Alexey Bataev | 7cf3247 | 2015-12-04 10:53:15 +0000 | [diff] [blame] | 1 | //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the pass that performs some optimizations with LEA |
| 11 | // instructions in order to improve code size. |
| 12 | // Currently, it does one thing: |
| 13 | // 1) Address calculations in load and store instructions are replaced by |
| 14 | // existing LEA def registers where possible. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "X86.h" |
| 19 | #include "X86InstrInfo.h" |
| 20 | #include "X86Subtarget.h" |
| 21 | #include "llvm/ADT/Statistic.h" |
| 22 | #include "llvm/CodeGen/LiveVariables.h" |
| 23 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 24 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 25 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 26 | #include "llvm/CodeGen/Passes.h" |
| 27 | #include "llvm/IR/Function.h" |
| 28 | #include "llvm/Support/Debug.h" |
| 29 | #include "llvm/Support/raw_ostream.h" |
| 30 | #include "llvm/Target/TargetInstrInfo.h" |
| 31 | |
| 32 | using namespace llvm; |
| 33 | |
| 34 | #define DEBUG_TYPE "x86-optimize-LEAs" |
| 35 | |
Alexey Bataev | 7b72b65 | 2015-12-17 07:34:39 +0000 | [diff] [blame^] | 36 | static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden, |
| 37 | cl::desc("X86: Enable LEA optimizations."), |
| 38 | cl::init(false)); |
| 39 | |
Alexey Bataev | 7cf3247 | 2015-12-04 10:53:15 +0000 | [diff] [blame] | 40 | STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); |
| 41 | |
| 42 | namespace { |
| 43 | class OptimizeLEAPass : public MachineFunctionPass { |
| 44 | public: |
| 45 | OptimizeLEAPass() : MachineFunctionPass(ID) {} |
| 46 | |
| 47 | const char *getPassName() const override { return "X86 LEA Optimize"; } |
| 48 | |
| 49 | /// \brief Loop over all of the basic blocks, replacing address |
| 50 | /// calculations in load and store instructions, if it's already |
| 51 | /// been calculated by LEA. Also, remove redundant LEAs. |
| 52 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 53 | |
| 54 | private: |
| 55 | /// \brief Returns a distance between two instructions inside one basic block. |
| 56 | /// Negative result means, that instructions occur in reverse order. |
| 57 | int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); |
| 58 | |
| 59 | /// \brief Choose the best \p LEA instruction from the \p List to replace |
| 60 | /// address calculation in \p MI instruction. Return the address displacement |
| 61 | /// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift |
| 62 | /// and \p Dist. |
| 63 | bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, |
| 64 | const MachineInstr &MI, MachineInstr *&LEA, |
| 65 | int64_t &AddrDispShift, int &Dist); |
| 66 | |
| 67 | /// \brief Returns true if two machine operand are identical and they are not |
| 68 | /// physical registers. |
| 69 | bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2); |
| 70 | |
| 71 | /// \brief Returns true if the instruction is LEA. |
| 72 | bool isLEA(const MachineInstr &MI); |
| 73 | |
| 74 | /// \brief Returns true if two instructions have memory operands that only |
| 75 | /// differ by displacement. The numbers of the first memory operands for both |
| 76 | /// instructions are specified through \p N1 and \p N2. The address |
| 77 | /// displacement is returned through AddrDispShift. |
| 78 | bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1, |
| 79 | const MachineInstr &MI2, unsigned N2, |
| 80 | int64_t &AddrDispShift); |
| 81 | |
| 82 | /// \brief Find all LEA instructions in the basic block. |
| 83 | void findLEAs(const MachineBasicBlock &MBB, |
| 84 | SmallVectorImpl<MachineInstr *> &List); |
| 85 | |
| 86 | /// \brief Removes redundant address calculations. |
| 87 | bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List); |
| 88 | |
| 89 | MachineRegisterInfo *MRI; |
| 90 | const X86InstrInfo *TII; |
| 91 | const X86RegisterInfo *TRI; |
| 92 | |
| 93 | static char ID; |
| 94 | }; |
| 95 | char OptimizeLEAPass::ID = 0; |
| 96 | } |
| 97 | |
| 98 | FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } |
| 99 | |
| 100 | int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, |
| 101 | const MachineInstr &Last) { |
| 102 | const MachineBasicBlock *MBB = First.getParent(); |
| 103 | |
| 104 | // Both instructions must be in the same basic block. |
| 105 | assert(Last.getParent() == MBB && |
| 106 | "Instructions are in different basic blocks"); |
| 107 | |
| 108 | return std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&Last)) - |
| 109 | std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&First)); |
| 110 | } |
| 111 | |
| 112 | // Find the best LEA instruction in the List to replace address recalculation in |
| 113 | // MI. Such LEA must meet these requirements: |
| 114 | // 1) The address calculated by the LEA differs only by the displacement from |
| 115 | // the address used in MI. |
| 116 | // 2) The register class of the definition of the LEA is compatible with the |
| 117 | // register class of the address base register of MI. |
| 118 | // 3) Displacement of the new memory operand should fit in 1 byte if possible. |
| 119 | // 4) The LEA should be as close to MI as possible, and prior to it if |
| 120 | // possible. |
| 121 | bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, |
| 122 | const MachineInstr &MI, MachineInstr *&LEA, |
| 123 | int64_t &AddrDispShift, int &Dist) { |
| 124 | const MachineFunction *MF = MI.getParent()->getParent(); |
| 125 | const MCInstrDesc &Desc = MI.getDesc(); |
| 126 | int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) + |
| 127 | X86II::getOperandBias(Desc); |
| 128 | |
| 129 | LEA = nullptr; |
| 130 | |
| 131 | // Loop over all LEA instructions. |
| 132 | for (auto DefMI : List) { |
| 133 | int64_t AddrDispShiftTemp = 0; |
| 134 | |
| 135 | // Compare instructions memory operands. |
| 136 | if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp)) |
| 137 | continue; |
| 138 | |
| 139 | // Make sure address displacement fits 4 bytes. |
| 140 | if (!isInt<32>(AddrDispShiftTemp)) |
| 141 | continue; |
| 142 | |
| 143 | // Check that LEA def register can be used as MI address base. Some |
| 144 | // instructions can use a limited set of registers as address base, for |
| 145 | // example MOV8mr_NOREX. We could constrain the register class of the LEA |
| 146 | // def to suit MI, however since this case is very rare and hard to |
| 147 | // reproduce in a test it's just more reliable to skip the LEA. |
| 148 | if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != |
| 149 | MRI->getRegClass(DefMI->getOperand(0).getReg())) |
| 150 | continue; |
| 151 | |
| 152 | // Choose the closest LEA instruction from the list, prior to MI if |
| 153 | // possible. Note that we took into account resulting address displacement |
| 154 | // as well. Also note that the list is sorted by the order in which the LEAs |
| 155 | // occur, so the break condition is pretty simple. |
| 156 | int DistTemp = calcInstrDist(*DefMI, MI); |
| 157 | assert(DistTemp != 0 && |
| 158 | "The distance between two different instructions cannot be zero"); |
| 159 | if (DistTemp > 0 || LEA == nullptr) { |
| 160 | // Do not update return LEA, if the current one provides a displacement |
| 161 | // which fits in 1 byte, while the new candidate does not. |
| 162 | if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) && |
| 163 | isInt<8>(AddrDispShift)) |
| 164 | continue; |
| 165 | |
| 166 | LEA = DefMI; |
| 167 | AddrDispShift = AddrDispShiftTemp; |
| 168 | Dist = DistTemp; |
| 169 | } |
| 170 | |
| 171 | // FIXME: Maybe we should not always stop at the first LEA after MI. |
| 172 | if (DistTemp < 0) |
| 173 | break; |
| 174 | } |
| 175 | |
| 176 | return LEA != nullptr; |
| 177 | } |
| 178 | |
| 179 | bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1, |
| 180 | const MachineOperand &MO2) { |
| 181 | return MO1.isIdenticalTo(MO2) && |
| 182 | (!MO1.isReg() || |
| 183 | !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); |
| 184 | } |
| 185 | |
| 186 | bool OptimizeLEAPass::isLEA(const MachineInstr &MI) { |
| 187 | unsigned Opcode = MI.getOpcode(); |
| 188 | return Opcode == X86::LEA16r || Opcode == X86::LEA32r || |
| 189 | Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; |
| 190 | } |
| 191 | |
| 192 | // Check if MI1 and MI2 have memory operands which represent addresses that |
| 193 | // differ only by displacement. |
| 194 | bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1, |
| 195 | const MachineInstr &MI2, unsigned N2, |
| 196 | int64_t &AddrDispShift) { |
| 197 | // Address base, scale, index and segment operands must be identical. |
| 198 | static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt, |
| 199 | X86::AddrIndexReg, X86::AddrSegmentReg}; |
| 200 | for (auto &N : IdenticalOpNums) |
| 201 | if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N))) |
| 202 | return false; |
| 203 | |
| 204 | // Address displacement operands may differ by a constant. |
| 205 | const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp); |
| 206 | const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp); |
| 207 | if (!isIdenticalOp(*Op1, *Op2)) { |
| 208 | if (Op1->isImm() && Op2->isImm()) |
| 209 | AddrDispShift = Op1->getImm() - Op2->getImm(); |
| 210 | else if (Op1->isGlobal() && Op2->isGlobal() && |
| 211 | Op1->getGlobal() == Op2->getGlobal()) |
| 212 | AddrDispShift = Op1->getOffset() - Op2->getOffset(); |
| 213 | else |
| 214 | return false; |
| 215 | } |
| 216 | |
| 217 | return true; |
| 218 | } |
| 219 | |
| 220 | void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, |
| 221 | SmallVectorImpl<MachineInstr *> &List) { |
| 222 | for (auto &MI : MBB) { |
| 223 | if (isLEA(MI)) |
| 224 | List.push_back(const_cast<MachineInstr *>(&MI)); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | // Try to find load and store instructions which recalculate addresses already |
| 229 | // calculated by some LEA and replace their memory operands with its def |
| 230 | // register. |
| 231 | bool OptimizeLEAPass::removeRedundantAddrCalc( |
| 232 | const SmallVectorImpl<MachineInstr *> &List) { |
| 233 | bool Changed = false; |
| 234 | |
| 235 | assert(List.size() > 0); |
| 236 | MachineBasicBlock *MBB = List[0]->getParent(); |
| 237 | |
| 238 | // Process all instructions in basic block. |
| 239 | for (auto I = MBB->begin(), E = MBB->end(); I != E;) { |
| 240 | MachineInstr &MI = *I++; |
| 241 | unsigned Opcode = MI.getOpcode(); |
| 242 | |
| 243 | // Instruction must be load or store. |
| 244 | if (!MI.mayLoadOrStore()) |
| 245 | continue; |
| 246 | |
| 247 | // Get the number of the first memory operand. |
| 248 | const MCInstrDesc &Desc = MI.getDesc(); |
| 249 | int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode); |
| 250 | |
| 251 | // If instruction has no memory operand - skip it. |
| 252 | if (MemOpNo < 0) |
| 253 | continue; |
| 254 | |
| 255 | MemOpNo += X86II::getOperandBias(Desc); |
| 256 | |
| 257 | // Get the best LEA instruction to replace address calculation. |
| 258 | MachineInstr *DefMI; |
| 259 | int64_t AddrDispShift; |
| 260 | int Dist; |
| 261 | if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist)) |
| 262 | continue; |
| 263 | |
| 264 | // If LEA occurs before current instruction, we can freely replace |
| 265 | // the instruction. If LEA occurs after, we can lift LEA above the |
| 266 | // instruction and this way to be able to replace it. Since LEA and the |
| 267 | // instruction have similar memory operands (thus, the same def |
| 268 | // instructions for these operands), we can always do that, without |
| 269 | // worries of using registers before their defs. |
| 270 | if (Dist < 0) { |
| 271 | DefMI->removeFromParent(); |
| 272 | MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); |
| 273 | } |
| 274 | |
| 275 | // Since we can possibly extend register lifetime, clear kill flags. |
| 276 | MRI->clearKillFlags(DefMI->getOperand(0).getReg()); |
| 277 | |
| 278 | ++NumSubstLEAs; |
| 279 | DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); |
| 280 | |
| 281 | // Change instruction operands. |
| 282 | MI.getOperand(MemOpNo + X86::AddrBaseReg) |
| 283 | .ChangeToRegister(DefMI->getOperand(0).getReg(), false); |
| 284 | MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); |
| 285 | MI.getOperand(MemOpNo + X86::AddrIndexReg) |
| 286 | .ChangeToRegister(X86::NoRegister, false); |
| 287 | MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); |
| 288 | MI.getOperand(MemOpNo + X86::AddrSegmentReg) |
| 289 | .ChangeToRegister(X86::NoRegister, false); |
| 290 | |
| 291 | DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); |
| 292 | |
| 293 | Changed = true; |
| 294 | } |
| 295 | |
| 296 | return Changed; |
| 297 | } |
| 298 | |
| 299 | bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { |
| 300 | bool Changed = false; |
Alexey Bataev | 7cf3247 | 2015-12-04 10:53:15 +0000 | [diff] [blame] | 301 | |
| 302 | // Perform this optimization only if we care about code size. |
Alexey Bataev | 7b72b65 | 2015-12-17 07:34:39 +0000 | [diff] [blame^] | 303 | if (!EnableX86LEAOpt || !MF.getFunction()->optForSize()) |
Alexey Bataev | 7cf3247 | 2015-12-04 10:53:15 +0000 | [diff] [blame] | 304 | return false; |
| 305 | |
| 306 | MRI = &MF.getRegInfo(); |
| 307 | TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
| 308 | TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); |
| 309 | |
| 310 | // Process all basic blocks. |
| 311 | for (auto &MBB : MF) { |
| 312 | SmallVector<MachineInstr *, 16> LEAs; |
| 313 | |
| 314 | // Find all LEA instructions in basic block. |
| 315 | findLEAs(MBB, LEAs); |
| 316 | |
| 317 | // If current basic block has no LEAs, move on to the next one. |
| 318 | if (LEAs.empty()) |
| 319 | continue; |
| 320 | |
| 321 | // Remove redundant address calculations. |
| 322 | Changed |= removeRedundantAddrCalc(LEAs); |
| 323 | } |
| 324 | |
| 325 | return Changed; |
| 326 | } |