 1073 | // one. |
| 1074 | unsigned FarthestPossibleIdx = 0; |
| 1075 | |
| 1076 | // Either the index is 0, or it's at most MaxCandidateLen indices away. |
| 1077 | if (C1.StartIdx > MaxCandidateLen) |
| 1078 | FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; |
| 1079 | |
| 1080 | // Compare against the other candidates in the list. |
| 1081 | // This is at most MaxCandidateLen/2 other candidates. |
| 1082 | // This is because each candidate has to be at least 2 indices away. |
| 1083 | // = O(n * MaxCandidateLen/2) comparisons |
| 1084 | // |
| 1085 | // On average, the maximum length of a candidate is quite small; a fraction |
| 1086 | // of the total module length in terms of instructions. If the maximum |
| 1087 | // candidate length is large, then there are fewer possible candidates to |
| 1088 | // compare against in the first place. |
| 1089 | for (auto Sit = It + 1; Sit != Et; Sit++) { |
| 1090 | Candidate &C2 = *Sit; |
| 1091 | OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; |
| 1092 | |
| 1093 | // Is this candidate too far away to overlap? |
| 1094 | // NOTE: This will be true in |
| 1095 | // O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps |
| 1096 | // for every candidate. |
| 1097 | if (C2.StartIdx < FarthestPossibleIdx) |
| 1098 | break; |
| 1099 | |
| 1100 | // Did we already remove this candidate in a previous step? |
| 1101 | if (!C2.InCandidateList) |
| 1102 | continue; |
| 1103 | |
| 1104 | // Is the function beneficial to outline? |
| 1105 | if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { |
| 1106 | // If not, remove this candidate and move to the next one. |
| 1107 | C2.InCandidateList = false; |
| 1108 | continue; |
| 1109 | } |
| 1110 | |
| 1111 | size_t C2End = C2.StartIdx + C2.Len - 1; |
| 1112 | |
| 1113 | // Do C1 and C2 overlap? |
| 1114 | // |
| 1115 | // Not overlapping: |
| 1116 | // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices |
| 1117 | // |
| 1118 | // We sorted our candidate list so C2Start <= C1Start. We know that |
| 1119 | // C2End > C2Start since each candidate has length >= 2. Therefore, all we |
| 1120 | // have to check is C2End < C2Start to see if we overlap. |
| 1121 | if (C2End < C1.StartIdx) |
| 1122 | continue; |
| 1123 | |
| 1124 | // C2 overlaps with C1. Because we pruned the tree already, the only way |
| 1125 | // this can happen is if C1 is a proper suffix of C2. Thus, we must have |
| 1126 | // found C1 first during our query, so it must have benefit greater or |
| 1127 | // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2. |
| 1128 | DEBUG ( |
| 1129 | size_t C1End = C1.StartIdx + C1.Len - 1; |
| 1130 | dbgs() << "- Found an overlap to purge.\n"; |
| 1131 | dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n"; |
| 1132 | dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n"; |
| 1133 | ); |
| 1134 | |
| 1135 | // Update the function's occurrence count and benefit to reflec that C2 |
| 1136 | // is being removed. |
| 1137 | F2.OccurrenceCount--; |
| 1138 | F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(), |
| 1139 | F2.OccurrenceCount |
| 1140 | ); |
| 1141 | |
| 1142 | // Mark C2 as not in the list. |
| 1143 | C2.InCandidateList = false; |
| 1144 | |
| 1145 | DEBUG ( |
| 1146 | dbgs() << "- Removed C2. \n"; |
| 1147 | dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n"; |
| 1148 | dbgs() << "--- C2's benefit: " << F2.Benefit << "\n"; |
| 1149 | ); |
| 1150 | } |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | unsigned |
| 1155 | MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, |
| 1156 | std::vector<OutlinedFunction> &FunctionList, |
| 1157 | SuffixTree &ST, |
| 1158 | const TargetInstrInfo &TII) { |
| 1159 | |
| 1160 | std::vector<unsigned> CandidateSequence; // Current outlining candidate. |
| 1161 | unsigned MaxCandidateLen = 0; // Length of the longest candidate. |
| 1162 | |
| 1163 | // Function for maximizing query in the suffix tree. |
| 1164 | // This allows us to define more fine-grained types of things to outline in |
| 1165 | // the target without putting target-specific info in the suffix tree. |
| 1166 | auto BenefitFn = [&TII](const SuffixTreeNode &Curr, size_t StringLen) { |
| 1167 | |
| 1168 | // Any leaf whose parent is the root only has one occurrence. |
| 1169 | if (Curr.Parent->isRoot()) |
| 1170 | return 0u; |
| 1171 | |
| 1172 | // Anything with length < 2 will never be beneficial on any target. |
| 1173 | if (StringLen < 2) |
| 1174 | return 0u; |
| 1175 | |
| 1176 | size_t Occurrences = Curr.Parent->OccurrenceCount; |
| 1177 | |
| 1178 | // Anything with fewer than 2 occurrences will never be beneficial on any |
| 1179 | // target. |
| 1180 | if (Occurrences < 2) |
| 1181 | return 0u; |
| 1182 | |
| 1183 | return TII.getOutliningBenefit(StringLen, Occurrences); |
| 1184 | }; |
| 1185 | |
| 1186 | // Repeatedly query the suffix tree for the substring that maximizes |
| 1187 | // BenefitFn. Find the occurrences of that string, prune the tree, and store |
| 1188 | // each occurrence as a candidate. |
| 1189 | for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn); |
| 1190 | CandidateSequence.size() > 1; |
| 1191 | ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) { |
| 1192 | |
| 1193 | std::vector<size_t> Occurrences; |
| 1194 | |
| 1195 | bool GotNonOverlappingCandidate = |
| 1196 | ST.findOccurrencesAndPrune(CandidateSequence, Occurrences); |
| 1197 | |
| 1198 | // Is the candidate we found known to overlap with something we already |
| 1199 | // outlined? |
| 1200 | if (!GotNonOverlappingCandidate) |
| 1201 | continue; |
| 1202 | |
| 1203 | // Is this candidate the longest so far? |
| 1204 | if (CandidateSequence.size() > MaxCandidateLen) |
| 1205 | MaxCandidateLen = CandidateSequence.size(); |
| 1206 | |
| 1207 | // Keep track of the benefit of outlining this candidate in its |
| 1208 | // OutlinedFunction. |
| 1209 | unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(), |
| 1210 | Occurrences.size() |
| 1211 | ); |
| 1212 | |
| 1213 | assert(FnBenefit > 0 && "Function cannot be unbeneficial!"); |
| 1214 | |
| 1215 | // Save an OutlinedFunction for this candidate. |
| 1216 | FunctionList.emplace_back( |
| 1217 | FunctionList.size(), // Number of this function. |
| 1218 | Occurrences.size(), // Number of occurrences. |
| 1219 | CandidateSequence, // Sequence to outline. |
| 1220 | FnBenefit // Instructions saved by outlining this function. |
| 1221 | ); |
| 1222 | |
| 1223 | // Save each of the occurrences of the candidate so we can outline them. |
| 1224 | for (size_t &Occ : Occurrences) |
| 1225 | CandidateList.emplace_back( |
| 1226 | Occ, // Starting idx in that MBB. |
| 1227 | CandidateSequence.size(), // Candidate length. |
| 1228 | FunctionList.size() - 1 // Idx of the corresponding function. |
| 1229 | ); |
| 1230 | |
| 1231 | FunctionsCreated++; |
| 1232 | } |
| 1233 | |
| 1234 | // Sort the candidates in decending order. This will simplify the outlining |
| 1235 | // process when we have to remove the candidates from the mapping by |
| 1236 | // allowing us to cut them out without keeping track of an offset. |
| 1237 | std::stable_sort(CandidateList.begin(), CandidateList.end()); |
| 1238 | |
| 1239 | return MaxCandidateLen; |
| 1240 | } |
| 1241 | |
| 1242 | MachineFunction * |
| 1243 | MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, |
| 1244 | InstructionMapper &Mapper) { |
| 1245 | |
| 1246 | // Create the function name. This should be unique. For now, just hash the |
| 1247 | // module name and include it in the function name plus the number of this |
| 1248 | // function. |
| 1249 | std::ostringstream NameStream; |
| 1250 | NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name; |
| 1251 | |
| 1252 | // Create the function using an IR-level function. |
| 1253 | LLVMContext &C = M.getContext(); |
| 1254 | Function *F = dyn_cast<Function>( |
| 1255 | M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), NULL)); |
| 1256 | assert(F && "Function was null!"); |
| 1257 | |
| 1258 | // NOTE: If this is linkonceodr, then we can take advantage of linker deduping |
| 1259 | // which gives us better results when we outline from linkonceodr functions. |
| 1260 | F->setLinkage(GlobalValue::PrivateLinkage); |
| 1261 | F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| 1262 | |
| 1263 | BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); |
| 1264 | IRBuilder<> Builder(EntryBB); |
| 1265 | Builder.CreateRetVoid(); |
| 1266 | |
| 1267 | MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); |
| 1268 | MachineFunction &MF = MMI.getMachineFunction(*F); |
| 1269 | MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); |
| 1270 | const TargetSubtargetInfo &STI = MF.getSubtarget(); |
| 1271 | const TargetInstrInfo &TII = *STI.getInstrInfo(); |
| 1272 | |
| 1273 | // Insert the new function into the module. |
| 1274 | MF.insert(MF.begin(), &MBB); |
| 1275 | |
| 1276 | TII.insertOutlinerPrologue(MBB, MF); |
| 1277 | |
| 1278 | // Copy over the instructions for the function using the integer mappings in |
| 1279 | // its sequence. |
| 1280 | for (unsigned Str : OF.Sequence) { |
| 1281 | MachineInstr *NewMI = |
| 1282 | MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); |
| 1283 | NewMI->dropMemRefs(); |
| 1284 | |
| 1285 | // Don't keep debug information for outlined instructions. |
| 1286 | // FIXME: This means outlined functions are currently undebuggable. |
| 1287 | NewMI->setDebugLoc(DebugLoc()); |
| 1288 | MBB.insert(MBB.end(), NewMI); |
| 1289 | } |
| 1290 | |
| 1291 | TII.insertOutlinerEpilogue(MBB, MF); |
| 1292 | |
| 1293 | return &MF; |
| 1294 | } |
| 1295 | |
| 1296 | bool MachineOutliner::outline(Module &M, |
| 1297 | const ArrayRef<Candidate> &CandidateList, |
| 1298 | std::vector<OutlinedFunction> &FunctionList, |
| 1299 | InstructionMapper &Mapper) { |
| 1300 | |
| 1301 | bool OutlinedSomething = false; |
| 1302 | |
| 1303 | // Replace the candidates with calls to their respective outlined functions. |
| 1304 | for (const Candidate &C : CandidateList) { |
| 1305 | |
| 1306 | // Was the candidate removed during pruneOverlaps? |
| 1307 | if (!C.InCandidateList) |
| 1308 | continue; |
| 1309 | |
| 1310 | // If not, then look at its OutlinedFunction. |
| 1311 | OutlinedFunction &OF = FunctionList[C.FunctionIdx]; |
| 1312 | |
| 1313 | // Was its OutlinedFunction made unbeneficial during pruneOverlaps? |
| 1314 | if (OF.OccurrenceCount < 2 || OF.Benefit < 1) |
| 1315 | continue; |
| 1316 | |
| 1317 | // If not, then outline it. |
| 1318 | assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); |
| 1319 | MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); |
| 1320 | MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; |
| 1321 | unsigned EndIdx = C.StartIdx + C.Len - 1; |
| 1322 | |
| 1323 | assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); |
| 1324 | MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; |
| 1325 | assert(EndIt != MBB->end() && "EndIt out of bounds!"); |
| 1326 | |
| 1327 | EndIt++; // Erase needs one past the end index. |
| 1328 | |
| 1329 | // Does this candidate have a function yet? |
| 1330 | if (!OF.MF) |
| 1331 | OF.MF = createOutlinedFunction(M, OF, Mapper); |
| 1332 | |
| 1333 | MachineFunction *MF = OF.MF; |
| 1334 | const TargetSubtargetInfo &STI = MF->getSubtarget(); |
| 1335 | const TargetInstrInfo &TII = *STI.getInstrInfo(); |
| 1336 | |
| 1337 | // Insert a call to the new function and erase the old sequence. |
| 1338 | TII.insertOutlinedCall(M, *MBB, StartIt, *MF); |
| 1339 | StartIt = Mapper.InstrList[C.StartIdx]; |
| 1340 | MBB->erase(StartIt, EndIt); |
| 1341 | |
| 1342 | OutlinedSomething = true; |
| 1343 | |
| 1344 | // Statistics. |
| 1345 | NumOutlined++; |
| 1346 | } |
| 1347 | |
| 1348 | DEBUG ( |
| 1349 | dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n"; |
| 1350 | ); |
| 1351 | |
| 1352 | return OutlinedSomething; |
| 1353 | } |
| 1354 | |
| 1355 | bool MachineOutliner::runOnModule(Module &M) { |
| 1356 | |
| 1357 | // Is there anything in the module at all? |
| 1358 | if (M.empty()) |
| 1359 | return false; |
| 1360 | |
| 1361 | MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); |
| 1362 | const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin()) |
| 1363 | .getSubtarget(); |
| 1364 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| 1365 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
| 1366 | |
| 1367 | InstructionMapper Mapper; |
| 1368 | |
| 1369 | // Build instruction mappings for each function in the module. |
| 1370 | for (Function &F : M) { |
| 1371 | MachineFunction &MF = MMI.getMachineFunction(F); |
| 1372 | |
| 1373 | // Is the function empty? Safe to outline from? |
| 1374 | if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) |
| 1375 | continue; |
| 1376 | |
| 1377 | // If it is, look at each MachineBasicBlock in the function. |
| 1378 | for (MachineBasicBlock &MBB : MF) { |
| 1379 | |
| 1380 | // Is there anything in MBB? |
| 1381 | if (MBB.empty()) |
| 1382 | continue; |
| 1383 | |
| 1384 | // If yes, map it. |
| 1385 | Mapper.convertToUnsignedVec(MBB, *TRI, *TII); |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | // Construct a suffix tree, use it to find candidates, and then outline them. |
| 1390 | SuffixTree ST(Mapper.UnsignedVec); |
| 1391 | std::vector<Candidate> CandidateList; |
| 1392 | std::vector<OutlinedFunction> FunctionList; |
| 1393 | |
| 1394 | unsigned MaxCandidateLen = |
| 1395 | buildCandidateList(CandidateList, FunctionList, ST, *TII); |
| 1396 | |
| 1397 | pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII); |
| 1398 | return outline(M, CandidateList, FunctionList, Mapper); |
| 1399 | } |