blob: 5ef95ba1a7a42fd45a213feb2b5271727b07fd9b [file] [log] [blame]
Tobias Grossercef36d52012-02-14 14:02:33 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16// 1. The exit condition for the loop is canonicalized to compare the
17// induction value against the exit value. This turns loops like:
18// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19// 2. Any use outside of the loop of an expression derived from the indvar
20// is changed to compute the derived value outside of the loop, eliminating
21// the dependence on the exit value of the induction variable. If the only
22// purpose of the loop is to compute the exit value of some derived
23// expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "indvars"
28
29#include "polly/LinkAllPasses.h"
30
31#include "llvm/Transforms/Scalar.h"
32#include "llvm/BasicBlock.h"
33#include "llvm/Constants.h"
34#include "llvm/Instructions.h"
35#include "llvm/IntrinsicInst.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/Type.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/IVUsers.h"
40#include "llvm/Analysis/ScalarEvolutionExpander.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/LoopPass.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/SimplifyIndVar.h"
50#include "llvm/Target/TargetData.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/Statistic.h"
54using namespace llvm;
55
56STATISTIC(NumRemoved , "Number of aux indvars removed");
57STATISTIC(NumWidened , "Number of indvars widened");
58STATISTIC(NumInserted , "Number of canonical indvars added");
59STATISTIC(NumReplaced , "Number of exit values replaced");
60STATISTIC(NumLFTR , "Number of loop exit tests replaced");
61STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
62STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
63
64static const bool EnableIVRewrite = true;
65static const bool VerifyIndvars = false;
66
67namespace {
Tobias Grosserd1f12db2012-03-23 08:02:05 +000068 class PollyIndVarSimplify : public LoopPass {
Tobias Grossercef36d52012-02-14 14:02:33 +000069 IVUsers *IU;
70 LoopInfo *LI;
71 ScalarEvolution *SE;
72 DominatorTree *DT;
73 TargetData *TD;
74
75 SmallVector<WeakVH, 16> DeadInsts;
76 bool Changed;
77 public:
78
79 static char ID; // Pass identification, replacement for typeid
Tobias Grosserd1f12db2012-03-23 08:02:05 +000080 PollyIndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
Tobias Grossercef36d52012-02-14 14:02:33 +000081 Changed(false) {
82 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
83 }
84
85 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
86
87 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88 AU.addRequired<DominatorTree>();
89 AU.addRequired<LoopInfo>();
90 AU.addRequired<ScalarEvolution>();
91 AU.addRequiredID(LoopSimplifyID);
92 AU.addRequiredID(LCSSAID);
93 if (EnableIVRewrite)
94 AU.addRequired<IVUsers>();
95 AU.addPreserved<ScalarEvolution>();
96 AU.addPreservedID(LoopSimplifyID);
97 AU.addPreservedID(LCSSAID);
98 if (EnableIVRewrite)
99 AU.addPreserved<IVUsers>();
100 AU.setPreservesCFG();
101 }
102
103 private:
104 virtual void releaseMemory() {
105 DeadInsts.clear();
106 }
107
108 bool isValidRewrite(Value *FromVal, Value *ToVal);
109
110 void HandleFloatingPointIV(Loop *L, PHINode *PH);
111 void RewriteNonIntegerIVs(Loop *L);
112
113 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
114
115 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
116
117 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
118
119 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
120 PHINode *IndVar, SCEVExpander &Rewriter);
121
122 void SinkUnusedInvariants(Loop *L);
123 };
124}
125
Tobias Grosserd1f12db2012-03-23 08:02:05 +0000126char PollyIndVarSimplify::ID = 0;
127INITIALIZE_PASS_BEGIN(PollyIndVarSimplify, "polly-indvars",
Tobias Grossercef36d52012-02-14 14:02:33 +0000128 "Induction Variable Simplification (Polly version)", false,
129 false)
130INITIALIZE_PASS_DEPENDENCY(DominatorTree)
131INITIALIZE_PASS_DEPENDENCY(LoopInfo)
132INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
133INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
134INITIALIZE_PASS_DEPENDENCY(LCSSA)
135INITIALIZE_PASS_DEPENDENCY(IVUsers)
Tobias Grosserd1f12db2012-03-23 08:02:05 +0000136INITIALIZE_PASS_END(PollyIndVarSimplify, "polly-indvars",
Tobias Grossercef36d52012-02-14 14:02:33 +0000137 "Induction Variable Simplification (Polly version)", false,
138 false)
139
140Pass *polly::createIndVarSimplifyPass() {
Tobias Grosserd1f12db2012-03-23 08:02:05 +0000141 return new PollyIndVarSimplify();
Tobias Grossercef36d52012-02-14 14:02:33 +0000142}
143
144/// isValidRewrite - Return true if the SCEV expansion generated by the
145/// rewriter can replace the original value. SCEV guarantees that it
146/// produces the same value, but the way it is produced may be illegal IR.
147/// Ideally, this function will only be called for verification.
Tobias Grosserd1f12db2012-03-23 08:02:05 +0000148bool PollyIndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
Tobias Grossercef36d52012-02-14 14:02:33 +0000149 // If an SCEV expression subsumed multiple pointers, its expansion could
150 // reassociate the GEP changing the base pointer. This is illegal because the
151 // final address produced by a GEP chain must be inbounds relative to its
152 // underlying object. Otherwise basic alias analysis, among other things,
153 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
154 // producing an expression involving multiple pointers. Until then, we must
155 // bail out here.
156 //
157 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
158 // because it understands lcssa phis while SCEV does not.
159 Value *FromPtr = FromVal;
160 Value *ToPtr = ToVal;
161 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
162 FromPtr = GEP->getPointerOperand();
163 }
164 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
165 ToPtr = GEP->getPointerOperand();
166 }
167 if (FromPtr != FromVal || ToPtr != ToVal) {
168 // Quickly check the common case
169 if (FromPtr == ToPtr)
170 return true;
171
172 // SCEV may have rewritten an expression that produces the GEP's pointer
173 // operand. That's ok as long as the pointer operand has the same base
174 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
175 // base of a recurrence. This handles the case in which SCEV expansion
176 // converts a pointer type recurrence into a nonrecurrent pointer base
177 // indexed by an integer recurrence.
178
179 // If the GEP base pointer is a vector of pointers, abort.
180 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
181 return false;
182
183 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
184 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
185 if (FromBase == ToBase)
186 return true;
187
188 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
189 << *FromBase << " != " << *ToBase << "\n");
190
191 return false;
192 }
193 return true;
194}
195
196/// Determine the insertion point for this user. By default, insert immediately
197/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
198/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
199/// common dominator for the incoming blocks.
200static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
201 DominatorTree *DT) {
202 PHINode *PHI = dyn_cast<PHINode>(User);
203 if (!PHI)
204 return User;
205
206 Instruction *InsertPt = 0;
207 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
208 if (PHI->getIncomingValue(i) != Def)
209 continue;
210
211 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
212 if (!InsertPt) {
213 InsertPt = InsertBB->getTerminator();
214 continue;
215 }
216 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
217 InsertPt = InsertBB->getTerminator();
218 }
219 assert(InsertPt && "Missing phi operand");
220 assert((!isa<Instruction>(Def) ||
221 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
222 "def does not dominate all uses");
223 return InsertPt;
224}
225
226//===----------------------------------------------------------------------===//
227// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
228//===----------------------------------------------------------------------===//
229
230/// ConvertToSInt - Convert APF to an integer, if possible.
231static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
232 bool isExact = false;
233 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
234 return false;
235 // See if we can convert this to an int64_t
236 uint64_t UIntVal;
237 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
238 &isExact) != APFloat::opOK || !isExact)
239 return false;
240 IntVal = UIntVal;
241 return true;
242}
243
244/// HandleFloatingPointIV - If the loop has floating induction variable
245/// then insert corresponding integer induction variable if possible.
246/// For example,
247/// for(double i = 0; i < 10000; ++i)
248/// bar(i)
249/// is converted into
250/// for(int i = 0; i < 10000; ++i)
251/// bar((double)i);
252///
Tobias Grosserd1f12db2012-03-23 08:02:05 +0000253void PollyIndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
Tobias Grossercef36d52012-02-14 14:02:33 +0000254 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
255 unsigned BackEdge = IncomingEdge^1;
256
257 // Check incoming value.
258 ConstantFP *InitValueVal =
259 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
260
261 int64_t InitValue;
262 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
263 return;
264
265 // Check IV increment. Reject this PN if increment operation is not
266 // an add or increment value can not be represented by an integer.
267 BinaryOperator *Incr =
268 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
269 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
270
271 // If this is not an add of the PHI with a constantfp, or if the constant fp
272 // is not an integer, bail out.
273 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
274 int64_t IncValue;
275 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
276 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
277 return;
278
279 // Check Incr uses. One user is PN and the other user is an exit condition
280 // used by the conditional terminator.
281 Value::use_iterator IncrUse = Incr->use_begin();
282 Instruction *U1 = cast<Instruction>(*IncrUse++);
283 if (IncrUse == Incr->use_end()) return;
284 Instruction *U2 = cast<Instruction>(*IncrUse++);
285 if (IncrUse != Incr->use_end()) return;
286
287 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
288 // only used by a branch, we can't transform it.
289 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
290 if (!Compare)
291 Compare = dyn_cast<FCmpInst>(U2);
292 if (Compare == 0 || !Compare->hasOneUse() ||
293 !isa<BranchInst>(Compare->use_back()))
294 return;
295
296 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
297
298 // We need to verify that the branch actually controls the iteration count
299 // of the loop. If not, the new IV can overflow and no one will notice.
300 // The branch block must be in the loop and one of the successors must be out
301 // of the loop.
302 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
303 if (!L->contains(TheBr->getParent()) ||
304 (L->contains(TheBr->getSuccessor(0)) &&
305 L->contains(TheBr->getSuccessor(1))))
306 return;
307
308
309 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
310 // transform it.
311 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
312 int64_t ExitValue;
313 if (ExitValueVal == 0 ||
314 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
315 return;
316
317 // Find new predicate for integer comparison.
318 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
319 switch (Compare->getPredicate()) {
320 default: return; // Unknown comparison.
321 case CmpInst::FCMP_OEQ:
322 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
323 case CmpInst::FCMP_ONE:
324 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
325 case CmpInst::FCMP_OGT:
326 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
327 case CmpInst::FCMP_OGE:
328 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
329 case CmpInst::FCMP_OLT:
330 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
331 case CmpInst::FCMP_OLE:
332 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
333 }
334
335 // We convert the floating point induction variable to a signed i32 value if
336 // we can. This is only safe if the comparison will not overflow in a way
337 // that won't be trapped by the integer equivalent operations. Check for this
338 // now.
339 // TODO: We could use i64 if it is native and the range requires it.
340
341 // The start/stride/exit values must all fit in signed i32.
342 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
343 return;
344
345 // If not actually striding (add x, 0.0), avoid touching the code.
346 if (IncValue == 0)
347 return;
348
349 // Positive and negative strides have different safety conditions.
350 if (IncValue > 0) {
351 // If we have a positive stride, we require the init to be less than the
352 // exit value.
353 if (InitValue >= ExitValue)
354 return;
355
356 uint32_t Range = uint32_t(ExitValue-InitValue);
357 // Check for infinite loop, either:
358 // while (i <= Exit) or until (i > Exit)
359 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
360 if (++Range == 0) return; // Range overflows.
361 }
362
363 unsigned Leftover = Range % uint32_t(IncValue);
364
365 // If this is an equality comparison, we require that the strided value
366 // exactly land on the exit value, otherwise the IV condition will wrap
367 // around and do things the fp IV wouldn't.
368 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
369 Leftover != 0)
370 return;
371
372 // If the stride would wrap around the i32 before exiting, we can't
373 // transform the IV.
374 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
375 return;
376
377 } else {
378 // If we have a negative stride, we require the init to be greater than the
379 // exit value.
380 if (InitValue <= ExitValue)
381 return;
382
383 uint32_t Range = uint32_t(InitValue-ExitValue);
384 // Check for infinite loop, either:
385 // while (i >= Exit) or until (i < Exit)
386 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
387 if (++Range == 0) return; // Range overflows.
388 }
389
390 unsigned Leftover = Range % uint32_t(-IncValue);
391
392 // If this is an equality comparison, we require that the strided value
393 // exactly land on the exit value, otherwise the IV condition will wrap
394 // around and do things the fp IV wouldn't.
395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
396 Leftover != 0)
397 return;
398
399 // If the stride would wrap around the i32 before exiting, we can't
400 // transform the IV.
401 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
402 return;
403 }
404
405 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
406
407 // Insert new integer induction variable.
408 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
409 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
410 PN->getIncomingBlock(IncomingEdge));
411
412 Value *NewAdd =
413 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
414 Incr->getName()+".int", Incr);
415 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
416
417 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
418 ConstantInt::get(Int32Ty, ExitValue),
419 Compare->getName());
420
421 // In the following deletions, PN may become dead and may be deleted.
422 // Use a WeakVH to observe whether this happens.
423 WeakVH WeakPH = PN;
424
425 // Delete the old floating point exit comparison. The branch starts using the
426 // new comparison.
427 NewCompare->takeName(Compare);
428 Compare->replaceAllUsesWith(NewCompare);
429 RecursivelyDeleteTriviallyDeadInstructions(Compare);
430
431 // Delete the old floating point increment.
432 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
433 RecursivelyDeleteTriviallyDeadInstructions(Incr);
434
435 // If the FP induction variable still has uses, this is because something else
436 // in the loop uses its value. In order to canonicalize the induction
437 // variable, we chose to eliminate the IV and rewrite it in terms of an
438 // int->fp cast.
439 //
440 // We give preference to sitofp over uitofp because it is faster on most
441 // platforms.
442 if (WeakPH) {
443 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
444 PN->getParent()->getFirstInsertionPt());
445 PN->replaceAllUsesWith(Conv);
446 RecursivelyDeleteTriviallyDeadInstructions(PN);
447 }
448
449 // Add a new IVUsers entry for the newly-created integer PHI.
Tobias Grosserd87492b2012-03-23 08:02:15 +0000450 if (IU)
451 IU->AddUsersIfInteresting(NewPHI);
Tobias Grossercef36d52012-02-14 14:02:33 +0000452
453 Changed = true;
454}
455
Tobias Grosserd1f12db2012-03-23 08:02:05 +0000456void PollyIndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
Tobias Grossercef36d52012-02-14 14:02:33 +0000457 // First step. Check to see if there are any floating-point recurrences.
458 // If there are, change them into integer recurrences, permitting analysis by
459 // the SCEV routines.
460 //
461 BasicBlock *Header = L->getHeader();
462
463 SmallVector<WeakVH, 8> PHIs;
464 for (BasicBlock::iterator I = Header->begin();
465 PHINode *PN = dyn_cast<PHINode>(I); ++I)
466 PHIs.push_back(PN);
467
468 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
469 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
470 HandleFloatingPointIV(L, PN);
471
472 // If the loop previously had floating-point IV, ScalarEvolution
473 // may not have been able to compute a trip count. Now that we've done some
474 // re-writing, the trip count may be computable.
475 if (Changed)
476 SE->forgetLoop(L);
477}
478
479//===----------------------------------------------------------------------===//
480// RewriteLoopExitValues - Optimize IV users outside the loop.
481// As a side effect, reduces the amount of IV processing within the loop.
482//===----------------------------------------------------------------------===//
483
484/// RewriteLoopExitValues - Check to see if this loop has a computable
485/// loop-invariant execution count. If so, this means that we can compute the
486/// final value of any expressions that are recurrent in the loop, and
487/// substitute the exit values from the loop into any instructions outside of
488/// the loop that use the final values of the current expressions.
489///
490/// This is mostly redundant with the regular IndVarSimplify activities that
491/// happen later, except that it's more powerful in some cases, because it's
492/// able to brute-force evaluate arbitrary instructions as long as they have
493/// constant operands at the beginning of the loop.
Tobias Grosserd1f12db2012-03-23 08:02:05 +0000494void PollyIndVarSimplify::RewriteLoopExitValues(Loop *L,
495 SCEVExpander &Rewriter) {
Tobias Grossercef36d52012-02-14 14:02:33 +0000496 // Verify the input to the pass in already in LCSSA form.
497 assert(L->isLCSSAForm(*DT));
498
499 SmallVector<BasicBlock*, 8> ExitBlocks;
500 L->getUniqueExitBlocks(ExitBlocks);
501
502 // Find all values that are computed inside the loop, but used outside of it.
503 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
504 // the exit blocks of the loop to find them.
505 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
506 BasicBlock *ExitBB = ExitBlocks[i];
507
508 // If there are no PHI nodes in this exit block, then no values defined
509 // inside the loop are used on this path, skip it.
510 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
511 if (!PN) continue;
512
513 unsigned NumPreds = PN->getNumIncomingValues();
514
515 // Iterate over all of the PHI nodes.
516 BasicBlock::iterator BBI = ExitBB->begin();
517 while ((PN = dyn_cast<PHINode>(BBI++))) {
518 if (PN->use_empty())
519 continue; // dead use, don't replace it
520
521 // SCEV only supports integer expressions for now.
522 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
523 continue;
524
525 // It's necessary to tell ScalarEvolution about this explicitly so that
526 // it can walk the def-use list and forget all SCEVs, as it may not be
527 // watching the PHI itself. Once the new exit value is in place, there
528 // may not be a def-use connection between the loop and every instruction
529 // which got a SCEVAddRecExpr for that loop.
530 SE->forgetValue(PN);
531
532 // Iterate over all of the values in all the PHI nodes.
533 for (unsigned i = 0; i != NumPreds; ++i) {
534 // If the value being merged in is not integer or is not defined
535 // in the loop, skip it.
536 Value *InVal = PN->getIncomingValue(i);
537 if (!isa<Instruction>(InVal))
538 continue;
539
540 // If this pred is for a subloop, not L itself, skip it.
541 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
542 continue; // The Block is in a subloop, skip it.
543
544 // Check that InVal is defined in the loop.
545 Instruction *Inst = cast<Instruction>(InVal);
546 if (!L->contains(Inst))
547 continue;
548
549 // Okay, this instruction has a user outside of the current loop
550 // and varies predictably *inside* the loop. Evaluate the value it
551 // contains when the loop exits, if possible.
552 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
553 if (!SE->isLoopInvariant(ExitValue, L))
554 continue;
555
556 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
557
558 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
559 << " LoopVal = " << *Inst << "\n");
560
561 if (!isValidRewrite(Inst, ExitVal)) {
562 DeadInsts.push_back(ExitVal);
563 continue;
564 }
565 Changed = true;
566 ++NumReplaced;
567
568 PN->setIncomingValue(i, ExitVal);
569
570 // If this instruction is dead now, delete it.
571 RecursivelyDeleteTriviallyDeadInstructions(Inst);
572
573 if (NumPreds == 1) {
574 // Completely replace a single-pred PHI. This is safe, because the
575 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
576 // node anymore.
577 PN->replaceAllUsesWith(ExitVal);
578 RecursivelyDeleteTriviallyDeadInstructions(PN);
579 }
580 }
581 if (NumPreds != 1) {
582 // Clone the PHI and delete the original one. This lets IVUsers and
583 // any other maps purge the original user from their records.
584 PHINode *NewPN = cast<PHINode>(PN->clone());
585 NewPN->takeName(PN);
586 NewPN->insertBefore(PN);
587 PN->replaceAllUsesWith(NewPN);
588 PN->eraseFromParent();
589 }
590 }
591 }
592
593 // The insertion point instruction may have been deleted; clear it out
594 // so that the rewriter doesn't trip over it later.
595 Rewriter.clearInsertPoint();
596}
597
598//===----------------------------------------------------------------------===//
599// Rewrite IV users based on a canonical IV.
600// Only for use with -enable-iv-rewrite.
601//===----------------------------------------------------------------------===//
602
603/// FIXME: It is an extremely bad idea to indvar substitute anything more
604/// complex than affine induction variables. Doing so will put expensive
605/// polynomial evaluations inside of the loop, and the str reduction pass
606/// currently can only reduce affine polynomials. For now just disable
607/// indvar subst on anything more complex than an affine addrec, unless
608/// it can be expanded to a trivial value.
609static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
610 // Loop-invariant values are safe.
611 if (SE->isLoopInvariant(S, L)) return true;
612
613 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
614 // to transform them into efficient code.
615 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
616 return AR->isAffine();
617
618 // An add is safe it all its operands are safe.
619 if (const SCEVCommutativeExpr *Commutative
620 = dyn_cast<SCEVCommutativeExpr>(S)) {
621 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
622 E = Commutative->op_end(); I != E; ++I)
623 if (!isSafe(*I, L, SE)) return false;
624 return true;
625 }
626
627 // A cast is safe if its operand is.
628 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
629 return isSafe(C->getOperand(), L, SE);
630
631 // A udiv is safe if its operands are.
632 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
633 return isSafe(UD->getLHS(), L, SE) &&
634 isSafe(UD->getRHS(), L, SE);
635
636 // SCEVUnknown is always safe.
637 if (isa<SCEVUnknown>(S))
638 return true;
639
640 // Nothing else is safe.
641 return false;
642}
643
Tobias Grosserd1f12db2012-03-23 08:02:05 +0000644void PollyIndVarSimplify::RewriteIVExpressions(Loop *L,
645 SCEVExpander &Rewriter) {
Tobias Grossercef36d52012-02-14 14:02:33 +0000646 // Rewrite all induction variable expressions in terms of the canonical
647 // induction variable.
648 //
649 // If there were induction variables of other sizes or offsets, manually
650 // add the offsets to the primary induction variable and cast, avoiding
651 // the need for the code evaluation methods to insert induction variables
652 // of different sizes.
653 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
654 Value *Op = UI->getOperandValToReplace();
655 Type *UseTy = Op->getType();
656 Instruction *User = UI->getUser();
657
658 // Compute the final addrec to expand into code.
659 const SCEV *AR = IU->getReplacementExpr(*UI);
660
661 // Evaluate the expression out of the loop, if possible.
662 if (!L->contains(UI->getUser())) {
663 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
664 if (SE->isLoopInvariant(ExitVal, L))
665 AR = ExitVal;
666 }
667
668 // FIXME: It is an extremely bad idea to indvar substitute anything more
669 // complex than affine induction variables. Doing so will put expensive
670 // polynomial evaluations inside of the loop, and the str reduction pass
671 // currently can only reduce affine polynomials. For now just disable
672 // indvar subst on anything more complex than an affine addrec, unless
673 // it can be expanded to a trivial value.
674 if (!isSafe(AR, L, SE))
675 continue;
676
677 // Determine the insertion point for this user. By default, insert
678 // immediately before the user. The SCEVExpander class will automatically
679 // hoist loop invariants out of the loop. For PHI nodes, there may be
680 // multiple uses, so compute the nearest common dominator for the
681 // incoming blocks.
682 Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
683
684 // Now expand it into actual Instructions and patch it into place.
685 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
686
687 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
688 << " into = " << *NewVal << "\n");
689
690 if (!isValidRewrite(Op, NewVal)) {
691 DeadInsts.push_back(NewVal);
692 continue;
693 }
694 // Inform ScalarEvolution that this value is changing. The change doesn't
695 // affect its value, but it does potentially affect which use lists the
696 // value will be on after the replacement, which affects ScalarEvolution's
697 // ability to walk use lists and drop dangling pointers when a value is
698 // deleted.
699 SE->forgetValue(User);
700
701 // Patch the new value into place.
702 if (Op->hasName())
703 NewVal->takeName(Op);
704 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
705 NewValI->setDebugLoc(User->getDebugLoc());
706 User->replaceUsesOfWith(Op, NewVal);
707 UI->setOperandValToReplace(NewVal);
708
709 ++NumRemoved;
710 Changed = true;
711
712 // The old value may be dead now.
713 DeadInsts.push_back(Op);
714 }
715}
716
717//===----------------------------------------------------------------------===//
718// IV Widening - Extend the width of an IV to cover its widest uses.
719//===----------------------------------------------------------------------===//
720
721namespace {
722 // Collect information about induction variables that are used by sign/zero
723 // extend operations. This information is recorded by CollectExtend and
724 // provides the input to WidenIV.
725 struct WideIVInfo {
726 PHINode *NarrowIV;
727 Type *WidestNativeType; // Widest integer type created [sz]ext
728 bool IsSigned; // Was an sext user seen before a zext?
729
730 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
731 };
732
733 class WideIVVisitor : public IVVisitor {
734 ScalarEvolution *SE;
735 const TargetData *TD;
736
737 public:
738 WideIVInfo WI;
739
740 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
741 const TargetData *TData) :
742 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
743
744 // Implement the interface used by simplifyUsersOfIV.
745 virtual void visitCast(CastInst *Cast);
746 };
747}
748
749/// visitCast - Update information about the induction variable that is
750/// extended by this sign or zero extend operation. This is used to determine
751/// the final width of the IV before actually widening it.
752void WideIVVisitor::visitCast(CastInst *Cast) {
753 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
754 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
755 return;
756
757 Type *Ty = Cast->getType();
758 uint64_t Width = SE->getTypeSizeInBits(Ty);
759 if (TD && !TD->isLegalInteger(Width))
760 return;
761
762 if (!WI.WidestNativeType) {
763 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
764 WI.IsSigned = IsSigned;
765 return;
766 }
767
768 // We extend the IV to satisfy the sign of its first user, arbitrarily.
769 if (WI.IsSigned != IsSigned)
770 return;
771
772 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
773 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
774}
775
776namespace {
777
778/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
779/// WideIV that computes the same value as the Narrow IV def. This avoids
780/// caching Use* pointers.
781struct NarrowIVDefUse {
782 Instruction *NarrowDef;
783 Instruction *NarrowUse;
784 Instruction *WideDef;
785
786 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
787
788 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
789 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
790};
791
792/// WidenIV - The goal of this transform is to remove sign and zero extends
793/// without creating any new induction variables. To do this, it creates a new
794/// phi of the wider type and redirects all users, either removing extends or
795/// inserting truncs whenever we stop propagating the type.
796///
797class WidenIV {
798 // Parameters
799 PHINode *OrigPhi;
800 Type *WideType;
801 bool IsSigned;
802
803 // Context
804 LoopInfo *LI;
805 Loop *L;
806 ScalarEvolution *SE;
807 DominatorTree *DT;
808
809 // Result
810 PHINode *WidePhi;
811 Instruction *WideInc;
812 const SCEV *WideIncExpr;
813 SmallVectorImpl<WeakVH> &DeadInsts;
814
815 SmallPtrSet<Instruction*,16> Widened;
816 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
817
818public:
819 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
820 ScalarEvolution *SEv, DominatorTree *DTree,
821 SmallVectorImpl<WeakVH> &DI) :
822 OrigPhi(WI.NarrowIV),
823 WideType(WI.WidestNativeType),
824 IsSigned(WI.IsSigned),
825 LI(LInfo),
826 L(LI->getLoopFor(OrigPhi->getParent())),
827 SE(SEv),
828 DT(DTree),
829 WidePhi(0),
830 WideInc(0),
831 WideIncExpr(0),
832 DeadInsts(DI) {
833 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
834 }
835
836 PHINode *CreateWideIV(SCEVExpander &Rewriter);
837
838protected:
839 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
840 Instruction *Use);
841
842 Instruction *CloneIVUser(NarrowIVDefUse DU);
843
844 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
845
846 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
847
848 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
849
850 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
851};
852} // anonymous namespace
853
854/// isLoopInvariant - Perform a quick domtree based check for loop invariance
855/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
856/// gratuitous for this purpose.
857static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
858 Instruction *Inst = dyn_cast<Instruction>(V);
859 if (!Inst)
860 return true;
861
862 return DT->properlyDominates(Inst->getParent(), L->getHeader());
863}
864
865Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
866 Instruction *Use) {
867 // Set the debug location and conservative insertion point.
868 IRBuilder<> Builder(Use);
869 // Hoist the insertion point into loop preheaders as far as possible.
870 for (const Loop *L = LI->getLoopFor(Use->getParent());
871 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
872 L = L->getParentLoop())
873 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
874
875 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
876 Builder.CreateZExt(NarrowOper, WideType);
877}
878
879/// CloneIVUser - Instantiate a wide operation to replace a narrow
880/// operation. This only needs to handle operations that can evaluation to
881/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
882Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
883 unsigned Opcode = DU.NarrowUse->getOpcode();
884 switch (Opcode) {
885 default:
886 return 0;
887 case Instruction::Add:
888 case Instruction::Mul:
889 case Instruction::UDiv:
890 case Instruction::Sub:
891 case Instruction::And:
892 case Instruction::Or:
893 case Instruction::Xor:
894 case Instruction::Shl:
895 case Instruction::LShr:
896 case Instruction::AShr:
897 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
898
899 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
900 // anything about the narrow operand yet so must insert a [sz]ext. It is
901 // probably loop invariant and will be folded or hoisted. If it actually
902 // comes from a widened IV, it should be removed during a future call to
903 // WidenIVUse.
904 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
905 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
906 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
907 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
908
909 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
910 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
911 LHS, RHS,
912 NarrowBO->getName());
913 IRBuilder<> Builder(DU.NarrowUse);
914 Builder.Insert(WideBO);
915 if (const OverflowingBinaryOperator *OBO =
916 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
917 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
918 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
919 }
920 return WideBO;
921 }
922 llvm_unreachable(0);
923}
924
925/// No-wrap operations can transfer sign extension of their result to their
926/// operands. Generate the SCEV value for the widened operation without
927/// actually modifying the IR yet. If the expression after extending the
928/// operands is an AddRec for this loop, return it.
929const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
930 // Handle the common case of add<nsw/nuw>
931 if (DU.NarrowUse->getOpcode() != Instruction::Add)
932 return 0;
933
934 // One operand (NarrowDef) has already been extended to WideDef. Now determine
935 // if extending the other will lead to a recurrence.
936 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
937 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
938
939 const SCEV *ExtendOperExpr = 0;
940 const OverflowingBinaryOperator *OBO =
941 cast<OverflowingBinaryOperator>(DU.NarrowUse);
942 if (IsSigned && OBO->hasNoSignedWrap())
943 ExtendOperExpr = SE->getSignExtendExpr(
944 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
945 else if(!IsSigned && OBO->hasNoUnsignedWrap())
946 ExtendOperExpr = SE->getZeroExtendExpr(
947 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
948 else
949 return 0;
950
951 // When creating this AddExpr, don't apply the current operations NSW or NUW
952 // flags. This instruction may be guarded by control flow that the no-wrap
953 // behavior depends on. Non-control-equivalent instructions can be mapped to
954 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
955 // semantics to those operations.
956 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
957 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
958
959 if (!AddRec || AddRec->getLoop() != L)
960 return 0;
961 return AddRec;
962}
963
964/// GetWideRecurrence - Is this instruction potentially interesting from
965/// IVUsers' perspective after widening it's type? In other words, can the
966/// extend be safely hoisted out of the loop with SCEV reducing the value to a
967/// recurrence on the same loop. If so, return the sign or zero extended
968/// recurrence. Otherwise return NULL.
969const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
970 if (!SE->isSCEVable(NarrowUse->getType()))
971 return 0;
972
973 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
974 if (SE->getTypeSizeInBits(NarrowExpr->getType())
975 >= SE->getTypeSizeInBits(WideType)) {
976 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
977 // index. So don't follow this use.
978 return 0;
979 }
980
981 const SCEV *WideExpr = IsSigned ?
982 SE->getSignExtendExpr(NarrowExpr, WideType) :
983 SE->getZeroExtendExpr(NarrowExpr, WideType);
984 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
985 if (!AddRec || AddRec->getLoop() != L)
986 return 0;
987 return AddRec;
988}
989
990/// WidenIVUse - Determine whether an individual user of the narrow IV can be
991/// widened. If so, return the wide clone of the user.
992Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
993
994 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
995 if (isa<PHINode>(DU.NarrowUse) &&
996 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
997 return 0;
998
999 // Our raison d'etre! Eliminate sign and zero extension.
1000 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1001 Value *NewDef = DU.WideDef;
1002 if (DU.NarrowUse->getType() != WideType) {
1003 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1004 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1005 if (CastWidth < IVWidth) {
1006 // The cast isn't as wide as the IV, so insert a Trunc.
1007 IRBuilder<> Builder(DU.NarrowUse);
1008 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1009 }
1010 else {
1011 // A wider extend was hidden behind a narrower one. This may induce
1012 // another round of IV widening in which the intermediate IV becomes
1013 // dead. It should be very rare.
1014 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1015 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1016 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1017 NewDef = DU.NarrowUse;
1018 }
1019 }
1020 if (NewDef != DU.NarrowUse) {
1021 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1022 << " replaced by " << *DU.WideDef << "\n");
1023 ++NumElimExt;
1024 DU.NarrowUse->replaceAllUsesWith(NewDef);
1025 DeadInsts.push_back(DU.NarrowUse);
1026 }
1027 // Now that the extend is gone, we want to expose it's uses for potential
1028 // further simplification. We don't need to directly inform SimplifyIVUsers
1029 // of the new users, because their parent IV will be processed later as a
1030 // new loop phi. If we preserved IVUsers analysis, we would also want to
1031 // push the uses of WideDef here.
1032
1033 // No further widening is needed. The deceased [sz]ext had done it for us.
1034 return 0;
1035 }
1036
1037 // Does this user itself evaluate to a recurrence after widening?
1038 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1039 if (!WideAddRec) {
1040 WideAddRec = GetExtendedOperandRecurrence(DU);
1041 }
1042 if (!WideAddRec) {
1043 // This user does not evaluate to a recurence after widening, so don't
1044 // follow it. Instead insert a Trunc to kill off the original use,
1045 // eventually isolating the original narrow IV so it can be removed.
1046 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1047 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1048 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1049 return 0;
1050 }
1051 // Assume block terminators cannot evaluate to a recurrence. We can't to
1052 // insert a Trunc after a terminator if there happens to be a critical edge.
1053 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1054 "SCEV is not expected to evaluate a block terminator");
1055
1056 // Reuse the IV increment that SCEVExpander created as long as it dominates
1057 // NarrowUse.
1058 Instruction *WideUse = 0;
1059 if (WideAddRec == WideIncExpr
1060 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1061 WideUse = WideInc;
1062 else {
1063 WideUse = CloneIVUser(DU);
1064 if (!WideUse)
1065 return 0;
1066 }
1067 // Evaluation of WideAddRec ensured that the narrow expression could be
1068 // extended outside the loop without overflow. This suggests that the wide use
1069 // evaluates to the same expression as the extended narrow use, but doesn't
1070 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1071 // where it fails, we simply throw away the newly created wide use.
1072 if (WideAddRec != SE->getSCEV(WideUse)) {
1073 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1074 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1075 DeadInsts.push_back(WideUse);
1076 return 0;
1077 }
1078
1079 // Returning WideUse pushes it on the worklist.
1080 return WideUse;
1081}
1082
1083/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1084///
1085void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1086 for (Value::use_iterator UI = NarrowDef->use_begin(),
1087 UE = NarrowDef->use_end(); UI != UE; ++UI) {
1088 Instruction *NarrowUse = cast<Instruction>(*UI);
1089
1090 // Handle data flow merges and bizarre phi cycles.
1091 if (!Widened.insert(NarrowUse))
1092 continue;
1093
1094 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1095 }
1096}
1097
1098/// CreateWideIV - Process a single induction variable. First use the
1099/// SCEVExpander to create a wide induction variable that evaluates to the same
1100/// recurrence as the original narrow IV. Then use a worklist to forward
1101/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1102/// interesting IV users, the narrow IV will be isolated for removal by
1103/// DeleteDeadPHIs.
1104///
1105/// It would be simpler to delete uses as they are processed, but we must avoid
1106/// invalidating SCEV expressions.
1107///
1108PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1109 // Is this phi an induction variable?
1110 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1111 if (!AddRec)
1112 return NULL;
1113
1114 // Widen the induction variable expression.
1115 const SCEV *WideIVExpr = IsSigned ?
1116 SE->getSignExtendExpr(AddRec, WideType) :
1117 SE->getZeroExtendExpr(AddRec, WideType);
1118
1119 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1120 "Expect the new IV expression to preserve its type");
1121
1122 // Can the IV be extended outside the loop without overflow?
1123 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1124 if (!AddRec || AddRec->getLoop() != L)
1125 return NULL;
1126
1127 // An AddRec must have loop-invariant operands. Since this AddRec is
1128 // materialized by a loop header phi, the expression cannot have any post-loop
1129 // operands, so they must dominate the loop header.
1130 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1131 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1132 && "Loop header phi recurrence inputs do not dominate the loop");
1133
1134 // The rewriter provides a value for the desired IV expression. This may
1135 // either find an existing phi or materialize a new one. Either way, we
1136 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1137 // of the phi-SCC dominates the loop entry.
1138 Instruction *InsertPt = L->getHeader()->begin();
1139 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1140
1141 // Remembering the WideIV increment generated by SCEVExpander allows
1142 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1143 // employ a general reuse mechanism because the call above is the only call to
1144 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1145 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1146 WideInc =
1147 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1148 WideIncExpr = SE->getSCEV(WideInc);
1149 }
1150
1151 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1152 ++NumWidened;
1153
1154 // Traverse the def-use chain using a worklist starting at the original IV.
1155 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1156
1157 Widened.insert(OrigPhi);
1158 pushNarrowIVUsers(OrigPhi, WidePhi);
1159
1160 while (!NarrowIVUsers.empty()) {
1161 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1162
1163 // Process a def-use edge. This may replace the use, so don't hold a
1164 // use_iterator across it.
1165 Instruction *WideUse = WidenIVUse(DU, Rewriter);
1166
1167 // Follow all def-use edges from the previous narrow use.
1168 if (WideUse)
1169 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1170
1171 // WidenIVUse may have removed the def-use edge.
1172 if (DU.NarrowDef->use_empty())
1173 DeadInsts.push_back(DU.NarrowDef);
1174 }
1175 return WidePhi;
1176}
1177
1178//===----------------------------------------------------------------------===//
1179// Simplification of IV users based on SCEV evaluation.
1180//===----------------------------------------------------------------------===//
1181
1182
1183/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1184/// users. Each successive simplification may push more users which may
1185/// themselves be candidates for simplification.
1186///
1187/// Sign/Zero extend elimination is interleaved with IV simplification.
1188///
Tobias Grosserd1f12db2012-03-23 08:02:05 +00001189void PollyIndVarSimplify::SimplifyAndExtend(Loop *L,
1190 SCEVExpander &Rewriter,
1191 LPPassManager &LPM) {
Tobias Grossercef36d52012-02-14 14:02:33 +00001192 SmallVector<WideIVInfo, 8> WideIVs;
1193
1194 SmallVector<PHINode*, 8> LoopPhis;
1195 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1196 LoopPhis.push_back(cast<PHINode>(I));
1197 }
1198 // Each round of simplification iterates through the SimplifyIVUsers worklist
1199 // for all current phis, then determines whether any IVs can be
1200 // widened. Widening adds new phis to LoopPhis, inducing another round of
1201 // simplification on the wide IVs.
1202 while (!LoopPhis.empty()) {
1203 // Evaluate as many IV expressions as possible before widening any IVs. This
1204 // forces SCEV to set no-wrap flags before evaluating sign/zero
1205 // extension. The first time SCEV attempts to normalize sign/zero extension,
1206 // the result becomes final. So for the most predictable results, we delay
1207 // evaluation of sign/zero extend evaluation until needed, and avoid running
1208 // other SCEV based analysis prior to SimplifyAndExtend.
1209 do {
1210 PHINode *CurrIV = LoopPhis.pop_back_val();
1211
1212 // Information about sign/zero extensions of CurrIV.
1213 WideIVVisitor WIV(CurrIV, SE, TD);
1214
1215 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1216
1217 if (WIV.WI.WidestNativeType) {
1218 WideIVs.push_back(WIV.WI);
1219 }
1220 } while(!LoopPhis.empty());
1221
1222 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1223 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1224 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1225 Changed = true;
1226 LoopPhis.push_back(WidePhi);
1227 }
1228 }
1229 }
1230}
1231
1232//===----------------------------------------------------------------------===//
1233// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1234//===----------------------------------------------------------------------===//
1235
1236/// Check for expressions that ScalarEvolution generates to compute
1237/// BackedgeTakenInfo. If these expressions have not been reduced, then
1238/// expanding them may incur additional cost (albeit in the loop preheader).
1239static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1240 SmallPtrSet<const SCEV*, 8> &Processed,
1241 ScalarEvolution *SE) {
1242 if (!Processed.insert(S))
1243 return false;
1244
1245 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1246 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1247 // precise expression, rather than a UDiv from the user's code. If we can't
1248 // find a UDiv in the code with some simple searching, assume the former and
1249 // forego rewriting the loop.
1250 if (isa<SCEVUDivExpr>(S)) {
1251 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1252 if (!OrigCond) return true;
1253 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1254 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1255 if (R != S) {
1256 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1257 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1258 if (L != S)
1259 return true;
1260 }
1261 }
1262
1263 if (EnableIVRewrite)
1264 return false;
1265
1266 // Recurse past add expressions, which commonly occur in the
1267 // BackedgeTakenCount. They may already exist in program code, and if not,
1268 // they are not too expensive rematerialize.
1269 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1270 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1271 I != E; ++I) {
1272 if (isHighCostExpansion(*I, BI, Processed, SE))
1273 return true;
1274 }
1275 return false;
1276 }
1277
1278 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1279 // the exit condition.
1280 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1281 return true;
1282
1283 // If we haven't recognized an expensive SCEV pattern, assume it's an
1284 // expression produced by program code.
1285 return false;
1286}
1287
1288/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1289/// count expression can be safely and cheaply expanded into an instruction
1290/// sequence that can be used by LinearFunctionTestReplace.
1291///
1292/// TODO: This fails for pointer-type loop counters with greater than one byte
1293/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1294/// we could skip this check in the case that the LFTR loop counter (chosen by
1295/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1296/// the loop test to an inequality test by checking the target data's alignment
1297/// of element types (given that the initial pointer value originates from or is
1298/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1299/// However, we don't yet have a strong motivation for converting loop tests
1300/// into inequality tests.
1301static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1302 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1303 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1304 BackedgeTakenCount->isZero())
1305 return false;
1306
1307 if (!L->getExitingBlock())
1308 return false;
1309
1310 // Can't rewrite non-branch yet.
1311 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1312 if (!BI)
1313 return false;
1314
1315 SmallPtrSet<const SCEV*, 8> Processed;
1316 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1317 return false;
1318
1319 return true;
1320}
1321
1322/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1323/// through Truncs.
1324///
1325/// TODO: Unnecessary when ForceLFTR is removed.
1326static Type *getBackedgeIVType(Loop *L) {
1327 if (!L->getExitingBlock())
1328 return 0;
1329
1330 // Can't rewrite non-branch yet.
1331 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1332 if (!BI)
1333 return 0;
1334
1335 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1336 if (!Cond)
1337 return 0;
1338
1339 Type *Ty = 0;
1340 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1341 OI != OE; ++OI) {
1342 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1343 TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1344 if (!Trunc)
1345 continue;
1346
1347 return Trunc->getSrcTy();
1348 }
1349 return Ty;
1350}
1351
1352/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1353/// invariant value to the phi.
1354static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1355 Instruction *IncI = dyn_cast<Instruction>(IncV);
1356 if (!IncI)
1357 return 0;
1358
1359 switch (IncI->getOpcode()) {
1360 case Instruction::Add:
1361 case Instruction::Sub:
1362 break;
1363 case Instruction::GetElementPtr:
1364 // An IV counter must preserve its type.
1365 if (IncI->getNumOperands() == 2)
1366 break;
1367 default:
1368 return 0;
1369 }
1370
1371 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1372 if (Phi && Phi->getParent() == L->getHeader()) {
1373 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1374 return Phi;
1375 return 0;
1376 }
1377 if (IncI->getOpcode() == Instruction::GetElementPtr)
1378 return 0;
1379
1380 // Allow add/sub to be commuted.
1381 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1382 if (Phi && Phi->getParent() == L->getHeader()) {
1383 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1384 return Phi;
1385 }
1386 return 0;
1387}
1388
1389/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1390/// that the current exit test is already sufficiently canonical.
1391static bool needsLFTR(Loop *L, DominatorTree *DT) {
1392 assert(L->getExitingBlock() && "expected loop exit");
1393
1394 BasicBlock *LatchBlock = L->getLoopLatch();
1395 // Don't bother with LFTR if the loop is not properly simplified.
1396 if (!LatchBlock)
1397 return false;
1398
1399 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1400 assert(BI && "expected exit branch");
1401
1402 // Do LFTR to simplify the exit condition to an ICMP.
1403 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1404 if (!Cond)
1405 return true;
1406
1407 // Do LFTR to simplify the exit ICMP to EQ/NE
1408 ICmpInst::Predicate Pred = Cond->getPredicate();
1409 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1410 return true;
1411
1412 // Look for a loop invariant RHS
1413 Value *LHS = Cond->getOperand(0);
1414 Value *RHS = Cond->getOperand(1);
1415 if (!isLoopInvariant(RHS, L, DT)) {
1416 if (!isLoopInvariant(LHS, L, DT))
1417 return true;
1418 std::swap(LHS, RHS);
1419 }
1420 // Look for a simple IV counter LHS
1421 PHINode *Phi = dyn_cast<PHINode>(LHS);
1422 if (!Phi)
1423 Phi = getLoopPhiForCounter(LHS, L, DT);
1424
1425 if (!Phi)
1426 return true;
1427
1428 // Do LFTR if the exit condition's IV is *not* a simple counter.
1429 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1430 return Phi != getLoopPhiForCounter(IncV, L, DT);
1431}
1432
1433/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1434/// be rewritten) loop exit test.
1435static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1436 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1437 Value *IncV = Phi->getIncomingValue(LatchIdx);
1438
1439 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1440 UI != UE; ++UI) {
1441 if (*UI != Cond && *UI != IncV) return false;
1442 }
1443
1444 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1445 UI != UE; ++UI) {
1446 if (*UI != Cond && *UI != Phi) return false;
1447 }
1448 return true;
1449}
1450
1451/// FindLoopCounter - Find an affine IV in canonical form.
1452///
1453/// BECount may be an i8* pointer type. The pointer difference is already
1454/// valid count without scaling the address stride, so it remains a pointer
1455/// expression as far as SCEV is concerned.
1456///
1457/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1458///
1459/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1460/// This is difficult in general for SCEV because of potential overflow. But we
1461/// could at least handle constant BECounts.
1462static PHINode *
1463FindLoopCounter(Loop *L, const SCEV *BECount,
1464 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1465 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1466
1467 Value *Cond =
1468 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1469
1470 // Loop over all of the PHI nodes, looking for a simple counter.
1471 PHINode *BestPhi = 0;
1472 const SCEV *BestInit = 0;
1473 BasicBlock *LatchBlock = L->getLoopLatch();
1474 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1475
1476 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1477 PHINode *Phi = cast<PHINode>(I);
1478 if (!SE->isSCEVable(Phi->getType()))
1479 continue;
1480
1481 // Avoid comparing an integer IV against a pointer Limit.
1482 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1483 continue;
1484
1485 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1486 if (!AR || AR->getLoop() != L || !AR->isAffine())
1487 continue;
1488
1489 // AR may be a pointer type, while BECount is an integer type.
1490 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1491 // AR may not be a narrower type, or we may never exit.
1492 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1493 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1494 continue;
1495
1496 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1497 if (!Step || !Step->isOne())
1498 continue;
1499
1500 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1501 Value *IncV = Phi->getIncomingValue(LatchIdx);
1502 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1503 continue;
1504
1505 const SCEV *Init = AR->getStart();
1506
1507 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1508 // Don't force a live loop counter if another IV can be used.
1509 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1510 continue;
1511
1512 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1513 // also prefers integer to pointer IVs.
1514 if (BestInit->isZero() != Init->isZero()) {
1515 if (BestInit->isZero())
1516 continue;
1517 }
1518 // If two IVs both count from zero or both count from nonzero then the
1519 // narrower is likely a dead phi that has been widened. Use the wider phi
1520 // to allow the other to be eliminated.
1521 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1522 continue;
1523 }
1524 BestPhi = Phi;
1525 BestInit = Init;
1526 }
1527 return BestPhi;
1528}
1529
1530/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1531/// holds the RHS of the new loop test.
1532static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1533 SCEVExpander &Rewriter, ScalarEvolution *SE) {
1534 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1535 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1536 const SCEV *IVInit = AR->getStart();
1537
1538 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1539 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1540 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1541 // the existing GEPs whenever possible.
1542 if (IndVar->getType()->isPointerTy()
1543 && !IVCount->getType()->isPointerTy()) {
1544
1545 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1546 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1547
1548 // Expand the code for the iteration count.
1549 assert(SE->isLoopInvariant(IVOffset, L) &&
1550 "Computed iteration count is not loop invariant!");
1551 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1552 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1553
1554 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1555 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1556 // We could handle pointer IVs other than i8*, but we need to compensate for
1557 // gep index scaling. See canExpandBackedgeTakenCount comments.
1558 assert(SE->getSizeOfExpr(
1559 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1560 && "unit stride pointer IV must be i8*");
1561
1562 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1563 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1564 }
1565 else {
1566 // In any other case, convert both IVInit and IVCount to integers before
1567 // comparing. This may result in SCEV expension of pointers, but in practice
1568 // SCEV will fold the pointer arithmetic away as such:
1569 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1570 //
1571 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1572 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1573 // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1574 // of case #2.
1575
1576 const SCEV *IVLimit = 0;
1577 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1578 // For non-zero Start, compute IVCount here.
1579 if (AR->getStart()->isZero())
1580 IVLimit = IVCount;
1581 else {
1582 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1583 const SCEV *IVInit = AR->getStart();
1584
1585 // For integer IVs, truncate the IV before computing IVInit + BECount.
1586 if (SE->getTypeSizeInBits(IVInit->getType())
1587 > SE->getTypeSizeInBits(IVCount->getType()))
1588 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1589
1590 IVLimit = SE->getAddExpr(IVInit, IVCount);
1591 }
1592 // Expand the code for the iteration count.
1593 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1594 IRBuilder<> Builder(BI);
1595 assert(SE->isLoopInvariant(IVLimit, L) &&
1596 "Computed iteration count is not loop invariant!");
1597 // Ensure that we generate the same type as IndVar, or a smaller integer
1598 // type. In the presence of null pointer values, we have an integer type
1599 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1600 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1601 IndVar->getType() : IVCount->getType();
1602 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1603 }
1604}
1605
1606/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1607/// loop to be a canonical != comparison against the incremented loop induction
1608/// variable. This pass is able to rewrite the exit tests of any loop where the
1609/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1610/// is actually a much broader range than just linear tests.
Tobias Grosserd1f12db2012-03-23 08:02:05 +00001611Value *PollyIndVarSimplify::
Tobias Grossercef36d52012-02-14 14:02:33 +00001612LinearFunctionTestReplace(Loop *L,
1613 const SCEV *BackedgeTakenCount,
1614 PHINode *IndVar,
1615 SCEVExpander &Rewriter) {
1616 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1617
1618 // LFTR can ignore IV overflow and truncate to the width of
1619 // BECount. This avoids materializing the add(zext(add)) expression.
1620 Type *CntTy = !EnableIVRewrite ?
1621 BackedgeTakenCount->getType() : IndVar->getType();
1622
1623 const SCEV *IVCount = BackedgeTakenCount;
1624
1625 // If the exiting block is the same as the backedge block, we prefer to
1626 // compare against the post-incremented value, otherwise we must compare
1627 // against the preincremented value.
1628 Value *CmpIndVar;
1629 if (L->getExitingBlock() == L->getLoopLatch()) {
1630 // Add one to the "backedge-taken" count to get the trip count.
1631 // If this addition may overflow, we have to be more pessimistic and
1632 // cast the induction variable before doing the add.
1633 const SCEV *N =
1634 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1635 if (CntTy == IVCount->getType())
1636 IVCount = N;
1637 else {
1638 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
1639 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1640 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1641 // No overflow. Cast the sum.
1642 IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
1643 } else {
1644 // Potential overflow. Cast before doing the add.
1645 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1646 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
1647 }
1648 }
1649 // The BackedgeTaken expression contains the number of times that the
1650 // backedge branches to the loop header. This is one less than the
1651 // number of times the loop executes, so use the incremented indvar.
1652 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1653 } else {
1654 // We must use the preincremented value...
1655 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1656 CmpIndVar = IndVar;
1657 }
1658
1659 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1660 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1661 && "genLoopLimit missed a cast");
1662
1663 // Insert a new icmp_ne or icmp_eq instruction before the branch.
1664 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1665 ICmpInst::Predicate P;
1666 if (L->contains(BI->getSuccessor(0)))
1667 P = ICmpInst::ICMP_NE;
1668 else
1669 P = ICmpInst::ICMP_EQ;
1670
1671 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1672 << " LHS:" << *CmpIndVar << '\n'
1673 << " op:\t"
1674 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1675 << " RHS:\t" << *ExitCnt << "\n"
1676 << " IVCount:\t" << *IVCount << "\n");
1677
1678 IRBuilder<> Builder(BI);
1679 if (SE->getTypeSizeInBits(CmpIndVar->getType())
1680 > SE->getTypeSizeInBits(ExitCnt->getType())) {
1681 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1682 "lftr.wideiv");
1683 }
1684
1685 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1686 Value *OrigCond = BI->getCondition();
1687 // It's tempting to use replaceAllUsesWith here to fully replace the old
1688 // comparison, but that's not immediately safe, since users of the old
1689 // comparison may not be dominated by the new comparison. Instead, just
1690 // update the branch to use the new comparison; in the common case this
1691 // will make old comparison dead.
1692 BI->setCondition(Cond);
1693 DeadInsts.push_back(OrigCond);
1694
1695 ++NumLFTR;
1696 Changed = true;
1697 return Cond;
1698}
1699
1700//===----------------------------------------------------------------------===//
1701// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1702//===----------------------------------------------------------------------===//
1703
1704/// If there's a single exit block, sink any loop-invariant values that
1705/// were defined in the preheader but not used inside the loop into the
1706/// exit block to reduce register pressure in the loop.
Tobias Grosserd1f12db2012-03-23 08:02:05 +00001707void PollyIndVarSimplify::SinkUnusedInvariants(Loop *L) {
Tobias Grossercef36d52012-02-14 14:02:33 +00001708 BasicBlock *ExitBlock = L->getExitBlock();
1709 if (!ExitBlock) return;
1710
1711 BasicBlock *Preheader = L->getLoopPreheader();
1712 if (!Preheader) return;
1713
1714 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1715 BasicBlock::iterator I = Preheader->getTerminator();
1716 while (I != Preheader->begin()) {
1717 --I;
1718 // New instructions were inserted at the end of the preheader.
1719 if (isa<PHINode>(I))
1720 break;
1721
1722 // Don't move instructions which might have side effects, since the side
1723 // effects need to complete before instructions inside the loop. Also don't
1724 // move instructions which might read memory, since the loop may modify
1725 // memory. Note that it's okay if the instruction might have undefined
1726 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1727 // block.
1728 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1729 continue;
1730
1731 // Skip debug info intrinsics.
1732 if (isa<DbgInfoIntrinsic>(I))
1733 continue;
1734
1735 // Skip landingpad instructions.
1736 if (isa<LandingPadInst>(I))
1737 continue;
1738
1739 // Don't sink alloca: we never want to sink static alloca's out of the
1740 // entry block, and correctly sinking dynamic alloca's requires
1741 // checks for stacksave/stackrestore intrinsics.
1742 // FIXME: Refactor this check somehow?
1743 if (isa<AllocaInst>(I))
1744 continue;
1745
1746 // Determine if there is a use in or before the loop (direct or
1747 // otherwise).
1748 bool UsedInLoop = false;
1749 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1750 UI != UE; ++UI) {
1751 User *U = *UI;
1752 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1753 if (PHINode *P = dyn_cast<PHINode>(U)) {
1754 unsigned i =
1755 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1756 UseBB = P->getIncomingBlock(i);
1757 }
1758 if (UseBB == Preheader || L->contains(UseBB)) {
1759 UsedInLoop = true;
1760 break;
1761 }
1762 }
1763
1764 // If there is, the def must remain in the preheader.
1765 if (UsedInLoop)
1766 continue;
1767
1768 // Otherwise, sink it to the exit block.
1769 Instruction *ToMove = I;
1770 bool Done = false;
1771
1772 if (I != Preheader->begin()) {
1773 // Skip debug info intrinsics.
1774 do {
1775 --I;
1776 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1777
1778 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1779 Done = true;
1780 } else {
1781 Done = true;
1782 }
1783
1784 ToMove->moveBefore(InsertPt);
1785 if (Done) break;
1786 InsertPt = ToMove;
1787 }
1788}
1789
1790//===----------------------------------------------------------------------===//
1791// IndVarSimplify driver. Manage several subpasses of IV simplification.
1792//===----------------------------------------------------------------------===//
1793
Tobias Grosserd1f12db2012-03-23 08:02:05 +00001794bool PollyIndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Tobias Grossercef36d52012-02-14 14:02:33 +00001795 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1796 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1797 // canonicalization can be a pessimization without LSR to "clean up"
1798 // afterwards.
1799 // - We depend on having a preheader; in particular,
1800 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1801 // and we're in trouble if we can't find the induction variable even when
1802 // we've manually inserted one.
1803 if (!L->isLoopSimplifyForm())
1804 return false;
1805
1806 if (EnableIVRewrite)
1807 IU = &getAnalysis<IVUsers>();
1808 LI = &getAnalysis<LoopInfo>();
1809 SE = &getAnalysis<ScalarEvolution>();
1810 DT = &getAnalysis<DominatorTree>();
1811 TD = getAnalysisIfAvailable<TargetData>();
1812
1813 DeadInsts.clear();
1814 Changed = false;
1815
1816 // If there are any floating-point recurrences, attempt to
1817 // transform them to use integer recurrences.
1818 RewriteNonIntegerIVs(L);
1819
1820 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1821
1822 // Create a rewriter object which we'll use to transform the code with.
1823 SCEVExpander Rewriter(*SE, "indvars");
1824#ifndef NDEBUG
1825 Rewriter.setDebugType(DEBUG_TYPE);
1826#endif
1827
1828 // Eliminate redundant IV users.
1829 //
1830 // Simplification works best when run before other consumers of SCEV. We
1831 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1832 // other expressions involving loop IVs have been evaluated. This helps SCEV
1833 // set no-wrap flags before normalizing sign/zero extension.
1834 if (!EnableIVRewrite) {
1835 Rewriter.disableCanonicalMode();
1836 SimplifyAndExtend(L, Rewriter, LPM);
1837 }
1838
1839 // Check to see if this loop has a computable loop-invariant execution count.
1840 // If so, this means that we can compute the final value of any expressions
1841 // that are recurrent in the loop, and substitute the exit values from the
1842 // loop into any instructions outside of the loop that use the final values of
1843 // the current expressions.
1844 //
1845 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1846 RewriteLoopExitValues(L, Rewriter);
1847
1848 // Eliminate redundant IV users.
Tobias Grosser3e721972012-03-23 08:02:19 +00001849 // FIXME: Disabled as the function was removed from LLVM trunk. We may get
1850 // along with this, as Polly does not need a lot of simplifications,
1851 // but just a canonical induction variable. In the near future, we
1852 // should remove the need of canonical induction variables all
1853 // together.
1854 //if (EnableIVRewrite)
1855 // Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
Tobias Grossercef36d52012-02-14 14:02:33 +00001856
1857 // Eliminate redundant IV cycles.
1858 if (!EnableIVRewrite)
1859 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1860
1861 // Compute the type of the largest recurrence expression, and decide whether
1862 // a canonical induction variable should be inserted.
1863 Type *LargestType = 0;
1864 bool NeedCannIV = false;
1865 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1866 if (EnableIVRewrite && ExpandBECount) {
1867 // If we have a known trip count and a single exit block, we'll be
1868 // rewriting the loop exit test condition below, which requires a
1869 // canonical induction variable.
1870 NeedCannIV = true;
1871 Type *Ty = BackedgeTakenCount->getType();
1872 if (!EnableIVRewrite) {
1873 // In this mode, SimplifyIVUsers may have already widened the IV used by
1874 // the backedge test and inserted a Trunc on the compare's operand. Get
1875 // the wider type to avoid creating a redundant narrow IV only used by the
1876 // loop test.
1877 LargestType = getBackedgeIVType(L);
1878 }
1879 if (!LargestType ||
1880 SE->getTypeSizeInBits(Ty) >
1881 SE->getTypeSizeInBits(LargestType))
1882 LargestType = SE->getEffectiveSCEVType(Ty);
1883 }
1884 if (EnableIVRewrite) {
1885 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1886 NeedCannIV = true;
1887 Type *Ty =
1888 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1889 if (!LargestType ||
1890 SE->getTypeSizeInBits(Ty) >
1891 SE->getTypeSizeInBits(LargestType))
1892 LargestType = Ty;
1893 }
1894 }
1895
1896 // Now that we know the largest of the induction variable expressions
1897 // in this loop, insert a canonical induction variable of the largest size.
1898 PHINode *IndVar = 0;
1899 if (NeedCannIV) {
1900 // Check to see if the loop already has any canonical-looking induction
1901 // variables. If any are present and wider than the planned canonical
1902 // induction variable, temporarily remove them, so that the Rewriter
1903 // doesn't attempt to reuse them.
1904 SmallVector<PHINode *, 2> OldCannIVs;
1905 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1906 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1907 SE->getTypeSizeInBits(LargestType))
1908 OldCannIV->removeFromParent();
1909 else
1910 break;
1911 OldCannIVs.push_back(OldCannIV);
1912 }
1913
1914 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1915
1916 ++NumInserted;
1917 Changed = true;
1918 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1919
1920 // Now that the official induction variable is established, reinsert
1921 // any old canonical-looking variables after it so that the IR remains
1922 // consistent. They will be deleted as part of the dead-PHI deletion at
1923 // the end of the pass.
1924 while (!OldCannIVs.empty()) {
1925 PHINode *OldCannIV = OldCannIVs.pop_back_val();
1926 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
1927 }
1928 }
1929 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
1930 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1931 }
1932 // If we have a trip count expression, rewrite the loop's exit condition
1933 // using it. We can currently only handle loops with a single exit.
1934 Value *NewICmp = 0;
1935 if (ExpandBECount && IndVar) {
1936 // Check preconditions for proper SCEVExpander operation. SCEV does not
1937 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1938 // pass that uses the SCEVExpander must do it. This does not work well for
1939 // loop passes because SCEVExpander makes assumptions about all loops, while
1940 // LoopPassManager only forces the current loop to be simplified.
1941 //
1942 // FIXME: SCEV expansion has no way to bail out, so the caller must
1943 // explicitly check any assumptions made by SCEV. Brittle.
1944 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1945 if (!AR || AR->getLoop()->getLoopPreheader())
1946 NewICmp =
1947 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1948 }
1949 // Rewrite IV-derived expressions.
1950 if (EnableIVRewrite)
1951 RewriteIVExpressions(L, Rewriter);
1952
1953 // Clear the rewriter cache, because values that are in the rewriter's cache
1954 // can be deleted in the loop below, causing the AssertingVH in the cache to
1955 // trigger.
1956 Rewriter.clear();
1957
1958 // Now that we're done iterating through lists, clean up any instructions
1959 // which are now dead.
1960 while (!DeadInsts.empty())
1961 if (Instruction *Inst =
1962 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1963 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1964
1965 // The Rewriter may not be used from this point on.
1966
1967 // Loop-invariant instructions in the preheader that aren't used in the
1968 // loop may be sunk below the loop to reduce register pressure.
1969 SinkUnusedInvariants(L);
1970
1971 // For completeness, inform IVUsers of the IV use in the newly-created
1972 // loop exit test instruction.
1973 if (IU && NewICmp) {
1974 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
Tobias Grosserd87492b2012-03-23 08:02:15 +00001975 if (NewICmpInst)
1976 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
Tobias Grossercef36d52012-02-14 14:02:33 +00001977 }
1978 // Clean up dead instructions.
1979 Changed |= DeleteDeadPHIs(L->getHeader());
1980 // Check a post-condition.
1981 assert(L->isLCSSAForm(*DT) &&
1982 "Indvars did not leave the loop in lcssa form!");
1983
1984 // Verify that LFTR, and any other change have not interfered with SCEV's
1985 // ability to compute trip count.
1986#ifndef NDEBUG
1987 if (!EnableIVRewrite && VerifyIndvars &&
1988 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1989 SE->forgetLoop(L);
1990 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1991 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1992 SE->getTypeSizeInBits(NewBECount->getType()))
1993 NewBECount = SE->getTruncateOrNoop(NewBECount,
1994 BackedgeTakenCount->getType());
1995 else
1996 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1997 NewBECount->getType());
1998 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1999 }
2000#endif
2001
2002 return Changed;
2003}