blob: 5814796982794fea9c116453ad62a7d1a4620eb5 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnerd79749a2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattner0132aff2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikov546ea7e2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000039 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000060 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000067 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000122 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000145 </ol>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000146 <li><a href="#otherops">Other Operations</a>
147 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemand2195702008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000156 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000157 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000158 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000159 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000160 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000161 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000162 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
163 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000164 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
165 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000167 </ol>
168 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000169 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
170 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000171 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
172 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000174 </ol>
175 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000176 <li><a href="#int_codegen">Code Generator Intrinsics</a>
177 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000178 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
179 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
181 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
182 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
183 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
184 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000185 </ol>
186 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000187 <li><a href="#int_libc">Standard C Library Intrinsics</a>
188 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000189 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
190 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000194 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000197 </ol>
198 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000199 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000200 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000201 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000202 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
203 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencer5bf54c82007-04-11 23:23:49 +0000205 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000207 </ol>
208 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000209 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000210 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000211 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000212 <ol>
213 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000214 </ol>
215 </li>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +0000216 <li><a href="#int_atomics">Atomic intrinsics</a>
217 <ol>
Andrew Lenharth95528942008-02-21 06:45:13 +0000218 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang6a490372008-06-25 08:15:39 +0000219 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharth95528942008-02-21 06:45:13 +0000220 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang6a490372008-06-25 08:15:39 +0000221 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
222 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
223 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
224 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
225 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
226 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
227 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
228 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
229 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
230 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +0000231 </ol>
232 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000233 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000234 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000235 <li><a href="#int_var_annotation">
Tanya Lattner08abc812007-09-22 00:01:26 +0000236 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000237 <li><a href="#int_annotation">
Tanya Lattner08abc812007-09-22 00:01:26 +0000238 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000239 <li><a href="#int_trap">
240 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000241 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000242 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000243 </ol>
244 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000245</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000246
247<div class="doc_author">
248 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
249 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000250</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000251
Chris Lattner2f7c9632001-06-06 20:29:01 +0000252<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000253<div class="doc_section"> <a name="abstract">Abstract </a></div>
254<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000255
Misha Brukman76307852003-11-08 01:05:38 +0000256<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +0000257<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling6e03f9a2008-08-05 22:29:16 +0000258LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner67c37d12008-08-05 18:29:16 +0000259type safety, low-level operations, flexibility, and the capability of
260representing 'all' high-level languages cleanly. It is the common code
Chris Lattner48b383b02003-11-25 01:02:51 +0000261representation used throughout all phases of the LLVM compilation
262strategy.</p>
Misha Brukman76307852003-11-08 01:05:38 +0000263</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000264
Chris Lattner2f7c9632001-06-06 20:29:01 +0000265<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000266<div class="doc_section"> <a name="introduction">Introduction</a> </div>
267<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000268
Misha Brukman76307852003-11-08 01:05:38 +0000269<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000270
Chris Lattner48b383b02003-11-25 01:02:51 +0000271<p>The LLVM code representation is designed to be used in three
Gabor Greifa54634a2007-07-06 22:07:22 +0000272different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner48b383b02003-11-25 01:02:51 +0000273representation (suitable for fast loading by a Just-In-Time compiler),
274and as a human readable assembly language representation. This allows
275LLVM to provide a powerful intermediate representation for efficient
276compiler transformations and analysis, while providing a natural means
277to debug and visualize the transformations. The three different forms
278of LLVM are all equivalent. This document describes the human readable
279representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000280
John Criswell4a3327e2005-05-13 22:25:59 +0000281<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner48b383b02003-11-25 01:02:51 +0000282while being expressive, typed, and extensible at the same time. It
283aims to be a "universal IR" of sorts, by being at a low enough level
284that high-level ideas may be cleanly mapped to it (similar to how
285microprocessors are "universal IR's", allowing many source languages to
286be mapped to them). By providing type information, LLVM can be used as
287the target of optimizations: for example, through pointer analysis, it
288can be proven that a C automatic variable is never accessed outside of
289the current function... allowing it to be promoted to a simple SSA
290value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000291
Misha Brukman76307852003-11-08 01:05:38 +0000292</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000293
Chris Lattner2f7c9632001-06-06 20:29:01 +0000294<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000295<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000296
Misha Brukman76307852003-11-08 01:05:38 +0000297<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000298
Chris Lattner48b383b02003-11-25 01:02:51 +0000299<p>It is important to note that this document describes 'well formed'
300LLVM assembly language. There is a difference between what the parser
301accepts and what is considered 'well formed'. For example, the
302following instruction is syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000303
Bill Wendling3716c5d2007-05-29 09:04:49 +0000304<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000305<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000306%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000307</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000308</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000309
Chris Lattner48b383b02003-11-25 01:02:51 +0000310<p>...because the definition of <tt>%x</tt> does not dominate all of
311its uses. The LLVM infrastructure provides a verification pass that may
312be used to verify that an LLVM module is well formed. This pass is
John Criswell4a3327e2005-05-13 22:25:59 +0000313automatically run by the parser after parsing input assembly and by
Gabor Greifa54634a2007-07-06 22:07:22 +0000314the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner48b383b02003-11-25 01:02:51 +0000315by the verifier pass indicate bugs in transformation passes or input to
316the parser.</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000317</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000318
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000319<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000320
Chris Lattner2f7c9632001-06-06 20:29:01 +0000321<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000322<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000324
Misha Brukman76307852003-11-08 01:05:38 +0000325<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000326
Reid Spencerb23b65f2007-08-07 14:34:28 +0000327 <p>LLVM identifiers come in two basic types: global and local. Global
328 identifiers (functions, global variables) begin with the @ character. Local
329 identifiers (register names, types) begin with the % character. Additionally,
330 there are three different formats for identifiers, for different purposes:
Chris Lattner757528b0b2004-05-23 21:06:01 +0000331
Chris Lattner2f7c9632001-06-06 20:29:01 +0000332<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000333 <li>Named values are represented as a string of characters with their prefix.
334 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
335 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000336 Identifiers which require other characters in their names can be surrounded
Reid Spencerb23b65f2007-08-07 14:34:28 +0000337 with quotes. In this way, anything except a <tt>&quot;</tt> character can
338 be used in a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000339
Reid Spencerb23b65f2007-08-07 14:34:28 +0000340 <li>Unnamed values are represented as an unsigned numeric value with their
341 prefix. For example, %12, @2, %44.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000342
Reid Spencer8f08d802004-12-09 18:02:53 +0000343 <li>Constants, which are described in a <a href="#constants">section about
344 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000345</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000346
Reid Spencerb23b65f2007-08-07 14:34:28 +0000347<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnerd79749a2004-12-09 16:36:40 +0000348don't need to worry about name clashes with reserved words, and the set of
349reserved words may be expanded in the future without penalty. Additionally,
350unnamed identifiers allow a compiler to quickly come up with a temporary
351variable without having to avoid symbol table conflicts.</p>
352
Chris Lattner48b383b02003-11-25 01:02:51 +0000353<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5b950642006-11-11 23:08:07 +0000354languages. There are keywords for different opcodes
355('<tt><a href="#i_add">add</a></tt>',
356 '<tt><a href="#i_bitcast">bitcast</a></tt>',
357 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000358href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnerd79749a2004-12-09 16:36:40 +0000359and others. These reserved words cannot conflict with variable names, because
Reid Spencerb23b65f2007-08-07 14:34:28 +0000360none of them start with a prefix character ('%' or '@').</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000361
362<p>Here is an example of LLVM code to multiply the integer variable
363'<tt>%X</tt>' by 8:</p>
364
Misha Brukman76307852003-11-08 01:05:38 +0000365<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000366
Bill Wendling3716c5d2007-05-29 09:04:49 +0000367<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000368<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000369%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000370</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000371</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000372
Misha Brukman76307852003-11-08 01:05:38 +0000373<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000374
Bill Wendling3716c5d2007-05-29 09:04:49 +0000375<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000376<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000377%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000378</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000379</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000380
Misha Brukman76307852003-11-08 01:05:38 +0000381<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000382
Bill Wendling3716c5d2007-05-29 09:04:49 +0000383<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000384<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000385<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
386<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
387%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000388</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000389</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000390
Chris Lattner48b383b02003-11-25 01:02:51 +0000391<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
392important lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000393
Chris Lattner2f7c9632001-06-06 20:29:01 +0000394<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000395
396 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
397 line.</li>
398
399 <li>Unnamed temporaries are created when the result of a computation is not
400 assigned to a named value.</li>
401
Misha Brukman76307852003-11-08 01:05:38 +0000402 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000403
Misha Brukman76307852003-11-08 01:05:38 +0000404</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000405
John Criswell02fdc6f2005-05-12 16:52:32 +0000406<p>...and it also shows a convention that we follow in this document. When
Chris Lattnerd79749a2004-12-09 16:36:40 +0000407demonstrating instructions, we will follow an instruction with a comment that
408defines the type and name of value produced. Comments are shown in italic
409text.</p>
410
Misha Brukman76307852003-11-08 01:05:38 +0000411</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000412
413<!-- *********************************************************************** -->
414<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
415<!-- *********************************************************************** -->
416
417<!-- ======================================================================= -->
418<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
419</div>
420
421<div class="doc_text">
422
423<p>LLVM programs are composed of "Module"s, each of which is a
424translation unit of the input programs. Each module consists of
425functions, global variables, and symbol table entries. Modules may be
426combined together with the LLVM linker, which merges function (and
427global variable) definitions, resolves forward declarations, and merges
428symbol table entries. Here is an example of the "hello world" module:</p>
429
Bill Wendling3716c5d2007-05-29 09:04:49 +0000430<div class="doc_code">
Chris Lattner6af02f32004-12-09 16:11:40 +0000431<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000432<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
433 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000434
435<i>; External declaration of the puts function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000436<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000437
438<i>; Definition of main function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000439define i32 @main() { <i>; i32()* </i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000440 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000441 %cast210 = <a
Chris Lattner2150cde2007-06-12 17:01:15 +0000442 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000443
444 <i>; Call puts function to write out the string to stdout...</i>
445 <a
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000446 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000447 <a
Bill Wendling3716c5d2007-05-29 09:04:49 +0000448 href="#i_ret">ret</a> i32 0<br>}<br>
449</pre>
450</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000451
452<p>This example is made up of a <a href="#globalvars">global variable</a>
453named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
454function, and a <a href="#functionstructure">function definition</a>
455for "<tt>main</tt>".</p>
456
Chris Lattnerd79749a2004-12-09 16:36:40 +0000457<p>In general, a module is made up of a list of global values,
458where both functions and global variables are global values. Global values are
459represented by a pointer to a memory location (in this case, a pointer to an
460array of char, and a pointer to a function), and have one of the following <a
461href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000462
Chris Lattnerd79749a2004-12-09 16:36:40 +0000463</div>
464
465<!-- ======================================================================= -->
466<div class="doc_subsection">
467 <a name="linkage">Linkage Types</a>
468</div>
469
470<div class="doc_text">
471
472<p>
473All Global Variables and Functions have one of the following types of linkage:
474</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000475
476<dl>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000477
Dale Johannesen4188aad2008-05-23 23:13:41 +0000478 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000479
480 <dd>Global values with internal linkage are only directly accessible by
481 objects in the current module. In particular, linking code into a module with
482 an internal global value may cause the internal to be renamed as necessary to
483 avoid collisions. Because the symbol is internal to the module, all
484 references can be updated. This corresponds to the notion of the
Chris Lattnere20b4702007-01-14 06:51:48 +0000485 '<tt>static</tt>' keyword in C.
Chris Lattner6af02f32004-12-09 16:11:40 +0000486 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000487
Chris Lattner6af02f32004-12-09 16:11:40 +0000488 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000489
Chris Lattnere20b4702007-01-14 06:51:48 +0000490 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
491 the same name when linkage occurs. This is typically used to implement
492 inline functions, templates, or other code which must be generated in each
493 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
494 allowed to be discarded.
Chris Lattner6af02f32004-12-09 16:11:40 +0000495 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000496
Dale Johannesen4188aad2008-05-23 23:13:41 +0000497 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
498
499 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
500 linkage, except that unreferenced <tt>common</tt> globals may not be
501 discarded. This is used for globals that may be emitted in multiple
502 translation units, but that are not guaranteed to be emitted into every
503 translation unit that uses them. One example of this is tentative
504 definitions in C, such as "<tt>int X;</tt>" at global scope.
505 </dd>
506
Chris Lattner6af02f32004-12-09 16:11:40 +0000507 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000508
Dale Johannesen4188aad2008-05-23 23:13:41 +0000509 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
510 that some targets may choose to emit different assembly sequences for them
511 for target-dependent reasons. This is used for globals that are declared
512 "weak" in C source code.
Chris Lattner6af02f32004-12-09 16:11:40 +0000513 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000514
Chris Lattner6af02f32004-12-09 16:11:40 +0000515 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000516
517 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
518 pointer to array type. When two global variables with appending linkage are
519 linked together, the two global arrays are appended together. This is the
520 LLVM, typesafe, equivalent of having the system linker append together
521 "sections" with identical names when .o files are linked.
Chris Lattner6af02f32004-12-09 16:11:40 +0000522 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000523
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000524 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000525 <dd>The semantics of this linkage follow the ELF object file model: the
526 symbol is weak until linked, if not linked, the symbol becomes null instead
527 of being an undefined reference.
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000528 </dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000529
Chris Lattner6af02f32004-12-09 16:11:40 +0000530 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000531
532 <dd>If none of the above identifiers are used, the global is externally
533 visible, meaning that it participates in linkage and can be used to resolve
534 external symbol references.
Chris Lattner6af02f32004-12-09 16:11:40 +0000535 </dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000536</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000537
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000538 <p>
539 The next two types of linkage are targeted for Microsoft Windows platform
540 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner67c37d12008-08-05 18:29:16 +0000541 DLLs (Dynamic Link Libraries).
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000542 </p>
543
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000544 <dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000545 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
546
547 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
548 or variable via a global pointer to a pointer that is set up by the DLL
549 exporting the symbol. On Microsoft Windows targets, the pointer name is
550 formed by combining <code>_imp__</code> and the function or variable name.
551 </dd>
552
553 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
554
555 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
556 pointer to a pointer in a DLL, so that it can be referenced with the
557 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
558 name is formed by combining <code>_imp__</code> and the function or variable
559 name.
560 </dd>
561
Chris Lattner6af02f32004-12-09 16:11:40 +0000562</dl>
563
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000564<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattner6af02f32004-12-09 16:11:40 +0000565variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
566variable and was linked with this one, one of the two would be renamed,
567preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
568external (i.e., lacking any linkage declarations), they are accessible
Reid Spencer92c671e2007-01-05 00:59:10 +0000569outside of the current module.</p>
570<p>It is illegal for a function <i>declaration</i>
571to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000572or <tt>extern_weak</tt>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000573<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
574linkages.
Chris Lattner6af02f32004-12-09 16:11:40 +0000575</div>
576
577<!-- ======================================================================= -->
578<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000579 <a name="callingconv">Calling Conventions</a>
580</div>
581
582<div class="doc_text">
583
584<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
585and <a href="#i_invoke">invokes</a> can all have an optional calling convention
586specified for the call. The calling convention of any pair of dynamic
587caller/callee must match, or the behavior of the program is undefined. The
588following calling conventions are supported by LLVM, and more may be added in
589the future:</p>
590
591<dl>
592 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
593
594 <dd>This calling convention (the default if no other calling convention is
595 specified) matches the target C calling conventions. This calling convention
John Criswell02fdc6f2005-05-12 16:52:32 +0000596 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencer72ba4992006-12-31 21:30:18 +0000597 prototype and implemented declaration of the function (as does normal C).
Chris Lattner0132aff2005-05-06 22:57:40 +0000598 </dd>
599
600 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
601
602 <dd>This calling convention attempts to make calls as fast as possible
603 (e.g. by passing things in registers). This calling convention allows the
604 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner67c37d12008-08-05 18:29:16 +0000605 without having to conform to an externally specified ABI (Application Binary
606 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer2c6b8882008-05-14 09:17:12 +0000607 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
608 supported. This calling convention does not support varargs and requires the
609 prototype of all callees to exactly match the prototype of the function
610 definition.
Chris Lattner0132aff2005-05-06 22:57:40 +0000611 </dd>
612
613 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
614
615 <dd>This calling convention attempts to make code in the caller as efficient
616 as possible under the assumption that the call is not commonly executed. As
617 such, these calls often preserve all registers so that the call does not break
618 any live ranges in the caller side. This calling convention does not support
619 varargs and requires the prototype of all callees to exactly match the
620 prototype of the function definition.
621 </dd>
622
Chris Lattner573f64e2005-05-07 01:46:40 +0000623 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000624
625 <dd>Any calling convention may be specified by number, allowing
626 target-specific calling conventions to be used. Target specific calling
627 conventions start at 64.
628 </dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000629</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000630
631<p>More calling conventions can be added/defined on an as-needed basis, to
632support pascal conventions or any other well-known target-independent
633convention.</p>
634
635</div>
636
637<!-- ======================================================================= -->
638<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000639 <a name="visibility">Visibility Styles</a>
640</div>
641
642<div class="doc_text">
643
644<p>
645All Global Variables and Functions have one of the following visibility styles:
646</p>
647
648<dl>
649 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
650
Chris Lattner67c37d12008-08-05 18:29:16 +0000651 <dd>On targets that use the ELF object file format, default visibility means
652 that the declaration is visible to other
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000653 modules and, in shared libraries, means that the declared entity may be
654 overridden. On Darwin, default visibility means that the declaration is
655 visible to other modules. Default visibility corresponds to "external
656 linkage" in the language.
657 </dd>
658
659 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
660
661 <dd>Two declarations of an object with hidden visibility refer to the same
662 object if they are in the same shared object. Usually, hidden visibility
663 indicates that the symbol will not be placed into the dynamic symbol table,
664 so no other module (executable or shared library) can reference it
665 directly.
666 </dd>
667
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000668 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
669
670 <dd>On ELF, protected visibility indicates that the symbol will be placed in
671 the dynamic symbol table, but that references within the defining module will
672 bind to the local symbol. That is, the symbol cannot be overridden by another
673 module.
674 </dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000675</dl>
676
677</div>
678
679<!-- ======================================================================= -->
680<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000681 <a name="globalvars">Global Variables</a>
682</div>
683
684<div class="doc_text">
685
Chris Lattner5d5aede2005-02-12 19:30:21 +0000686<p>Global variables define regions of memory allocated at compilation time
Chris Lattner662c8722005-11-12 00:45:07 +0000687instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000688an explicit section to be placed in, and may have an optional explicit alignment
689specified. A variable may be defined as "thread_local", which means that it
690will not be shared by threads (each thread will have a separated copy of the
691variable). A variable may be defined as a global "constant," which indicates
692that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner5d5aede2005-02-12 19:30:21 +0000693optimization, allowing the global data to be placed in the read-only section of
694an executable, etc). Note that variables that need runtime initialization
John Criswell4c0cf7f2005-10-24 16:17:18 +0000695cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000696
697<p>
698LLVM explicitly allows <em>declarations</em> of global variables to be marked
699constant, even if the final definition of the global is not. This capability
700can be used to enable slightly better optimization of the program, but requires
701the language definition to guarantee that optimizations based on the
702'constantness' are valid for the translation units that do not include the
703definition.
704</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000705
706<p>As SSA values, global variables define pointer values that are in
707scope (i.e. they dominate) all basic blocks in the program. Global
708variables always define a pointer to their "content" type because they
709describe a region of memory, and all memory objects in LLVM are
710accessed through pointers.</p>
711
Christopher Lamb308121c2007-12-11 09:31:00 +0000712<p>A global variable may be declared to reside in a target-specifc numbered
713address space. For targets that support them, address spaces may affect how
714optimizations are performed and/or what target instructions are used to access
Christopher Lamb25f50762007-12-12 08:44:39 +0000715the variable. The default address space is zero. The address space qualifier
716must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000717
Chris Lattner662c8722005-11-12 00:45:07 +0000718<p>LLVM allows an explicit section to be specified for globals. If the target
719supports it, it will emit globals to the section specified.</p>
720
Chris Lattner54611b42005-11-06 08:02:57 +0000721<p>An explicit alignment may be specified for a global. If not present, or if
722the alignment is set to zero, the alignment of the global is set by the target
723to whatever it feels convenient. If an explicit alignment is specified, the
724global is forced to have at least that much alignment. All alignments must be
725a power of 2.</p>
726
Christopher Lamb308121c2007-12-11 09:31:00 +0000727<p>For example, the following defines a global in a numbered address space with
728an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000729
Bill Wendling3716c5d2007-05-29 09:04:49 +0000730<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000731<pre>
Christopher Lamb308121c2007-12-11 09:31:00 +0000732@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000733</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000734</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000735
Chris Lattner6af02f32004-12-09 16:11:40 +0000736</div>
737
738
739<!-- ======================================================================= -->
740<div class="doc_subsection">
741 <a name="functionstructure">Functions</a>
742</div>
743
744<div class="doc_text">
745
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000746<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
747an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000748<a href="#visibility">visibility style</a>, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000749<a href="#callingconv">calling convention</a>, a return type, an optional
750<a href="#paramattrs">parameter attribute</a> for the return type, a function
751name, a (possibly empty) argument list (each with optional
Devang Patel7e9b05e2008-10-06 18:50:38 +0000752<a href="#paramattrs">parameter attributes</a>), optional
753<a href="#fnattrs">function attributes</a>, an optional section,
754an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattnercbc4d2a2008-10-04 18:10:21 +0000755an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000756
757LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
758optional <a href="#linkage">linkage type</a>, an optional
759<a href="#visibility">visibility style</a>, an optional
760<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000761<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen71183b62007-12-10 03:18:06 +0000762name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksendc5cafb2007-12-10 03:30:21 +0000763<a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000764
Chris Lattner67c37d12008-08-05 18:29:16 +0000765<p>A function definition contains a list of basic blocks, forming the CFG
766(Control Flow Graph) for
Chris Lattner6af02f32004-12-09 16:11:40 +0000767the function. Each basic block may optionally start with a label (giving the
768basic block a symbol table entry), contains a list of instructions, and ends
769with a <a href="#terminators">terminator</a> instruction (such as a branch or
770function return).</p>
771
Chris Lattnera59fb102007-06-08 16:52:14 +0000772<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattner6af02f32004-12-09 16:11:40 +0000773executed on entrance to the function, and it is not allowed to have predecessor
774basic blocks (i.e. there can not be any branches to the entry block of a
775function). Because the block can have no predecessors, it also cannot have any
776<a href="#i_phi">PHI nodes</a>.</p>
777
Chris Lattner662c8722005-11-12 00:45:07 +0000778<p>LLVM allows an explicit section to be specified for functions. If the target
779supports it, it will emit functions to the section specified.</p>
780
Chris Lattner54611b42005-11-06 08:02:57 +0000781<p>An explicit alignment may be specified for a function. If not present, or if
782the alignment is set to zero, the alignment of the function is set by the target
783to whatever it feels convenient. If an explicit alignment is specified, the
784function is forced to have at least that much alignment. All alignments must be
785a power of 2.</p>
786
Chris Lattner6af02f32004-12-09 16:11:40 +0000787</div>
788
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000789
790<!-- ======================================================================= -->
791<div class="doc_subsection">
792 <a name="aliasstructure">Aliases</a>
793</div>
794<div class="doc_text">
795 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov25b2e822008-03-22 08:36:14 +0000796 function, global variable, another alias or bitcast of global value). Aliases
797 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000798 optional <a href="#visibility">visibility style</a>.</p>
799
800 <h5>Syntax:</h5>
801
Bill Wendling3716c5d2007-05-29 09:04:49 +0000802<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000803<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000804@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000805</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000806</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000807
808</div>
809
810
811
Chris Lattner91c15c42006-01-23 23:23:47 +0000812<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000813<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
814<div class="doc_text">
815 <p>The return type and each parameter of a function type may have a set of
816 <i>parameter attributes</i> associated with them. Parameter attributes are
817 used to communicate additional information about the result or parameters of
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000818 a function. Parameter attributes are considered to be part of the function,
819 not of the function type, so functions with different parameter attributes
820 can have the same function type.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000821
Reid Spencercf7ebf52007-01-15 18:27:39 +0000822 <p>Parameter attributes are simple keywords that follow the type specified. If
823 multiple parameter attributes are needed, they are space separated. For
Bill Wendling3716c5d2007-05-29 09:04:49 +0000824 example:</p>
825
826<div class="doc_code">
827<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +0000828declare i32 @printf(i8* noalias , ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000829declare i32 @atoi(i8 zeroext)
830declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000831</pre>
832</div>
833
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000836
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000837 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000838 <dl>
Reid Spencer314e1cb2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000840 <dd>This indicates to the code generator that the parameter or return value
841 should be zero-extended to a 32-bit value by the caller (for a parameter)
842 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000843
Reid Spencer314e1cb2007-07-19 23:13:04 +0000844 <dt><tt>signext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000845 <dd>This indicates to the code generator that the parameter or return value
846 should be sign-extended to a 32-bit value by the caller (for a parameter)
847 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000848
Anton Korobeynikove8166852007-01-28 14:30:45 +0000849 <dt><tt>inreg</tt></dt>
Dale Johannesenc50ada22008-09-25 20:47:45 +0000850 <dd>This indicates that this parameter or return value should be treated
851 in a special target-dependent fashion during while emitting code for a
852 function call or return (usually, by putting it in a register as opposed
Chris Lattnerd2597d72008-10-04 18:33:34 +0000853 to memory, though some targets use it to distinguish between two different
854 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000855
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000856 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner352ab9b2008-01-15 04:34:22 +0000857 <dd>This indicates that the pointer parameter should really be passed by
858 value to the function. The attribute implies that a hidden copy of the
859 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner1ca5c642008-08-05 18:21:08 +0000860 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner352ab9b2008-01-15 04:34:22 +0000861 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000862 value, but is also valid on pointers to scalars. The copy is considered to
863 belong to the caller not the callee (for example,
864 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patel7e9b05e2008-10-06 18:50:38 +0000865 <tt>byval</tt> parameters). This is not a valid attribute for return
866 values. </dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000867
Anton Korobeynikove8166852007-01-28 14:30:45 +0000868 <dt><tt>sret</tt></dt>
Duncan Sandsfa4b6732008-02-18 04:19:38 +0000869 <dd>This indicates that the pointer parameter specifies the address of a
870 structure that is the return value of the function in the source program.
Chris Lattnerd2597d72008-10-04 18:33:34 +0000871 This pointer must be guaranteed by the caller to be valid: loads and stores
872 to the structure may be assumed by the callee to not to trap. This may only
Devang Patel7e9b05e2008-10-06 18:50:38 +0000873 be applied to the first parameter. This is not a valid attribute for
874 return values. </dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000875
Zhou Sheng2444a9a2007-06-05 05:28:26 +0000876 <dt><tt>noalias</tt></dt>
Owen Anderson61101282008-02-18 04:09:01 +0000877 <dd>This indicates that the parameter does not alias any global or any other
878 parameter. The caller is responsible for ensuring that this is the case,
Devang Patel7e9b05e2008-10-06 18:50:38 +0000879 usually by placing the value in a stack allocation. This is not a valid
880 attribute for return values.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000881
Duncan Sands27e91592007-07-27 19:57:41 +0000882 <dt><tt>nest</tt></dt>
Duncan Sands825bde42008-07-08 09:27:25 +0000883 <dd>This indicates that the pointer parameter can be excised using the
Devang Patel7e9b05e2008-10-06 18:50:38 +0000884 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
885 attribute for return values.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000886 </dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000887
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000888</div>
889
890<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +0000891<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +0000892 <a name="gc">Garbage Collector Names</a>
893</div>
894
895<div class="doc_text">
896<p>Each function may specify a garbage collector name, which is simply a
897string.</p>
898
899<div class="doc_code"><pre
900>define void @f() gc "name" { ...</pre></div>
901
902<p>The compiler declares the supported values of <i>name</i>. Specifying a
903collector which will cause the compiler to alter its output in order to support
904the named garbage collection algorithm.</p>
905</div>
906
907<!-- ======================================================================= -->
908<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +0000909 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +0000910</div>
911
912<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +0000913
914<p>Function attributes are set to communicate additional information about
915 a function. Function attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.</p>
918
919 <p>Function attributes are simple keywords that follow the type specified. If
920 multiple attributes are needed, they are space separated. For
921 example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +0000922
923<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +0000924<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +0000925define void @f() noinline { ... }
926define void @f() alwaysinline { ... }
927define void @f() alwaysinline optsize { ... }
928define void @f() optsize
Bill Wendlingb175fa42008-09-07 10:26:33 +0000929</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +0000930</div>
931
Bill Wendlingb175fa42008-09-07 10:26:33 +0000932<dl>
Devang Patel9eb525d2008-09-26 23:51:19 +0000933<dt><tt>alwaysinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000934<dd>This attribute indicates that the inliner should attempt to inline this
935function into callers whenever possible, ignoring any active inlining size
936threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +0000937
Devang Patel9eb525d2008-09-26 23:51:19 +0000938<dt><tt>noinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000939<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner0625c282008-10-05 17:14:59 +0000940in any situation. This attribute may not be used together with the
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000941<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +0000942
Devang Patel9eb525d2008-09-26 23:51:19 +0000943<dt><tt>optsize</tt></dt>
Devang Patele9743902008-09-29 18:34:44 +0000944<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000945make choices that keep the code size of this function low, and otherwise do
946optimizations specifically to reduce code size.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +0000947
Devang Patel9eb525d2008-09-26 23:51:19 +0000948<dt><tt>noreturn</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000949<dd>This function attribute indicates that the function never returns normally.
950This produces undefined behavior at runtime if the function ever does
951dynamically return.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +0000952
953<dt><tt>nounwind</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000954<dd>This function attribute indicates that the function never returns with an
955unwind or exceptional control flow. If the function does unwind, its runtime
956behavior is undefined.</dd>
957
958<dt><tt>readnone</tt></dt>
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000959<dd>This attribute indicates that the function computes its result (or the
960exception it throws) based strictly on its arguments, without dereferencing any
961pointer arguments or otherwise accessing any mutable state (e.g. memory, control
962registers, etc) visible to caller functions. It does not write through any
963pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
964never changes any state visible to callers.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +0000965
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000966<dt><tt><a name="readonly">readonly</a></tt></dt>
967<dd>This attribute indicates that the function does not write through any
968pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
969or otherwise modify any state (e.g. memory, control registers, etc) visible to
970caller functions. It may dereference pointer arguments and read state that may
971be set in the caller. A readonly function always returns the same value (or
972throws the same exception) when called with the same set of arguments and global
973state.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +0000974</dl>
975
Devang Patelcaacdba2008-09-04 23:05:13 +0000976</div>
977
978<!-- ======================================================================= -->
979<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +0000980 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +0000981</div>
982
983<div class="doc_text">
984<p>
985Modules may contain "module-level inline asm" blocks, which corresponds to the
986GCC "file scope inline asm" blocks. These blocks are internally concatenated by
987LLVM and treated as a single unit, but may be separated in the .ll file if
988desired. The syntax is very simple:
989</p>
990
Bill Wendling3716c5d2007-05-29 09:04:49 +0000991<div class="doc_code">
992<pre>
993module asm "inline asm code goes here"
994module asm "more can go here"
995</pre>
996</div>
Chris Lattner91c15c42006-01-23 23:23:47 +0000997
998<p>The strings can contain any character by escaping non-printable characters.
999 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1000 for the number.
1001</p>
1002
1003<p>
1004 The inline asm code is simply printed to the machine code .s file when
1005 assembly code is generated.
1006</p>
1007</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001008
Reid Spencer50c723a2007-02-19 23:54:10 +00001009<!-- ======================================================================= -->
1010<div class="doc_subsection">
1011 <a name="datalayout">Data Layout</a>
1012</div>
1013
1014<div class="doc_text">
1015<p>A module may specify a target specific data layout string that specifies how
Reid Spencer7972c472007-04-11 23:49:50 +00001016data is to be laid out in memory. The syntax for the data layout is simply:</p>
1017<pre> target datalayout = "<i>layout specification</i>"</pre>
1018<p>The <i>layout specification</i> consists of a list of specifications
1019separated by the minus sign character ('-'). Each specification starts with a
1020letter and may include other information after the letter to define some
1021aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001022<dl>
1023 <dt><tt>E</tt></dt>
1024 <dd>Specifies that the target lays out data in big-endian form. That is, the
1025 bits with the most significance have the lowest address location.</dd>
1026 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001027 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencer50c723a2007-02-19 23:54:10 +00001028 the bits with the least significance have the lowest address location.</dd>
1029 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1030 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1031 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1032 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1033 too.</dd>
1034 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1035 <dd>This specifies the alignment for an integer type of a given bit
1036 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1037 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1038 <dd>This specifies the alignment for a vector type of a given bit
1039 <i>size</i>.</dd>
1040 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1041 <dd>This specifies the alignment for a floating point type of a given bit
1042 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1043 (double).</dd>
1044 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1045 <dd>This specifies the alignment for an aggregate type of a given bit
1046 <i>size</i>.</dd>
1047</dl>
1048<p>When constructing the data layout for a given target, LLVM starts with a
1049default set of specifications which are then (possibly) overriden by the
1050specifications in the <tt>datalayout</tt> keyword. The default specifications
1051are given in this list:</p>
1052<ul>
1053 <li><tt>E</tt> - big endian</li>
1054 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1055 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1056 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1057 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1058 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001059 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001060 alignment of 64-bits</li>
1061 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1062 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1063 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1064 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1065 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1066</ul>
Chris Lattner1ca5c642008-08-05 18:21:08 +00001067<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencer50c723a2007-02-19 23:54:10 +00001068following rules:
1069<ol>
1070 <li>If the type sought is an exact match for one of the specifications, that
1071 specification is used.</li>
1072 <li>If no match is found, and the type sought is an integer type, then the
1073 smallest integer type that is larger than the bitwidth of the sought type is
1074 used. If none of the specifications are larger than the bitwidth then the the
1075 largest integer type is used. For example, given the default specifications
1076 above, the i7 type will use the alignment of i8 (next largest) while both
1077 i65 and i256 will use the alignment of i64 (largest specified).</li>
1078 <li>If no match is found, and the type sought is a vector type, then the
1079 largest vector type that is smaller than the sought vector type will be used
1080 as a fall back. This happens because <128 x double> can be implemented in
1081 terms of 64 <2 x double>, for example.</li>
1082</ol>
1083</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001084
Chris Lattner2f7c9632001-06-06 20:29:01 +00001085<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001086<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1087<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001088
Misha Brukman76307852003-11-08 01:05:38 +00001089<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001090
Misha Brukman76307852003-11-08 01:05:38 +00001091<p>The LLVM type system is one of the most important features of the
Chris Lattner48b383b02003-11-25 01:02:51 +00001092intermediate representation. Being typed enables a number of
Chris Lattner67c37d12008-08-05 18:29:16 +00001093optimizations to be performed on the intermediate representation directly,
1094without having to do
Chris Lattner48b383b02003-11-25 01:02:51 +00001095extra analyses on the side before the transformation. A strong type
1096system makes it easier to read the generated code and enables novel
1097analyses and transformations that are not feasible to perform on normal
1098three address code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001099
1100</div>
1101
Chris Lattner2f7c9632001-06-06 20:29:01 +00001102<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001103<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001104Classifications</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001105<div class="doc_text">
Chris Lattner7824d182008-01-04 04:32:38 +00001106<p>The types fall into a few useful
Chris Lattner48b383b02003-11-25 01:02:51 +00001107classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001108
1109<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001110 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001111 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001112 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001113 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001114 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001115 </tr>
1116 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001117 <td><a href="#t_floating">floating point</a></td>
1118 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001119 </tr>
1120 <tr>
1121 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001122 <td><a href="#t_integer">integer</a>,
1123 <a href="#t_floating">floating point</a>,
1124 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001125 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001126 <a href="#t_struct">structure</a>,
1127 <a href="#t_array">array</a>,
Dan Gohmanda52d212008-05-23 22:50:26 +00001128 <a href="#t_label">label</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001129 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001130 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001131 <tr>
1132 <td><a href="#t_primitive">primitive</a></td>
1133 <td><a href="#t_label">label</a>,
1134 <a href="#t_void">void</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001135 <a href="#t_floating">floating point</a>.</td>
1136 </tr>
1137 <tr>
1138 <td><a href="#t_derived">derived</a></td>
1139 <td><a href="#t_integer">integer</a>,
1140 <a href="#t_array">array</a>,
1141 <a href="#t_function">function</a>,
1142 <a href="#t_pointer">pointer</a>,
1143 <a href="#t_struct">structure</a>,
1144 <a href="#t_pstruct">packed structure</a>,
1145 <a href="#t_vector">vector</a>,
1146 <a href="#t_opaque">opaque</a>.
1147 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001148 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001149</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001150
Chris Lattner48b383b02003-11-25 01:02:51 +00001151<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1152most important. Values of these types are the only ones which can be
1153produced by instructions, passed as arguments, or used as operands to
Dan Gohman34d1c0d2008-05-23 21:53:15 +00001154instructions.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001155</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001156
Chris Lattner2f7c9632001-06-06 20:29:01 +00001157<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001158<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001159
Chris Lattner7824d182008-01-04 04:32:38 +00001160<div class="doc_text">
1161<p>The primitive types are the fundamental building blocks of the LLVM
1162system.</p>
1163
Chris Lattner43542b32008-01-04 04:34:14 +00001164</div>
1165
Chris Lattner7824d182008-01-04 04:32:38 +00001166<!-- _______________________________________________________________________ -->
1167<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1168
1169<div class="doc_text">
1170 <table>
1171 <tbody>
1172 <tr><th>Type</th><th>Description</th></tr>
1173 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1174 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1175 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1176 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1177 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1178 </tbody>
1179 </table>
1180</div>
1181
1182<!-- _______________________________________________________________________ -->
1183<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1184
1185<div class="doc_text">
1186<h5>Overview:</h5>
1187<p>The void type does not represent any value and has no size.</p>
1188
1189<h5>Syntax:</h5>
1190
1191<pre>
1192 void
1193</pre>
1194</div>
1195
1196<!-- _______________________________________________________________________ -->
1197<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1198
1199<div class="doc_text">
1200<h5>Overview:</h5>
1201<p>The label type represents code labels.</p>
1202
1203<h5>Syntax:</h5>
1204
1205<pre>
1206 label
1207</pre>
1208</div>
1209
1210
1211<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001212<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001213
Misha Brukman76307852003-11-08 01:05:38 +00001214<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001215
Chris Lattner48b383b02003-11-25 01:02:51 +00001216<p>The real power in LLVM comes from the derived types in the system.
1217This is what allows a programmer to represent arrays, functions,
1218pointers, and other useful types. Note that these derived types may be
1219recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001220
Misha Brukman76307852003-11-08 01:05:38 +00001221</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001222
Chris Lattner2f7c9632001-06-06 20:29:01 +00001223<!-- _______________________________________________________________________ -->
Reid Spencer138249b2007-05-16 18:44:01 +00001224<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1225
1226<div class="doc_text">
1227
1228<h5>Overview:</h5>
1229<p>The integer type is a very simple derived type that simply specifies an
1230arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12312^23-1 (about 8 million) can be specified.</p>
1232
1233<h5>Syntax:</h5>
1234
1235<pre>
1236 iN
1237</pre>
1238
1239<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1240value.</p>
1241
1242<h5>Examples:</h5>
1243<table class="layout">
Chris Lattner9a2e3cb2007-12-18 06:18:21 +00001244 <tbody>
1245 <tr>
1246 <td><tt>i1</tt></td>
1247 <td>a single-bit integer.</td>
1248 </tr><tr>
1249 <td><tt>i32</tt></td>
1250 <td>a 32-bit integer.</td>
1251 </tr><tr>
1252 <td><tt>i1942652</tt></td>
1253 <td>a really big integer of over 1 million bits.</td>
Reid Spencer138249b2007-05-16 18:44:01 +00001254 </tr>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +00001255 </tbody>
Reid Spencer138249b2007-05-16 18:44:01 +00001256</table>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001257</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001258
1259<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001260<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001261
Misha Brukman76307852003-11-08 01:05:38 +00001262<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001263
Chris Lattner2f7c9632001-06-06 20:29:01 +00001264<h5>Overview:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001265
Misha Brukman76307852003-11-08 01:05:38 +00001266<p>The array type is a very simple derived type that arranges elements
Chris Lattner48b383b02003-11-25 01:02:51 +00001267sequentially in memory. The array type requires a size (number of
1268elements) and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001269
Chris Lattner590645f2002-04-14 06:13:44 +00001270<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001271
1272<pre>
1273 [&lt;# elements&gt; x &lt;elementtype&gt;]
1274</pre>
1275
John Criswell02fdc6f2005-05-12 16:52:32 +00001276<p>The number of elements is a constant integer value; elementtype may
Chris Lattner48b383b02003-11-25 01:02:51 +00001277be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001278
Chris Lattner590645f2002-04-14 06:13:44 +00001279<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001280<table class="layout">
1281 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001282 <td class="left"><tt>[40 x i32]</tt></td>
1283 <td class="left">Array of 40 32-bit integer values.</td>
1284 </tr>
1285 <tr class="layout">
1286 <td class="left"><tt>[41 x i32]</tt></td>
1287 <td class="left">Array of 41 32-bit integer values.</td>
1288 </tr>
1289 <tr class="layout">
1290 <td class="left"><tt>[4 x i8]</tt></td>
1291 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001292 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001293</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001294<p>Here are some examples of multidimensional arrays:</p>
1295<table class="layout">
1296 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001297 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1298 <td class="left">3x4 array of 32-bit integer values.</td>
1299 </tr>
1300 <tr class="layout">
1301 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1302 <td class="left">12x10 array of single precision floating point values.</td>
1303 </tr>
1304 <tr class="layout">
1305 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1306 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001307 </tr>
1308</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001309
John Criswell4c0cf7f2005-10-24 16:17:18 +00001310<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1311length array. Normally, accesses past the end of an array are undefined in
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001312LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1313As a special case, however, zero length arrays are recognized to be variable
1314length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001315type "{ i32, [0 x float]}", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001316
Misha Brukman76307852003-11-08 01:05:38 +00001317</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001318
Chris Lattner2f7c9632001-06-06 20:29:01 +00001319<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001320<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001321<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001322
Chris Lattner2f7c9632001-06-06 20:29:01 +00001323<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001324
Chris Lattner48b383b02003-11-25 01:02:51 +00001325<p>The function type can be thought of as a function signature. It
Devang Patele3dfc1c2008-03-24 05:35:41 +00001326consists of a return type and a list of formal parameter types. The
Chris Lattnerda508ac2008-04-23 04:59:35 +00001327return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel9c1f8b12008-03-24 20:52:42 +00001328If the return type is a struct type then all struct elements must be of first
Chris Lattnerda508ac2008-04-23 04:59:35 +00001329class types, and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001330
Chris Lattner2f7c9632001-06-06 20:29:01 +00001331<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001332
1333<pre>
1334 &lt;returntype list&gt; (&lt;parameter list&gt;)
1335</pre>
1336
John Criswell4c0cf7f2005-10-24 16:17:18 +00001337<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukman20f9a622004-08-12 20:16:08 +00001338specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner5ed60612003-09-03 00:41:47 +00001339which indicates that the function takes a variable number of arguments.
1340Variable argument functions can access their arguments with the <a
Devang Pateld6cff512008-03-10 20:49:15 +00001341 href="#int_varargs">variable argument handling intrinsic</a> functions.
1342'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1343<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001344
Chris Lattner2f7c9632001-06-06 20:29:01 +00001345<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001346<table class="layout">
1347 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001348 <td class="left"><tt>i32 (i32)</tt></td>
1349 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001350 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001351 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001352 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001353 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001354 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1355 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001356 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001357 <tt>float</tt>.
1358 </td>
1359 </tr><tr class="layout">
1360 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1361 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001362 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001363 which returns an integer. This is the signature for <tt>printf</tt> in
1364 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001365 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001366 </tr><tr class="layout">
1367 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel8dec6c22008-03-24 18:10:52 +00001368 <td class="left">A function taking an <tt>i32></tt>, returning two
1369 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001370 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001371 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001372</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001373
Misha Brukman76307852003-11-08 01:05:38 +00001374</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001375<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001376<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001377<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001378<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001379<p>The structure type is used to represent a collection of data members
1380together in memory. The packing of the field types is defined to match
1381the ABI of the underlying processor. The elements of a structure may
1382be any type that has a size.</p>
1383<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1384and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1385field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1386instruction.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001387<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001388<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001389<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001390<table class="layout">
1391 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001392 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1393 <td class="left">A triple of three <tt>i32</tt> values</td>
1394 </tr><tr class="layout">
1395 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1396 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1397 second element is a <a href="#t_pointer">pointer</a> to a
1398 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1399 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001400 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001401</table>
Misha Brukman76307852003-11-08 01:05:38 +00001402</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001403
Chris Lattner2f7c9632001-06-06 20:29:01 +00001404<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001405<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1406</div>
1407<div class="doc_text">
1408<h5>Overview:</h5>
1409<p>The packed structure type is used to represent a collection of data members
1410together in memory. There is no padding between fields. Further, the alignment
1411of a packed structure is 1 byte. The elements of a packed structure may
1412be any type that has a size.</p>
1413<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1414and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1415field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1416instruction.</p>
1417<h5>Syntax:</h5>
1418<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1419<h5>Examples:</h5>
1420<table class="layout">
1421 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001422 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1423 <td class="left">A triple of three <tt>i32</tt> values</td>
1424 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001425 <td class="left">
1426<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001427 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1428 second element is a <a href="#t_pointer">pointer</a> to a
1429 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1430 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001431 </tr>
1432</table>
1433</div>
1434
1435<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001436<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001437<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00001438<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001439<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb308121c2007-12-11 09:31:00 +00001440reference to another object, which must live in memory. Pointer types may have
1441an optional address space attribute defining the target-specific numbered
1442address space where the pointed-to object resides. The default address space is
1443zero.</p>
Chris Lattner590645f2002-04-14 06:13:44 +00001444<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001445<pre> &lt;type&gt; *<br></pre>
Chris Lattner590645f2002-04-14 06:13:44 +00001446<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001447<table class="layout">
1448 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001449 <td class="left"><tt>[4x i32]*</tt></td>
1450 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1451 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1452 </tr>
1453 <tr class="layout">
1454 <td class="left"><tt>i32 (i32 *) *</tt></td>
1455 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001456 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001457 <tt>i32</tt>.</td>
1458 </tr>
1459 <tr class="layout">
1460 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1461 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1462 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001463 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001464</table>
Misha Brukman76307852003-11-08 01:05:38 +00001465</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001466
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001467<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001468<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001469<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001470
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001471<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001472
Reid Spencer404a3252007-02-15 03:07:05 +00001473<p>A vector type is a simple derived type that represents a vector
1474of elements. Vector types are used when multiple primitive data
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001475are operated in parallel using a single instruction (SIMD).
Reid Spencer404a3252007-02-15 03:07:05 +00001476A vector type requires a size (number of
Chris Lattner330ce692005-11-10 01:44:22 +00001477elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer404a3252007-02-15 03:07:05 +00001478of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001479considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001480
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001481<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001482
1483<pre>
1484 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1485</pre>
1486
John Criswell4a3327e2005-05-13 22:25:59 +00001487<p>The number of elements is a constant integer value; elementtype may
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001488be any integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001489
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001490<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001491
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001492<table class="layout">
1493 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001494 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1495 <td class="left">Vector of 4 32-bit integer values.</td>
1496 </tr>
1497 <tr class="layout">
1498 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1499 <td class="left">Vector of 8 32-bit floating-point values.</td>
1500 </tr>
1501 <tr class="layout">
1502 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1503 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001504 </tr>
1505</table>
Misha Brukman76307852003-11-08 01:05:38 +00001506</div>
1507
Chris Lattner37b6b092005-04-25 17:34:15 +00001508<!-- _______________________________________________________________________ -->
1509<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1510<div class="doc_text">
1511
1512<h5>Overview:</h5>
1513
1514<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksena699c4d2007-10-14 00:34:53 +00001515corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner37b6b092005-04-25 17:34:15 +00001516In LLVM, opaque types can eventually be resolved to any type (not just a
1517structure type).</p>
1518
1519<h5>Syntax:</h5>
1520
1521<pre>
1522 opaque
1523</pre>
1524
1525<h5>Examples:</h5>
1526
1527<table class="layout">
1528 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001529 <td class="left"><tt>opaque</tt></td>
1530 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001531 </tr>
1532</table>
1533</div>
1534
1535
Chris Lattner74d3f822004-12-09 17:30:23 +00001536<!-- *********************************************************************** -->
1537<div class="doc_section"> <a name="constants">Constants</a> </div>
1538<!-- *********************************************************************** -->
1539
1540<div class="doc_text">
1541
1542<p>LLVM has several different basic types of constants. This section describes
1543them all and their syntax.</p>
1544
1545</div>
1546
1547<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001548<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001549
1550<div class="doc_text">
1551
1552<dl>
1553 <dt><b>Boolean constants</b></dt>
1554
1555 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencer36a15422007-01-12 03:35:51 +00001556 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattner74d3f822004-12-09 17:30:23 +00001557 </dd>
1558
1559 <dt><b>Integer constants</b></dt>
1560
Reid Spencer8f08d802004-12-09 18:02:53 +00001561 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencer3e628eb92007-01-04 16:43:23 +00001562 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattner74d3f822004-12-09 17:30:23 +00001563 integer types.
1564 </dd>
1565
1566 <dt><b>Floating point constants</b></dt>
1567
1568 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1569 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattner1429e6f2008-04-01 18:45:27 +00001570 notation (see below). The assembler requires the exact decimal value of
1571 a floating-point constant. For example, the assembler accepts 1.25 but
1572 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1573 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001574
1575 <dt><b>Null pointer constants</b></dt>
1576
John Criswelldfe6a862004-12-10 15:51:16 +00001577 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattner74d3f822004-12-09 17:30:23 +00001578 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1579
1580</dl>
1581
John Criswelldfe6a862004-12-10 15:51:16 +00001582<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattner74d3f822004-12-09 17:30:23 +00001583of floating point constants. For example, the form '<tt>double
15840x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15854.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencer8f08d802004-12-09 18:02:53 +00001586(and the only time that they are generated by the disassembler) is when a
1587floating point constant must be emitted but it cannot be represented as a
1588decimal floating point number. For example, NaN's, infinities, and other
1589special values are represented in their IEEE hexadecimal format so that
1590assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001591
1592</div>
1593
1594<!-- ======================================================================= -->
1595<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1596</div>
1597
1598<div class="doc_text">
Chris Lattner455fc8c2005-03-07 22:13:59 +00001599<p>Aggregate constants arise from aggregation of simple constants
1600and smaller aggregate constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001601
1602<dl>
1603 <dt><b>Structure constants</b></dt>
1604
1605 <dd>Structure constants are represented with notation similar to structure
1606 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattnerbea11172007-12-25 20:34:52 +00001607 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1608 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattner455fc8c2005-03-07 22:13:59 +00001609 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattner74d3f822004-12-09 17:30:23 +00001610 types of elements must match those specified by the type.
1611 </dd>
1612
1613 <dt><b>Array constants</b></dt>
1614
1615 <dd>Array constants are represented with notation similar to array type
1616 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001617 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattner74d3f822004-12-09 17:30:23 +00001618 constants must have <a href="#t_array">array type</a>, and the number and
1619 types of elements must match those specified by the type.
1620 </dd>
1621
Reid Spencer404a3252007-02-15 03:07:05 +00001622 <dt><b>Vector constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001623
Reid Spencer404a3252007-02-15 03:07:05 +00001624 <dd>Vector constants are represented with notation similar to vector type
Chris Lattner74d3f822004-12-09 17:30:23 +00001625 definitions (a comma separated list of elements, surrounded by
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001626 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen5819f182007-04-22 01:17:39 +00001627 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer404a3252007-02-15 03:07:05 +00001628 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattner74d3f822004-12-09 17:30:23 +00001629 match those specified by the type.
1630 </dd>
1631
1632 <dt><b>Zero initialization</b></dt>
1633
1634 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1635 value to zero of <em>any</em> type, including scalar and aggregate types.
1636 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell4c0cf7f2005-10-24 16:17:18 +00001637 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattner74d3f822004-12-09 17:30:23 +00001638 initializers.
1639 </dd>
1640</dl>
1641
1642</div>
1643
1644<!-- ======================================================================= -->
1645<div class="doc_subsection">
1646 <a name="globalconstants">Global Variable and Function Addresses</a>
1647</div>
1648
1649<div class="doc_text">
1650
1651<p>The addresses of <a href="#globalvars">global variables</a> and <a
1652href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswelldfe6a862004-12-10 15:51:16 +00001653constants. These constants are explicitly referenced when the <a
1654href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattner74d3f822004-12-09 17:30:23 +00001655href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1656file:</p>
1657
Bill Wendling3716c5d2007-05-29 09:04:49 +00001658<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00001659<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00001660@X = global i32 17
1661@Y = global i32 42
1662@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00001663</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001664</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001665
1666</div>
1667
1668<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00001669<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001670<div class="doc_text">
Reid Spencer641f5c92004-12-09 18:13:12 +00001671 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswell4a3327e2005-05-13 22:25:59 +00001672 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer641f5c92004-12-09 18:13:12 +00001673 a constant is permitted.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001674
Reid Spencer641f5c92004-12-09 18:13:12 +00001675 <p>Undefined values indicate to the compiler that the program is well defined
1676 no matter what value is used, giving the compiler more freedom to optimize.
1677 </p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001678</div>
1679
1680<!-- ======================================================================= -->
1681<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1682</div>
1683
1684<div class="doc_text">
1685
1686<p>Constant expressions are used to allow expressions involving other constants
1687to be used as constants. Constant expressions may be of any <a
John Criswell4a3327e2005-05-13 22:25:59 +00001688href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattner74d3f822004-12-09 17:30:23 +00001689that does not have side effects (e.g. load and call are not supported). The
1690following is the syntax for constant expressions:</p>
1691
1692<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001693 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1694 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001695 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001696
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001697 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1698 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001699 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001700
1701 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1702 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001703 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001704
1705 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1706 <dd>Truncate a floating point constant to another floating point type. The
1707 size of CST must be larger than the size of TYPE. Both types must be
1708 floating point.</dd>
1709
1710 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1711 <dd>Floating point extend a constant to another type. The size of CST must be
1712 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1713
Reid Spencer753163d2007-07-31 14:40:14 +00001714 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001715 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001716 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1717 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1718 of the same number of elements. If the value won't fit in the integer type,
1719 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001720
Reid Spencer51b07252006-11-09 23:03:26 +00001721 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001722 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001723 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1724 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1725 of the same number of elements. If the value won't fit in the integer type,
1726 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001727
Reid Spencer51b07252006-11-09 23:03:26 +00001728 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001729 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001730 constant. TYPE must be a scalar or vector floating point type. CST must be of
1731 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1732 of the same number of elements. If the value won't fit in the floating point
1733 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001734
Reid Spencer51b07252006-11-09 23:03:26 +00001735 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001736 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001737 constant. TYPE must be a scalar or vector floating point type. CST must be of
1738 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1739 of the same number of elements. If the value won't fit in the floating point
1740 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001741
Reid Spencer5b950642006-11-11 23:08:07 +00001742 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1743 <dd>Convert a pointer typed constant to the corresponding integer constant
1744 TYPE must be an integer type. CST must be of pointer type. The CST value is
1745 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1746
1747 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1748 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1749 pointer type. CST must be of integer type. The CST value is zero extended,
1750 truncated, or unchanged to make it fit in a pointer size. This one is
1751 <i>really</i> dangerous!</dd>
1752
1753 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001754 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1755 identical (same number of bits). The conversion is done as if the CST value
1756 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5b950642006-11-11 23:08:07 +00001757 with this operator, just the type. This can be used for conversion of
Reid Spencer404a3252007-02-15 03:07:05 +00001758 vector types to any other type, as long as they have the same bit width. For
Dan Gohmanc05dca92008-09-08 16:45:59 +00001759 pointers it is only valid to cast to another pointer type. It is not valid
1760 to bitcast to or from an aggregate type.
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001761 </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001762
1763 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1764
1765 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1766 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1767 instruction, the index list may have zero or more indexes, which are required
1768 to make sense for the type of "CSTPTR".</dd>
1769
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001770 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1771
1772 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer9965ee72006-12-04 19:23:19 +00001773 constants.</dd>
1774
1775 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1776 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1777
1778 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1779 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001780
Nate Begemand2195702008-05-12 19:01:56 +00001781 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1782 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1783
1784 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1785 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1786
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001787 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1788
1789 <dd>Perform the <a href="#i_extractelement">extractelement
1790 operation</a> on constants.
1791
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00001792 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1793
1794 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer9965ee72006-12-04 19:23:19 +00001795 operation</a> on constants.</dd>
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00001796
Chris Lattner016a0e52006-04-08 00:13:41 +00001797
1798 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1799
1800 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer9965ee72006-12-04 19:23:19 +00001801 operation</a> on constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00001802
Chris Lattner74d3f822004-12-09 17:30:23 +00001803 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1804
Reid Spencer641f5c92004-12-09 18:13:12 +00001805 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1806 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattner74d3f822004-12-09 17:30:23 +00001807 binary</a> operations. The constraints on operands are the same as those for
1808 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswell02fdc6f2005-05-12 16:52:32 +00001809 values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001810</dl>
Chris Lattner74d3f822004-12-09 17:30:23 +00001811</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00001812
Chris Lattner2f7c9632001-06-06 20:29:01 +00001813<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00001814<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1815<!-- *********************************************************************** -->
1816
1817<!-- ======================================================================= -->
1818<div class="doc_subsection">
1819<a name="inlineasm">Inline Assembler Expressions</a>
1820</div>
1821
1822<div class="doc_text">
1823
1824<p>
1825LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1826Module-Level Inline Assembly</a>) through the use of a special value. This
1827value represents the inline assembler as a string (containing the instructions
1828to emit), a list of operand constraints (stored as a string), and a flag that
1829indicates whether or not the inline asm expression has side effects. An example
1830inline assembler expression is:
1831</p>
1832
Bill Wendling3716c5d2007-05-29 09:04:49 +00001833<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00001834<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001835i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00001836</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001837</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00001838
1839<p>
1840Inline assembler expressions may <b>only</b> be used as the callee operand of
1841a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1842</p>
1843
Bill Wendling3716c5d2007-05-29 09:04:49 +00001844<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00001845<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001846%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00001847</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001848</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00001849
1850<p>
1851Inline asms with side effects not visible in the constraint list must be marked
1852as having side effects. This is done through the use of the
1853'<tt>sideeffect</tt>' keyword, like so:
1854</p>
1855
Bill Wendling3716c5d2007-05-29 09:04:49 +00001856<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00001857<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001858call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00001859</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001860</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00001861
1862<p>TODO: The format of the asm and constraints string still need to be
1863documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattnerd5528262008-10-04 18:36:02 +00001864need to be documented). This is probably best done by reference to another
1865document that covers inline asm from a holistic perspective.
Chris Lattner98f013c2006-01-25 23:47:57 +00001866</p>
1867
1868</div>
1869
1870<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001871<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1872<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00001873
Misha Brukman76307852003-11-08 01:05:38 +00001874<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001875
Chris Lattner48b383b02003-11-25 01:02:51 +00001876<p>The LLVM instruction set consists of several different
1877classifications of instructions: <a href="#terminators">terminator
John Criswell4a3327e2005-05-13 22:25:59 +00001878instructions</a>, <a href="#binaryops">binary instructions</a>,
1879<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner48b383b02003-11-25 01:02:51 +00001880 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1881instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001882
Misha Brukman76307852003-11-08 01:05:38 +00001883</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001884
Chris Lattner2f7c9632001-06-06 20:29:01 +00001885<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001886<div class="doc_subsection"> <a name="terminators">Terminator
1887Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001888
Misha Brukman76307852003-11-08 01:05:38 +00001889<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001890
Chris Lattner48b383b02003-11-25 01:02:51 +00001891<p>As mentioned <a href="#functionstructure">previously</a>, every
1892basic block in a program ends with a "Terminator" instruction, which
1893indicates which block should be executed after the current block is
1894finished. These terminator instructions typically yield a '<tt>void</tt>'
1895value: they produce control flow, not values (the one exception being
1896the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswelldfe6a862004-12-10 15:51:16 +00001897<p>There are six different terminator instructions: the '<a
Chris Lattner48b383b02003-11-25 01:02:51 +00001898 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1899instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001900the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1901 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1902 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001903
Misha Brukman76307852003-11-08 01:05:38 +00001904</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001905
Chris Lattner2f7c9632001-06-06 20:29:01 +00001906<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001907<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1908Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001909<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001910<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00001911<pre>
1912 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00001913 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001914</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001915
Chris Lattner2f7c9632001-06-06 20:29:01 +00001916<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001917
Dan Gohmancc3132e2008-10-04 19:00:07 +00001918<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1919optionally a value) from a function back to the caller.</p>
John Criswell417228d2004-04-09 16:48:45 +00001920<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmancc3132e2008-10-04 19:00:07 +00001921returns a value and then causes control flow, and one that just causes
Chris Lattner48b383b02003-11-25 01:02:51 +00001922control flow to occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001923
Chris Lattner2f7c9632001-06-06 20:29:01 +00001924<h5>Arguments:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001925
Dan Gohmancc3132e2008-10-04 19:00:07 +00001926<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1927the return value. The type of the return value must be a
1928'<a href="#t_firstclass">first class</a>' type.</p>
1929
1930<p>A function is not <a href="#wellformed">well formed</a> if
1931it it has a non-void return type and contains a '<tt>ret</tt>'
1932instruction with no return value or a return value with a type that
1933does not match its type, or if it has a void return type and contains
1934a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001935
Chris Lattner2f7c9632001-06-06 20:29:01 +00001936<h5>Semantics:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001937
Chris Lattner48b383b02003-11-25 01:02:51 +00001938<p>When the '<tt>ret</tt>' instruction is executed, control flow
1939returns back to the calling function's context. If the caller is a "<a
John Criswell40db33f2004-06-25 15:16:57 +00001940 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner48b383b02003-11-25 01:02:51 +00001941the instruction after the call. If the caller was an "<a
1942 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswell02fdc6f2005-05-12 16:52:32 +00001943at the beginning of the "normal" destination block. If the instruction
Chris Lattner48b383b02003-11-25 01:02:51 +00001944returns a value, that value shall set the call or invoke instruction's
Dan Gohmancc3132e2008-10-04 19:00:07 +00001945return value.
Chris Lattnerda508ac2008-04-23 04:59:35 +00001946
Chris Lattner2f7c9632001-06-06 20:29:01 +00001947<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001948
1949<pre>
1950 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00001951 ret void <i>; Return from a void function</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00001952 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001953</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001954</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001955<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001956<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001957<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001958<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001959<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001960</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001961<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001962<p>The '<tt>br</tt>' instruction is used to cause control flow to
1963transfer to a different basic block in the current function. There are
1964two forms of this instruction, corresponding to a conditional branch
1965and an unconditional branch.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001966<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001967<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencer36a15422007-01-12 03:35:51 +00001968single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencer50c723a2007-02-19 23:54:10 +00001969unconditional form of the '<tt>br</tt>' instruction takes a single
1970'<tt>label</tt>' value as a target.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001971<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001972<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00001973argument is evaluated. If the value is <tt>true</tt>, control flows
1974to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1975control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001976<h5>Example:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001977<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001978 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman76307852003-11-08 01:05:38 +00001979</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001980<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001981<div class="doc_subsubsection">
1982 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1983</div>
1984
Misha Brukman76307852003-11-08 01:05:38 +00001985<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001986<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001987
1988<pre>
1989 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1990</pre>
1991
Chris Lattner2f7c9632001-06-06 20:29:01 +00001992<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001993
1994<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1995several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman76307852003-11-08 01:05:38 +00001996instruction, allowing a branch to occur to one of many possible
1997destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001998
1999
Chris Lattner2f7c9632001-06-06 20:29:01 +00002000<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002001
2002<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2003comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2004an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2005table is not allowed to contain duplicate constant entries.</p>
2006
Chris Lattner2f7c9632001-06-06 20:29:01 +00002007<h5>Semantics:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002008
Chris Lattner48b383b02003-11-25 01:02:51 +00002009<p>The <tt>switch</tt> instruction specifies a table of values and
2010destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswellbcbb18c2004-06-25 16:05:06 +00002011table is searched for the given value. If the value is found, control flow is
2012transfered to the corresponding destination; otherwise, control flow is
2013transfered to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002014
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002015<h5>Implementation:</h5>
2016
2017<p>Depending on properties of the target machine and the particular
2018<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswellbcbb18c2004-06-25 16:05:06 +00002019ways. For example, it could be generated as a series of chained conditional
2020branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002021
2022<h5>Example:</h5>
2023
2024<pre>
2025 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002026 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002027 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002028
2029 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002030 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002031
2032 <i>; Implement a jump table:</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002033 switch i32 %val, label %otherwise [ i32 0, label %onzero
2034 i32 1, label %onone
2035 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002036</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002037</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002038
Chris Lattner2f7c9632001-06-06 20:29:01 +00002039<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002040<div class="doc_subsubsection">
2041 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2042</div>
2043
Misha Brukman76307852003-11-08 01:05:38 +00002044<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002045
Chris Lattner2f7c9632001-06-06 20:29:01 +00002046<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002047
2048<pre>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002049 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#pa\
2050ramattrs">RetAttrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner6b7a0082006-05-14 18:23:06 +00002051 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002052</pre>
2053
Chris Lattnera8292f32002-05-06 22:08:29 +00002054<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002055
2056<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2057function, with the possibility of control flow transfer to either the
John Criswell02fdc6f2005-05-12 16:52:32 +00002058'<tt>normal</tt>' label or the
2059'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattner0132aff2005-05-06 22:57:40 +00002060"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2061"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswell02fdc6f2005-05-12 16:52:32 +00002062href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohmancc3132e2008-10-04 19:00:07 +00002063continued at the dynamically nearest "exception" label.
Chris Lattner0132aff2005-05-06 22:57:40 +00002064
Chris Lattner2f7c9632001-06-06 20:29:01 +00002065<h5>Arguments:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002066
Misha Brukman76307852003-11-08 01:05:38 +00002067<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002068
Chris Lattner2f7c9632001-06-06 20:29:01 +00002069<ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002070 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00002071 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00002072 convention</a> the call should use. If none is specified, the call defaults
2073 to using C calling conventions.
2074 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002075
2076 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2077 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2078 and '<tt>inreg</tt>' attributes are valid here.</li>
2079
Chris Lattner0132aff2005-05-06 22:57:40 +00002080 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2081 function value being invoked. In most cases, this is a direct function
2082 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2083 an arbitrary pointer to function value.
2084 </li>
2085
2086 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2087 function to be invoked. </li>
2088
2089 <li>'<tt>function args</tt>': argument list whose types match the function
2090 signature argument types. If the function signature indicates the function
2091 accepts a variable number of arguments, the extra arguments can be
2092 specified. </li>
2093
2094 <li>'<tt>normal label</tt>': the label reached when the called function
2095 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2096
2097 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2098 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2099
Devang Patel7e9b05e2008-10-06 18:50:38 +00002100 <li>The optional <a href="fnattrs">function attributes</a> list. Only
2101 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2102 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002103</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002104
Chris Lattner2f7c9632001-06-06 20:29:01 +00002105<h5>Semantics:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002106
Misha Brukman76307852003-11-08 01:05:38 +00002107<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattner0132aff2005-05-06 22:57:40 +00002108href="#i_call">call</a></tt>' instruction in most regards. The primary
2109difference is that it establishes an association with a label, which is used by
2110the runtime library to unwind the stack.</p>
2111
2112<p>This instruction is used in languages with destructors to ensure that proper
2113cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2114exception. Additionally, this is important for implementation of
2115'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2116
Chris Lattner2f7c9632001-06-06 20:29:01 +00002117<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002118<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002119 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002120 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002121 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002122 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002123</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002124</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002125
2126
Chris Lattner5ed60612003-09-03 00:41:47 +00002127<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002128
Chris Lattner48b383b02003-11-25 01:02:51 +00002129<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2130Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002131
Misha Brukman76307852003-11-08 01:05:38 +00002132<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002133
Chris Lattner5ed60612003-09-03 00:41:47 +00002134<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002135<pre>
2136 unwind
2137</pre>
2138
Chris Lattner5ed60612003-09-03 00:41:47 +00002139<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002140
2141<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2142at the first callee in the dynamic call stack which used an <a
2143href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2144primarily used to implement exception handling.</p>
2145
Chris Lattner5ed60612003-09-03 00:41:47 +00002146<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002147
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002148<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002149immediately halt. The dynamic call stack is then searched for the first <a
2150href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2151execution continues at the "exceptional" destination block specified by the
2152<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2153dynamic call chain, undefined behavior results.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002154</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002155
2156<!-- _______________________________________________________________________ -->
2157
2158<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2159Instruction</a> </div>
2160
2161<div class="doc_text">
2162
2163<h5>Syntax:</h5>
2164<pre>
2165 unreachable
2166</pre>
2167
2168<h5>Overview:</h5>
2169
2170<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2171instruction is used to inform the optimizer that a particular portion of the
2172code is not reachable. This can be used to indicate that the code after a
2173no-return function cannot be reached, and other facts.</p>
2174
2175<h5>Semantics:</h5>
2176
2177<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2178</div>
2179
2180
2181
Chris Lattner2f7c9632001-06-06 20:29:01 +00002182<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002183<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002184<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +00002185<p>Binary operators are used to do most of the computation in a
Chris Lattner81f92972008-04-01 18:47:32 +00002186program. They require two operands of the same type, execute an operation on them, and
John Criswelldfe6a862004-12-10 15:51:16 +00002187produce a single value. The operands might represent
Reid Spencer404a3252007-02-15 03:07:05 +00002188multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner81f92972008-04-01 18:47:32 +00002189The result value has the same type as its operands.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002190<p>There are several different binary operators:</p>
Misha Brukman76307852003-11-08 01:05:38 +00002191</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002192<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002193<div class="doc_subsubsection">
2194 <a name="i_add">'<tt>add</tt>' Instruction</a>
2195</div>
2196
Misha Brukman76307852003-11-08 01:05:38 +00002197<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002198
Chris Lattner2f7c9632001-06-06 20:29:01 +00002199<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002200
2201<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002202 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002203</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002204
Chris Lattner2f7c9632001-06-06 20:29:01 +00002205<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002206
Misha Brukman76307852003-11-08 01:05:38 +00002207<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002208
Chris Lattner2f7c9632001-06-06 20:29:01 +00002209<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002210
2211<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2212 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2213 <a href="#t_vector">vector</a> values. Both arguments must have identical
2214 types.</p>
2215
Chris Lattner2f7c9632001-06-06 20:29:01 +00002216<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002217
Misha Brukman76307852003-11-08 01:05:38 +00002218<p>The value produced is the integer or floating point sum of the two
2219operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002220
Chris Lattner2f2427e2008-01-28 00:36:27 +00002221<p>If an integer sum has unsigned overflow, the result returned is the
2222mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2223the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002224
Chris Lattner2f2427e2008-01-28 00:36:27 +00002225<p>Because LLVM integers use a two's complement representation, this
2226instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002227
Chris Lattner2f7c9632001-06-06 20:29:01 +00002228<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002229
2230<pre>
2231 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002232</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002233</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002234<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002235<div class="doc_subsubsection">
2236 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2237</div>
2238
Misha Brukman76307852003-11-08 01:05:38 +00002239<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002240
Chris Lattner2f7c9632001-06-06 20:29:01 +00002241<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002242
2243<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002244 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002245</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002246
Chris Lattner2f7c9632001-06-06 20:29:01 +00002247<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002248
Misha Brukman76307852003-11-08 01:05:38 +00002249<p>The '<tt>sub</tt>' instruction returns the difference of its two
2250operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002251
2252<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2253'<tt>neg</tt>' instruction present in most other intermediate
2254representations.</p>
2255
Chris Lattner2f7c9632001-06-06 20:29:01 +00002256<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002257
2258<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2259 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2260 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2261 types.</p>
2262
Chris Lattner2f7c9632001-06-06 20:29:01 +00002263<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002264
Chris Lattner48b383b02003-11-25 01:02:51 +00002265<p>The value produced is the integer or floating point difference of
2266the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002267
Chris Lattner2f2427e2008-01-28 00:36:27 +00002268<p>If an integer difference has unsigned overflow, the result returned is the
2269mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2270the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002271
Chris Lattner2f2427e2008-01-28 00:36:27 +00002272<p>Because LLVM integers use a two's complement representation, this
2273instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002274
Chris Lattner2f7c9632001-06-06 20:29:01 +00002275<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002276<pre>
2277 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002278 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002279</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002280</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002281
Chris Lattner2f7c9632001-06-06 20:29:01 +00002282<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002283<div class="doc_subsubsection">
2284 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2285</div>
2286
Misha Brukman76307852003-11-08 01:05:38 +00002287<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002288
Chris Lattner2f7c9632001-06-06 20:29:01 +00002289<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002290<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002291</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002292<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002293<p>The '<tt>mul</tt>' instruction returns the product of its two
2294operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002295
Chris Lattner2f7c9632001-06-06 20:29:01 +00002296<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002297
2298<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2299href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2300or <a href="#t_vector">vector</a> values. Both arguments must have identical
2301types.</p>
2302
Chris Lattner2f7c9632001-06-06 20:29:01 +00002303<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002304
Chris Lattner48b383b02003-11-25 01:02:51 +00002305<p>The value produced is the integer or floating point product of the
Misha Brukman76307852003-11-08 01:05:38 +00002306two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002307
Chris Lattner2f2427e2008-01-28 00:36:27 +00002308<p>If the result of an integer multiplication has unsigned overflow,
2309the result returned is the mathematical result modulo
23102<sup>n</sup>, where n is the bit width of the result.</p>
2311<p>Because LLVM integers use a two's complement representation, and the
2312result is the same width as the operands, this instruction returns the
2313correct result for both signed and unsigned integers. If a full product
2314(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2315should be sign-extended or zero-extended as appropriate to the
2316width of the full product.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002317<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002318<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002319</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002320</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002321
Chris Lattner2f7c9632001-06-06 20:29:01 +00002322<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002323<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2324</a></div>
2325<div class="doc_text">
2326<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002327<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002328</pre>
2329<h5>Overview:</h5>
2330<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2331operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002332
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002333<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002334
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002335<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002336<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2337values. Both arguments must have identical types.</p>
2338
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002339<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002340
Chris Lattner2f2427e2008-01-28 00:36:27 +00002341<p>The value produced is the unsigned integer quotient of the two operands.</p>
2342<p>Note that unsigned integer division and signed integer division are distinct
2343operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2344<p>Division by zero leads to undefined behavior.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002345<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002346<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002347</pre>
2348</div>
2349<!-- _______________________________________________________________________ -->
2350<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2351</a> </div>
2352<div class="doc_text">
2353<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002354<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002355 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002356</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002357
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002358<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002359
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002360<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2361operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002362
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002363<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002364
2365<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2366<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2367values. Both arguments must have identical types.</p>
2368
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002369<h5>Semantics:</h5>
Chris Lattner1429e6f2008-04-01 18:45:27 +00002370<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002371<p>Note that signed integer division and unsigned integer division are distinct
2372operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2373<p>Division by zero leads to undefined behavior. Overflow also leads to
2374undefined behavior; this is a rare case, but can occur, for example,
2375by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002376<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002377<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002378</pre>
2379</div>
2380<!-- _______________________________________________________________________ -->
2381<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002382Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002383<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002384<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002385<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002386 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002387</pre>
2388<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002389
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002390<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner48b383b02003-11-25 01:02:51 +00002391operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002392
Chris Lattner48b383b02003-11-25 01:02:51 +00002393<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002394
Jeff Cohen5819f182007-04-22 01:17:39 +00002395<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002396<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2397of floating point values. Both arguments must have identical types.</p>
2398
Chris Lattner48b383b02003-11-25 01:02:51 +00002399<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002400
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002401<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002402
Chris Lattner48b383b02003-11-25 01:02:51 +00002403<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002404
2405<pre>
2406 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002407</pre>
2408</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002409
Chris Lattner48b383b02003-11-25 01:02:51 +00002410<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00002411<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2412</div>
2413<div class="doc_text">
2414<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002415<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002416</pre>
2417<h5>Overview:</h5>
2418<p>The '<tt>urem</tt>' instruction returns the remainder from the
2419unsigned division of its two arguments.</p>
2420<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002421<p>The two arguments to the '<tt>urem</tt>' instruction must be
2422<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2423values. Both arguments must have identical types.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002424<h5>Semantics:</h5>
2425<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattner1429e6f2008-04-01 18:45:27 +00002426This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002427<p>Note that unsigned integer remainder and signed integer remainder are
2428distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2429<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002430<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002431<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002432</pre>
2433
2434</div>
2435<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002436<div class="doc_subsubsection">
2437 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2438</div>
2439
Chris Lattner48b383b02003-11-25 01:02:51 +00002440<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002441
Chris Lattner48b383b02003-11-25 01:02:51 +00002442<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002443
2444<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002445 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002446</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002447
Chris Lattner48b383b02003-11-25 01:02:51 +00002448<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002449
Reid Spencer7eb55b32006-11-02 01:53:59 +00002450<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman08143e32007-11-05 23:35:22 +00002451signed division of its two operands. This instruction can also take
2452<a href="#t_vector">vector</a> versions of the values in which case
2453the elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00002454
Chris Lattner48b383b02003-11-25 01:02:51 +00002455<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002456
Reid Spencer7eb55b32006-11-02 01:53:59 +00002457<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002458<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2459values. Both arguments must have identical types.</p>
2460
Chris Lattner48b383b02003-11-25 01:02:51 +00002461<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002462
Reid Spencer7eb55b32006-11-02 01:53:59 +00002463<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greif0f75ad02008-08-07 21:46:00 +00002464has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2465operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencer806ad6a2007-03-24 22:23:39 +00002466a value. For more information about the difference, see <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002467 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencer806ad6a2007-03-24 22:23:39 +00002468Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencerdb3b93b2007-03-24 22:40:44 +00002469please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencer806ad6a2007-03-24 22:23:39 +00002470Wikipedia: modulo operation</a>.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002471<p>Note that signed integer remainder and unsigned integer remainder are
2472distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2473<p>Taking the remainder of a division by zero leads to undefined behavior.
2474Overflow also leads to undefined behavior; this is a rare case, but can occur,
2475for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2476(The remainder doesn't actually overflow, but this rule lets srem be
2477implemented using instructions that return both the result of the division
2478and the remainder.)</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002479<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002480<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002481</pre>
2482
2483</div>
2484<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002485<div class="doc_subsubsection">
2486 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2487
Reid Spencer7eb55b32006-11-02 01:53:59 +00002488<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002489
Reid Spencer7eb55b32006-11-02 01:53:59 +00002490<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002491<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002492</pre>
2493<h5>Overview:</h5>
2494<p>The '<tt>frem</tt>' instruction returns the remainder from the
2495division of its two operands.</p>
2496<h5>Arguments:</h5>
2497<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002498<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2499of floating point values. Both arguments must have identical types.</p>
2500
Reid Spencer7eb55b32006-11-02 01:53:59 +00002501<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002502
Chris Lattner1429e6f2008-04-01 18:45:27 +00002503<p>This instruction returns the <i>remainder</i> of a division.
2504The remainder has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002505
Reid Spencer7eb55b32006-11-02 01:53:59 +00002506<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002507
2508<pre>
2509 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002510</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002511</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00002512
Reid Spencer2ab01932007-02-02 13:57:07 +00002513<!-- ======================================================================= -->
2514<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2515Operations</a> </div>
2516<div class="doc_text">
2517<p>Bitwise binary operators are used to do various forms of
2518bit-twiddling in a program. They are generally very efficient
2519instructions and can commonly be strength reduced from other
Chris Lattner1429e6f2008-04-01 18:45:27 +00002520instructions. They require two operands of the same type, execute an operation on them,
2521and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer2ab01932007-02-02 13:57:07 +00002522</div>
2523
Reid Spencer04e259b2007-01-31 21:39:12 +00002524<!-- _______________________________________________________________________ -->
2525<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2526Instruction</a> </div>
2527<div class="doc_text">
2528<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002529<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002530</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002531
Reid Spencer04e259b2007-01-31 21:39:12 +00002532<h5>Overview:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002533
Reid Spencer04e259b2007-01-31 21:39:12 +00002534<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2535the left a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002536
Reid Spencer04e259b2007-01-31 21:39:12 +00002537<h5>Arguments:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002538
Reid Spencer04e259b2007-01-31 21:39:12 +00002539<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002540 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002541type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002542
Reid Spencer04e259b2007-01-31 21:39:12 +00002543<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002544
Gabor Greif0f75ad02008-08-07 21:46:00 +00002545<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2546where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2547equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002548
Reid Spencer04e259b2007-01-31 21:39:12 +00002549<h5>Example:</h5><pre>
2550 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2551 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2552 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002553 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002554</pre>
2555</div>
2556<!-- _______________________________________________________________________ -->
2557<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2558Instruction</a> </div>
2559<div class="doc_text">
2560<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002561<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002562</pre>
2563
2564<h5>Overview:</h5>
2565<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002566operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002567
2568<h5>Arguments:</h5>
2569<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002570<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002571type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002572
2573<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002574
Reid Spencer04e259b2007-01-31 21:39:12 +00002575<p>This instruction always performs a logical shift right operation. The most
2576significant bits of the result will be filled with zero bits after the
Gabor Greif0f75ad02008-08-07 21:46:00 +00002577shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2578the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002579
2580<h5>Example:</h5>
2581<pre>
2582 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2583 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2584 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2585 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002586 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002587</pre>
2588</div>
2589
Reid Spencer2ab01932007-02-02 13:57:07 +00002590<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00002591<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2592Instruction</a> </div>
2593<div class="doc_text">
2594
2595<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002596<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002597</pre>
2598
2599<h5>Overview:</h5>
2600<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002601operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002602
2603<h5>Arguments:</h5>
2604<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002605<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002606type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002607
2608<h5>Semantics:</h5>
2609<p>This instruction always performs an arithmetic shift right operation,
2610The most significant bits of the result will be filled with the sign bit
Gabor Greif0f75ad02008-08-07 21:46:00 +00002611of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2612larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattnerf0e50112007-10-03 21:01:14 +00002613</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002614
2615<h5>Example:</h5>
2616<pre>
2617 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2618 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2619 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2620 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002621 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002622</pre>
2623</div>
2624
Chris Lattner2f7c9632001-06-06 20:29:01 +00002625<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002626<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2627Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002628
Misha Brukman76307852003-11-08 01:05:38 +00002629<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002630
Chris Lattner2f7c9632001-06-06 20:29:01 +00002631<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002632
2633<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002634 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002635</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002636
Chris Lattner2f7c9632001-06-06 20:29:01 +00002637<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002638
Chris Lattner48b383b02003-11-25 01:02:51 +00002639<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2640its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002641
Chris Lattner2f7c9632001-06-06 20:29:01 +00002642<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002643
2644<p>The two arguments to the '<tt>and</tt>' instruction must be
2645<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2646values. Both arguments must have identical types.</p>
2647
Chris Lattner2f7c9632001-06-06 20:29:01 +00002648<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002649<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002650<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002651<div>
Misha Brukman76307852003-11-08 01:05:38 +00002652<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00002653 <tbody>
2654 <tr>
2655 <td>In0</td>
2656 <td>In1</td>
2657 <td>Out</td>
2658 </tr>
2659 <tr>
2660 <td>0</td>
2661 <td>0</td>
2662 <td>0</td>
2663 </tr>
2664 <tr>
2665 <td>0</td>
2666 <td>1</td>
2667 <td>0</td>
2668 </tr>
2669 <tr>
2670 <td>1</td>
2671 <td>0</td>
2672 <td>0</td>
2673 </tr>
2674 <tr>
2675 <td>1</td>
2676 <td>1</td>
2677 <td>1</td>
2678 </tr>
2679 </tbody>
2680</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002681</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002682<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002683<pre>
2684 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002685 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2686 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002687</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002688</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002689<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002690<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002691<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002692<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002693<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002694</pre>
Chris Lattner48b383b02003-11-25 01:02:51 +00002695<h5>Overview:</h5>
2696<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2697or of its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002698<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002699
2700<p>The two arguments to the '<tt>or</tt>' instruction must be
2701<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2702values. Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002703<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002704<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002705<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002706<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002707<table border="1" cellspacing="0" cellpadding="4">
2708 <tbody>
2709 <tr>
2710 <td>In0</td>
2711 <td>In1</td>
2712 <td>Out</td>
2713 </tr>
2714 <tr>
2715 <td>0</td>
2716 <td>0</td>
2717 <td>0</td>
2718 </tr>
2719 <tr>
2720 <td>0</td>
2721 <td>1</td>
2722 <td>1</td>
2723 </tr>
2724 <tr>
2725 <td>1</td>
2726 <td>0</td>
2727 <td>1</td>
2728 </tr>
2729 <tr>
2730 <td>1</td>
2731 <td>1</td>
2732 <td>1</td>
2733 </tr>
2734 </tbody>
2735</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002736</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002737<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002738<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2739 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2740 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002741</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002742</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002743<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002744<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2745Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002746<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002747<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002748<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002749</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002750<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002751<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2752or of its two operands. The <tt>xor</tt> is used to implement the
2753"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002754<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002755<p>The two arguments to the '<tt>xor</tt>' instruction must be
2756<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2757values. Both arguments must have identical types.</p>
2758
Chris Lattner2f7c9632001-06-06 20:29:01 +00002759<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002760
Misha Brukman76307852003-11-08 01:05:38 +00002761<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002762<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002763<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002764<table border="1" cellspacing="0" cellpadding="4">
2765 <tbody>
2766 <tr>
2767 <td>In0</td>
2768 <td>In1</td>
2769 <td>Out</td>
2770 </tr>
2771 <tr>
2772 <td>0</td>
2773 <td>0</td>
2774 <td>0</td>
2775 </tr>
2776 <tr>
2777 <td>0</td>
2778 <td>1</td>
2779 <td>1</td>
2780 </tr>
2781 <tr>
2782 <td>1</td>
2783 <td>0</td>
2784 <td>1</td>
2785 </tr>
2786 <tr>
2787 <td>1</td>
2788 <td>1</td>
2789 <td>0</td>
2790 </tr>
2791 </tbody>
2792</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002793</div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002794<p> </p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002795<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002796<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2797 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2798 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2799 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002800</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002801</div>
Chris Lattner54611b42005-11-06 08:02:57 +00002802
Chris Lattner2f7c9632001-06-06 20:29:01 +00002803<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00002804<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00002805 <a name="vectorops">Vector Operations</a>
2806</div>
2807
2808<div class="doc_text">
2809
2810<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen5819f182007-04-22 01:17:39 +00002811target-independent manner. These instructions cover the element-access and
Chris Lattnerce83bff2006-04-08 23:07:04 +00002812vector-specific operations needed to process vectors effectively. While LLVM
2813does directly support these vector operations, many sophisticated algorithms
2814will want to use target-specific intrinsics to take full advantage of a specific
2815target.</p>
2816
2817</div>
2818
2819<!-- _______________________________________________________________________ -->
2820<div class="doc_subsubsection">
2821 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2822</div>
2823
2824<div class="doc_text">
2825
2826<h5>Syntax:</h5>
2827
2828<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002829 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002830</pre>
2831
2832<h5>Overview:</h5>
2833
2834<p>
2835The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer404a3252007-02-15 03:07:05 +00002836element from a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002837</p>
2838
2839
2840<h5>Arguments:</h5>
2841
2842<p>
2843The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00002844value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattnerce83bff2006-04-08 23:07:04 +00002845an index indicating the position from which to extract the element.
2846The index may be a variable.</p>
2847
2848<h5>Semantics:</h5>
2849
2850<p>
2851The result is a scalar of the same type as the element type of
2852<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2853<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2854results are undefined.
2855</p>
2856
2857<h5>Example:</h5>
2858
2859<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002860 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002861</pre>
2862</div>
2863
2864
2865<!-- _______________________________________________________________________ -->
2866<div class="doc_subsubsection">
2867 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2868</div>
2869
2870<div class="doc_text">
2871
2872<h5>Syntax:</h5>
2873
2874<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00002875 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002876</pre>
2877
2878<h5>Overview:</h5>
2879
2880<p>
2881The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer404a3252007-02-15 03:07:05 +00002882element into a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002883</p>
2884
2885
2886<h5>Arguments:</h5>
2887
2888<p>
2889The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00002890value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattnerce83bff2006-04-08 23:07:04 +00002891scalar value whose type must equal the element type of the first
2892operand. The third operand is an index indicating the position at
2893which to insert the value. The index may be a variable.</p>
2894
2895<h5>Semantics:</h5>
2896
2897<p>
Reid Spencer404a3252007-02-15 03:07:05 +00002898The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattnerce83bff2006-04-08 23:07:04 +00002899element values are those of <tt>val</tt> except at position
2900<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2901exceeds the length of <tt>val</tt>, the results are undefined.
2902</p>
2903
2904<h5>Example:</h5>
2905
2906<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002907 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002908</pre>
2909</div>
2910
2911<!-- _______________________________________________________________________ -->
2912<div class="doc_subsubsection">
2913 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2914</div>
2915
2916<div class="doc_text">
2917
2918<h5>Syntax:</h5>
2919
2920<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002921 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002922</pre>
2923
2924<h5>Overview:</h5>
2925
2926<p>
2927The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2928from two input vectors, returning a vector of the same type.
2929</p>
2930
2931<h5>Arguments:</h5>
2932
2933<p>
2934The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2935with types that match each other and types that match the result of the
2936instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002937of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002938</p>
2939
2940<p>
2941The shuffle mask operand is required to be a constant vector with either
2942constant integer or undef values.
2943</p>
2944
2945<h5>Semantics:</h5>
2946
2947<p>
2948The elements of the two input vectors are numbered from left to right across
2949both of the vectors. The shuffle mask operand specifies, for each element of
2950the result vector, which element of the two input registers the result element
2951gets. The element selector may be undef (meaning "don't care") and the second
2952operand may be undef if performing a shuffle from only one vector.
2953</p>
2954
2955<h5>Example:</h5>
2956
2957<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002958 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00002959 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002960 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2961 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002962</pre>
2963</div>
2964
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00002965
Chris Lattnerce83bff2006-04-08 23:07:04 +00002966<!-- ======================================================================= -->
2967<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00002968 <a name="aggregateops">Aggregate Operations</a>
2969</div>
2970
2971<div class="doc_text">
2972
2973<p>LLVM supports several instructions for working with aggregate values.
2974</p>
2975
2976</div>
2977
2978<!-- _______________________________________________________________________ -->
2979<div class="doc_subsubsection">
2980 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2981</div>
2982
2983<div class="doc_text">
2984
2985<h5>Syntax:</h5>
2986
2987<pre>
2988 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2989</pre>
2990
2991<h5>Overview:</h5>
2992
2993<p>
Dan Gohman35a835c2008-05-13 18:16:06 +00002994The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2995or array element from an aggregate value.
Dan Gohmanb9d66602008-05-12 23:51:09 +00002996</p>
2997
2998
2999<h5>Arguments:</h5>
3000
3001<p>
3002The first operand of an '<tt>extractvalue</tt>' instruction is a
3003value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman35a835c2008-05-13 18:16:06 +00003004type. The operands are constant indices to specify which value to extract
Dan Gohman1ecaf452008-05-31 00:58:22 +00003005in a similar manner as indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003006'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3007</p>
3008
3009<h5>Semantics:</h5>
3010
3011<p>
3012The result is the value at the position in the aggregate specified by
3013the index operands.
3014</p>
3015
3016<h5>Example:</h5>
3017
3018<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003019 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003020</pre>
3021</div>
3022
3023
3024<!-- _______________________________________________________________________ -->
3025<div class="doc_subsubsection">
3026 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3027</div>
3028
3029<div class="doc_text">
3030
3031<h5>Syntax:</h5>
3032
3033<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003034 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003035</pre>
3036
3037<h5>Overview:</h5>
3038
3039<p>
3040The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman35a835c2008-05-13 18:16:06 +00003041into a struct field or array element in an aggregate.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003042</p>
3043
3044
3045<h5>Arguments:</h5>
3046
3047<p>
3048The first operand of an '<tt>insertvalue</tt>' instruction is a
3049value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3050The second operand is a first-class value to insert.
Dan Gohman34d1c0d2008-05-23 21:53:15 +00003051The following operands are constant indices
Dan Gohman1ecaf452008-05-31 00:58:22 +00003052indicating the position at which to insert the value in a similar manner as
Dan Gohman35a835c2008-05-13 18:16:06 +00003053indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003054'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3055The value to insert must have the same type as the value identified
Dan Gohman35a835c2008-05-13 18:16:06 +00003056by the indices.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003057
3058<h5>Semantics:</h5>
3059
3060<p>
3061The result is an aggregate of the same type as <tt>val</tt>. Its
3062value is that of <tt>val</tt> except that the value at the position
Dan Gohman35a835c2008-05-13 18:16:06 +00003063specified by the indices is that of <tt>elt</tt>.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003064</p>
3065
3066<h5>Example:</h5>
3067
3068<pre>
Dan Gohman88ce1a52008-06-23 15:26:37 +00003069 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003070</pre>
3071</div>
3072
3073
3074<!-- ======================================================================= -->
3075<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003076 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003077</div>
3078
Misha Brukman76307852003-11-08 01:05:38 +00003079<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003080
Chris Lattner48b383b02003-11-25 01:02:51 +00003081<p>A key design point of an SSA-based representation is how it
3082represents memory. In LLVM, no memory locations are in SSA form, which
3083makes things very simple. This section describes how to read, write,
John Criswelldfe6a862004-12-10 15:51:16 +00003084allocate, and free memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003085
Misha Brukman76307852003-11-08 01:05:38 +00003086</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003087
Chris Lattner2f7c9632001-06-06 20:29:01 +00003088<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003089<div class="doc_subsubsection">
3090 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3091</div>
3092
Misha Brukman76307852003-11-08 01:05:38 +00003093<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003094
Chris Lattner2f7c9632001-06-06 20:29:01 +00003095<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003096
3097<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003098 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003099</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003100
Chris Lattner2f7c9632001-06-06 20:29:01 +00003101<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003102
Chris Lattner48b383b02003-11-25 01:02:51 +00003103<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003104heap and returns a pointer to it. The object is always allocated in the generic
3105address space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003106
Chris Lattner2f7c9632001-06-06 20:29:01 +00003107<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003108
3109<p>The '<tt>malloc</tt>' instruction allocates
3110<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswella92e5862004-02-24 16:13:56 +00003111bytes of memory from the operating system and returns a pointer of the
Chris Lattner54611b42005-11-06 08:02:57 +00003112appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003113number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003114If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greifdd1fc982008-02-09 22:24:34 +00003115be aligned to at least that boundary. If not specified, or if zero, the target can
3116choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003117
Misha Brukman76307852003-11-08 01:05:38 +00003118<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003119
Chris Lattner2f7c9632001-06-06 20:29:01 +00003120<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003121
Chris Lattner48b383b02003-11-25 01:02:51 +00003122<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003123a pointer is returned. The result of a zero byte allocattion is undefined. The
3124result is null if there is insufficient memory available.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003125
Chris Lattner54611b42005-11-06 08:02:57 +00003126<h5>Example:</h5>
3127
3128<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003129 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00003130
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003131 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3132 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3133 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3134 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3135 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003136</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003137</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003138
Chris Lattner2f7c9632001-06-06 20:29:01 +00003139<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003140<div class="doc_subsubsection">
3141 <a name="i_free">'<tt>free</tt>' Instruction</a>
3142</div>
3143
Misha Brukman76307852003-11-08 01:05:38 +00003144<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003145
Chris Lattner2f7c9632001-06-06 20:29:01 +00003146<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003147
3148<pre>
3149 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003150</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003151
Chris Lattner2f7c9632001-06-06 20:29:01 +00003152<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003153
Chris Lattner48b383b02003-11-25 01:02:51 +00003154<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswell4a3327e2005-05-13 22:25:59 +00003155memory heap to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003156
Chris Lattner2f7c9632001-06-06 20:29:01 +00003157<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003158
Chris Lattner48b383b02003-11-25 01:02:51 +00003159<p>'<tt>value</tt>' shall be a pointer value that points to a value
3160that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3161instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003162
Chris Lattner2f7c9632001-06-06 20:29:01 +00003163<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003164
John Criswelldfe6a862004-12-10 15:51:16 +00003165<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner0f103e12008-04-19 22:41:32 +00003166after this instruction executes. If the pointer is null, the operation
3167is a noop.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003168
Chris Lattner2f7c9632001-06-06 20:29:01 +00003169<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003170
3171<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003172 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3173 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00003174</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003175</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003176
Chris Lattner2f7c9632001-06-06 20:29:01 +00003177<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003178<div class="doc_subsubsection">
3179 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3180</div>
3181
Misha Brukman76307852003-11-08 01:05:38 +00003182<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003183
Chris Lattner2f7c9632001-06-06 20:29:01 +00003184<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003185
3186<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003187 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003188</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003189
Chris Lattner2f7c9632001-06-06 20:29:01 +00003190<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003191
Jeff Cohen5819f182007-04-22 01:17:39 +00003192<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3193currently executing function, to be automatically released when this function
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003194returns to its caller. The object is always allocated in the generic address
3195space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003196
Chris Lattner2f7c9632001-06-06 20:29:01 +00003197<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003198
John Criswelldfe6a862004-12-10 15:51:16 +00003199<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00003200bytes of memory on the runtime stack, returning a pointer of the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003201appropriate type to the program. If "NumElements" is specified, it is the
3202number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003203If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greifdd1fc982008-02-09 22:24:34 +00003204to be aligned to at least that boundary. If not specified, or if zero, the target
3205can choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003206
Misha Brukman76307852003-11-08 01:05:38 +00003207<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003208
Chris Lattner2f7c9632001-06-06 20:29:01 +00003209<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003210
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003211<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3212there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner48b383b02003-11-25 01:02:51 +00003213memory is automatically released when the function returns. The '<tt>alloca</tt>'
3214instruction is commonly used to represent automatic variables that must
3215have an address available. When the function returns (either with the <tt><a
John Criswellc932bef2005-05-12 16:55:34 +00003216 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003217instructions), the memory is reclaimed. Allocating zero bytes
3218is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003219
Chris Lattner2f7c9632001-06-06 20:29:01 +00003220<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003221
3222<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003223 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003224 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3225 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003226 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003227</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003228</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003229
Chris Lattner2f7c9632001-06-06 20:29:01 +00003230<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003231<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3232Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003233<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003234<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003235<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003236<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003237<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003238<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003239<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell4c0cf7f2005-10-24 16:17:18 +00003240address from which to load. The pointer must point to a <a
Chris Lattner10ee9652004-06-03 22:57:15 +00003241 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell4c0cf7f2005-10-24 16:17:18 +00003242marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner48b383b02003-11-25 01:02:51 +00003243the number or order of execution of this <tt>load</tt> with other
3244volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3245instructions. </p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003246<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003247The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003248(that is, the alignment of the memory address). A value of 0 or an
3249omitted "align" argument means that the operation has the preferential
3250alignment for the target. It is the responsibility of the code emitter
3251to ensure that the alignment information is correct. Overestimating
3252the alignment results in an undefined behavior. Underestimating the
3253alignment may produce less efficient code. An alignment of 1 is always
3254safe.
3255</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003256<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003257<p>The location of memory pointed to is loaded.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003258<h5>Examples:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003259<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003260 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003261 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3262 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003263</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003264</div>
Chris Lattner095735d2002-05-06 03:03:22 +00003265<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003266<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3267Instruction</a> </div>
Reid Spencera89fb182006-11-09 21:18:01 +00003268<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003269<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003270<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3271 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003272</pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003273<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003274<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003275<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003276<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen5819f182007-04-22 01:17:39 +00003277to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner1f17cce2008-04-02 00:38:26 +00003278operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3279of the '<tt>&lt;value&gt;</tt>'
John Criswell4a3327e2005-05-13 22:25:59 +00003280operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner48b383b02003-11-25 01:02:51 +00003281optimizer is not allowed to modify the number or order of execution of
3282this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3283 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003284<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003285The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003286(that is, the alignment of the memory address). A value of 0 or an
3287omitted "align" argument means that the operation has the preferential
3288alignment for the target. It is the responsibility of the code emitter
3289to ensure that the alignment information is correct. Overestimating
3290the alignment results in an undefined behavior. Underestimating the
3291alignment may produce less efficient code. An alignment of 1 is always
3292safe.
3293</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003294<h5>Semantics:</h5>
3295<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3296at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003297<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003298<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00003299 store i32 3, i32* %ptr <i>; yields {void}</i>
3300 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003301</pre>
Reid Spencer443460a2006-11-09 21:15:49 +00003302</div>
3303
Chris Lattner095735d2002-05-06 03:03:22 +00003304<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00003305<div class="doc_subsubsection">
3306 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3307</div>
3308
Misha Brukman76307852003-11-08 01:05:38 +00003309<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00003310<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003311<pre>
3312 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3313</pre>
3314
Chris Lattner590645f2002-04-14 06:13:44 +00003315<h5>Overview:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003316
3317<p>
3318The '<tt>getelementptr</tt>' instruction is used to get the address of a
3319subelement of an aggregate data structure.</p>
3320
Chris Lattner590645f2002-04-14 06:13:44 +00003321<h5>Arguments:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003322
Reid Spencercee005c2006-12-04 21:29:24 +00003323<p>This instruction takes a list of integer operands that indicate what
Chris Lattner33fd7022004-04-05 01:30:49 +00003324elements of the aggregate object to index to. The actual types of the arguments
3325provided depend on the type of the first pointer argument. The
3326'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswell88190562005-05-16 16:17:45 +00003327levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003328structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner851b7712008-04-24 05:59:56 +00003329into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3330values will be sign extended to 64-bits if required.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003331
Chris Lattner48b383b02003-11-25 01:02:51 +00003332<p>For example, let's consider a C code fragment and how it gets
3333compiled to LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003334
Bill Wendling3716c5d2007-05-29 09:04:49 +00003335<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003336<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003337struct RT {
3338 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00003339 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00003340 char C;
3341};
3342struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00003343 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00003344 double Y;
3345 struct RT Z;
3346};
Chris Lattner33fd7022004-04-05 01:30:49 +00003347
Chris Lattnera446f1b2007-05-29 15:43:56 +00003348int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00003349 return &amp;s[1].Z.B[5][13];
3350}
Chris Lattner33fd7022004-04-05 01:30:49 +00003351</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003352</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003353
Misha Brukman76307852003-11-08 01:05:38 +00003354<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003355
Bill Wendling3716c5d2007-05-29 09:04:49 +00003356<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003357<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003358%RT = type { i8 , [10 x [20 x i32]], i8 }
3359%ST = type { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00003360
Bill Wendling3716c5d2007-05-29 09:04:49 +00003361define i32* %foo(%ST* %s) {
3362entry:
3363 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3364 ret i32* %reg
3365}
Chris Lattner33fd7022004-04-05 01:30:49 +00003366</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003367</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003368
Chris Lattner590645f2002-04-14 06:13:44 +00003369<h5>Semantics:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003370
3371<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswell4a3327e2005-05-13 22:25:59 +00003372on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencercee005c2006-12-04 21:29:24 +00003373and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencerc0312692006-12-03 16:53:48 +00003374<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner1f17cce2008-04-02 00:38:26 +00003375to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3376structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003377
Misha Brukman76307852003-11-08 01:05:38 +00003378<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003379type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattner33fd7022004-04-05 01:30:49 +00003380}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003381the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3382i8 }</tt>' type, another structure. The third index indexes into the second
3383element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattner33fd7022004-04-05 01:30:49 +00003384array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003385'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3386to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003387
Chris Lattner48b383b02003-11-25 01:02:51 +00003388<p>Note that it is perfectly legal to index partially through a
3389structure, returning a pointer to an inner element. Because of this,
3390the LLVM code for the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003391
3392<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003393 define i32* %foo(%ST* %s) {
3394 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00003395 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3396 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003397 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3398 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3399 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00003400 }
Chris Lattnera8292f32002-05-06 22:08:29 +00003401</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003402
3403<p>Note that it is undefined to access an array out of bounds: array and
3404pointer indexes must always be within the defined bounds of the array type.
Chris Lattner851b7712008-04-24 05:59:56 +00003405The one exception for this rule is zero length arrays. These arrays are
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003406defined to be accessible as variable length arrays, which requires access
3407beyond the zero'th element.</p>
3408
Chris Lattner6ab66722006-08-15 00:45:58 +00003409<p>The getelementptr instruction is often confusing. For some more insight
3410into how it works, see <a href="GetElementPtr.html">the getelementptr
3411FAQ</a>.</p>
3412
Chris Lattner590645f2002-04-14 06:13:44 +00003413<h5>Example:</h5>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003414
Chris Lattner33fd7022004-04-05 01:30:49 +00003415<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003416 <i>; yields [12 x i8]*:aptr</i>
3417 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattner33fd7022004-04-05 01:30:49 +00003418</pre>
Chris Lattner33fd7022004-04-05 01:30:49 +00003419</div>
Reid Spencer443460a2006-11-09 21:15:49 +00003420
Chris Lattner2f7c9632001-06-06 20:29:01 +00003421<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00003422<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00003423</div>
Misha Brukman76307852003-11-08 01:05:38 +00003424<div class="doc_text">
Reid Spencer97c5fa42006-11-08 01:18:52 +00003425<p>The instructions in this category are the conversion instructions (casting)
3426which all take a single operand and a type. They perform various bit conversions
3427on the operand.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003428</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003429
Chris Lattnera8292f32002-05-06 22:08:29 +00003430<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003431<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003432 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3433</div>
3434<div class="doc_text">
3435
3436<h5>Syntax:</h5>
3437<pre>
3438 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3439</pre>
3440
3441<h5>Overview:</h5>
3442<p>
3443The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3444</p>
3445
3446<h5>Arguments:</h5>
3447<p>
3448The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3449be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003450and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencer51b07252006-11-09 23:03:26 +00003451type. The bit size of <tt>value</tt> must be larger than the bit size of
3452<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003453
3454<h5>Semantics:</h5>
3455<p>
3456The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencer51b07252006-11-09 23:03:26 +00003457and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3458larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3459It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003460
3461<h5>Example:</h5>
3462<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003463 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003464 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3465 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003466</pre>
3467</div>
3468
3469<!-- _______________________________________________________________________ -->
3470<div class="doc_subsubsection">
3471 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3472</div>
3473<div class="doc_text">
3474
3475<h5>Syntax:</h5>
3476<pre>
3477 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3478</pre>
3479
3480<h5>Overview:</h5>
3481<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3482<tt>ty2</tt>.</p>
3483
3484
3485<h5>Arguments:</h5>
3486<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003487<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3488also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003489<tt>value</tt> must be smaller than the bit size of the destination type,
3490<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003491
3492<h5>Semantics:</h5>
3493<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003494bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003495
Reid Spencer07c9c682007-01-12 15:46:11 +00003496<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003497
3498<h5>Example:</h5>
3499<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003500 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003501 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003502</pre>
3503</div>
3504
3505<!-- _______________________________________________________________________ -->
3506<div class="doc_subsubsection">
3507 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3508</div>
3509<div class="doc_text">
3510
3511<h5>Syntax:</h5>
3512<pre>
3513 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3514</pre>
3515
3516<h5>Overview:</h5>
3517<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3518
3519<h5>Arguments:</h5>
3520<p>
3521The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003522<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3523also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003524<tt>value</tt> must be smaller than the bit size of the destination type,
3525<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003526
3527<h5>Semantics:</h5>
3528<p>
3529The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3530bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003531the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003532
Reid Spencer36a15422007-01-12 03:35:51 +00003533<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003534
3535<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003536<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003537 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003538 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003539</pre>
3540</div>
3541
3542<!-- _______________________________________________________________________ -->
3543<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00003544 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3545</div>
3546
3547<div class="doc_text">
3548
3549<h5>Syntax:</h5>
3550
3551<pre>
3552 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3553</pre>
3554
3555<h5>Overview:</h5>
3556<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3557<tt>ty2</tt>.</p>
3558
3559
3560<h5>Arguments:</h5>
3561<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3562 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3563cast it to. The size of <tt>value</tt> must be larger than the size of
3564<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3565<i>no-op cast</i>.</p>
3566
3567<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003568<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3569<a href="#t_floating">floating point</a> type to a smaller
3570<a href="#t_floating">floating point</a> type. If the value cannot fit within
3571the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00003572
3573<h5>Example:</h5>
3574<pre>
3575 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3576 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3577</pre>
3578</div>
3579
3580<!-- _______________________________________________________________________ -->
3581<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003582 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3583</div>
3584<div class="doc_text">
3585
3586<h5>Syntax:</h5>
3587<pre>
3588 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3589</pre>
3590
3591<h5>Overview:</h5>
3592<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3593floating point value.</p>
3594
3595<h5>Arguments:</h5>
3596<p>The '<tt>fpext</tt>' instruction takes a
3597<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencer51b07252006-11-09 23:03:26 +00003598and a <a href="#t_floating">floating point</a> type to cast it to. The source
3599type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003600
3601<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003602<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands16f122e2007-03-30 12:22:09 +00003603<a href="#t_floating">floating point</a> type to a larger
3604<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencer51b07252006-11-09 23:03:26 +00003605used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5b950642006-11-11 23:08:07 +00003606<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003607
3608<h5>Example:</h5>
3609<pre>
3610 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3611 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3612</pre>
3613</div>
3614
3615<!-- _______________________________________________________________________ -->
3616<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00003617 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003618</div>
3619<div class="doc_text">
3620
3621<h5>Syntax:</h5>
3622<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00003623 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003624</pre>
3625
3626<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003627<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003628unsigned integer equivalent of type <tt>ty2</tt>.
3629</p>
3630
3631<h5>Arguments:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003632<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00003633scalar or vector <a href="#t_floating">floating point</a> value, and a type
3634to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3635type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3636vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003637
3638<h5>Semantics:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003639<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003640<a href="#t_floating">floating point</a> operand into the nearest (rounding
3641towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3642the results are undefined.</p>
3643
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003644<h5>Example:</h5>
3645<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00003646 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00003647 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer753163d2007-07-31 14:40:14 +00003648 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003649</pre>
3650</div>
3651
3652<!-- _______________________________________________________________________ -->
3653<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003654 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003655</div>
3656<div class="doc_text">
3657
3658<h5>Syntax:</h5>
3659<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00003660 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003661</pre>
3662
3663<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003664<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003665<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003666</p>
3667
Chris Lattnera8292f32002-05-06 22:08:29 +00003668<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003669<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00003670scalar or vector <a href="#t_floating">floating point</a> value, and a type
3671to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3672type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3673vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003674
Chris Lattnera8292f32002-05-06 22:08:29 +00003675<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003676<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003677<a href="#t_floating">floating point</a> operand into the nearest (rounding
3678towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3679the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003680
Chris Lattner70de6632001-07-09 00:26:23 +00003681<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003682<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00003683 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00003684 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003685 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003686</pre>
3687</div>
3688
3689<!-- _______________________________________________________________________ -->
3690<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003691 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003692</div>
3693<div class="doc_text">
3694
3695<h5>Syntax:</h5>
3696<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00003697 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003698</pre>
3699
3700<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003701<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003702integer and converts that value to the <tt>ty2</tt> type.</p>
3703
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003704<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00003705<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3706scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3707to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3708type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3709floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003710
3711<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003712<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003713integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00003714the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003715
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003716<h5>Example:</h5>
3717<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003718 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003719 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003720</pre>
3721</div>
3722
3723<!-- _______________________________________________________________________ -->
3724<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003725 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003726</div>
3727<div class="doc_text">
3728
3729<h5>Syntax:</h5>
3730<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00003731 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003732</pre>
3733
3734<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003735<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003736integer and converts that value to the <tt>ty2</tt> type.</p>
3737
3738<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00003739<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3740scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3741to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3742type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3743floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003744
3745<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003746<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003747integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00003748the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003749
3750<h5>Example:</h5>
3751<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003752 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003753 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003754</pre>
3755</div>
3756
3757<!-- _______________________________________________________________________ -->
3758<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00003759 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3760</div>
3761<div class="doc_text">
3762
3763<h5>Syntax:</h5>
3764<pre>
3765 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3766</pre>
3767
3768<h5>Overview:</h5>
3769<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3770the integer type <tt>ty2</tt>.</p>
3771
3772<h5>Arguments:</h5>
3773<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands16f122e2007-03-30 12:22:09 +00003774must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencerb7344ff2006-11-11 21:00:47 +00003775<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3776
3777<h5>Semantics:</h5>
3778<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3779<tt>ty2</tt> by interpreting the pointer value as an integer and either
3780truncating or zero extending that value to the size of the integer type. If
3781<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3782<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohen222a8a42007-04-29 01:07:00 +00003783are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3784change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003785
3786<h5>Example:</h5>
3787<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003788 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3789 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003790</pre>
3791</div>
3792
3793<!-- _______________________________________________________________________ -->
3794<div class="doc_subsubsection">
3795 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3796</div>
3797<div class="doc_text">
3798
3799<h5>Syntax:</h5>
3800<pre>
3801 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3802</pre>
3803
3804<h5>Overview:</h5>
3805<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3806a pointer type, <tt>ty2</tt>.</p>
3807
3808<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00003809<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003810value to cast, and a type to cast it to, which must be a
Anton Korobeynikova0554d92007-01-12 19:20:47 +00003811<a href="#t_pointer">pointer</a> type.
Reid Spencerb7344ff2006-11-11 21:00:47 +00003812
3813<h5>Semantics:</h5>
3814<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3815<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3816the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3817size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3818the size of a pointer then a zero extension is done. If they are the same size,
3819nothing is done (<i>no-op cast</i>).</p>
3820
3821<h5>Example:</h5>
3822<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003823 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3824 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3825 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003826</pre>
3827</div>
3828
3829<!-- _______________________________________________________________________ -->
3830<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00003831 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003832</div>
3833<div class="doc_text">
3834
3835<h5>Syntax:</h5>
3836<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00003837 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003838</pre>
3839
3840<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003841
Reid Spencer5b950642006-11-11 23:08:07 +00003842<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003843<tt>ty2</tt> without changing any bits.</p>
3844
3845<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003846
Reid Spencer5b950642006-11-11 23:08:07 +00003847<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohmanc05dca92008-09-08 16:45:59 +00003848a non-aggregate first class value, and a type to cast it to, which must also be
3849a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3850<tt>value</tt>
Reid Spencere3db84c2007-01-09 20:08:58 +00003851and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003852type is a pointer, the destination type must also be a pointer. This
3853instruction supports bitwise conversion of vectors to integers and to vectors
3854of other types (as long as they have the same size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003855
3856<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00003857<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencerb7344ff2006-11-11 21:00:47 +00003858<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3859this conversion. The conversion is done as if the <tt>value</tt> had been
3860stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3861converted to other pointer types with this instruction. To convert pointers to
3862other types, use the <a href="#i_inttoptr">inttoptr</a> or
3863<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003864
3865<h5>Example:</h5>
3866<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003867 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003868 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3869 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00003870</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003871</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003872
Reid Spencer97c5fa42006-11-08 01:18:52 +00003873<!-- ======================================================================= -->
3874<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3875<div class="doc_text">
3876<p>The instructions in this category are the "miscellaneous"
3877instructions, which defy better classification.</p>
3878</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003879
3880<!-- _______________________________________________________________________ -->
3881<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3882</div>
3883<div class="doc_text">
3884<h5>Syntax:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00003885<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003886</pre>
3887<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00003888<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3889a vector of boolean values based on comparison
3890of its two integer, integer vector, or pointer operands.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003891<h5>Arguments:</h5>
3892<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00003893the condition code indicating the kind of comparison to perform. It is not
3894a value, just a keyword. The possible condition code are:
Reid Spencerc828a0e2006-11-18 21:50:54 +00003895<ol>
3896 <li><tt>eq</tt>: equal</li>
3897 <li><tt>ne</tt>: not equal </li>
3898 <li><tt>ugt</tt>: unsigned greater than</li>
3899 <li><tt>uge</tt>: unsigned greater or equal</li>
3900 <li><tt>ult</tt>: unsigned less than</li>
3901 <li><tt>ule</tt>: unsigned less or equal</li>
3902 <li><tt>sgt</tt>: signed greater than</li>
3903 <li><tt>sge</tt>: signed greater or equal</li>
3904 <li><tt>slt</tt>: signed less than</li>
3905 <li><tt>sle</tt>: signed less or equal</li>
3906</ol>
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003907<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanc579d972008-09-09 01:02:47 +00003908<a href="#t_pointer">pointer</a>
3909or integer <a href="#t_vector">vector</a> typed.
3910They must also be identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003911<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003912<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerc828a0e2006-11-18 21:50:54 +00003913the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanc579d972008-09-09 01:02:47 +00003914yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Reid Spencerc828a0e2006-11-18 21:50:54 +00003915<ol>
3916 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3917 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3918 </li>
3919 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3920 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3921 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003922 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003923 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003924 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003925 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003926 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003927 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003928 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003929 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003930 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003931 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003932 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003933 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003934 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003935 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003936 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003937</ol>
3938<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohen222a8a42007-04-29 01:07:00 +00003939values are compared as if they were integers.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00003940<p>If the operands are integer vectors, then they are compared
3941element by element. The result is an <tt>i1</tt> vector with
3942the same number of elements as the values being compared.
3943Otherwise, the result is an <tt>i1</tt>.
3944</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003945
3946<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003947<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3948 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3949 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3950 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3951 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3952 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003953</pre>
3954</div>
3955
3956<!-- _______________________________________________________________________ -->
3957<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3958</div>
3959<div class="doc_text">
3960<h5>Syntax:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00003961<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003962</pre>
3963<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00003964<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3965or vector of boolean values based on comparison
3966of its operands.
3967<p>
3968If the operands are floating point scalars, then the result
3969type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3970</p>
3971<p>If the operands are floating point vectors, then the result type
3972is a vector of boolean with the same number of elements as the
3973operands being compared.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003974<h5>Arguments:</h5>
3975<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00003976the condition code indicating the kind of comparison to perform. It is not
3977a value, just a keyword. The possible condition code are:
Reid Spencerc828a0e2006-11-18 21:50:54 +00003978<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00003979 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003980 <li><tt>oeq</tt>: ordered and equal</li>
3981 <li><tt>ogt</tt>: ordered and greater than </li>
3982 <li><tt>oge</tt>: ordered and greater than or equal</li>
3983 <li><tt>olt</tt>: ordered and less than </li>
3984 <li><tt>ole</tt>: ordered and less than or equal</li>
3985 <li><tt>one</tt>: ordered and not equal</li>
3986 <li><tt>ord</tt>: ordered (no nans)</li>
3987 <li><tt>ueq</tt>: unordered or equal</li>
3988 <li><tt>ugt</tt>: unordered or greater than </li>
3989 <li><tt>uge</tt>: unordered or greater than or equal</li>
3990 <li><tt>ult</tt>: unordered or less than </li>
3991 <li><tt>ule</tt>: unordered or less than or equal</li>
3992 <li><tt>une</tt>: unordered or not equal</li>
3993 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003994 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003995</ol>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003996<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer02e0d1d2006-12-06 07:08:07 +00003997<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00003998<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3999either a <a href="#t_floating">floating point</a> type
4000or a <a href="#t_vector">vector</a> of floating point type.
4001They must have identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004002<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004003<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanc579d972008-09-09 01:02:47 +00004004according to the condition code given as <tt>cond</tt>.
4005If the operands are vectors, then the vectors are compared
4006element by element.
4007Each comparison performed
4008always yields an <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerc828a0e2006-11-18 21:50:54 +00004009<ol>
4010 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004011 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004012 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004013 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004014 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004015 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004016 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004017 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004018 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004019 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004020 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004021 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004022 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004023 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4024 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004025 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004026 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004027 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004028 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004029 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004030 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004031 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004032 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004033 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004034 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004035 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004036 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004037 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4038</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004039
4040<h5>Example:</h5>
4041<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004042 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4043 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4044 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004045</pre>
4046</div>
4047
Reid Spencer97c5fa42006-11-08 01:18:52 +00004048<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004049<div class="doc_subsubsection">
4050 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4051</div>
4052<div class="doc_text">
4053<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004054<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemand2195702008-05-12 19:01:56 +00004055</pre>
4056<h5>Overview:</h5>
4057<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4058element-wise comparison of its two integer vector operands.</p>
4059<h5>Arguments:</h5>
4060<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4061the condition code indicating the kind of comparison to perform. It is not
4062a value, just a keyword. The possible condition code are:
4063<ol>
4064 <li><tt>eq</tt>: equal</li>
4065 <li><tt>ne</tt>: not equal </li>
4066 <li><tt>ugt</tt>: unsigned greater than</li>
4067 <li><tt>uge</tt>: unsigned greater or equal</li>
4068 <li><tt>ult</tt>: unsigned less than</li>
4069 <li><tt>ule</tt>: unsigned less or equal</li>
4070 <li><tt>sgt</tt>: signed greater than</li>
4071 <li><tt>sge</tt>: signed greater or equal</li>
4072 <li><tt>slt</tt>: signed less than</li>
4073 <li><tt>sle</tt>: signed less or equal</li>
4074</ol>
Dan Gohmanc579d972008-09-09 01:02:47 +00004075<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemand2195702008-05-12 19:01:56 +00004076<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4077<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004078<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004079according to the condition code given as <tt>cond</tt>. The comparison yields a
4080<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4081identical type as the values being compared. The most significant bit in each
4082element is 1 if the element-wise comparison evaluates to true, and is 0
4083otherwise. All other bits of the result are undefined. The condition codes
4084are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4085instruction</a>.
4086
4087<h5>Example:</h5>
4088<pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004089 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4090 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemand2195702008-05-12 19:01:56 +00004091</pre>
4092</div>
4093
4094<!-- _______________________________________________________________________ -->
4095<div class="doc_subsubsection">
4096 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4097</div>
4098<div class="doc_text">
4099<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004100<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemand2195702008-05-12 19:01:56 +00004101<h5>Overview:</h5>
4102<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4103element-wise comparison of its two floating point vector operands. The output
4104elements have the same width as the input elements.</p>
4105<h5>Arguments:</h5>
4106<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4107the condition code indicating the kind of comparison to perform. It is not
4108a value, just a keyword. The possible condition code are:
4109<ol>
4110 <li><tt>false</tt>: no comparison, always returns false</li>
4111 <li><tt>oeq</tt>: ordered and equal</li>
4112 <li><tt>ogt</tt>: ordered and greater than </li>
4113 <li><tt>oge</tt>: ordered and greater than or equal</li>
4114 <li><tt>olt</tt>: ordered and less than </li>
4115 <li><tt>ole</tt>: ordered and less than or equal</li>
4116 <li><tt>one</tt>: ordered and not equal</li>
4117 <li><tt>ord</tt>: ordered (no nans)</li>
4118 <li><tt>ueq</tt>: unordered or equal</li>
4119 <li><tt>ugt</tt>: unordered or greater than </li>
4120 <li><tt>uge</tt>: unordered or greater than or equal</li>
4121 <li><tt>ult</tt>: unordered or less than </li>
4122 <li><tt>ule</tt>: unordered or less than or equal</li>
4123 <li><tt>une</tt>: unordered or not equal</li>
4124 <li><tt>uno</tt>: unordered (either nans)</li>
4125 <li><tt>true</tt>: no comparison, always returns true</li>
4126</ol>
4127<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4128<a href="#t_floating">floating point</a> typed. They must also be identical
4129types.</p>
4130<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004131<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004132according to the condition code given as <tt>cond</tt>. The comparison yields a
4133<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4134an identical number of elements as the values being compared, and each element
4135having identical with to the width of the floating point elements. The most
4136significant bit in each element is 1 if the element-wise comparison evaluates to
4137true, and is 0 otherwise. All other bits of the result are undefined. The
4138condition codes are evaluated identically to the
4139<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4140
4141<h5>Example:</h5>
4142<pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004143 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4144 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemand2195702008-05-12 19:01:56 +00004145</pre>
4146</div>
4147
4148<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004149<div class="doc_subsubsection">
4150 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4151</div>
4152
Reid Spencer97c5fa42006-11-08 01:18:52 +00004153<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004154
Reid Spencer97c5fa42006-11-08 01:18:52 +00004155<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004156
Reid Spencer97c5fa42006-11-08 01:18:52 +00004157<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4158<h5>Overview:</h5>
4159<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4160the SSA graph representing the function.</p>
4161<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004162
Jeff Cohen222a8a42007-04-29 01:07:00 +00004163<p>The type of the incoming values is specified with the first type
Reid Spencer97c5fa42006-11-08 01:18:52 +00004164field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4165as arguments, with one pair for each predecessor basic block of the
4166current block. Only values of <a href="#t_firstclass">first class</a>
4167type may be used as the value arguments to the PHI node. Only labels
4168may be used as the label arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004169
Reid Spencer97c5fa42006-11-08 01:18:52 +00004170<p>There must be no non-phi instructions between the start of a basic
4171block and the PHI instructions: i.e. PHI instructions must be first in
4172a basic block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004173
Reid Spencer97c5fa42006-11-08 01:18:52 +00004174<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004175
Jeff Cohen222a8a42007-04-29 01:07:00 +00004176<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4177specified by the pair corresponding to the predecessor basic block that executed
4178just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004179
Reid Spencer97c5fa42006-11-08 01:18:52 +00004180<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004181<pre>
4182Loop: ; Infinite loop that counts from 0 on up...
4183 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4184 %nextindvar = add i32 %indvar, 1
4185 br label %Loop
4186</pre>
Reid Spencer97c5fa42006-11-08 01:18:52 +00004187</div>
4188
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004189<!-- _______________________________________________________________________ -->
4190<div class="doc_subsubsection">
4191 <a name="i_select">'<tt>select</tt>' Instruction</a>
4192</div>
4193
4194<div class="doc_text">
4195
4196<h5>Syntax:</h5>
4197
4198<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004199 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4200
4201 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004202</pre>
4203
4204<h5>Overview:</h5>
4205
4206<p>
4207The '<tt>select</tt>' instruction is used to choose one value based on a
4208condition, without branching.
4209</p>
4210
4211
4212<h5>Arguments:</h5>
4213
4214<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004215The '<tt>select</tt>' instruction requires an 'i1' value or
4216a vector of 'i1' values indicating the
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004217condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanc579d972008-09-09 01:02:47 +00004218type. If the val1/val2 are vectors and
4219the condition is a scalar, then entire vectors are selected, not
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004220individual elements.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004221</p>
4222
4223<h5>Semantics:</h5>
4224
4225<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004226If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswell88190562005-05-16 16:17:45 +00004227value argument; otherwise, it returns the second value argument.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004228</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004229<p>
4230If the condition is a vector of i1, then the value arguments must
4231be vectors of the same size, and the selection is done element
4232by element.
4233</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004234
4235<h5>Example:</h5>
4236
4237<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004238 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004239</pre>
4240</div>
4241
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004242
4243<!-- _______________________________________________________________________ -->
4244<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004245 <a name="i_call">'<tt>call</tt>' Instruction</a>
4246</div>
4247
Misha Brukman76307852003-11-08 01:05:38 +00004248<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004249
Chris Lattner2f7c9632001-06-06 20:29:01 +00004250<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004251<pre>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004252 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">RetAttrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattnere23c1392005-05-06 05:47:36 +00004253</pre>
4254
Chris Lattner2f7c9632001-06-06 20:29:01 +00004255<h5>Overview:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004256
Misha Brukman76307852003-11-08 01:05:38 +00004257<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004258
Chris Lattner2f7c9632001-06-06 20:29:01 +00004259<h5>Arguments:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004260
Misha Brukman76307852003-11-08 01:05:38 +00004261<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004262
Chris Lattnera8292f32002-05-06 22:08:29 +00004263<ol>
Chris Lattner48b383b02003-11-25 01:02:51 +00004264 <li>
Chris Lattner0132aff2005-05-06 22:57:40 +00004265 <p>The optional "tail" marker indicates whether the callee function accesses
4266 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattnere23c1392005-05-06 05:47:36 +00004267 function call is eligible for tail call optimization. Note that calls may
4268 be marked "tail" even if they do not occur before a <a
4269 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner48b383b02003-11-25 01:02:51 +00004270 </li>
4271 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00004272 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00004273 convention</a> the call should use. If none is specified, the call defaults
4274 to using C calling conventions.
4275 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004276
4277 <li>
4278 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4279 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4280 and '<tt>inreg</tt>' attributes are valid here.</p>
4281 </li>
4282
Chris Lattner0132aff2005-05-06 22:57:40 +00004283 <li>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004284 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4285 the type of the return value. Functions that return no value are marked
4286 <tt><a href="#t_void">void</a></tt>.</p>
4287 </li>
4288 <li>
4289 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4290 value being invoked. The argument types must match the types implied by
4291 this signature. This type can be omitted if the function is not varargs
4292 and if the function type does not return a pointer to a function.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004293 </li>
4294 <li>
4295 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4296 be invoked. In most cases, this is a direct function invocation, but
4297 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswell88190562005-05-16 16:17:45 +00004298 to function value.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004299 </li>
4300 <li>
4301 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencerd845d162005-05-01 22:22:57 +00004302 function signature argument types. All arguments must be of
4303 <a href="#t_firstclass">first class</a> type. If the function signature
4304 indicates the function accepts a variable number of arguments, the extra
4305 arguments can be specified.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004306 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004307 <li>
4308 <p>The optional <a href="fnattrs">function attributes</a> list. Only
4309 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4310 '<tt>readnone</tt>' attributes are valid here.</p>
4311 </li>
Chris Lattnera8292f32002-05-06 22:08:29 +00004312</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00004313
Chris Lattner2f7c9632001-06-06 20:29:01 +00004314<h5>Semantics:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004315
Chris Lattner48b383b02003-11-25 01:02:51 +00004316<p>The '<tt>call</tt>' instruction is used to cause control flow to
4317transfer to a specified function, with its incoming arguments bound to
4318the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4319instruction in the called function, control flow continues with the
4320instruction after the function call, and the return value of the
Dan Gohmancc3132e2008-10-04 19:00:07 +00004321function is bound to the result argument.
Chris Lattnere23c1392005-05-06 05:47:36 +00004322
Chris Lattner2f7c9632001-06-06 20:29:01 +00004323<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004324
4325<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004326 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00004327 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4328 %X = tail call i32 @foo() <i>; yields i32</i>
4329 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4330 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00004331
4332 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00004333 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00004334 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4335 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004336 %Z = call void @foo() noreturn <i>; indicates that foo never returns nomrally
4337 %ZZ = call zeroext i32 @bar() <i>; Return value is zero extended
Chris Lattnere23c1392005-05-06 05:47:36 +00004338</pre>
4339
Misha Brukman76307852003-11-08 01:05:38 +00004340</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004341
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004342<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00004343<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00004344 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004345</div>
4346
Misha Brukman76307852003-11-08 01:05:38 +00004347<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00004348
Chris Lattner26ca62e2003-10-18 05:51:36 +00004349<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004350
4351<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004352 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00004353</pre>
4354
Chris Lattner26ca62e2003-10-18 05:51:36 +00004355<h5>Overview:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004356
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004357<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattner6a4a0492004-09-27 21:51:25 +00004358the "variable argument" area of a function call. It is used to implement the
4359<tt>va_arg</tt> macro in C.</p>
4360
Chris Lattner26ca62e2003-10-18 05:51:36 +00004361<h5>Arguments:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004362
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004363<p>This instruction takes a <tt>va_list*</tt> value and the type of
4364the argument. It returns a value of the specified argument type and
Jeff Cohen222a8a42007-04-29 01:07:00 +00004365increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004366actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004367
Chris Lattner26ca62e2003-10-18 05:51:36 +00004368<h5>Semantics:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004369
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004370<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4371type from the specified <tt>va_list</tt> and causes the
4372<tt>va_list</tt> to point to the next argument. For more information,
4373see the variable argument handling <a href="#int_varargs">Intrinsic
4374Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004375
4376<p>It is legal for this instruction to be called in a function which does not
4377take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman76307852003-11-08 01:05:38 +00004378function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004379
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004380<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswell88190562005-05-16 16:17:45 +00004381href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattner6a4a0492004-09-27 21:51:25 +00004382argument.</p>
4383
Chris Lattner26ca62e2003-10-18 05:51:36 +00004384<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004385
4386<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4387
Misha Brukman76307852003-11-08 01:05:38 +00004388</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004389
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004390<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004391<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4392<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00004393
Misha Brukman76307852003-11-08 01:05:38 +00004394<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00004395
4396<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer4eefaab2007-04-01 08:04:23 +00004397well known names and semantics and are required to follow certain restrictions.
4398Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohen222a8a42007-04-29 01:07:00 +00004399language that does not require changing all of the transformations in LLVM when
Gabor Greifa54634a2007-07-06 22:07:22 +00004400adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004401
John Criswell88190562005-05-16 16:17:45 +00004402<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohen222a8a42007-04-29 01:07:00 +00004403prefix is reserved in LLVM for intrinsic names; thus, function names may not
4404begin with this prefix. Intrinsic functions must always be external functions:
4405you cannot define the body of intrinsic functions. Intrinsic functions may
4406only be used in call or invoke instructions: it is illegal to take the address
4407of an intrinsic function. Additionally, because intrinsic functions are part
4408of the LLVM language, it is required if any are added that they be documented
4409here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004410
Chandler Carruth7132e002007-08-04 01:51:18 +00004411<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4412a family of functions that perform the same operation but on different data
4413types. Because LLVM can represent over 8 million different integer types,
4414overloading is used commonly to allow an intrinsic function to operate on any
4415integer type. One or more of the argument types or the result type can be
4416overloaded to accept any integer type. Argument types may also be defined as
4417exactly matching a previous argument's type or the result type. This allows an
4418intrinsic function which accepts multiple arguments, but needs all of them to
4419be of the same type, to only be overloaded with respect to a single argument or
4420the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004421
Chandler Carruth7132e002007-08-04 01:51:18 +00004422<p>Overloaded intrinsics will have the names of its overloaded argument types
4423encoded into its function name, each preceded by a period. Only those types
4424which are overloaded result in a name suffix. Arguments whose type is matched
4425against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4426take an integer of any width and returns an integer of exactly the same integer
4427width. This leads to a family of functions such as
4428<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4429Only one type, the return type, is overloaded, and only one type suffix is
4430required. Because the argument's type is matched against the return type, it
4431does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00004432
4433<p>To learn how to add an intrinsic function, please see the
4434<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattnerfee11462004-02-12 17:01:32 +00004435</p>
4436
Misha Brukman76307852003-11-08 01:05:38 +00004437</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004438
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004439<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00004440<div class="doc_subsection">
4441 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4442</div>
4443
Misha Brukman76307852003-11-08 01:05:38 +00004444<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004445
Misha Brukman76307852003-11-08 01:05:38 +00004446<p>Variable argument support is defined in LLVM with the <a
Chris Lattner33337472006-01-13 23:26:01 +00004447 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner48b383b02003-11-25 01:02:51 +00004448intrinsic functions. These functions are related to the similarly
4449named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004450
Chris Lattner48b383b02003-11-25 01:02:51 +00004451<p>All of these functions operate on arguments that use a
4452target-specific value type "<tt>va_list</tt>". The LLVM assembly
4453language reference manual does not define what this type is, so all
Jeff Cohen222a8a42007-04-29 01:07:00 +00004454transformations should be prepared to handle these functions regardless of
4455the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004456
Chris Lattner30b868d2006-05-15 17:26:46 +00004457<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner48b383b02003-11-25 01:02:51 +00004458instruction and the variable argument handling intrinsic functions are
4459used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004460
Bill Wendling3716c5d2007-05-29 09:04:49 +00004461<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00004462<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004463define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00004464 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00004465 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004466 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004467 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004468
4469 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00004470 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00004471
4472 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00004473 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004474 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00004475 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004476 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004477
4478 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004479 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004480 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00004481}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004482
4483declare void @llvm.va_start(i8*)
4484declare void @llvm.va_copy(i8*, i8*)
4485declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00004486</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004487</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004488
Bill Wendling3716c5d2007-05-29 09:04:49 +00004489</div>
4490
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004491<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004492<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004493 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004494</div>
4495
4496
Misha Brukman76307852003-11-08 01:05:38 +00004497<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004498<h5>Syntax:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004499<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004500<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004501<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4502<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4503href="#i_va_arg">va_arg</a></tt>.</p>
4504
4505<h5>Arguments:</h5>
4506
4507<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4508
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004509<h5>Semantics:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004510
4511<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4512macro available in C. In a target-dependent way, it initializes the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004513<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004514<tt>va_arg</tt> will produce the first variable argument passed to the function.
4515Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004516last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004517
Misha Brukman76307852003-11-08 01:05:38 +00004518</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004519
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004520<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004521<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004522 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004523</div>
4524
Misha Brukman76307852003-11-08 01:05:38 +00004525<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004526<h5>Syntax:</h5>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004527<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004528<h5>Overview:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004529
Jeff Cohen222a8a42007-04-29 01:07:00 +00004530<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencer96a5f022007-04-04 02:42:35 +00004531which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00004532or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004533
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004534<h5>Arguments:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004535
Jeff Cohen222a8a42007-04-29 01:07:00 +00004536<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004537
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004538<h5>Semantics:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004539
Misha Brukman76307852003-11-08 01:05:38 +00004540<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004541macro available in C. In a target-dependent way, it destroys the
4542<tt>va_list</tt> element to which the argument points. Calls to <a
4543href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4544<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4545<tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004546
Misha Brukman76307852003-11-08 01:05:38 +00004547</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004548
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004549<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004550<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004551 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004552</div>
4553
Misha Brukman76307852003-11-08 01:05:38 +00004554<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004555
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004556<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004557
4558<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004559 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004560</pre>
4561
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004562<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004563
Jeff Cohen222a8a42007-04-29 01:07:00 +00004564<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4565from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004566
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004567<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004568
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004569<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharth5305ea52005-06-22 20:38:11 +00004570The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004571
Chris Lattner757528b0b2004-05-23 21:06:01 +00004572
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004573<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004574
Jeff Cohen222a8a42007-04-29 01:07:00 +00004575<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4576macro available in C. In a target-dependent way, it copies the source
4577<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4578intrinsic is necessary because the <tt><a href="#int_va_start">
4579llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4580example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004581
Misha Brukman76307852003-11-08 01:05:38 +00004582</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004583
Chris Lattnerfee11462004-02-12 17:01:32 +00004584<!-- ======================================================================= -->
4585<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004586 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4587</div>
4588
4589<div class="doc_text">
4590
4591<p>
4592LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00004593Collection</a> (GC) requires the implementation and generation of these
4594intrinsics.
Reid Spencer96a5f022007-04-04 02:42:35 +00004595These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattner757528b0b2004-05-23 21:06:01 +00004596stack</a>, as well as garbage collector implementations that require <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004597href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattner757528b0b2004-05-23 21:06:01 +00004598Front-ends for type-safe garbage collected languages should generate these
4599intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4600href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4601</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00004602
4603<p>The garbage collection intrinsics only operate on objects in the generic
4604 address space (address space zero).</p>
4605
Chris Lattner757528b0b2004-05-23 21:06:01 +00004606</div>
4607
4608<!-- _______________________________________________________________________ -->
4609<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004610 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004611</div>
4612
4613<div class="doc_text">
4614
4615<h5>Syntax:</h5>
4616
4617<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004618 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004619</pre>
4620
4621<h5>Overview:</h5>
4622
John Criswelldfe6a862004-12-10 15:51:16 +00004623<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattner757528b0b2004-05-23 21:06:01 +00004624the code generator, and allows some metadata to be associated with it.</p>
4625
4626<h5>Arguments:</h5>
4627
4628<p>The first argument specifies the address of a stack object that contains the
4629root pointer. The second pointer (which must be either a constant or a global
4630value address) contains the meta-data to be associated with the root.</p>
4631
4632<h5>Semantics:</h5>
4633
Chris Lattner851b7712008-04-24 05:59:56 +00004634<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattner757528b0b2004-05-23 21:06:01 +00004635location. At compile-time, the code generator generates information to allow
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004636the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4637intrinsic may only be used in a function which <a href="#gc">specifies a GC
4638algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004639
4640</div>
4641
4642
4643<!-- _______________________________________________________________________ -->
4644<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004645 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004646</div>
4647
4648<div class="doc_text">
4649
4650<h5>Syntax:</h5>
4651
4652<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004653 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004654</pre>
4655
4656<h5>Overview:</h5>
4657
4658<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4659locations, allowing garbage collector implementations that require read
4660barriers.</p>
4661
4662<h5>Arguments:</h5>
4663
Chris Lattnerf9228072006-03-14 20:02:51 +00004664<p>The second argument is the address to read from, which should be an address
4665allocated from the garbage collector. The first object is a pointer to the
4666start of the referenced object, if needed by the language runtime (otherwise
4667null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004668
4669<h5>Semantics:</h5>
4670
4671<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4672instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004673garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4674may only be used in a function which <a href="#gc">specifies a GC
4675algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004676
4677</div>
4678
4679
4680<!-- _______________________________________________________________________ -->
4681<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004682 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004683</div>
4684
4685<div class="doc_text">
4686
4687<h5>Syntax:</h5>
4688
4689<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004690 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004691</pre>
4692
4693<h5>Overview:</h5>
4694
4695<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4696locations, allowing garbage collector implementations that require write
4697barriers (such as generational or reference counting collectors).</p>
4698
4699<h5>Arguments:</h5>
4700
Chris Lattnerf9228072006-03-14 20:02:51 +00004701<p>The first argument is the reference to store, the second is the start of the
4702object to store it to, and the third is the address of the field of Obj to
4703store to. If the runtime does not require a pointer to the object, Obj may be
4704null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004705
4706<h5>Semantics:</h5>
4707
4708<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4709instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004710garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4711may only be used in a function which <a href="#gc">specifies a GC
4712algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004713
4714</div>
4715
4716
4717
4718<!-- ======================================================================= -->
4719<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00004720 <a name="int_codegen">Code Generator Intrinsics</a>
4721</div>
4722
4723<div class="doc_text">
4724<p>
4725These intrinsics are provided by LLVM to expose special features that may only
4726be implemented with code generator support.
4727</p>
4728
4729</div>
4730
4731<!-- _______________________________________________________________________ -->
4732<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004733 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00004734</div>
4735
4736<div class="doc_text">
4737
4738<h5>Syntax:</h5>
4739<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004740 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00004741</pre>
4742
4743<h5>Overview:</h5>
4744
4745<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00004746The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4747target-specific value indicating the return address of the current function
4748or one of its callers.
Chris Lattner3649c3a2004-02-14 04:08:35 +00004749</p>
4750
4751<h5>Arguments:</h5>
4752
4753<p>
4754The argument to this intrinsic indicates which function to return the address
4755for. Zero indicates the calling function, one indicates its caller, etc. The
4756argument is <b>required</b> to be a constant integer value.
4757</p>
4758
4759<h5>Semantics:</h5>
4760
4761<p>
4762The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4763the return address of the specified call frame, or zero if it cannot be
4764identified. The value returned by this intrinsic is likely to be incorrect or 0
4765for arguments other than zero, so it should only be used for debugging purposes.
4766</p>
4767
4768<p>
4769Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00004770aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00004771source-language caller.
4772</p>
4773</div>
4774
4775
4776<!-- _______________________________________________________________________ -->
4777<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004778 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00004779</div>
4780
4781<div class="doc_text">
4782
4783<h5>Syntax:</h5>
4784<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004785 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00004786</pre>
4787
4788<h5>Overview:</h5>
4789
4790<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00004791The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4792target-specific frame pointer value for the specified stack frame.
Chris Lattner3649c3a2004-02-14 04:08:35 +00004793</p>
4794
4795<h5>Arguments:</h5>
4796
4797<p>
4798The argument to this intrinsic indicates which function to return the frame
4799pointer for. Zero indicates the calling function, one indicates its caller,
4800etc. The argument is <b>required</b> to be a constant integer value.
4801</p>
4802
4803<h5>Semantics:</h5>
4804
4805<p>
4806The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4807the frame address of the specified call frame, or zero if it cannot be
4808identified. The value returned by this intrinsic is likely to be incorrect or 0
4809for arguments other than zero, so it should only be used for debugging purposes.
4810</p>
4811
4812<p>
4813Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00004814aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00004815source-language caller.
4816</p>
4817</div>
4818
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004819<!-- _______________________________________________________________________ -->
4820<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004821 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00004822</div>
4823
4824<div class="doc_text">
4825
4826<h5>Syntax:</h5>
4827<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004828 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00004829</pre>
4830
4831<h5>Overview:</h5>
4832
4833<p>
4834The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencer96a5f022007-04-04 02:42:35 +00004835the function stack, for use with <a href="#int_stackrestore">
Chris Lattner2f0f0012006-01-13 02:03:13 +00004836<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4837features like scoped automatic variable sized arrays in C99.
4838</p>
4839
4840<h5>Semantics:</h5>
4841
4842<p>
4843This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004844href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner2f0f0012006-01-13 02:03:13 +00004845<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4846<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4847state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4848practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4849that were allocated after the <tt>llvm.stacksave</tt> was executed.
4850</p>
4851
4852</div>
4853
4854<!-- _______________________________________________________________________ -->
4855<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004856 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00004857</div>
4858
4859<div class="doc_text">
4860
4861<h5>Syntax:</h5>
4862<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004863 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00004864</pre>
4865
4866<h5>Overview:</h5>
4867
4868<p>
4869The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4870the function stack to the state it was in when the corresponding <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004871href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner2f0f0012006-01-13 02:03:13 +00004872useful for implementing language features like scoped automatic variable sized
4873arrays in C99.
4874</p>
4875
4876<h5>Semantics:</h5>
4877
4878<p>
Reid Spencer96a5f022007-04-04 02:42:35 +00004879See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner2f0f0012006-01-13 02:03:13 +00004880</p>
4881
4882</div>
4883
4884
4885<!-- _______________________________________________________________________ -->
4886<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004887 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004888</div>
4889
4890<div class="doc_text">
4891
4892<h5>Syntax:</h5>
4893<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004894 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004895</pre>
4896
4897<h5>Overview:</h5>
4898
4899
4900<p>
4901The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswell88190562005-05-16 16:17:45 +00004902a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4903no
4904effect on the behavior of the program but can change its performance
Chris Lattnerff851072005-02-28 19:47:14 +00004905characteristics.
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004906</p>
4907
4908<h5>Arguments:</h5>
4909
4910<p>
4911<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4912determining if the fetch should be for a read (0) or write (1), and
4913<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattnerd3e641c2005-03-07 20:31:38 +00004914locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004915<tt>locality</tt> arguments must be constant integers.
4916</p>
4917
4918<h5>Semantics:</h5>
4919
4920<p>
4921This intrinsic does not modify the behavior of the program. In particular,
4922prefetches cannot trap and do not produce a value. On targets that support this
4923intrinsic, the prefetch can provide hints to the processor cache for better
4924performance.
4925</p>
4926
4927</div>
4928
Andrew Lenharthb4427912005-03-28 20:05:49 +00004929<!-- _______________________________________________________________________ -->
4930<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004931 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00004932</div>
4933
4934<div class="doc_text">
4935
4936<h5>Syntax:</h5>
4937<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004938 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00004939</pre>
4940
4941<h5>Overview:</h5>
4942
4943
4944<p>
John Criswell88190562005-05-16 16:17:45 +00004945The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner67c37d12008-08-05 18:29:16 +00004946(PC) in a region of
4947code to simulators and other tools. The method is target specific, but it is
4948expected that the marker will use exported symbols to transmit the PC of the
4949marker.
4950The marker makes no guarantees that it will remain with any specific instruction
4951after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb40261e2006-03-24 07:16:10 +00004952optimizations. The intended use is to be inserted after optimizations to allow
John Criswell88190562005-05-16 16:17:45 +00004953correlations of simulation runs.
Andrew Lenharthb4427912005-03-28 20:05:49 +00004954</p>
4955
4956<h5>Arguments:</h5>
4957
4958<p>
4959<tt>id</tt> is a numerical id identifying the marker.
4960</p>
4961
4962<h5>Semantics:</h5>
4963
4964<p>
4965This intrinsic does not modify the behavior of the program. Backends that do not
4966support this intrinisic may ignore it.
4967</p>
4968
4969</div>
4970
Andrew Lenharth01aa5632005-11-11 16:47:30 +00004971<!-- _______________________________________________________________________ -->
4972<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004973 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00004974</div>
4975
4976<div class="doc_text">
4977
4978<h5>Syntax:</h5>
4979<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004980 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00004981</pre>
4982
4983<h5>Overview:</h5>
4984
4985
4986<p>
4987The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4988counter register (or similar low latency, high accuracy clocks) on those targets
4989that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4990As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4991should only be used for small timings.
4992</p>
4993
4994<h5>Semantics:</h5>
4995
4996<p>
4997When directly supported, reading the cycle counter should not modify any memory.
4998Implementations are allowed to either return a application specific value or a
4999system wide value. On backends without support, this is lowered to a constant 0.
5000</p>
5001
5002</div>
5003
Chris Lattner3649c3a2004-02-14 04:08:35 +00005004<!-- ======================================================================= -->
5005<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005006 <a name="int_libc">Standard C Library Intrinsics</a>
5007</div>
5008
5009<div class="doc_text">
5010<p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005011LLVM provides intrinsics for a few important standard C library functions.
5012These intrinsics allow source-language front-ends to pass information about the
5013alignment of the pointer arguments to the code generator, providing opportunity
5014for more efficient code generation.
Chris Lattnerfee11462004-02-12 17:01:32 +00005015</p>
5016
5017</div>
5018
5019<!-- _______________________________________________________________________ -->
5020<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005021 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005022</div>
5023
5024<div class="doc_text">
5025
5026<h5>Syntax:</h5>
5027<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005028 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005029 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005030 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005031 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005032</pre>
5033
5034<h5>Overview:</h5>
5035
5036<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005037The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005038location to the destination location.
5039</p>
5040
5041<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005042Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5043intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerfee11462004-02-12 17:01:32 +00005044</p>
5045
5046<h5>Arguments:</h5>
5047
5048<p>
5049The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005050the source. The third argument is an integer argument
Chris Lattnerfee11462004-02-12 17:01:32 +00005051specifying the number of bytes to copy, and the fourth argument is the alignment
5052of the source and destination locations.
5053</p>
5054
Chris Lattner4c67c482004-02-12 21:18:15 +00005055<p>
5056If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005057the caller guarantees that both the source and destination pointers are aligned
5058to that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005059</p>
5060
Chris Lattnerfee11462004-02-12 17:01:32 +00005061<h5>Semantics:</h5>
5062
5063<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005064The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005065location to the destination location, which are not allowed to overlap. It
5066copies "len" bytes of memory over. If the argument is known to be aligned to
5067some boundary, this can be specified as the fourth argument, otherwise it should
5068be set to 0 or 1.
5069</p>
5070</div>
5071
5072
Chris Lattnerf30152e2004-02-12 18:10:10 +00005073<!-- _______________________________________________________________________ -->
5074<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005075 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005076</div>
5077
5078<div class="doc_text">
5079
5080<h5>Syntax:</h5>
5081<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005082 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005083 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005084 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005085 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005086</pre>
5087
5088<h5>Overview:</h5>
5089
5090<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005091The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5092location to the destination location. It is similar to the
Chris Lattnerec564022008-01-06 19:51:52 +00005093'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005094</p>
5095
5096<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005097Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5098intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005099</p>
5100
5101<h5>Arguments:</h5>
5102
5103<p>
5104The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005105the source. The third argument is an integer argument
Chris Lattnerf30152e2004-02-12 18:10:10 +00005106specifying the number of bytes to copy, and the fourth argument is the alignment
5107of the source and destination locations.
5108</p>
5109
Chris Lattner4c67c482004-02-12 21:18:15 +00005110<p>
5111If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005112the caller guarantees that the source and destination pointers are aligned to
5113that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005114</p>
5115
Chris Lattnerf30152e2004-02-12 18:10:10 +00005116<h5>Semantics:</h5>
5117
5118<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005119The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerf30152e2004-02-12 18:10:10 +00005120location to the destination location, which may overlap. It
5121copies "len" bytes of memory over. If the argument is known to be aligned to
5122some boundary, this can be specified as the fourth argument, otherwise it should
5123be set to 0 or 1.
5124</p>
5125</div>
5126
Chris Lattner941515c2004-01-06 05:31:32 +00005127
Chris Lattner3649c3a2004-02-14 04:08:35 +00005128<!-- _______________________________________________________________________ -->
5129<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005130 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005131</div>
5132
5133<div class="doc_text">
5134
5135<h5>Syntax:</h5>
5136<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005137 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005138 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005139 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005140 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005141</pre>
5142
5143<h5>Overview:</h5>
5144
5145<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005146The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner3649c3a2004-02-14 04:08:35 +00005147byte value.
5148</p>
5149
5150<p>
5151Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5152does not return a value, and takes an extra alignment argument.
5153</p>
5154
5155<h5>Arguments:</h5>
5156
5157<p>
5158The first argument is a pointer to the destination to fill, the second is the
Chris Lattner0c8b2592006-03-03 00:07:20 +00005159byte value to fill it with, the third argument is an integer
Chris Lattner3649c3a2004-02-14 04:08:35 +00005160argument specifying the number of bytes to fill, and the fourth argument is the
5161known alignment of destination location.
5162</p>
5163
5164<p>
5165If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005166the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005167</p>
5168
5169<h5>Semantics:</h5>
5170
5171<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005172The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5173the
Chris Lattner3649c3a2004-02-14 04:08:35 +00005174destination location. If the argument is known to be aligned to some boundary,
5175this can be specified as the fourth argument, otherwise it should be set to 0 or
51761.
5177</p>
5178</div>
5179
5180
Chris Lattner3b4f4372004-06-11 02:28:03 +00005181<!-- _______________________________________________________________________ -->
5182<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005183 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005184</div>
5185
5186<div class="doc_text">
5187
5188<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005189<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005190floating point or vector of floating point type. Not all targets support all
5191types however.
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005192<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005193 declare float @llvm.sqrt.f32(float %Val)
5194 declare double @llvm.sqrt.f64(double %Val)
5195 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5196 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5197 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005198</pre>
5199
5200<h5>Overview:</h5>
5201
5202<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005203The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohmanb6324c12007-10-15 20:30:11 +00005204returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005205<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner00d7cb92008-01-29 07:00:44 +00005206negative numbers other than -0.0 (which allows for better optimization, because
5207there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5208defined to return -0.0 like IEEE sqrt.
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005209</p>
5210
5211<h5>Arguments:</h5>
5212
5213<p>
5214The argument and return value are floating point numbers of the same type.
5215</p>
5216
5217<h5>Semantics:</h5>
5218
5219<p>
Dan Gohman33988db2007-07-16 14:37:41 +00005220This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005221floating point number.
5222</p>
5223</div>
5224
Chris Lattner33b73f92006-09-08 06:34:02 +00005225<!-- _______________________________________________________________________ -->
5226<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005227 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005228</div>
5229
5230<div class="doc_text">
5231
5232<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005233<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005234floating point or vector of floating point type. Not all targets support all
5235types however.
Chris Lattner33b73f92006-09-08 06:34:02 +00005236<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005237 declare float @llvm.powi.f32(float %Val, i32 %power)
5238 declare double @llvm.powi.f64(double %Val, i32 %power)
5239 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5240 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5241 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005242</pre>
5243
5244<h5>Overview:</h5>
5245
5246<p>
5247The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5248specified (positive or negative) power. The order of evaluation of
Dan Gohmanb6324c12007-10-15 20:30:11 +00005249multiplications is not defined. When a vector of floating point type is
5250used, the second argument remains a scalar integer value.
Chris Lattner33b73f92006-09-08 06:34:02 +00005251</p>
5252
5253<h5>Arguments:</h5>
5254
5255<p>
5256The second argument is an integer power, and the first is a value to raise to
5257that power.
5258</p>
5259
5260<h5>Semantics:</h5>
5261
5262<p>
5263This function returns the first value raised to the second power with an
5264unspecified sequence of rounding operations.</p>
5265</div>
5266
Dan Gohmanb6324c12007-10-15 20:30:11 +00005267<!-- _______________________________________________________________________ -->
5268<div class="doc_subsubsection">
5269 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5270</div>
5271
5272<div class="doc_text">
5273
5274<h5>Syntax:</h5>
5275<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5276floating point or vector of floating point type. Not all targets support all
5277types however.
5278<pre>
5279 declare float @llvm.sin.f32(float %Val)
5280 declare double @llvm.sin.f64(double %Val)
5281 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5282 declare fp128 @llvm.sin.f128(fp128 %Val)
5283 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5284</pre>
5285
5286<h5>Overview:</h5>
5287
5288<p>
5289The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5290</p>
5291
5292<h5>Arguments:</h5>
5293
5294<p>
5295The argument and return value are floating point numbers of the same type.
5296</p>
5297
5298<h5>Semantics:</h5>
5299
5300<p>
5301This function returns the sine of the specified operand, returning the
5302same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005303conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005304</div>
5305
5306<!-- _______________________________________________________________________ -->
5307<div class="doc_subsubsection">
5308 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5309</div>
5310
5311<div class="doc_text">
5312
5313<h5>Syntax:</h5>
5314<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5315floating point or vector of floating point type. Not all targets support all
5316types however.
5317<pre>
5318 declare float @llvm.cos.f32(float %Val)
5319 declare double @llvm.cos.f64(double %Val)
5320 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5321 declare fp128 @llvm.cos.f128(fp128 %Val)
5322 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5323</pre>
5324
5325<h5>Overview:</h5>
5326
5327<p>
5328The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5329</p>
5330
5331<h5>Arguments:</h5>
5332
5333<p>
5334The argument and return value are floating point numbers of the same type.
5335</p>
5336
5337<h5>Semantics:</h5>
5338
5339<p>
5340This function returns the cosine of the specified operand, returning the
5341same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005342conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005343</div>
5344
5345<!-- _______________________________________________________________________ -->
5346<div class="doc_subsubsection">
5347 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5348</div>
5349
5350<div class="doc_text">
5351
5352<h5>Syntax:</h5>
5353<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5354floating point or vector of floating point type. Not all targets support all
5355types however.
5356<pre>
5357 declare float @llvm.pow.f32(float %Val, float %Power)
5358 declare double @llvm.pow.f64(double %Val, double %Power)
5359 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5360 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5361 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5362</pre>
5363
5364<h5>Overview:</h5>
5365
5366<p>
5367The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5368specified (positive or negative) power.
5369</p>
5370
5371<h5>Arguments:</h5>
5372
5373<p>
5374The second argument is a floating point power, and the first is a value to
5375raise to that power.
5376</p>
5377
5378<h5>Semantics:</h5>
5379
5380<p>
5381This function returns the first value raised to the second power,
5382returning the
5383same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005384conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005385</div>
5386
Chris Lattner33b73f92006-09-08 06:34:02 +00005387
Andrew Lenharth1d463522005-05-03 18:01:48 +00005388<!-- ======================================================================= -->
5389<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005390 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005391</div>
5392
5393<div class="doc_text">
5394<p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005395LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005396These allow efficient code generation for some algorithms.
5397</p>
5398
5399</div>
5400
5401<!-- _______________________________________________________________________ -->
5402<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005403 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005404</div>
5405
5406<div class="doc_text">
5407
5408<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005409<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth7132e002007-08-04 01:51:18 +00005410type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman0f223bb2006-01-13 23:26:38 +00005411<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005412 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5413 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5414 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00005415</pre>
5416
5417<h5>Overview:</h5>
5418
5419<p>
Reid Spencerf361c4f2007-04-02 02:25:19 +00005420The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer4eefaab2007-04-01 08:04:23 +00005421values with an even number of bytes (positive multiple of 16 bits). These are
5422useful for performing operations on data that is not in the target's native
5423byte order.
Nate Begeman0f223bb2006-01-13 23:26:38 +00005424</p>
5425
5426<h5>Semantics:</h5>
5427
5428<p>
Chandler Carruth7132e002007-08-04 01:51:18 +00005429The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005430and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5431intrinsic returns an i32 value that has the four bytes of the input i32
5432swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth7132e002007-08-04 01:51:18 +00005433i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5434<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer4eefaab2007-04-01 08:04:23 +00005435additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman0f223bb2006-01-13 23:26:38 +00005436</p>
5437
5438</div>
5439
5440<!-- _______________________________________________________________________ -->
5441<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005442 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005443</div>
5444
5445<div class="doc_text">
5446
5447<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005448<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5449width. Not all targets support all bit widths however.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005450<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005451 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5452 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005453 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005454 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5455 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005456</pre>
5457
5458<h5>Overview:</h5>
5459
5460<p>
Chris Lattner069b5bd2006-01-16 22:38:59 +00005461The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5462value.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005463</p>
5464
5465<h5>Arguments:</h5>
5466
5467<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005468The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005469integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005470</p>
5471
5472<h5>Semantics:</h5>
5473
5474<p>
5475The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5476</p>
5477</div>
5478
5479<!-- _______________________________________________________________________ -->
5480<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005481 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005482</div>
5483
5484<div class="doc_text">
5485
5486<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005487<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5488integer bit width. Not all targets support all bit widths however.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005489<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005490 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5491 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005492 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005493 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5494 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005495</pre>
5496
5497<h5>Overview:</h5>
5498
5499<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005500The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5501leading zeros in a variable.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005502</p>
5503
5504<h5>Arguments:</h5>
5505
5506<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005507The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005508integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005509</p>
5510
5511<h5>Semantics:</h5>
5512
5513<p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005514The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5515in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005516of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005517</p>
5518</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00005519
5520
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005521
5522<!-- _______________________________________________________________________ -->
5523<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005524 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005525</div>
5526
5527<div class="doc_text">
5528
5529<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005530<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5531integer bit width. Not all targets support all bit widths however.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005532<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005533 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5534 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005535 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005536 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5537 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005538</pre>
5539
5540<h5>Overview:</h5>
5541
5542<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005543The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5544trailing zeros.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005545</p>
5546
5547<h5>Arguments:</h5>
5548
5549<p>
5550The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005551integer type. The return type must match the argument type.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005552</p>
5553
5554<h5>Semantics:</h5>
5555
5556<p>
5557The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5558in a variable. If the src == 0 then the result is the size in bits of the type
5559of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5560</p>
5561</div>
5562
Reid Spencer8a5799f2007-04-01 08:27:01 +00005563<!-- _______________________________________________________________________ -->
5564<div class="doc_subsubsection">
Reid Spencerea2945e2007-04-10 02:51:31 +00005565 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005566</div>
5567
5568<div class="doc_text">
5569
5570<h5>Syntax:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005571<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005572on any integer bit width.
5573<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005574 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5575 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencer8bc7d952007-04-01 19:00:37 +00005576</pre>
5577
5578<h5>Overview:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005579<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencer8bc7d952007-04-01 19:00:37 +00005580range of bits from an integer value and returns them in the same bit width as
5581the original value.</p>
5582
5583<h5>Arguments:</h5>
5584<p>The first argument, <tt>%val</tt> and the result may be integer types of
5585any bit width but they must have the same bit width. The second and third
Reid Spencer96a5f022007-04-04 02:42:35 +00005586arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005587
5588<h5>Semantics:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005589<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencer96a5f022007-04-04 02:42:35 +00005590of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5591<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5592operates in forward mode.</p>
5593<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5594right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencer8bc7d952007-04-01 19:00:37 +00005595only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5596<ol>
5597 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5598 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5599 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5600 to determine the number of bits to retain.</li>
5601 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5602 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5603</ol>
Reid Spencer70845c02007-05-14 16:14:57 +00005604<p>In reverse mode, a similar computation is made except that the bits are
5605returned in the reverse order. So, for example, if <tt>X</tt> has the value
5606<tt>i16 0x0ACF (101011001111)</tt> and we apply
5607<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5608<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005609</div>
5610
Reid Spencer5bf54c82007-04-11 23:23:49 +00005611<div class="doc_subsubsection">
5612 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5613</div>
5614
5615<div class="doc_text">
5616
5617<h5>Syntax:</h5>
5618<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5619on any integer bit width.
5620<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005621 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5622 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencer5bf54c82007-04-11 23:23:49 +00005623</pre>
5624
5625<h5>Overview:</h5>
5626<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5627of bits in an integer value with another integer value. It returns the integer
5628with the replaced bits.</p>
5629
5630<h5>Arguments:</h5>
5631<p>The first argument, <tt>%val</tt> and the result may be integer types of
5632any bit width but they must have the same bit width. <tt>%val</tt> is the value
5633whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5634integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5635type since they specify only a bit index.</p>
5636
5637<h5>Semantics:</h5>
5638<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5639of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5640<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5641operates in forward mode.</p>
5642<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5643truncating it down to the size of the replacement area or zero extending it
5644up to that size.</p>
5645<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5646are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5647in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5648to the <tt>%hi</tt>th bit.
Reid Spencer146281c2007-05-14 16:50:20 +00005649<p>In reverse mode, a similar computation is made except that the bits are
5650reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5651<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencer5bf54c82007-04-11 23:23:49 +00005652<h5>Examples:</h5>
5653<pre>
Reid Spencerc70afc32007-04-12 01:03:03 +00005654 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencer146281c2007-05-14 16:50:20 +00005655 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5656 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5657 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerc70afc32007-04-12 01:03:03 +00005658 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencer7972c472007-04-11 23:49:50 +00005659</pre>
Reid Spencer5bf54c82007-04-11 23:23:49 +00005660</div>
5661
Chris Lattner941515c2004-01-06 05:31:32 +00005662<!-- ======================================================================= -->
5663<div class="doc_subsection">
5664 <a name="int_debugger">Debugger Intrinsics</a>
5665</div>
5666
5667<div class="doc_text">
5668<p>
5669The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5670are described in the <a
5671href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5672Debugging</a> document.
5673</p>
5674</div>
5675
5676
Jim Laskey2211f492007-03-14 19:31:19 +00005677<!-- ======================================================================= -->
5678<div class="doc_subsection">
5679 <a name="int_eh">Exception Handling Intrinsics</a>
5680</div>
5681
5682<div class="doc_text">
5683<p> The LLVM exception handling intrinsics (which all start with
5684<tt>llvm.eh.</tt> prefix), are described in the <a
5685href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5686Handling</a> document. </p>
5687</div>
5688
Tanya Lattnercb1b9602007-06-15 20:50:54 +00005689<!-- ======================================================================= -->
5690<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00005691 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00005692</div>
5693
5694<div class="doc_text">
5695<p>
Duncan Sands86e01192007-09-11 14:10:23 +00005696 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands644f9172007-07-27 12:58:54 +00005697 the <tt>nest</tt> attribute, from a function. The result is a callable
5698 function pointer lacking the nest parameter - the caller does not need
5699 to provide a value for it. Instead, the value to use is stored in
5700 advance in a "trampoline", a block of memory usually allocated
5701 on the stack, which also contains code to splice the nest value into the
5702 argument list. This is used to implement the GCC nested function address
5703 extension.
5704</p>
5705<p>
5706 For example, if the function is
5707 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling252570f2007-09-22 09:23:55 +00005708 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands644f9172007-07-27 12:58:54 +00005709<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00005710 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5711 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5712 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5713 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00005714</pre>
Bill Wendling252570f2007-09-22 09:23:55 +00005715 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5716 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands644f9172007-07-27 12:58:54 +00005717</div>
5718
5719<!-- _______________________________________________________________________ -->
5720<div class="doc_subsubsection">
5721 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5722</div>
5723<div class="doc_text">
5724<h5>Syntax:</h5>
5725<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00005726declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00005727</pre>
5728<h5>Overview:</h5>
5729<p>
Duncan Sands86e01192007-09-11 14:10:23 +00005730 This fills the memory pointed to by <tt>tramp</tt> with code
5731 and returns a function pointer suitable for executing it.
Duncan Sands644f9172007-07-27 12:58:54 +00005732</p>
5733<h5>Arguments:</h5>
5734<p>
5735 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5736 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5737 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsf2bcd372007-08-22 23:39:54 +00005738 intrinsic. Note that the size and the alignment are target-specific - LLVM
5739 currently provides no portable way of determining them, so a front-end that
5740 generates this intrinsic needs to have some target-specific knowledge.
5741 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands644f9172007-07-27 12:58:54 +00005742</p>
5743<h5>Semantics:</h5>
5744<p>
5745 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands86e01192007-09-11 14:10:23 +00005746 dependent code, turning it into a function. A pointer to this function is
5747 returned, but needs to be bitcast to an
Duncan Sands644f9172007-07-27 12:58:54 +00005748 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands86e01192007-09-11 14:10:23 +00005749 before being called. The new function's signature is the same as that of
5750 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5751 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5752 of pointer type. Calling the new function is equivalent to calling
5753 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5754 missing <tt>nest</tt> argument. If, after calling
5755 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5756 modified, then the effect of any later call to the returned function pointer is
5757 undefined.
Duncan Sands644f9172007-07-27 12:58:54 +00005758</p>
5759</div>
5760
5761<!-- ======================================================================= -->
5762<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00005763 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5764</div>
5765
5766<div class="doc_text">
5767<p>
5768 These intrinsic functions expand the "universal IR" of LLVM to represent
5769 hardware constructs for atomic operations and memory synchronization. This
5770 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner67c37d12008-08-05 18:29:16 +00005771 is aimed at a low enough level to allow any programming models or APIs
5772 (Application Programming Interfaces) which
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00005773 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5774 hardware behavior. Just as hardware provides a "universal IR" for source
5775 languages, it also provides a starting point for developing a "universal"
5776 atomic operation and synchronization IR.
5777</p>
5778<p>
5779 These do <em>not</em> form an API such as high-level threading libraries,
5780 software transaction memory systems, atomic primitives, and intrinsic
5781 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5782 application libraries. The hardware interface provided by LLVM should allow
5783 a clean implementation of all of these APIs and parallel programming models.
5784 No one model or paradigm should be selected above others unless the hardware
5785 itself ubiquitously does so.
5786
5787</p>
5788</div>
5789
5790<!-- _______________________________________________________________________ -->
5791<div class="doc_subsubsection">
5792 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5793</div>
5794<div class="doc_text">
5795<h5>Syntax:</h5>
5796<pre>
5797declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5798i1 &lt;device&gt; )
5799
5800</pre>
5801<h5>Overview:</h5>
5802<p>
5803 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5804 specific pairs of memory access types.
5805</p>
5806<h5>Arguments:</h5>
5807<p>
5808 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5809 The first four arguments enables a specific barrier as listed below. The fith
5810 argument specifies that the barrier applies to io or device or uncached memory.
5811
5812</p>
5813 <ul>
5814 <li><tt>ll</tt>: load-load barrier</li>
5815 <li><tt>ls</tt>: load-store barrier</li>
5816 <li><tt>sl</tt>: store-load barrier</li>
5817 <li><tt>ss</tt>: store-store barrier</li>
5818 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5819 </ul>
5820<h5>Semantics:</h5>
5821<p>
5822 This intrinsic causes the system to enforce some ordering constraints upon
5823 the loads and stores of the program. This barrier does not indicate
5824 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5825 which they occur. For any of the specified pairs of load and store operations
5826 (f.ex. load-load, or store-load), all of the first operations preceding the
5827 barrier will complete before any of the second operations succeeding the
5828 barrier begin. Specifically the semantics for each pairing is as follows:
5829</p>
5830 <ul>
5831 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5832 after the barrier begins.</li>
5833
5834 <li><tt>ls</tt>: All loads before the barrier must complete before any
5835 store after the barrier begins.</li>
5836 <li><tt>ss</tt>: All stores before the barrier must complete before any
5837 store after the barrier begins.</li>
5838 <li><tt>sl</tt>: All stores before the barrier must complete before any
5839 load after the barrier begins.</li>
5840 </ul>
5841<p>
5842 These semantics are applied with a logical "and" behavior when more than one
5843 is enabled in a single memory barrier intrinsic.
5844</p>
5845<p>
5846 Backends may implement stronger barriers than those requested when they do not
5847 support as fine grained a barrier as requested. Some architectures do not
5848 need all types of barriers and on such architectures, these become noops.
5849</p>
5850<h5>Example:</h5>
5851<pre>
5852%ptr = malloc i32
5853 store i32 4, %ptr
5854
5855%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5856 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5857 <i>; guarantee the above finishes</i>
5858 store i32 8, %ptr <i>; before this begins</i>
5859</pre>
5860</div>
5861
Andrew Lenharth95528942008-02-21 06:45:13 +00005862<!-- _______________________________________________________________________ -->
5863<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00005864 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00005865</div>
5866<div class="doc_text">
5867<h5>Syntax:</h5>
5868<p>
Mon P Wang2c839d42008-07-30 04:36:53 +00005869 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5870 any integer bit width and for different address spaces. Not all targets
5871 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00005872
5873<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00005874declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5875declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5876declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5877declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00005878
5879</pre>
5880<h5>Overview:</h5>
5881<p>
5882 This loads a value in memory and compares it to a given value. If they are
5883 equal, it stores a new value into the memory.
5884</p>
5885<h5>Arguments:</h5>
5886<p>
Mon P Wang6a490372008-06-25 08:15:39 +00005887 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharth95528942008-02-21 06:45:13 +00005888 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5889 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5890 this integer type. While any bit width integer may be used, targets may only
5891 lower representations they support in hardware.
5892
5893</p>
5894<h5>Semantics:</h5>
5895<p>
5896 This entire intrinsic must be executed atomically. It first loads the value
5897 in memory pointed to by <tt>ptr</tt> and compares it with the value
5898 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5899 loaded value is yielded in all cases. This provides the equivalent of an
5900 atomic compare-and-swap operation within the SSA framework.
5901</p>
5902<h5>Examples:</h5>
5903
5904<pre>
5905%ptr = malloc i32
5906 store i32 4, %ptr
5907
5908%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00005909%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00005910 <i>; yields {i32}:result1 = 4</i>
5911%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5912%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5913
5914%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00005915%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00005916 <i>; yields {i32}:result2 = 8</i>
5917%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5918
5919%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5920</pre>
5921</div>
5922
5923<!-- _______________________________________________________________________ -->
5924<div class="doc_subsubsection">
5925 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5926</div>
5927<div class="doc_text">
5928<h5>Syntax:</h5>
5929
5930<p>
5931 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5932 integer bit width. Not all targets support all bit widths however.</p>
5933<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00005934declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5935declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5936declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5937declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00005938
5939</pre>
5940<h5>Overview:</h5>
5941<p>
5942 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5943 the value from memory. It then stores the value in <tt>val</tt> in the memory
5944 at <tt>ptr</tt>.
5945</p>
5946<h5>Arguments:</h5>
5947
5948<p>
Mon P Wang6a490372008-06-25 08:15:39 +00005949 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharth95528942008-02-21 06:45:13 +00005950 <tt>val</tt> argument and the result must be integers of the same bit width.
5951 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5952 integer type. The targets may only lower integer representations they
5953 support.
5954</p>
5955<h5>Semantics:</h5>
5956<p>
5957 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5958 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5959 equivalent of an atomic swap operation within the SSA framework.
5960
5961</p>
5962<h5>Examples:</h5>
5963<pre>
5964%ptr = malloc i32
5965 store i32 4, %ptr
5966
5967%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00005968%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00005969 <i>; yields {i32}:result1 = 4</i>
5970%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5971%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5972
5973%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00005974%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00005975 <i>; yields {i32}:result2 = 8</i>
5976
5977%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5978%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5979</pre>
5980</div>
5981
5982<!-- _______________________________________________________________________ -->
5983<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00005984 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00005985
5986</div>
5987<div class="doc_text">
5988<h5>Syntax:</h5>
5989<p>
Mon P Wang6a490372008-06-25 08:15:39 +00005990 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharth95528942008-02-21 06:45:13 +00005991 integer bit width. Not all targets support all bit widths however.</p>
5992<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00005993declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5994declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5995declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5996declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00005997
5998</pre>
5999<h5>Overview:</h5>
6000<p>
6001 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6002 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6003</p>
6004<h5>Arguments:</h5>
6005<p>
6006
6007 The intrinsic takes two arguments, the first a pointer to an integer value
6008 and the second an integer value. The result is also an integer value. These
6009 integer types can have any bit width, but they must all have the same bit
6010 width. The targets may only lower integer representations they support.
6011</p>
6012<h5>Semantics:</h5>
6013<p>
6014 This intrinsic does a series of operations atomically. It first loads the
6015 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6016 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6017</p>
6018
6019<h5>Examples:</h5>
6020<pre>
6021%ptr = malloc i32
6022 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006023%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006024 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006025%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006026 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006027%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006028 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006029%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006030</pre>
6031</div>
6032
Mon P Wang6a490372008-06-25 08:15:39 +00006033<!-- _______________________________________________________________________ -->
6034<div class="doc_subsubsection">
6035 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6036
6037</div>
6038<div class="doc_text">
6039<h5>Syntax:</h5>
6040<p>
6041 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wang2c839d42008-07-30 04:36:53 +00006042 any integer bit width and for different address spaces. Not all targets
6043 support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006044<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006045declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6046declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6047declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6048declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006049
6050</pre>
6051<h5>Overview:</h5>
6052<p>
6053 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6054 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6055</p>
6056<h5>Arguments:</h5>
6057<p>
6058
6059 The intrinsic takes two arguments, the first a pointer to an integer value
6060 and the second an integer value. The result is also an integer value. These
6061 integer types can have any bit width, but they must all have the same bit
6062 width. The targets may only lower integer representations they support.
6063</p>
6064<h5>Semantics:</h5>
6065<p>
6066 This intrinsic does a series of operations atomically. It first loads the
6067 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6068 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6069</p>
6070
6071<h5>Examples:</h5>
6072<pre>
6073%ptr = malloc i32
6074 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006075%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006076 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006077%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006078 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006079%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006080 <i>; yields {i32}:result3 = 2</i>
6081%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6082</pre>
6083</div>
6084
6085<!-- _______________________________________________________________________ -->
6086<div class="doc_subsubsection">
6087 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6088 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6089 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6090 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6091
6092</div>
6093<div class="doc_text">
6094<h5>Syntax:</h5>
6095<p>
6096 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6097 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006098 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6099 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006100<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006101declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6102declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6103declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6104declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006105
6106</pre>
6107
6108<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006109declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6110declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6111declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6112declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006113
6114</pre>
6115
6116<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006117declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6118declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6119declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6120declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006121
6122</pre>
6123
6124<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006125declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6126declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6127declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6128declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006129
6130</pre>
6131<h5>Overview:</h5>
6132<p>
6133 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6134 the value stored in memory at <tt>ptr</tt>. It yields the original value
6135 at <tt>ptr</tt>.
6136</p>
6137<h5>Arguments:</h5>
6138<p>
6139
6140 These intrinsics take two arguments, the first a pointer to an integer value
6141 and the second an integer value. The result is also an integer value. These
6142 integer types can have any bit width, but they must all have the same bit
6143 width. The targets may only lower integer representations they support.
6144</p>
6145<h5>Semantics:</h5>
6146<p>
6147 These intrinsics does a series of operations atomically. They first load the
6148 value stored at <tt>ptr</tt>. They then do the bitwise operation
6149 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6150 value stored at <tt>ptr</tt>.
6151</p>
6152
6153<h5>Examples:</h5>
6154<pre>
6155%ptr = malloc i32
6156 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006157%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006158 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006159%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006160 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006161%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006162 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006163%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006164 <i>; yields {i32}:result3 = FF</i>
6165%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6166</pre>
6167</div>
6168
6169
6170<!-- _______________________________________________________________________ -->
6171<div class="doc_subsubsection">
6172 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6173 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6174 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6175 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6176
6177</div>
6178<div class="doc_text">
6179<h5>Syntax:</h5>
6180<p>
6181 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6182 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006183 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6184 address spaces. Not all targets
Mon P Wang6a490372008-06-25 08:15:39 +00006185 support all bit widths however.</p>
6186<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006187declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6188declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6189declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6190declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006191
6192</pre>
6193
6194<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006195declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6196declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6197declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6198declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006199
6200</pre>
6201
6202<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006203declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6204declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6205declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6206declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006207
6208</pre>
6209
6210<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006211declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6212declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6213declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6214declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006215
6216</pre>
6217<h5>Overview:</h5>
6218<p>
6219 These intrinsics takes the signed or unsigned minimum or maximum of
6220 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6221 original value at <tt>ptr</tt>.
6222</p>
6223<h5>Arguments:</h5>
6224<p>
6225
6226 These intrinsics take two arguments, the first a pointer to an integer value
6227 and the second an integer value. The result is also an integer value. These
6228 integer types can have any bit width, but they must all have the same bit
6229 width. The targets may only lower integer representations they support.
6230</p>
6231<h5>Semantics:</h5>
6232<p>
6233 These intrinsics does a series of operations atomically. They first load the
6234 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6235 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6236 the original value stored at <tt>ptr</tt>.
6237</p>
6238
6239<h5>Examples:</h5>
6240<pre>
6241%ptr = malloc i32
6242 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006243%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006244 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006245%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00006246 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006247%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00006248 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006249%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00006250 <i>; yields {i32}:result3 = 8</i>
6251%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6252</pre>
6253</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006254
6255<!-- ======================================================================= -->
6256<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006257 <a name="int_general">General Intrinsics</a>
6258</div>
6259
6260<div class="doc_text">
6261<p> This class of intrinsics is designed to be generic and has
6262no specific purpose. </p>
6263</div>
6264
6265<!-- _______________________________________________________________________ -->
6266<div class="doc_subsubsection">
6267 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6268</div>
6269
6270<div class="doc_text">
6271
6272<h5>Syntax:</h5>
6273<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006274 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006275</pre>
6276
6277<h5>Overview:</h5>
6278
6279<p>
6280The '<tt>llvm.var.annotation</tt>' intrinsic
6281</p>
6282
6283<h5>Arguments:</h5>
6284
6285<p>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006286The first argument is a pointer to a value, the second is a pointer to a
6287global string, the third is a pointer to a global string which is the source
6288file name, and the last argument is the line number.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006289</p>
6290
6291<h5>Semantics:</h5>
6292
6293<p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006294This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006295This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006296annotations. These have no other defined use, they are ignored by code
6297generation and optimization.
6298</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006299</div>
6300
Tanya Lattner293c0372007-09-21 22:59:12 +00006301<!-- _______________________________________________________________________ -->
6302<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00006303 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00006304</div>
6305
6306<div class="doc_text">
6307
6308<h5>Syntax:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006309<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6310any integer bit width.
6311</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006312<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00006313 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6314 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6315 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6316 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6317 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00006318</pre>
6319
6320<h5>Overview:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006321
6322<p>
6323The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattner293c0372007-09-21 22:59:12 +00006324</p>
6325
6326<h5>Arguments:</h5>
6327
6328<p>
6329The first argument is an integer value (result of some expression),
6330the second is a pointer to a global string, the third is a pointer to a global
6331string which is the source file name, and the last argument is the line number.
Tanya Lattner23dbd572007-09-21 23:56:27 +00006332It returns the value of the first argument.
Tanya Lattner293c0372007-09-21 22:59:12 +00006333</p>
6334
6335<h5>Semantics:</h5>
6336
6337<p>
6338This intrinsic allows annotations to be put on arbitrary expressions
6339with arbitrary strings. This can be useful for special purpose optimizations
6340that want to look for these annotations. These have no other defined use, they
6341are ignored by code generation and optimization.
6342</div>
Jim Laskey2211f492007-03-14 19:31:19 +00006343
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006344<!-- _______________________________________________________________________ -->
6345<div class="doc_subsubsection">
6346 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6347</div>
6348
6349<div class="doc_text">
6350
6351<h5>Syntax:</h5>
6352<pre>
6353 declare void @llvm.trap()
6354</pre>
6355
6356<h5>Overview:</h5>
6357
6358<p>
6359The '<tt>llvm.trap</tt>' intrinsic
6360</p>
6361
6362<h5>Arguments:</h5>
6363
6364<p>
6365None
6366</p>
6367
6368<h5>Semantics:</h5>
6369
6370<p>
6371This intrinsics is lowered to the target dependent trap instruction. If the
6372target does not have a trap instruction, this intrinsic will be lowered to the
6373call of the abort() function.
6374</p>
6375</div>
6376
Chris Lattner2f7c9632001-06-06 20:29:01 +00006377<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00006378<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00006379<address>
6380 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6381 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6382 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerb8f816e2008-01-04 04:33:49 +00006383 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00006384
6385 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00006386 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00006387 Last modified: $Date$
6388</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00006389
Misha Brukman76307852003-11-08 01:05:38 +00006390</body>
6391</html>