blob: 8386ec846ba27c772cd0e647068dc5b6561056e5 [file] [log] [blame]
Jim Cownie5e8470a2013-09-27 10:38:44 +00001/*
2 * kmp_affinity.cpp -- affinity management
Jim Cownie5e8470a2013-09-27 10:38:44 +00003 */
4
5
6//===----------------------------------------------------------------------===//
7//
8// The LLVM Compiler Infrastructure
9//
10// This file is dual licensed under the MIT and the University of Illinois Open
11// Source Licenses. See LICENSE.txt for details.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "kmp.h"
17#include "kmp_i18n.h"
18#include "kmp_io.h"
19#include "kmp_str.h"
Jim Cownie4cc4bb42014-10-07 16:25:50 +000020#include "kmp_wrapper_getpid.h"
Jonathan Peyton17078362015-09-10 19:22:07 +000021#include "kmp_affinity.h"
22
23// Store the real or imagined machine hierarchy here
24static hierarchy_info machine_hierarchy;
25
26void __kmp_cleanup_hierarchy() {
27 machine_hierarchy.fini();
28}
29
30void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
31 kmp_uint32 depth;
32 // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier.
33 if (TCR_1(machine_hierarchy.uninitialized))
34 machine_hierarchy.init(NULL, nproc);
Jonathan Peyton17078362015-09-10 19:22:07 +000035
36 depth = machine_hierarchy.depth;
37 KMP_DEBUG_ASSERT(depth > 0);
Jonathan Peytondf4d3dd2015-09-10 20:34:32 +000038 // Adjust the hierarchy in case num threads exceeds original
39 if (nproc > machine_hierarchy.skipPerLevel[depth-1])
40 machine_hierarchy.resize(nproc);
Jonathan Peyton17078362015-09-10 19:22:07 +000041
42 thr_bar->depth = depth;
43 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1;
44 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
45}
Jim Cownie5e8470a2013-09-27 10:38:44 +000046
Alp Toker763b9392014-02-28 09:42:41 +000047#if KMP_AFFINITY_SUPPORTED
Jim Cownie5e8470a2013-09-27 10:38:44 +000048
49//
50// Print the affinity mask to the character array in a pretty format.
51//
52char *
53__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
54{
55 KMP_ASSERT(buf_len >= 40);
56 char *scan = buf;
57 char *end = buf + buf_len - 1;
58
59 //
60 // Find first element / check for empty set.
61 //
62 size_t i;
63 for (i = 0; i < KMP_CPU_SETSIZE; i++) {
64 if (KMP_CPU_ISSET(i, mask)) {
65 break;
66 }
67 }
68 if (i == KMP_CPU_SETSIZE) {
Jonathan Peyton7edeef12015-09-25 17:23:17 +000069 KMP_SNPRINTF(scan, end-scan+1, "{<empty>}");
Jim Cownie5e8470a2013-09-27 10:38:44 +000070 while (*scan != '\0') scan++;
71 KMP_ASSERT(scan <= end);
72 return buf;
73 }
74
Jonathan Peyton7edeef12015-09-25 17:23:17 +000075 KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i);
Jim Cownie5e8470a2013-09-27 10:38:44 +000076 while (*scan != '\0') scan++;
77 i++;
78 for (; i < KMP_CPU_SETSIZE; i++) {
79 if (! KMP_CPU_ISSET(i, mask)) {
80 continue;
81 }
82
83 //
84 // Check for buffer overflow. A string of the form ",<n>" will have
85 // at most 10 characters, plus we want to leave room to print ",...}"
86 // if the set is too large to print for a total of 15 characters.
87 // We already left room for '\0' in setting end.
88 //
89 if (end - scan < 15) {
90 break;
91 }
Jonathan Peyton7edeef12015-09-25 17:23:17 +000092 KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i);
Jim Cownie5e8470a2013-09-27 10:38:44 +000093 while (*scan != '\0') scan++;
94 }
95 if (i < KMP_CPU_SETSIZE) {
Jonathan Peyton7edeef12015-09-25 17:23:17 +000096 KMP_SNPRINTF(scan, end-scan+1, ",...");
Jim Cownie5e8470a2013-09-27 10:38:44 +000097 while (*scan != '\0') scan++;
98 }
Jonathan Peyton7edeef12015-09-25 17:23:17 +000099 KMP_SNPRINTF(scan, end-scan+1, "}");
Jim Cownie5e8470a2013-09-27 10:38:44 +0000100 while (*scan != '\0') scan++;
101 KMP_ASSERT(scan <= end);
102 return buf;
103}
104
105
106void
107__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask)
108{
109 KMP_CPU_ZERO(mask);
110
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000111# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000112
113 if (__kmp_num_proc_groups > 1) {
114 int group;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000115 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
116 for (group = 0; group < __kmp_num_proc_groups; group++) {
117 int i;
118 int num = __kmp_GetActiveProcessorCount(group);
119 for (i = 0; i < num; i++) {
120 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
121 }
122 }
123 }
124 else
125
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000126# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +0000127
128 {
129 int proc;
130 for (proc = 0; proc < __kmp_xproc; proc++) {
131 KMP_CPU_SET(proc, mask);
132 }
133 }
134}
135
Jim Cownie5e8470a2013-09-27 10:38:44 +0000136//
137// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
138// called to renumber the labels from [0..n] and place them into the child_num
139// vector of the address object. This is done in case the labels used for
Alp Toker8f2d3f02014-02-24 10:40:15 +0000140// the children at one node of the hierarchy differ from those used for
Jim Cownie5e8470a2013-09-27 10:38:44 +0000141// another node at the same level. Example: suppose the machine has 2 nodes
142// with 2 packages each. The first node contains packages 601 and 602, and
143// second node contains packages 603 and 604. If we try to sort the table
144// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
145// because we are paying attention to the labels themselves, not the ordinal
146// child numbers. By using the child numbers in the sort, the result is
147// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
148//
149static void
150__kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
151 int numAddrs)
152{
153 KMP_DEBUG_ASSERT(numAddrs > 0);
154 int depth = address2os->first.depth;
155 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
156 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth
157 * sizeof(unsigned));
158 int labCt;
159 for (labCt = 0; labCt < depth; labCt++) {
160 address2os[0].first.childNums[labCt] = counts[labCt] = 0;
161 lastLabel[labCt] = address2os[0].first.labels[labCt];
162 }
163 int i;
164 for (i = 1; i < numAddrs; i++) {
165 for (labCt = 0; labCt < depth; labCt++) {
166 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
167 int labCt2;
168 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
169 counts[labCt2] = 0;
170 lastLabel[labCt2] = address2os[i].first.labels[labCt2];
171 }
172 counts[labCt]++;
173 lastLabel[labCt] = address2os[i].first.labels[labCt];
174 break;
175 }
176 }
177 for (labCt = 0; labCt < depth; labCt++) {
178 address2os[i].first.childNums[labCt] = counts[labCt];
179 }
180 for (; labCt < (int)Address::maxDepth; labCt++) {
181 address2os[i].first.childNums[labCt] = 0;
182 }
183 }
184}
185
186
187//
188// All of the __kmp_affinity_create_*_map() routines should set
189// __kmp_affinity_masks to a vector of affinity mask objects of length
190// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and
191// return the number of levels in the machine topology tree (zero if
192// __kmp_affinity_type == affinity_none).
193//
194// All of the __kmp_affinity_create_*_map() routines should set *fullMask
195// to the affinity mask for the initialization thread. They need to save and
196// restore the mask, and it could be needed later, so saving it is just an
197// optimization to avoid calling kmp_get_system_affinity() again.
198//
199static kmp_affin_mask_t *fullMask = NULL;
200
201kmp_affin_mask_t *
202__kmp_affinity_get_fullMask() { return fullMask; }
203
204
205static int nCoresPerPkg, nPackages;
Andrey Churbanovf696c822015-01-27 16:55:43 +0000206static int __kmp_nThreadsPerCore;
207#ifndef KMP_DFLT_NTH_CORES
208static int __kmp_ncores;
209#endif
Jim Cownie5e8470a2013-09-27 10:38:44 +0000210
211//
212// __kmp_affinity_uniform_topology() doesn't work when called from
213// places which support arbitrarily many levels in the machine topology
214// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
215// __kmp_affinity_create_x2apicid_map().
216//
217inline static bool
218__kmp_affinity_uniform_topology()
219{
220 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
221}
222
223
224//
225// Print out the detailed machine topology map, i.e. the physical locations
226// of each OS proc.
227//
228static void
229__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth,
230 int pkgLevel, int coreLevel, int threadLevel)
231{
232 int proc;
233
234 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
235 for (proc = 0; proc < len; proc++) {
236 int level;
237 kmp_str_buf_t buf;
238 __kmp_str_buf_init(&buf);
239 for (level = 0; level < depth; level++) {
240 if (level == threadLevel) {
241 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
242 }
243 else if (level == coreLevel) {
244 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
245 }
246 else if (level == pkgLevel) {
247 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
248 }
249 else if (level > pkgLevel) {
250 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
251 level - pkgLevel - 1);
252 }
253 else {
254 __kmp_str_buf_print(&buf, "L%d ", level);
255 }
256 __kmp_str_buf_print(&buf, "%d ",
257 address2os[proc].first.labels[level]);
258 }
259 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
260 buf.str);
261 __kmp_str_buf_free(&buf);
262 }
263}
264
265
266//
267// If we don't know how to retrieve the machine's processor topology, or
268// encounter an error in doing so, this routine is called to form a "flat"
269// mapping of os thread id's <-> processor id's.
270//
271static int
272__kmp_affinity_create_flat_map(AddrUnsPair **address2os,
273 kmp_i18n_id_t *const msg_id)
274{
275 *address2os = NULL;
276 *msg_id = kmp_i18n_null;
277
278 //
279 // Even if __kmp_affinity_type == affinity_none, this routine might still
Andrey Churbanovf696c822015-01-27 16:55:43 +0000280 // called to set __kmp_ncores, as well as
Jim Cownie5e8470a2013-09-27 10:38:44 +0000281 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
282 //
283 if (! KMP_AFFINITY_CAPABLE()) {
284 KMP_ASSERT(__kmp_affinity_type == affinity_none);
285 __kmp_ncores = nPackages = __kmp_xproc;
286 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000287 if (__kmp_affinity_verbose) {
288 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
289 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
290 KMP_INFORM(Uniform, "KMP_AFFINITY");
291 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
292 __kmp_nThreadsPerCore, __kmp_ncores);
293 }
294 return 0;
295 }
296
297 //
298 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +0000299 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +0000300 // nCoresPerPkg, & nPackages. Make sure all these vars are set
301 // correctly, and return now if affinity is not enabled.
302 //
303 __kmp_ncores = nPackages = __kmp_avail_proc;
304 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000305 if (__kmp_affinity_verbose) {
306 char buf[KMP_AFFIN_MASK_PRINT_LEN];
307 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
308
309 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
310 if (__kmp_affinity_respect_mask) {
311 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
312 } else {
313 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
314 }
315 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
316 KMP_INFORM(Uniform, "KMP_AFFINITY");
317 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
318 __kmp_nThreadsPerCore, __kmp_ncores);
319 }
320 if (__kmp_affinity_type == affinity_none) {
321 return 0;
322 }
323
324 //
325 // Contruct the data structure to be returned.
326 //
327 *address2os = (AddrUnsPair*)
328 __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
329 int avail_ct = 0;
330 unsigned int i;
331 for (i = 0; i < KMP_CPU_SETSIZE; ++i) {
332 //
333 // Skip this proc if it is not included in the machine model.
334 //
335 if (! KMP_CPU_ISSET(i, fullMask)) {
336 continue;
337 }
338
339 Address addr(1);
340 addr.labels[0] = i;
341 (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
342 }
343 if (__kmp_affinity_verbose) {
344 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
345 }
346
347 if (__kmp_affinity_gran_levels < 0) {
348 //
349 // Only the package level is modeled in the machine topology map,
350 // so the #levels of granularity is either 0 or 1.
351 //
352 if (__kmp_affinity_gran > affinity_gran_package) {
353 __kmp_affinity_gran_levels = 1;
354 }
355 else {
356 __kmp_affinity_gran_levels = 0;
357 }
358 }
359 return 1;
360}
361
362
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000363# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000364
365//
366// If multiple Windows* OS processor groups exist, we can create a 2-level
367// topology map with the groups at level 0 and the individual procs at
368// level 1.
369//
370// This facilitates letting the threads float among all procs in a group,
371// if granularity=group (the default when there are multiple groups).
372//
373static int
374__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
375 kmp_i18n_id_t *const msg_id)
376{
377 *address2os = NULL;
378 *msg_id = kmp_i18n_null;
379
380 //
381 // If we don't have multiple processor groups, return now.
382 // The flat mapping will be used.
383 //
384 if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) {
385 // FIXME set *msg_id
386 return -1;
387 }
388
389 //
390 // Contruct the data structure to be returned.
391 //
392 *address2os = (AddrUnsPair*)
393 __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
394 int avail_ct = 0;
395 int i;
396 for (i = 0; i < KMP_CPU_SETSIZE; ++i) {
397 //
398 // Skip this proc if it is not included in the machine model.
399 //
400 if (! KMP_CPU_ISSET(i, fullMask)) {
401 continue;
402 }
403
404 Address addr(2);
405 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
406 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
407 (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
408
409 if (__kmp_affinity_verbose) {
410 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
411 addr.labels[1]);
412 }
413 }
414
415 if (__kmp_affinity_gran_levels < 0) {
416 if (__kmp_affinity_gran == affinity_gran_group) {
417 __kmp_affinity_gran_levels = 1;
418 }
419 else if ((__kmp_affinity_gran == affinity_gran_fine)
420 || (__kmp_affinity_gran == affinity_gran_thread)) {
421 __kmp_affinity_gran_levels = 0;
422 }
423 else {
424 const char *gran_str = NULL;
425 if (__kmp_affinity_gran == affinity_gran_core) {
426 gran_str = "core";
427 }
428 else if (__kmp_affinity_gran == affinity_gran_package) {
429 gran_str = "package";
430 }
431 else if (__kmp_affinity_gran == affinity_gran_node) {
432 gran_str = "node";
433 }
434 else {
435 KMP_ASSERT(0);
436 }
437
438 // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread"
439 __kmp_affinity_gran_levels = 0;
440 }
441 }
442 return 2;
443}
444
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000445# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +0000446
447
448# if KMP_ARCH_X86 || KMP_ARCH_X86_64
449
450static int
451__kmp_cpuid_mask_width(int count) {
452 int r = 0;
453
454 while((1<<r) < count)
455 ++r;
456 return r;
457}
458
459
460class apicThreadInfo {
461public:
462 unsigned osId; // param to __kmp_affinity_bind_thread
463 unsigned apicId; // from cpuid after binding
464 unsigned maxCoresPerPkg; // ""
465 unsigned maxThreadsPerPkg; // ""
466 unsigned pkgId; // inferred from above values
467 unsigned coreId; // ""
468 unsigned threadId; // ""
469};
470
471
472static int
473__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b)
474{
475 const apicThreadInfo *aa = (const apicThreadInfo *)a;
476 const apicThreadInfo *bb = (const apicThreadInfo *)b;
477 if (aa->osId < bb->osId) return -1;
478 if (aa->osId > bb->osId) return 1;
479 return 0;
480}
481
482
483static int
484__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b)
485{
486 const apicThreadInfo *aa = (const apicThreadInfo *)a;
487 const apicThreadInfo *bb = (const apicThreadInfo *)b;
488 if (aa->pkgId < bb->pkgId) return -1;
489 if (aa->pkgId > bb->pkgId) return 1;
490 if (aa->coreId < bb->coreId) return -1;
491 if (aa->coreId > bb->coreId) return 1;
492 if (aa->threadId < bb->threadId) return -1;
493 if (aa->threadId > bb->threadId) return 1;
494 return 0;
495}
496
497
498//
499// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
500// an algorithm which cycles through the available os threads, setting
501// the current thread's affinity mask to that thread, and then retrieves
502// the Apic Id for each thread context using the cpuid instruction.
503//
504static int
505__kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
506 kmp_i18n_id_t *const msg_id)
507{
Andrey Churbanov1c331292015-01-27 17:03:42 +0000508 kmp_cpuid buf;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000509 int rc;
510 *address2os = NULL;
511 *msg_id = kmp_i18n_null;
512
Andrey Churbanov1c331292015-01-27 17:03:42 +0000513 //
514 // Check if cpuid leaf 4 is supported.
515 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000516 __kmp_x86_cpuid(0, 0, &buf);
517 if (buf.eax < 4) {
518 *msg_id = kmp_i18n_str_NoLeaf4Support;
519 return -1;
520 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000521
522 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000523 // The algorithm used starts by setting the affinity to each available
Andrey Churbanov1c331292015-01-27 17:03:42 +0000524 // thread and retrieving info from the cpuid instruction, so if we are
525 // not capable of calling __kmp_get_system_affinity() and
526 // _kmp_get_system_affinity(), then we need to do something else - use
527 // the defaults that we calculated from issuing cpuid without binding
528 // to each proc.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000529 //
530 if (! KMP_AFFINITY_CAPABLE()) {
531 //
532 // Hack to try and infer the machine topology using only the data
533 // available from cpuid on the current thread, and __kmp_xproc.
534 //
535 KMP_ASSERT(__kmp_affinity_type == affinity_none);
536
537 //
538 // Get an upper bound on the number of threads per package using
539 // cpuid(1).
540 //
541 // On some OS/chps combinations where HT is supported by the chip
542 // but is disabled, this value will be 2 on a single core chip.
543 // Usually, it will be 2 if HT is enabled and 1 if HT is disabled.
544 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000545 __kmp_x86_cpuid(1, 0, &buf);
546 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
547 if (maxThreadsPerPkg == 0) {
548 maxThreadsPerPkg = 1;
549 }
550
551 //
552 // The num cores per pkg comes from cpuid(4).
553 // 1 must be added to the encoded value.
554 //
555 // The author of cpu_count.cpp treated this only an upper bound
556 // on the number of cores, but I haven't seen any cases where it
557 // was greater than the actual number of cores, so we will treat
558 // it as exact in this block of code.
559 //
560 // First, we need to check if cpuid(4) is supported on this chip.
561 // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
562 // has the value n or greater.
563 //
564 __kmp_x86_cpuid(0, 0, &buf);
565 if (buf.eax >= 4) {
566 __kmp_x86_cpuid(4, 0, &buf);
567 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
568 }
569 else {
570 nCoresPerPkg = 1;
571 }
572
573 //
574 // There is no way to reliably tell if HT is enabled without issuing
575 // the cpuid instruction from every thread, can correlating the cpuid
576 // info, so if the machine is not affinity capable, we assume that HT
577 // is off. We have seen quite a few machines where maxThreadsPerPkg
578 // is 2, yet the machine does not support HT.
579 //
580 // - Older OSes are usually found on machines with older chips, which
581 // do not support HT.
582 //
583 // - The performance penalty for mistakenly identifying a machine as
584 // HT when it isn't (which results in blocktime being incorrecly set
585 // to 0) is greater than the penalty when for mistakenly identifying
586 // a machine as being 1 thread/core when it is really HT enabled
587 // (which results in blocktime being incorrectly set to a positive
588 // value).
589 //
590 __kmp_ncores = __kmp_xproc;
591 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
592 __kmp_nThreadsPerCore = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000593 if (__kmp_affinity_verbose) {
594 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
595 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
596 if (__kmp_affinity_uniform_topology()) {
597 KMP_INFORM(Uniform, "KMP_AFFINITY");
598 } else {
599 KMP_INFORM(NonUniform, "KMP_AFFINITY");
600 }
601 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
602 __kmp_nThreadsPerCore, __kmp_ncores);
603 }
604 return 0;
605 }
606
607 //
608 //
609 // From here on, we can assume that it is safe to call
610 // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
611 // even if __kmp_affinity_type = affinity_none.
612 //
613
614 //
615 // Save the affinity mask for the current thread.
616 //
617 kmp_affin_mask_t *oldMask;
618 KMP_CPU_ALLOC(oldMask);
619 KMP_ASSERT(oldMask != NULL);
620 __kmp_get_system_affinity(oldMask, TRUE);
621
622 //
623 // Run through each of the available contexts, binding the current thread
624 // to it, and obtaining the pertinent information using the cpuid instr.
625 //
626 // The relevant information is:
627 //
628 // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
629 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
630 //
631 // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The
632 // value of this field determines the width of the core# + thread#
633 // fields in the Apic Id. It is also an upper bound on the number
634 // of threads per package, but it has been verified that situations
635 // happen were it is not exact. In particular, on certain OS/chip
636 // combinations where Intel(R) Hyper-Threading Technology is supported
637 // by the chip but has
638 // been disabled, the value of this field will be 2 (for a single core
639 // chip). On other OS/chip combinations supporting
640 // Intel(R) Hyper-Threading Technology, the value of
641 // this field will be 1 when Intel(R) Hyper-Threading Technology is
642 // disabled and 2 when it is enabled.
643 //
644 // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The
645 // value of this field (+1) determines the width of the core# field in
646 // the Apic Id. The comments in "cpucount.cpp" say that this value is
647 // an upper bound, but the IA-32 architecture manual says that it is
648 // exactly the number of cores per package, and I haven't seen any
649 // case where it wasn't.
650 //
651 // From this information, deduce the package Id, core Id, and thread Id,
652 // and set the corresponding fields in the apicThreadInfo struct.
653 //
654 unsigned i;
655 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
656 __kmp_avail_proc * sizeof(apicThreadInfo));
657 unsigned nApics = 0;
658 for (i = 0; i < KMP_CPU_SETSIZE; ++i) {
659 //
660 // Skip this proc if it is not included in the machine model.
661 //
662 if (! KMP_CPU_ISSET(i, fullMask)) {
663 continue;
664 }
665 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
666
667 __kmp_affinity_bind_thread(i);
668 threadInfo[nApics].osId = i;
669
670 //
671 // The apic id and max threads per pkg come from cpuid(1).
672 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000673 __kmp_x86_cpuid(1, 0, &buf);
674 if (! (buf.edx >> 9) & 1) {
675 __kmp_set_system_affinity(oldMask, TRUE);
676 __kmp_free(threadInfo);
677 KMP_CPU_FREE(oldMask);
678 *msg_id = kmp_i18n_str_ApicNotPresent;
679 return -1;
680 }
681 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
682 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
683 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
684 threadInfo[nApics].maxThreadsPerPkg = 1;
685 }
686
687 //
688 // Max cores per pkg comes from cpuid(4).
689 // 1 must be added to the encoded value.
690 //
691 // First, we need to check if cpuid(4) is supported on this chip.
692 // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
693 // has the value n or greater.
694 //
695 __kmp_x86_cpuid(0, 0, &buf);
696 if (buf.eax >= 4) {
697 __kmp_x86_cpuid(4, 0, &buf);
698 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
699 }
700 else {
701 threadInfo[nApics].maxCoresPerPkg = 1;
702 }
703
704 //
705 // Infer the pkgId / coreId / threadId using only the info
706 // obtained locally.
707 //
708 int widthCT = __kmp_cpuid_mask_width(
709 threadInfo[nApics].maxThreadsPerPkg);
710 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
711
712 int widthC = __kmp_cpuid_mask_width(
713 threadInfo[nApics].maxCoresPerPkg);
714 int widthT = widthCT - widthC;
715 if (widthT < 0) {
716 //
717 // I've never seen this one happen, but I suppose it could, if
718 // the cpuid instruction on a chip was really screwed up.
719 // Make sure to restore the affinity mask before the tail call.
720 //
721 __kmp_set_system_affinity(oldMask, TRUE);
722 __kmp_free(threadInfo);
723 KMP_CPU_FREE(oldMask);
724 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
725 return -1;
726 }
727
728 int maskC = (1 << widthC) - 1;
729 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT)
730 &maskC;
731
732 int maskT = (1 << widthT) - 1;
733 threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT;
734
735 nApics++;
736 }
737
738 //
739 // We've collected all the info we need.
740 // Restore the old affinity mask for this thread.
741 //
742 __kmp_set_system_affinity(oldMask, TRUE);
743
744 //
745 // If there's only one thread context to bind to, form an Address object
746 // with depth 1 and return immediately (or, if affinity is off, set
747 // address2os to NULL and return).
748 //
749 // If it is configured to omit the package level when there is only a
750 // single package, the logic at the end of this routine won't work if
751 // there is only a single thread - it would try to form an Address
752 // object with depth 0.
753 //
754 KMP_ASSERT(nApics > 0);
755 if (nApics == 1) {
756 __kmp_ncores = nPackages = 1;
757 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000758 if (__kmp_affinity_verbose) {
759 char buf[KMP_AFFIN_MASK_PRINT_LEN];
760 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
761
762 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
763 if (__kmp_affinity_respect_mask) {
764 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
765 } else {
766 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
767 }
768 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
769 KMP_INFORM(Uniform, "KMP_AFFINITY");
770 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
771 __kmp_nThreadsPerCore, __kmp_ncores);
772 }
773
774 if (__kmp_affinity_type == affinity_none) {
775 __kmp_free(threadInfo);
776 KMP_CPU_FREE(oldMask);
777 return 0;
778 }
779
780 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
781 Address addr(1);
782 addr.labels[0] = threadInfo[0].pkgId;
783 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
784
785 if (__kmp_affinity_gran_levels < 0) {
786 __kmp_affinity_gran_levels = 0;
787 }
788
789 if (__kmp_affinity_verbose) {
790 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
791 }
792
793 __kmp_free(threadInfo);
794 KMP_CPU_FREE(oldMask);
795 return 1;
796 }
797
798 //
799 // Sort the threadInfo table by physical Id.
800 //
801 qsort(threadInfo, nApics, sizeof(*threadInfo),
802 __kmp_affinity_cmp_apicThreadInfo_phys_id);
803
804 //
805 // The table is now sorted by pkgId / coreId / threadId, but we really
806 // don't know the radix of any of the fields. pkgId's may be sparsely
807 // assigned among the chips on a system. Although coreId's are usually
808 // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
809 // [0..threadsPerCore-1], we don't want to make any such assumptions.
810 //
811 // For that matter, we don't know what coresPerPkg and threadsPerCore
812 // (or the total # packages) are at this point - we want to determine
813 // that now. We only have an upper bound on the first two figures.
814 //
815 // We also perform a consistency check at this point: the values returned
816 // by the cpuid instruction for any thread bound to a given package had
817 // better return the same info for maxThreadsPerPkg and maxCoresPerPkg.
818 //
819 nPackages = 1;
820 nCoresPerPkg = 1;
821 __kmp_nThreadsPerCore = 1;
822 unsigned nCores = 1;
823
824 unsigned pkgCt = 1; // to determine radii
825 unsigned lastPkgId = threadInfo[0].pkgId;
826 unsigned coreCt = 1;
827 unsigned lastCoreId = threadInfo[0].coreId;
828 unsigned threadCt = 1;
829 unsigned lastThreadId = threadInfo[0].threadId;
830
831 // intra-pkg consist checks
832 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
833 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
834
835 for (i = 1; i < nApics; i++) {
836 if (threadInfo[i].pkgId != lastPkgId) {
837 nCores++;
838 pkgCt++;
839 lastPkgId = threadInfo[i].pkgId;
840 if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
841 coreCt = 1;
842 lastCoreId = threadInfo[i].coreId;
843 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
844 threadCt = 1;
845 lastThreadId = threadInfo[i].threadId;
846
847 //
848 // This is a different package, so go on to the next iteration
849 // without doing any consistency checks. Reset the consistency
850 // check vars, though.
851 //
852 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
853 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
854 continue;
855 }
856
857 if (threadInfo[i].coreId != lastCoreId) {
858 nCores++;
859 coreCt++;
860 lastCoreId = threadInfo[i].coreId;
861 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
862 threadCt = 1;
863 lastThreadId = threadInfo[i].threadId;
864 }
865 else if (threadInfo[i].threadId != lastThreadId) {
866 threadCt++;
867 lastThreadId = threadInfo[i].threadId;
868 }
869 else {
870 __kmp_free(threadInfo);
871 KMP_CPU_FREE(oldMask);
872 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
873 return -1;
874 }
875
876 //
877 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
878 // fields agree between all the threads bounds to a given package.
879 //
880 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg)
881 || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
882 __kmp_free(threadInfo);
883 KMP_CPU_FREE(oldMask);
884 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
885 return -1;
886 }
887 }
888 nPackages = pkgCt;
889 if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
890 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
891
892 //
893 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +0000894 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +0000895 // nCoresPerPkg, & nPackages. Make sure all these vars are set
896 // correctly, and return now if affinity is not enabled.
897 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000898 __kmp_ncores = nCores;
899 if (__kmp_affinity_verbose) {
900 char buf[KMP_AFFIN_MASK_PRINT_LEN];
901 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
902
903 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
904 if (__kmp_affinity_respect_mask) {
905 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
906 } else {
907 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
908 }
909 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
910 if (__kmp_affinity_uniform_topology()) {
911 KMP_INFORM(Uniform, "KMP_AFFINITY");
912 } else {
913 KMP_INFORM(NonUniform, "KMP_AFFINITY");
914 }
915 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
916 __kmp_nThreadsPerCore, __kmp_ncores);
917
918 }
919
920 if (__kmp_affinity_type == affinity_none) {
921 __kmp_free(threadInfo);
922 KMP_CPU_FREE(oldMask);
923 return 0;
924 }
925
926 //
927 // Now that we've determined the number of packages, the number of cores
928 // per package, and the number of threads per core, we can construct the
929 // data structure that is to be returned.
930 //
931 int pkgLevel = 0;
932 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
933 int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
934 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
935
936 KMP_ASSERT(depth > 0);
937 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
938
939 for (i = 0; i < nApics; ++i) {
940 Address addr(depth);
941 unsigned os = threadInfo[i].osId;
942 int d = 0;
943
944 if (pkgLevel >= 0) {
945 addr.labels[d++] = threadInfo[i].pkgId;
946 }
947 if (coreLevel >= 0) {
948 addr.labels[d++] = threadInfo[i].coreId;
949 }
950 if (threadLevel >= 0) {
951 addr.labels[d++] = threadInfo[i].threadId;
952 }
953 (*address2os)[i] = AddrUnsPair(addr, os);
954 }
955
956 if (__kmp_affinity_gran_levels < 0) {
957 //
958 // Set the granularity level based on what levels are modeled
959 // in the machine topology map.
960 //
961 __kmp_affinity_gran_levels = 0;
962 if ((threadLevel >= 0)
963 && (__kmp_affinity_gran > affinity_gran_thread)) {
964 __kmp_affinity_gran_levels++;
965 }
966 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
967 __kmp_affinity_gran_levels++;
968 }
969 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
970 __kmp_affinity_gran_levels++;
971 }
972 }
973
974 if (__kmp_affinity_verbose) {
975 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
976 coreLevel, threadLevel);
977 }
978
979 __kmp_free(threadInfo);
980 KMP_CPU_FREE(oldMask);
981 return depth;
982}
983
984
985//
986// Intel(R) microarchitecture code name Nehalem, Dunnington and later
987// architectures support a newer interface for specifying the x2APIC Ids,
988// based on cpuid leaf 11.
989//
990static int
991__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
992 kmp_i18n_id_t *const msg_id)
993{
994 kmp_cpuid buf;
995
996 *address2os = NULL;
997 *msg_id = kmp_i18n_null;
998
999 //
1000 // Check to see if cpuid leaf 11 is supported.
1001 //
1002 __kmp_x86_cpuid(0, 0, &buf);
1003 if (buf.eax < 11) {
1004 *msg_id = kmp_i18n_str_NoLeaf11Support;
1005 return -1;
1006 }
1007 __kmp_x86_cpuid(11, 0, &buf);
1008 if (buf.ebx == 0) {
1009 *msg_id = kmp_i18n_str_NoLeaf11Support;
1010 return -1;
1011 }
1012
1013 //
1014 // Find the number of levels in the machine topology. While we're at it,
1015 // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will
1016 // try to get more accurate values later by explicitly counting them,
1017 // but get reasonable defaults now, in case we return early.
1018 //
1019 int level;
1020 int threadLevel = -1;
1021 int coreLevel = -1;
1022 int pkgLevel = -1;
1023 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1024
1025 for (level = 0;; level++) {
1026 if (level > 31) {
1027 //
1028 // FIXME: Hack for DPD200163180
1029 //
1030 // If level is big then something went wrong -> exiting
1031 //
1032 // There could actually be 32 valid levels in the machine topology,
1033 // but so far, the only machine we have seen which does not exit
1034 // this loop before iteration 32 has fubar x2APIC settings.
1035 //
1036 // For now, just reject this case based upon loop trip count.
1037 //
1038 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1039 return -1;
1040 }
1041 __kmp_x86_cpuid(11, level, &buf);
1042 if (buf.ebx == 0) {
1043 if (pkgLevel < 0) {
1044 //
1045 // Will infer nPackages from __kmp_xproc
1046 //
1047 pkgLevel = level;
1048 level++;
1049 }
1050 break;
1051 }
1052 int kind = (buf.ecx >> 8) & 0xff;
1053 if (kind == 1) {
1054 //
1055 // SMT level
1056 //
1057 threadLevel = level;
1058 coreLevel = -1;
1059 pkgLevel = -1;
1060 __kmp_nThreadsPerCore = buf.ebx & 0xff;
1061 if (__kmp_nThreadsPerCore == 0) {
1062 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1063 return -1;
1064 }
1065 }
1066 else if (kind == 2) {
1067 //
1068 // core level
1069 //
1070 coreLevel = level;
1071 pkgLevel = -1;
1072 nCoresPerPkg = buf.ebx & 0xff;
1073 if (nCoresPerPkg == 0) {
1074 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1075 return -1;
1076 }
1077 }
1078 else {
1079 if (level <= 0) {
1080 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1081 return -1;
1082 }
1083 if (pkgLevel >= 0) {
1084 continue;
1085 }
1086 pkgLevel = level;
1087 nPackages = buf.ebx & 0xff;
1088 if (nPackages == 0) {
1089 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1090 return -1;
1091 }
1092 }
1093 }
1094 int depth = level;
1095
1096 //
1097 // In the above loop, "level" was counted from the finest level (usually
1098 // thread) to the coarsest. The caller expects that we will place the
1099 // labels in (*address2os)[].first.labels[] in the inverse order, so
1100 // we need to invert the vars saying which level means what.
1101 //
1102 if (threadLevel >= 0) {
1103 threadLevel = depth - threadLevel - 1;
1104 }
1105 if (coreLevel >= 0) {
1106 coreLevel = depth - coreLevel - 1;
1107 }
1108 KMP_DEBUG_ASSERT(pkgLevel >= 0);
1109 pkgLevel = depth - pkgLevel - 1;
1110
1111 //
1112 // The algorithm used starts by setting the affinity to each available
Andrey Churbanov1c331292015-01-27 17:03:42 +00001113 // thread and retrieving info from the cpuid instruction, so if we are
1114 // not capable of calling __kmp_get_system_affinity() and
1115 // _kmp_get_system_affinity(), then we need to do something else - use
1116 // the defaults that we calculated from issuing cpuid without binding
1117 // to each proc.
Jim Cownie5e8470a2013-09-27 10:38:44 +00001118 //
1119 if (! KMP_AFFINITY_CAPABLE())
1120 {
1121 //
1122 // Hack to try and infer the machine topology using only the data
1123 // available from cpuid on the current thread, and __kmp_xproc.
1124 //
1125 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1126
1127 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1128 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001129 if (__kmp_affinity_verbose) {
1130 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1131 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1132 if (__kmp_affinity_uniform_topology()) {
1133 KMP_INFORM(Uniform, "KMP_AFFINITY");
1134 } else {
1135 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1136 }
1137 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1138 __kmp_nThreadsPerCore, __kmp_ncores);
1139 }
1140 return 0;
1141 }
1142
1143 //
1144 //
1145 // From here on, we can assume that it is safe to call
1146 // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
1147 // even if __kmp_affinity_type = affinity_none.
1148 //
1149
1150 //
1151 // Save the affinity mask for the current thread.
1152 //
1153 kmp_affin_mask_t *oldMask;
1154 KMP_CPU_ALLOC(oldMask);
1155 __kmp_get_system_affinity(oldMask, TRUE);
1156
1157 //
1158 // Allocate the data structure to be returned.
1159 //
1160 AddrUnsPair *retval = (AddrUnsPair *)
1161 __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1162
1163 //
1164 // Run through each of the available contexts, binding the current thread
1165 // to it, and obtaining the pertinent information using the cpuid instr.
1166 //
1167 unsigned int proc;
1168 int nApics = 0;
1169 for (proc = 0; proc < KMP_CPU_SETSIZE; ++proc) {
1170 //
1171 // Skip this proc if it is not included in the machine model.
1172 //
1173 if (! KMP_CPU_ISSET(proc, fullMask)) {
1174 continue;
1175 }
1176 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1177
1178 __kmp_affinity_bind_thread(proc);
1179
1180 //
1181 // Extrach the labels for each level in the machine topology map
1182 // from the Apic ID.
1183 //
1184 Address addr(depth);
1185 int prev_shift = 0;
1186
1187 for (level = 0; level < depth; level++) {
1188 __kmp_x86_cpuid(11, level, &buf);
1189 unsigned apicId = buf.edx;
1190 if (buf.ebx == 0) {
1191 if (level != depth - 1) {
1192 KMP_CPU_FREE(oldMask);
1193 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1194 return -1;
1195 }
1196 addr.labels[depth - level - 1] = apicId >> prev_shift;
1197 level++;
1198 break;
1199 }
1200 int shift = buf.eax & 0x1f;
1201 int mask = (1 << shift) - 1;
1202 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1203 prev_shift = shift;
1204 }
1205 if (level != depth) {
1206 KMP_CPU_FREE(oldMask);
1207 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1208 return -1;
1209 }
1210
1211 retval[nApics] = AddrUnsPair(addr, proc);
1212 nApics++;
1213 }
1214
1215 //
1216 // We've collected all the info we need.
1217 // Restore the old affinity mask for this thread.
1218 //
1219 __kmp_set_system_affinity(oldMask, TRUE);
1220
1221 //
1222 // If there's only one thread context to bind to, return now.
1223 //
1224 KMP_ASSERT(nApics > 0);
1225 if (nApics == 1) {
1226 __kmp_ncores = nPackages = 1;
1227 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001228 if (__kmp_affinity_verbose) {
1229 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1230 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1231
1232 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1233 if (__kmp_affinity_respect_mask) {
1234 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1235 } else {
1236 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1237 }
1238 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1239 KMP_INFORM(Uniform, "KMP_AFFINITY");
1240 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1241 __kmp_nThreadsPerCore, __kmp_ncores);
1242 }
1243
1244 if (__kmp_affinity_type == affinity_none) {
1245 __kmp_free(retval);
1246 KMP_CPU_FREE(oldMask);
1247 return 0;
1248 }
1249
1250 //
1251 // Form an Address object which only includes the package level.
1252 //
1253 Address addr(1);
1254 addr.labels[0] = retval[0].first.labels[pkgLevel];
1255 retval[0].first = addr;
1256
1257 if (__kmp_affinity_gran_levels < 0) {
1258 __kmp_affinity_gran_levels = 0;
1259 }
1260
1261 if (__kmp_affinity_verbose) {
1262 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1263 }
1264
1265 *address2os = retval;
1266 KMP_CPU_FREE(oldMask);
1267 return 1;
1268 }
1269
1270 //
1271 // Sort the table by physical Id.
1272 //
1273 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1274
1275 //
1276 // Find the radix at each of the levels.
1277 //
1278 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1279 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1280 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1281 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1282 for (level = 0; level < depth; level++) {
1283 totals[level] = 1;
1284 maxCt[level] = 1;
1285 counts[level] = 1;
1286 last[level] = retval[0].first.labels[level];
1287 }
1288
1289 //
1290 // From here on, the iteration variable "level" runs from the finest
1291 // level to the coarsest, i.e. we iterate forward through
1292 // (*address2os)[].first.labels[] - in the previous loops, we iterated
1293 // backwards.
1294 //
1295 for (proc = 1; (int)proc < nApics; proc++) {
1296 int level;
1297 for (level = 0; level < depth; level++) {
1298 if (retval[proc].first.labels[level] != last[level]) {
1299 int j;
1300 for (j = level + 1; j < depth; j++) {
1301 totals[j]++;
1302 counts[j] = 1;
1303 // The line below causes printing incorrect topology information
1304 // in case the max value for some level (maxCt[level]) is encountered earlier than
1305 // some less value while going through the array.
1306 // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2
1307 // whereas it must be 4.
1308 // TODO!!! Check if it can be commented safely
1309 //maxCt[j] = 1;
1310 last[j] = retval[proc].first.labels[j];
1311 }
1312 totals[level]++;
1313 counts[level]++;
1314 if (counts[level] > maxCt[level]) {
1315 maxCt[level] = counts[level];
1316 }
1317 last[level] = retval[proc].first.labels[level];
1318 break;
1319 }
1320 else if (level == depth - 1) {
1321 __kmp_free(last);
1322 __kmp_free(maxCt);
1323 __kmp_free(counts);
1324 __kmp_free(totals);
1325 __kmp_free(retval);
1326 KMP_CPU_FREE(oldMask);
1327 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1328 return -1;
1329 }
1330 }
1331 }
1332
1333 //
1334 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +00001335 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +00001336 // nCoresPerPkg, & nPackages. Make sure all these vars are set
1337 // correctly, and return if affinity is not enabled.
1338 //
1339 if (threadLevel >= 0) {
1340 __kmp_nThreadsPerCore = maxCt[threadLevel];
1341 }
1342 else {
1343 __kmp_nThreadsPerCore = 1;
1344 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001345 nPackages = totals[pkgLevel];
1346
1347 if (coreLevel >= 0) {
1348 __kmp_ncores = totals[coreLevel];
1349 nCoresPerPkg = maxCt[coreLevel];
1350 }
1351 else {
1352 __kmp_ncores = nPackages;
1353 nCoresPerPkg = 1;
1354 }
1355
1356 //
1357 // Check to see if the machine topology is uniform
1358 //
1359 unsigned prod = maxCt[0];
1360 for (level = 1; level < depth; level++) {
1361 prod *= maxCt[level];
1362 }
1363 bool uniform = (prod == totals[level - 1]);
1364
1365 //
1366 // Print the machine topology summary.
1367 //
1368 if (__kmp_affinity_verbose) {
1369 char mask[KMP_AFFIN_MASK_PRINT_LEN];
1370 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1371
1372 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1373 if (__kmp_affinity_respect_mask) {
1374 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1375 } else {
1376 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1377 }
1378 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1379 if (uniform) {
1380 KMP_INFORM(Uniform, "KMP_AFFINITY");
1381 } else {
1382 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1383 }
1384
1385 kmp_str_buf_t buf;
1386 __kmp_str_buf_init(&buf);
1387
1388 __kmp_str_buf_print(&buf, "%d", totals[0]);
1389 for (level = 1; level <= pkgLevel; level++) {
1390 __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1391 }
1392 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1393 __kmp_nThreadsPerCore, __kmp_ncores);
1394
1395 __kmp_str_buf_free(&buf);
1396 }
1397
1398 if (__kmp_affinity_type == affinity_none) {
1399 __kmp_free(last);
1400 __kmp_free(maxCt);
1401 __kmp_free(counts);
1402 __kmp_free(totals);
1403 __kmp_free(retval);
1404 KMP_CPU_FREE(oldMask);
1405 return 0;
1406 }
1407
1408 //
1409 // Find any levels with radiix 1, and remove them from the map
1410 // (except for the package level).
1411 //
1412 int new_depth = 0;
1413 for (level = 0; level < depth; level++) {
1414 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1415 continue;
1416 }
1417 new_depth++;
1418 }
1419
1420 //
1421 // If we are removing any levels, allocate a new vector to return,
1422 // and copy the relevant information to it.
1423 //
1424 if (new_depth != depth) {
1425 AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
1426 sizeof(AddrUnsPair) * nApics);
1427 for (proc = 0; (int)proc < nApics; proc++) {
1428 Address addr(new_depth);
1429 new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1430 }
1431 int new_level = 0;
Jonathan Peyton62f38402015-08-25 18:44:41 +00001432 int newPkgLevel = -1;
1433 int newCoreLevel = -1;
1434 int newThreadLevel = -1;
1435 int i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001436 for (level = 0; level < depth; level++) {
Jonathan Peyton62f38402015-08-25 18:44:41 +00001437 if ((maxCt[level] == 1)
1438 && (level != pkgLevel)) {
1439 //
1440 // Remove this level. Never remove the package level
1441 //
1442 continue;
1443 }
1444 if (level == pkgLevel) {
1445 newPkgLevel = level;
1446 }
1447 if (level == coreLevel) {
1448 newCoreLevel = level;
1449 }
1450 if (level == threadLevel) {
1451 newThreadLevel = level;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001452 }
1453 for (proc = 0; (int)proc < nApics; proc++) {
1454 new_retval[proc].first.labels[new_level]
1455 = retval[proc].first.labels[level];
1456 }
1457 new_level++;
1458 }
1459
1460 __kmp_free(retval);
1461 retval = new_retval;
1462 depth = new_depth;
Jonathan Peyton62f38402015-08-25 18:44:41 +00001463 pkgLevel = newPkgLevel;
1464 coreLevel = newCoreLevel;
1465 threadLevel = newThreadLevel;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001466 }
1467
1468 if (__kmp_affinity_gran_levels < 0) {
1469 //
1470 // Set the granularity level based on what levels are modeled
1471 // in the machine topology map.
1472 //
1473 __kmp_affinity_gran_levels = 0;
1474 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1475 __kmp_affinity_gran_levels++;
1476 }
1477 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1478 __kmp_affinity_gran_levels++;
1479 }
1480 if (__kmp_affinity_gran > affinity_gran_package) {
1481 __kmp_affinity_gran_levels++;
1482 }
1483 }
1484
1485 if (__kmp_affinity_verbose) {
1486 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel,
1487 coreLevel, threadLevel);
1488 }
1489
1490 __kmp_free(last);
1491 __kmp_free(maxCt);
1492 __kmp_free(counts);
1493 __kmp_free(totals);
1494 KMP_CPU_FREE(oldMask);
1495 *address2os = retval;
1496 return depth;
1497}
1498
1499
1500# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1501
1502
1503#define osIdIndex 0
1504#define threadIdIndex 1
1505#define coreIdIndex 2
1506#define pkgIdIndex 3
1507#define nodeIdIndex 4
1508
1509typedef unsigned *ProcCpuInfo;
1510static unsigned maxIndex = pkgIdIndex;
1511
1512
1513static int
1514__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b)
1515{
1516 const unsigned *aa = (const unsigned *)a;
1517 const unsigned *bb = (const unsigned *)b;
1518 if (aa[osIdIndex] < bb[osIdIndex]) return -1;
1519 if (aa[osIdIndex] > bb[osIdIndex]) return 1;
1520 return 0;
1521};
1522
1523
1524static int
1525__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b)
1526{
1527 unsigned i;
1528 const unsigned *aa = *((const unsigned **)a);
1529 const unsigned *bb = *((const unsigned **)b);
1530 for (i = maxIndex; ; i--) {
1531 if (aa[i] < bb[i]) return -1;
1532 if (aa[i] > bb[i]) return 1;
1533 if (i == osIdIndex) break;
1534 }
1535 return 0;
1536}
1537
1538
1539//
1540// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
1541// affinity map.
1542//
1543static int
1544__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line,
1545 kmp_i18n_id_t *const msg_id, FILE *f)
1546{
1547 *address2os = NULL;
1548 *msg_id = kmp_i18n_null;
1549
1550 //
1551 // Scan of the file, and count the number of "processor" (osId) fields,
Alp Toker8f2d3f02014-02-24 10:40:15 +00001552 // and find the highest value of <n> for a node_<n> field.
Jim Cownie5e8470a2013-09-27 10:38:44 +00001553 //
1554 char buf[256];
1555 unsigned num_records = 0;
1556 while (! feof(f)) {
1557 buf[sizeof(buf) - 1] = 1;
1558 if (! fgets(buf, sizeof(buf), f)) {
1559 //
1560 // Read errors presumably because of EOF
1561 //
1562 break;
1563 }
1564
1565 char s1[] = "processor";
1566 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1567 num_records++;
1568 continue;
1569 }
1570
1571 //
1572 // FIXME - this will match "node_<n> <garbage>"
1573 //
1574 unsigned level;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001575 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001576 if (nodeIdIndex + level >= maxIndex) {
1577 maxIndex = nodeIdIndex + level;
1578 }
1579 continue;
1580 }
1581 }
1582
1583 //
1584 // Check for empty file / no valid processor records, or too many.
1585 // The number of records can't exceed the number of valid bits in the
1586 // affinity mask.
1587 //
1588 if (num_records == 0) {
1589 *line = 0;
1590 *msg_id = kmp_i18n_str_NoProcRecords;
1591 return -1;
1592 }
1593 if (num_records > (unsigned)__kmp_xproc) {
1594 *line = 0;
1595 *msg_id = kmp_i18n_str_TooManyProcRecords;
1596 return -1;
1597 }
1598
1599 //
1600 // Set the file pointer back to the begginning, so that we can scan the
1601 // file again, this time performing a full parse of the data.
1602 // Allocate a vector of ProcCpuInfo object, where we will place the data.
1603 // Adding an extra element at the end allows us to remove a lot of extra
1604 // checks for termination conditions.
1605 //
1606 if (fseek(f, 0, SEEK_SET) != 0) {
1607 *line = 0;
1608 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
1609 return -1;
1610 }
1611
1612 //
1613 // Allocate the array of records to store the proc info in. The dummy
1614 // element at the end makes the logic in filling them out easier to code.
1615 //
1616 unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1)
1617 * sizeof(unsigned *));
1618 unsigned i;
1619 for (i = 0; i <= num_records; i++) {
1620 threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1)
1621 * sizeof(unsigned));
1622 }
1623
1624#define CLEANUP_THREAD_INFO \
1625 for (i = 0; i <= num_records; i++) { \
1626 __kmp_free(threadInfo[i]); \
1627 } \
1628 __kmp_free(threadInfo);
1629
1630 //
1631 // A value of UINT_MAX means that we didn't find the field
1632 //
1633 unsigned __index;
1634
1635#define INIT_PROC_INFO(p) \
1636 for (__index = 0; __index <= maxIndex; __index++) { \
1637 (p)[__index] = UINT_MAX; \
1638 }
1639
1640 for (i = 0; i <= num_records; i++) {
1641 INIT_PROC_INFO(threadInfo[i]);
1642 }
1643
1644 unsigned num_avail = 0;
1645 *line = 0;
1646 while (! feof(f)) {
1647 //
1648 // Create an inner scoping level, so that all the goto targets at the
1649 // end of the loop appear in an outer scoping level. This avoids
1650 // warnings about jumping past an initialization to a target in the
1651 // same block.
1652 //
1653 {
1654 buf[sizeof(buf) - 1] = 1;
1655 bool long_line = false;
1656 if (! fgets(buf, sizeof(buf), f)) {
1657 //
1658 // Read errors presumably because of EOF
1659 //
1660 // If there is valid data in threadInfo[num_avail], then fake
1661 // a blank line in ensure that the last address gets parsed.
1662 //
1663 bool valid = false;
1664 for (i = 0; i <= maxIndex; i++) {
1665 if (threadInfo[num_avail][i] != UINT_MAX) {
1666 valid = true;
1667 }
1668 }
1669 if (! valid) {
1670 break;
1671 }
1672 buf[0] = 0;
1673 } else if (!buf[sizeof(buf) - 1]) {
1674 //
1675 // The line is longer than the buffer. Set a flag and don't
1676 // emit an error if we were going to ignore the line, anyway.
1677 //
1678 long_line = true;
1679
1680#define CHECK_LINE \
1681 if (long_line) { \
1682 CLEANUP_THREAD_INFO; \
1683 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
1684 return -1; \
1685 }
1686 }
1687 (*line)++;
1688
1689 char s1[] = "processor";
1690 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1691 CHECK_LINE;
1692 char *p = strchr(buf + sizeof(s1) - 1, ':');
1693 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001694 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001695 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field;
1696 threadInfo[num_avail][osIdIndex] = val;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001697#if KMP_OS_LINUX && USE_SYSFS_INFO
1698 char path[256];
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001699 KMP_SNPRINTF(path, sizeof(path),
Jim Cownie181b4bb2013-12-23 17:28:57 +00001700 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
1701 threadInfo[num_avail][osIdIndex]);
1702 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
1703
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001704 KMP_SNPRINTF(path, sizeof(path),
Jim Cownie181b4bb2013-12-23 17:28:57 +00001705 "/sys/devices/system/cpu/cpu%u/topology/core_id",
1706 threadInfo[num_avail][osIdIndex]);
1707 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001708 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001709#else
Jim Cownie5e8470a2013-09-27 10:38:44 +00001710 }
1711 char s2[] = "physical id";
1712 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
1713 CHECK_LINE;
1714 char *p = strchr(buf + sizeof(s2) - 1, ':');
1715 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001716 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001717 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field;
1718 threadInfo[num_avail][pkgIdIndex] = val;
1719 continue;
1720 }
1721 char s3[] = "core id";
1722 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
1723 CHECK_LINE;
1724 char *p = strchr(buf + sizeof(s3) - 1, ':');
1725 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001726 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001727 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field;
1728 threadInfo[num_avail][coreIdIndex] = val;
1729 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001730#endif // KMP_OS_LINUX && USE_SYSFS_INFO
Jim Cownie5e8470a2013-09-27 10:38:44 +00001731 }
1732 char s4[] = "thread id";
1733 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
1734 CHECK_LINE;
1735 char *p = strchr(buf + sizeof(s4) - 1, ':');
1736 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001737 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001738 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field;
1739 threadInfo[num_avail][threadIdIndex] = val;
1740 continue;
1741 }
1742 unsigned level;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001743 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001744 CHECK_LINE;
1745 char *p = strchr(buf + sizeof(s4) - 1, ':');
1746 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001747 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001748 KMP_ASSERT(nodeIdIndex + level <= maxIndex);
1749 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field;
1750 threadInfo[num_avail][nodeIdIndex + level] = val;
1751 continue;
1752 }
1753
1754 //
1755 // We didn't recognize the leading token on the line.
1756 // There are lots of leading tokens that we don't recognize -
1757 // if the line isn't empty, go on to the next line.
1758 //
1759 if ((*buf != 0) && (*buf != '\n')) {
1760 //
1761 // If the line is longer than the buffer, read characters
1762 // until we find a newline.
1763 //
1764 if (long_line) {
1765 int ch;
1766 while (((ch = fgetc(f)) != EOF) && (ch != '\n'));
1767 }
1768 continue;
1769 }
1770
1771 //
1772 // A newline has signalled the end of the processor record.
1773 // Check that there aren't too many procs specified.
1774 //
Jim Cownie4cc4bb42014-10-07 16:25:50 +00001775 if ((int)num_avail == __kmp_xproc) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001776 CLEANUP_THREAD_INFO;
1777 *msg_id = kmp_i18n_str_TooManyEntries;
1778 return -1;
1779 }
1780
1781 //
1782 // Check for missing fields. The osId field must be there, and we
1783 // currently require that the physical id field is specified, also.
1784 //
1785 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
1786 CLEANUP_THREAD_INFO;
1787 *msg_id = kmp_i18n_str_MissingProcField;
1788 return -1;
1789 }
1790 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
1791 CLEANUP_THREAD_INFO;
1792 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
1793 return -1;
1794 }
1795
1796 //
1797 // Skip this proc if it is not included in the machine model.
1798 //
1799 if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) {
1800 INIT_PROC_INFO(threadInfo[num_avail]);
1801 continue;
1802 }
1803
1804 //
1805 // We have a successful parse of this proc's info.
1806 // Increment the counter, and prepare for the next proc.
1807 //
1808 num_avail++;
1809 KMP_ASSERT(num_avail <= num_records);
1810 INIT_PROC_INFO(threadInfo[num_avail]);
1811 }
1812 continue;
1813
1814 no_val:
1815 CLEANUP_THREAD_INFO;
1816 *msg_id = kmp_i18n_str_MissingValCpuinfo;
1817 return -1;
1818
1819 dup_field:
1820 CLEANUP_THREAD_INFO;
1821 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
1822 return -1;
1823 }
1824 *line = 0;
1825
1826# if KMP_MIC && REDUCE_TEAM_SIZE
1827 unsigned teamSize = 0;
1828# endif // KMP_MIC && REDUCE_TEAM_SIZE
1829
1830 // check for num_records == __kmp_xproc ???
1831
1832 //
1833 // If there's only one thread context to bind to, form an Address object
1834 // with depth 1 and return immediately (or, if affinity is off, set
1835 // address2os to NULL and return).
1836 //
1837 // If it is configured to omit the package level when there is only a
1838 // single package, the logic at the end of this routine won't work if
1839 // there is only a single thread - it would try to form an Address
1840 // object with depth 0.
1841 //
1842 KMP_ASSERT(num_avail > 0);
1843 KMP_ASSERT(num_avail <= num_records);
1844 if (num_avail == 1) {
1845 __kmp_ncores = 1;
1846 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001847 if (__kmp_affinity_verbose) {
1848 if (! KMP_AFFINITY_CAPABLE()) {
1849 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
1850 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1851 KMP_INFORM(Uniform, "KMP_AFFINITY");
1852 }
1853 else {
1854 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1855 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
1856 fullMask);
1857 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
1858 if (__kmp_affinity_respect_mask) {
1859 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1860 } else {
1861 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1862 }
1863 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1864 KMP_INFORM(Uniform, "KMP_AFFINITY");
1865 }
1866 int index;
1867 kmp_str_buf_t buf;
1868 __kmp_str_buf_init(&buf);
1869 __kmp_str_buf_print(&buf, "1");
1870 for (index = maxIndex - 1; index > pkgIdIndex; index--) {
1871 __kmp_str_buf_print(&buf, " x 1");
1872 }
1873 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
1874 __kmp_str_buf_free(&buf);
1875 }
1876
1877 if (__kmp_affinity_type == affinity_none) {
1878 CLEANUP_THREAD_INFO;
1879 return 0;
1880 }
1881
1882 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
1883 Address addr(1);
1884 addr.labels[0] = threadInfo[0][pkgIdIndex];
1885 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
1886
1887 if (__kmp_affinity_gran_levels < 0) {
1888 __kmp_affinity_gran_levels = 0;
1889 }
1890
1891 if (__kmp_affinity_verbose) {
1892 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1893 }
1894
1895 CLEANUP_THREAD_INFO;
1896 return 1;
1897 }
1898
1899 //
1900 // Sort the threadInfo table by physical Id.
1901 //
1902 qsort(threadInfo, num_avail, sizeof(*threadInfo),
1903 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
1904
1905 //
1906 // The table is now sorted by pkgId / coreId / threadId, but we really
1907 // don't know the radix of any of the fields. pkgId's may be sparsely
1908 // assigned among the chips on a system. Although coreId's are usually
1909 // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
1910 // [0..threadsPerCore-1], we don't want to make any such assumptions.
1911 //
1912 // For that matter, we don't know what coresPerPkg and threadsPerCore
1913 // (or the total # packages) are at this point - we want to determine
1914 // that now. We only have an upper bound on the first two figures.
1915 //
1916 unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1)
1917 * sizeof(unsigned));
1918 unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1)
1919 * sizeof(unsigned));
1920 unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1)
1921 * sizeof(unsigned));
1922 unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1)
1923 * sizeof(unsigned));
1924
1925 bool assign_thread_ids = false;
1926 unsigned threadIdCt;
1927 unsigned index;
1928
1929 restart_radix_check:
1930 threadIdCt = 0;
1931
1932 //
1933 // Initialize the counter arrays with data from threadInfo[0].
1934 //
1935 if (assign_thread_ids) {
1936 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
1937 threadInfo[0][threadIdIndex] = threadIdCt++;
1938 }
1939 else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
1940 threadIdCt = threadInfo[0][threadIdIndex] + 1;
1941 }
1942 }
1943 for (index = 0; index <= maxIndex; index++) {
1944 counts[index] = 1;
1945 maxCt[index] = 1;
1946 totals[index] = 1;
1947 lastId[index] = threadInfo[0][index];;
1948 }
1949
1950 //
1951 // Run through the rest of the OS procs.
1952 //
1953 for (i = 1; i < num_avail; i++) {
1954 //
1955 // Find the most significant index whose id differs
1956 // from the id for the previous OS proc.
1957 //
1958 for (index = maxIndex; index >= threadIdIndex; index--) {
1959 if (assign_thread_ids && (index == threadIdIndex)) {
1960 //
1961 // Auto-assign the thread id field if it wasn't specified.
1962 //
1963 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
1964 threadInfo[i][threadIdIndex] = threadIdCt++;
1965 }
1966
1967 //
1968 // Aparrently the thread id field was specified for some
1969 // entries and not others. Start the thread id counter
1970 // off at the next higher thread id.
1971 //
1972 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
1973 threadIdCt = threadInfo[i][threadIdIndex] + 1;
1974 }
1975 }
1976 if (threadInfo[i][index] != lastId[index]) {
1977 //
1978 // Run through all indices which are less significant,
1979 // and reset the counts to 1.
1980 //
1981 // At all levels up to and including index, we need to
1982 // increment the totals and record the last id.
1983 //
1984 unsigned index2;
1985 for (index2 = threadIdIndex; index2 < index; index2++) {
1986 totals[index2]++;
1987 if (counts[index2] > maxCt[index2]) {
1988 maxCt[index2] = counts[index2];
1989 }
1990 counts[index2] = 1;
1991 lastId[index2] = threadInfo[i][index2];
1992 }
1993 counts[index]++;
1994 totals[index]++;
1995 lastId[index] = threadInfo[i][index];
1996
1997 if (assign_thread_ids && (index > threadIdIndex)) {
1998
1999# if KMP_MIC && REDUCE_TEAM_SIZE
2000 //
2001 // The default team size is the total #threads in the machine
2002 // minus 1 thread for every core that has 3 or more threads.
2003 //
2004 teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
2005# endif // KMP_MIC && REDUCE_TEAM_SIZE
2006
2007 //
2008 // Restart the thread counter, as we are on a new core.
2009 //
2010 threadIdCt = 0;
2011
2012 //
2013 // Auto-assign the thread id field if it wasn't specified.
2014 //
2015 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2016 threadInfo[i][threadIdIndex] = threadIdCt++;
2017 }
2018
2019 //
2020 // Aparrently the thread id field was specified for some
2021 // entries and not others. Start the thread id counter
2022 // off at the next higher thread id.
2023 //
2024 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2025 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2026 }
2027 }
2028 break;
2029 }
2030 }
2031 if (index < threadIdIndex) {
2032 //
2033 // If thread ids were specified, it is an error if they are not
2034 // unique. Also, check that we waven't already restarted the
2035 // loop (to be safe - shouldn't need to).
2036 //
2037 if ((threadInfo[i][threadIdIndex] != UINT_MAX)
2038 || assign_thread_ids) {
2039 __kmp_free(lastId);
2040 __kmp_free(totals);
2041 __kmp_free(maxCt);
2042 __kmp_free(counts);
2043 CLEANUP_THREAD_INFO;
2044 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2045 return -1;
2046 }
2047
2048 //
2049 // If the thread ids were not specified and we see entries
2050 // entries that are duplicates, start the loop over and
2051 // assign the thread ids manually.
2052 //
2053 assign_thread_ids = true;
2054 goto restart_radix_check;
2055 }
2056 }
2057
2058# if KMP_MIC && REDUCE_TEAM_SIZE
2059 //
2060 // The default team size is the total #threads in the machine
2061 // minus 1 thread for every core that has 3 or more threads.
2062 //
2063 teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
2064# endif // KMP_MIC && REDUCE_TEAM_SIZE
2065
2066 for (index = threadIdIndex; index <= maxIndex; index++) {
2067 if (counts[index] > maxCt[index]) {
2068 maxCt[index] = counts[index];
2069 }
2070 }
2071
2072 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2073 nCoresPerPkg = maxCt[coreIdIndex];
2074 nPackages = totals[pkgIdIndex];
2075
2076 //
2077 // Check to see if the machine topology is uniform
2078 //
2079 unsigned prod = totals[maxIndex];
2080 for (index = threadIdIndex; index < maxIndex; index++) {
2081 prod *= maxCt[index];
2082 }
2083 bool uniform = (prod == totals[threadIdIndex]);
2084
2085 //
2086 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +00002087 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +00002088 // nCoresPerPkg, & nPackages. Make sure all these vars are set
2089 // correctly, and return now if affinity is not enabled.
2090 //
Jim Cownie5e8470a2013-09-27 10:38:44 +00002091 __kmp_ncores = totals[coreIdIndex];
2092
2093 if (__kmp_affinity_verbose) {
2094 if (! KMP_AFFINITY_CAPABLE()) {
2095 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2096 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2097 if (uniform) {
2098 KMP_INFORM(Uniform, "KMP_AFFINITY");
2099 } else {
2100 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2101 }
2102 }
2103 else {
2104 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2105 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
2106 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2107 if (__kmp_affinity_respect_mask) {
2108 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2109 } else {
2110 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2111 }
2112 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2113 if (uniform) {
2114 KMP_INFORM(Uniform, "KMP_AFFINITY");
2115 } else {
2116 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2117 }
2118 }
2119 kmp_str_buf_t buf;
2120 __kmp_str_buf_init(&buf);
2121
2122 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2123 for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2124 __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2125 }
2126 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2127 maxCt[threadIdIndex], __kmp_ncores);
2128
2129 __kmp_str_buf_free(&buf);
2130 }
2131
2132# if KMP_MIC && REDUCE_TEAM_SIZE
2133 //
2134 // Set the default team size.
2135 //
2136 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2137 __kmp_dflt_team_nth = teamSize;
2138 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n",
2139 __kmp_dflt_team_nth));
2140 }
2141# endif // KMP_MIC && REDUCE_TEAM_SIZE
2142
2143 if (__kmp_affinity_type == affinity_none) {
2144 __kmp_free(lastId);
2145 __kmp_free(totals);
2146 __kmp_free(maxCt);
2147 __kmp_free(counts);
2148 CLEANUP_THREAD_INFO;
2149 return 0;
2150 }
2151
2152 //
2153 // Count the number of levels which have more nodes at that level than
2154 // at the parent's level (with there being an implicit root node of
2155 // the top level). This is equivalent to saying that there is at least
2156 // one node at this level which has a sibling. These levels are in the
2157 // map, and the package level is always in the map.
2158 //
2159 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2160 int level = 0;
2161 for (index = threadIdIndex; index < maxIndex; index++) {
2162 KMP_ASSERT(totals[index] >= totals[index + 1]);
2163 inMap[index] = (totals[index] > totals[index + 1]);
2164 }
2165 inMap[maxIndex] = (totals[maxIndex] > 1);
2166 inMap[pkgIdIndex] = true;
2167
2168 int depth = 0;
2169 for (index = threadIdIndex; index <= maxIndex; index++) {
2170 if (inMap[index]) {
2171 depth++;
2172 }
2173 }
2174 KMP_ASSERT(depth > 0);
2175
2176 //
2177 // Construct the data structure that is to be returned.
2178 //
2179 *address2os = (AddrUnsPair*)
2180 __kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2181 int pkgLevel = -1;
2182 int coreLevel = -1;
2183 int threadLevel = -1;
2184
2185 for (i = 0; i < num_avail; ++i) {
2186 Address addr(depth);
2187 unsigned os = threadInfo[i][osIdIndex];
2188 int src_index;
2189 int dst_index = 0;
2190
2191 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2192 if (! inMap[src_index]) {
2193 continue;
2194 }
2195 addr.labels[dst_index] = threadInfo[i][src_index];
2196 if (src_index == pkgIdIndex) {
2197 pkgLevel = dst_index;
2198 }
2199 else if (src_index == coreIdIndex) {
2200 coreLevel = dst_index;
2201 }
2202 else if (src_index == threadIdIndex) {
2203 threadLevel = dst_index;
2204 }
2205 dst_index++;
2206 }
2207 (*address2os)[i] = AddrUnsPair(addr, os);
2208 }
2209
2210 if (__kmp_affinity_gran_levels < 0) {
2211 //
2212 // Set the granularity level based on what levels are modeled
2213 // in the machine topology map.
2214 //
2215 unsigned src_index;
2216 __kmp_affinity_gran_levels = 0;
2217 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2218 if (! inMap[src_index]) {
2219 continue;
2220 }
2221 switch (src_index) {
2222 case threadIdIndex:
2223 if (__kmp_affinity_gran > affinity_gran_thread) {
2224 __kmp_affinity_gran_levels++;
2225 }
2226
2227 break;
2228 case coreIdIndex:
2229 if (__kmp_affinity_gran > affinity_gran_core) {
2230 __kmp_affinity_gran_levels++;
2231 }
2232 break;
2233
2234 case pkgIdIndex:
2235 if (__kmp_affinity_gran > affinity_gran_package) {
2236 __kmp_affinity_gran_levels++;
2237 }
2238 break;
2239 }
2240 }
2241 }
2242
2243 if (__kmp_affinity_verbose) {
2244 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2245 coreLevel, threadLevel);
2246 }
2247
2248 __kmp_free(inMap);
2249 __kmp_free(lastId);
2250 __kmp_free(totals);
2251 __kmp_free(maxCt);
2252 __kmp_free(counts);
2253 CLEANUP_THREAD_INFO;
2254 return depth;
2255}
2256
2257
2258//
2259// Create and return a table of affinity masks, indexed by OS thread ID.
2260// This routine handles OR'ing together all the affinity masks of threads
2261// that are sufficiently close, if granularity > fine.
2262//
2263static kmp_affin_mask_t *
2264__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique,
2265 AddrUnsPair *address2os, unsigned numAddrs)
2266{
2267 //
2268 // First form a table of affinity masks in order of OS thread id.
2269 //
2270 unsigned depth;
2271 unsigned maxOsId;
2272 unsigned i;
2273
2274 KMP_ASSERT(numAddrs > 0);
2275 depth = address2os[0].first.depth;
2276
2277 maxOsId = 0;
2278 for (i = 0; i < numAddrs; i++) {
2279 unsigned osId = address2os[i].second;
2280 if (osId > maxOsId) {
2281 maxOsId = osId;
2282 }
2283 }
2284 kmp_affin_mask_t *osId2Mask = (kmp_affin_mask_t *)__kmp_allocate(
2285 (maxOsId + 1) * __kmp_affin_mask_size);
2286
2287 //
2288 // Sort the address2os table according to physical order. Doing so
2289 // will put all threads on the same core/package/node in consecutive
2290 // locations.
2291 //
2292 qsort(address2os, numAddrs, sizeof(*address2os),
2293 __kmp_affinity_cmp_Address_labels);
2294
2295 KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2296 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2297 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2298 }
2299 if (__kmp_affinity_gran_levels >= (int)depth) {
2300 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2301 && (__kmp_affinity_type != affinity_none))) {
2302 KMP_WARNING(AffThreadsMayMigrate);
2303 }
2304 }
2305
2306 //
2307 // Run through the table, forming the masks for all threads on each
2308 // core. Threads on the same core will have identical "Address"
2309 // objects, not considering the last level, which must be the thread
2310 // id. All threads on a core will appear consecutively.
2311 //
2312 unsigned unique = 0;
2313 unsigned j = 0; // index of 1st thread on core
2314 unsigned leader = 0;
2315 Address *leaderAddr = &(address2os[0].first);
2316 kmp_affin_mask_t *sum
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002317 = (kmp_affin_mask_t *)KMP_ALLOCA(__kmp_affin_mask_size);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002318 KMP_CPU_ZERO(sum);
2319 KMP_CPU_SET(address2os[0].second, sum);
2320 for (i = 1; i < numAddrs; i++) {
2321 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00002322 // If this thread is sufficiently close to the leader (within the
Jim Cownie5e8470a2013-09-27 10:38:44 +00002323 // granularity setting), then set the bit for this os thread in the
2324 // affinity mask for this group, and go on to the next thread.
2325 //
2326 if (leaderAddr->isClose(address2os[i].first,
2327 __kmp_affinity_gran_levels)) {
2328 KMP_CPU_SET(address2os[i].second, sum);
2329 continue;
2330 }
2331
2332 //
2333 // For every thread in this group, copy the mask to the thread's
2334 // entry in the osId2Mask table. Mark the first address as a
2335 // leader.
2336 //
2337 for (; j < i; j++) {
2338 unsigned osId = address2os[j].second;
2339 KMP_DEBUG_ASSERT(osId <= maxOsId);
2340 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2341 KMP_CPU_COPY(mask, sum);
2342 address2os[j].first.leader = (j == leader);
2343 }
2344 unique++;
2345
2346 //
2347 // Start a new mask.
2348 //
2349 leader = i;
2350 leaderAddr = &(address2os[i].first);
2351 KMP_CPU_ZERO(sum);
2352 KMP_CPU_SET(address2os[i].second, sum);
2353 }
2354
2355 //
2356 // For every thread in last group, copy the mask to the thread's
2357 // entry in the osId2Mask table.
2358 //
2359 for (; j < i; j++) {
2360 unsigned osId = address2os[j].second;
2361 KMP_DEBUG_ASSERT(osId <= maxOsId);
2362 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2363 KMP_CPU_COPY(mask, sum);
2364 address2os[j].first.leader = (j == leader);
2365 }
2366 unique++;
2367
2368 *maxIndex = maxOsId;
2369 *numUnique = unique;
2370 return osId2Mask;
2371}
2372
2373
2374//
2375// Stuff for the affinity proclist parsers. It's easier to declare these vars
2376// as file-static than to try and pass them through the calling sequence of
2377// the recursive-descent OMP_PLACES parser.
2378//
2379static kmp_affin_mask_t *newMasks;
2380static int numNewMasks;
2381static int nextNewMask;
2382
2383#define ADD_MASK(_mask) \
2384 { \
2385 if (nextNewMask >= numNewMasks) { \
2386 numNewMasks *= 2; \
2387 newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_REALLOC(newMasks, \
2388 numNewMasks * __kmp_affin_mask_size); \
2389 } \
2390 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2391 nextNewMask++; \
2392 }
2393
2394#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \
2395 { \
2396 if (((_osId) > _maxOsId) || \
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002397 (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
Jim Cownie5e8470a2013-09-27 10:38:44 +00002398 if (__kmp_affinity_verbose || (__kmp_affinity_warnings \
2399 && (__kmp_affinity_type != affinity_none))) { \
2400 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2401 } \
2402 } \
2403 else { \
2404 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2405 } \
2406 }
2407
2408
2409//
2410// Re-parse the proclist (for the explicit affinity type), and form the list
2411// of affinity newMasks indexed by gtid.
2412//
2413static void
2414__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2415 unsigned int *out_numMasks, const char *proclist,
2416 kmp_affin_mask_t *osId2Mask, int maxOsId)
2417{
2418 const char *scan = proclist;
2419 const char *next = proclist;
2420
2421 //
2422 // We use malloc() for the temporary mask vector,
2423 // so that we can use realloc() to extend it.
2424 //
2425 numNewMasks = 2;
2426 newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(numNewMasks
2427 * __kmp_affin_mask_size);
2428 nextNewMask = 0;
2429 kmp_affin_mask_t *sumMask = (kmp_affin_mask_t *)__kmp_allocate(
2430 __kmp_affin_mask_size);
2431 int setSize = 0;
2432
2433 for (;;) {
2434 int start, end, stride;
2435
2436 SKIP_WS(scan);
2437 next = scan;
2438 if (*next == '\0') {
2439 break;
2440 }
2441
2442 if (*next == '{') {
2443 int num;
2444 setSize = 0;
2445 next++; // skip '{'
2446 SKIP_WS(next);
2447 scan = next;
2448
2449 //
2450 // Read the first integer in the set.
2451 //
2452 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2453 "bad proclist");
2454 SKIP_DIGITS(next);
2455 num = __kmp_str_to_int(scan, *next);
2456 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2457
2458 //
2459 // Copy the mask for that osId to the sum (union) mask.
2460 //
2461 if ((num > maxOsId) ||
2462 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2463 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2464 && (__kmp_affinity_type != affinity_none))) {
2465 KMP_WARNING(AffIgnoreInvalidProcID, num);
2466 }
2467 KMP_CPU_ZERO(sumMask);
2468 }
2469 else {
2470 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2471 setSize = 1;
2472 }
2473
2474 for (;;) {
2475 //
2476 // Check for end of set.
2477 //
2478 SKIP_WS(next);
2479 if (*next == '}') {
2480 next++; // skip '}'
2481 break;
2482 }
2483
2484 //
2485 // Skip optional comma.
2486 //
2487 if (*next == ',') {
2488 next++;
2489 }
2490 SKIP_WS(next);
2491
2492 //
2493 // Read the next integer in the set.
2494 //
2495 scan = next;
2496 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2497 "bad explicit proc list");
2498
2499 SKIP_DIGITS(next);
2500 num = __kmp_str_to_int(scan, *next);
2501 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2502
2503 //
2504 // Add the mask for that osId to the sum mask.
2505 //
2506 if ((num > maxOsId) ||
2507 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2508 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2509 && (__kmp_affinity_type != affinity_none))) {
2510 KMP_WARNING(AffIgnoreInvalidProcID, num);
2511 }
2512 }
2513 else {
2514 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2515 setSize++;
2516 }
2517 }
2518 if (setSize > 0) {
2519 ADD_MASK(sumMask);
2520 }
2521
2522 SKIP_WS(next);
2523 if (*next == ',') {
2524 next++;
2525 }
2526 scan = next;
2527 continue;
2528 }
2529
2530 //
2531 // Read the first integer.
2532 //
2533 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2534 SKIP_DIGITS(next);
2535 start = __kmp_str_to_int(scan, *next);
2536 KMP_ASSERT2(start >= 0, "bad explicit proc list");
2537 SKIP_WS(next);
2538
2539 //
2540 // If this isn't a range, then add a mask to the list and go on.
2541 //
2542 if (*next != '-') {
2543 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2544
2545 //
2546 // Skip optional comma.
2547 //
2548 if (*next == ',') {
2549 next++;
2550 }
2551 scan = next;
2552 continue;
2553 }
2554
2555 //
2556 // This is a range. Skip over the '-' and read in the 2nd int.
2557 //
2558 next++; // skip '-'
2559 SKIP_WS(next);
2560 scan = next;
2561 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2562 SKIP_DIGITS(next);
2563 end = __kmp_str_to_int(scan, *next);
2564 KMP_ASSERT2(end >= 0, "bad explicit proc list");
2565
2566 //
2567 // Check for a stride parameter
2568 //
2569 stride = 1;
2570 SKIP_WS(next);
2571 if (*next == ':') {
2572 //
2573 // A stride is specified. Skip over the ':" and read the 3rd int.
2574 //
2575 int sign = +1;
2576 next++; // skip ':'
2577 SKIP_WS(next);
2578 scan = next;
2579 if (*next == '-') {
2580 sign = -1;
2581 next++;
2582 SKIP_WS(next);
2583 scan = next;
2584 }
2585 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2586 "bad explicit proc list");
2587 SKIP_DIGITS(next);
2588 stride = __kmp_str_to_int(scan, *next);
2589 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2590 stride *= sign;
2591 }
2592
2593 //
2594 // Do some range checks.
2595 //
2596 KMP_ASSERT2(stride != 0, "bad explicit proc list");
2597 if (stride > 0) {
2598 KMP_ASSERT2(start <= end, "bad explicit proc list");
2599 }
2600 else {
2601 KMP_ASSERT2(start >= end, "bad explicit proc list");
2602 }
2603 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2604
2605 //
2606 // Add the mask for each OS proc # to the list.
2607 //
2608 if (stride > 0) {
2609 do {
2610 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2611 start += stride;
2612 } while (start <= end);
2613 }
2614 else {
2615 do {
2616 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2617 start += stride;
2618 } while (start >= end);
2619 }
2620
2621 //
2622 // Skip optional comma.
2623 //
2624 SKIP_WS(next);
2625 if (*next == ',') {
2626 next++;
2627 }
2628 scan = next;
2629 }
2630
2631 *out_numMasks = nextNewMask;
2632 if (nextNewMask == 0) {
2633 *out_masks = NULL;
2634 KMP_INTERNAL_FREE(newMasks);
2635 return;
2636 }
2637 *out_masks
2638 = (kmp_affin_mask_t *)__kmp_allocate(nextNewMask * __kmp_affin_mask_size);
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002639 KMP_MEMCPY(*out_masks, newMasks, nextNewMask * __kmp_affin_mask_size);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002640 __kmp_free(sumMask);
2641 KMP_INTERNAL_FREE(newMasks);
2642}
2643
2644
2645# if OMP_40_ENABLED
2646
2647/*-----------------------------------------------------------------------------
2648
2649Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
2650places. Again, Here is the grammar:
2651
2652place_list := place
2653place_list := place , place_list
2654place := num
2655place := place : num
2656place := place : num : signed
2657place := { subplacelist }
2658place := ! place // (lowest priority)
2659subplace_list := subplace
2660subplace_list := subplace , subplace_list
2661subplace := num
2662subplace := num : num
2663subplace := num : num : signed
2664signed := num
2665signed := + signed
2666signed := - signed
2667
2668-----------------------------------------------------------------------------*/
2669
2670static void
2671__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask,
2672 int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
2673{
2674 const char *next;
2675
2676 for (;;) {
2677 int start, count, stride, i;
2678
2679 //
2680 // Read in the starting proc id
2681 //
2682 SKIP_WS(*scan);
2683 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
2684 "bad explicit places list");
2685 next = *scan;
2686 SKIP_DIGITS(next);
2687 start = __kmp_str_to_int(*scan, *next);
2688 KMP_ASSERT(start >= 0);
2689 *scan = next;
2690
2691 //
2692 // valid follow sets are ',' ':' and '}'
2693 //
2694 SKIP_WS(*scan);
2695 if (**scan == '}' || **scan == ',') {
2696 if ((start > maxOsId) ||
2697 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2698 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2699 && (__kmp_affinity_type != affinity_none))) {
2700 KMP_WARNING(AffIgnoreInvalidProcID, start);
2701 }
2702 }
2703 else {
2704 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2705 (*setSize)++;
2706 }
2707 if (**scan == '}') {
2708 break;
2709 }
2710 (*scan)++; // skip ','
2711 continue;
2712 }
2713 KMP_ASSERT2(**scan == ':', "bad explicit places list");
2714 (*scan)++; // skip ':'
2715
2716 //
2717 // Read count parameter
2718 //
2719 SKIP_WS(*scan);
2720 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
2721 "bad explicit places list");
2722 next = *scan;
2723 SKIP_DIGITS(next);
2724 count = __kmp_str_to_int(*scan, *next);
2725 KMP_ASSERT(count >= 0);
2726 *scan = next;
2727
2728 //
2729 // valid follow sets are ',' ':' and '}'
2730 //
2731 SKIP_WS(*scan);
2732 if (**scan == '}' || **scan == ',') {
2733 for (i = 0; i < count; i++) {
2734 if ((start > maxOsId) ||
2735 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2736 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2737 && (__kmp_affinity_type != affinity_none))) {
2738 KMP_WARNING(AffIgnoreInvalidProcID, start);
2739 }
2740 break; // don't proliferate warnings for large count
2741 }
2742 else {
2743 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2744 start++;
2745 (*setSize)++;
2746 }
2747 }
2748 if (**scan == '}') {
2749 break;
2750 }
2751 (*scan)++; // skip ','
2752 continue;
2753 }
2754 KMP_ASSERT2(**scan == ':', "bad explicit places list");
2755 (*scan)++; // skip ':'
2756
2757 //
2758 // Read stride parameter
2759 //
2760 int sign = +1;
2761 for (;;) {
2762 SKIP_WS(*scan);
2763 if (**scan == '+') {
2764 (*scan)++; // skip '+'
2765 continue;
2766 }
2767 if (**scan == '-') {
2768 sign *= -1;
2769 (*scan)++; // skip '-'
2770 continue;
2771 }
2772 break;
2773 }
2774 SKIP_WS(*scan);
2775 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
2776 "bad explicit places list");
2777 next = *scan;
2778 SKIP_DIGITS(next);
2779 stride = __kmp_str_to_int(*scan, *next);
2780 KMP_ASSERT(stride >= 0);
2781 *scan = next;
2782 stride *= sign;
2783
2784 //
2785 // valid follow sets are ',' and '}'
2786 //
2787 SKIP_WS(*scan);
2788 if (**scan == '}' || **scan == ',') {
2789 for (i = 0; i < count; i++) {
2790 if ((start > maxOsId) ||
2791 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2792 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2793 && (__kmp_affinity_type != affinity_none))) {
2794 KMP_WARNING(AffIgnoreInvalidProcID, start);
2795 }
2796 break; // don't proliferate warnings for large count
2797 }
2798 else {
2799 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2800 start += stride;
2801 (*setSize)++;
2802 }
2803 }
2804 if (**scan == '}') {
2805 break;
2806 }
2807 (*scan)++; // skip ','
2808 continue;
2809 }
2810
2811 KMP_ASSERT2(0, "bad explicit places list");
2812 }
2813}
2814
2815
2816static void
2817__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
2818 int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
2819{
2820 const char *next;
2821
2822 //
2823 // valid follow sets are '{' '!' and num
2824 //
2825 SKIP_WS(*scan);
2826 if (**scan == '{') {
2827 (*scan)++; // skip '{'
2828 __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask,
2829 setSize);
2830 KMP_ASSERT2(**scan == '}', "bad explicit places list");
2831 (*scan)++; // skip '}'
2832 }
2833 else if (**scan == '!') {
2834 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
2835 KMP_CPU_COMPLEMENT(tempMask);
2836 (*scan)++; // skip '!'
2837 }
2838 else if ((**scan >= '0') && (**scan <= '9')) {
2839 next = *scan;
2840 SKIP_DIGITS(next);
2841 int num = __kmp_str_to_int(*scan, *next);
2842 KMP_ASSERT(num >= 0);
2843 if ((num > maxOsId) ||
2844 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2845 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2846 && (__kmp_affinity_type != affinity_none))) {
2847 KMP_WARNING(AffIgnoreInvalidProcID, num);
2848 }
2849 }
2850 else {
2851 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
2852 (*setSize)++;
2853 }
2854 *scan = next; // skip num
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002855 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002856 else {
2857 KMP_ASSERT2(0, "bad explicit places list");
2858 }
2859}
2860
2861
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002862//static void
2863void
Jim Cownie5e8470a2013-09-27 10:38:44 +00002864__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
2865 unsigned int *out_numMasks, const char *placelist,
2866 kmp_affin_mask_t *osId2Mask, int maxOsId)
2867{
2868 const char *scan = placelist;
2869 const char *next = placelist;
2870
2871 numNewMasks = 2;
2872 newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(numNewMasks
2873 * __kmp_affin_mask_size);
2874 nextNewMask = 0;
2875
2876 kmp_affin_mask_t *tempMask = (kmp_affin_mask_t *)__kmp_allocate(
2877 __kmp_affin_mask_size);
2878 KMP_CPU_ZERO(tempMask);
2879 int setSize = 0;
2880
2881 for (;;) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002882 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
2883
2884 //
2885 // valid follow sets are ',' ':' and EOL
2886 //
2887 SKIP_WS(scan);
2888 if (*scan == '\0' || *scan == ',') {
2889 if (setSize > 0) {
2890 ADD_MASK(tempMask);
2891 }
2892 KMP_CPU_ZERO(tempMask);
2893 setSize = 0;
2894 if (*scan == '\0') {
2895 break;
2896 }
2897 scan++; // skip ','
2898 continue;
2899 }
2900
2901 KMP_ASSERT2(*scan == ':', "bad explicit places list");
2902 scan++; // skip ':'
2903
2904 //
2905 // Read count parameter
2906 //
2907 SKIP_WS(scan);
2908 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
2909 "bad explicit places list");
2910 next = scan;
2911 SKIP_DIGITS(next);
Jim Cownie181b4bb2013-12-23 17:28:57 +00002912 int count = __kmp_str_to_int(scan, *next);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002913 KMP_ASSERT(count >= 0);
2914 scan = next;
2915
2916 //
2917 // valid follow sets are ',' ':' and EOL
2918 //
2919 SKIP_WS(scan);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002920 int stride;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002921 if (*scan == '\0' || *scan == ',') {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002922 stride = +1;
2923 }
2924 else {
2925 KMP_ASSERT2(*scan == ':', "bad explicit places list");
2926 scan++; // skip ':'
Jim Cownie5e8470a2013-09-27 10:38:44 +00002927
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002928 //
2929 // Read stride parameter
2930 //
2931 int sign = +1;
2932 for (;;) {
2933 SKIP_WS(scan);
2934 if (*scan == '+') {
2935 scan++; // skip '+'
2936 continue;
2937 }
2938 if (*scan == '-') {
2939 sign *= -1;
2940 scan++; // skip '-'
2941 continue;
2942 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002943 break;
2944 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002945 SKIP_WS(scan);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002946 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
2947 "bad explicit places list");
2948 next = scan;
2949 SKIP_DIGITS(next);
2950 stride = __kmp_str_to_int(scan, *next);
2951 KMP_DEBUG_ASSERT(stride >= 0);
2952 scan = next;
2953 stride *= sign;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002954 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002955
2956 if (stride > 0) {
2957 int i;
2958 for (i = 0; i < count; i++) {
2959 int j;
2960 if (setSize == 0) {
2961 break;
2962 }
2963 ADD_MASK(tempMask);
2964 setSize = 0;
2965 for (j = __kmp_affin_mask_size * CHAR_BIT - 1; j >= stride; j--) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002966 if (! KMP_CPU_ISSET(j - stride, tempMask)) {
2967 KMP_CPU_CLR(j, tempMask);
2968 }
2969 else if ((j > maxOsId) ||
2970 (! KMP_CPU_ISSET(j, KMP_CPU_INDEX(osId2Mask, j)))) {
Andrey Churbanov16a14322015-03-10 09:34:38 +00002971 if ((__kmp_affinity_verbose || (__kmp_affinity_warnings
2972 && (__kmp_affinity_type != affinity_none))) && i < count - 1) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002973 KMP_WARNING(AffIgnoreInvalidProcID, j);
2974 }
2975 KMP_CPU_CLR(j, tempMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002976 }
2977 else {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002978 KMP_CPU_SET(j, tempMask);
2979 setSize++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002980 }
2981 }
2982 for (; j >= 0; j--) {
2983 KMP_CPU_CLR(j, tempMask);
2984 }
2985 }
2986 }
2987 else {
2988 int i;
2989 for (i = 0; i < count; i++) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002990 int j;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002991 if (setSize == 0) {
2992 break;
2993 }
2994 ADD_MASK(tempMask);
2995 setSize = 0;
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002996 for (j = 0; j < ((int)__kmp_affin_mask_size * CHAR_BIT) + stride;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002997 j++) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002998 if (! KMP_CPU_ISSET(j - stride, tempMask)) {
2999 KMP_CPU_CLR(j, tempMask);
3000 }
3001 else if ((j > maxOsId) ||
3002 (! KMP_CPU_ISSET(j, KMP_CPU_INDEX(osId2Mask, j)))) {
Andrey Churbanov16a14322015-03-10 09:34:38 +00003003 if ((__kmp_affinity_verbose || (__kmp_affinity_warnings
3004 && (__kmp_affinity_type != affinity_none))) && i < count - 1) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003005 KMP_WARNING(AffIgnoreInvalidProcID, j);
3006 }
3007 KMP_CPU_CLR(j, tempMask);
3008 }
3009 else {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003010 KMP_CPU_SET(j, tempMask);
3011 setSize++;
3012 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003013 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003014 for (; j < (int)__kmp_affin_mask_size * CHAR_BIT; j++) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003015 KMP_CPU_CLR(j, tempMask);
3016 }
3017 }
3018 }
3019 KMP_CPU_ZERO(tempMask);
3020 setSize = 0;
3021
3022 //
3023 // valid follow sets are ',' and EOL
3024 //
3025 SKIP_WS(scan);
3026 if (*scan == '\0') {
3027 break;
3028 }
3029 if (*scan == ',') {
3030 scan++; // skip ','
3031 continue;
3032 }
3033
3034 KMP_ASSERT2(0, "bad explicit places list");
3035 }
3036
3037 *out_numMasks = nextNewMask;
3038 if (nextNewMask == 0) {
3039 *out_masks = NULL;
3040 KMP_INTERNAL_FREE(newMasks);
3041 return;
3042 }
3043 *out_masks
3044 = (kmp_affin_mask_t *)__kmp_allocate(nextNewMask * __kmp_affin_mask_size);
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00003045 KMP_MEMCPY(*out_masks, newMasks, nextNewMask * __kmp_affin_mask_size);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003046 __kmp_free(tempMask);
3047 KMP_INTERNAL_FREE(newMasks);
3048}
3049
3050# endif /* OMP_40_ENABLED */
3051
3052#undef ADD_MASK
3053#undef ADD_MASK_OSID
3054
Jim Cownie5e8470a2013-09-27 10:38:44 +00003055static void
3056__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth)
3057{
3058 if ( __kmp_place_num_cores == 0 ) {
3059 if ( __kmp_place_num_threads_per_core == 0 ) {
3060 return; // no cores limiting actions requested, exit
3061 }
3062 __kmp_place_num_cores = nCoresPerPkg; // use all available cores
3063 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003064 if ( !__kmp_affinity_uniform_topology() ) {
3065 KMP_WARNING( AffThrPlaceNonUniform );
3066 return; // don't support non-uniform topology
3067 }
3068 if ( depth != 3 ) {
3069 KMP_WARNING( AffThrPlaceNonThreeLevel );
3070 return; // don't support not-3-level topology
Jim Cownie5e8470a2013-09-27 10:38:44 +00003071 }
3072 if ( __kmp_place_num_threads_per_core == 0 ) {
3073 __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts
3074 }
Andrey Churbanov12875572015-03-10 09:00:36 +00003075 if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003076 KMP_WARNING( AffThrPlaceManyCores );
3077 return;
3078 }
3079
3080 AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) *
3081 nPackages * __kmp_place_num_cores * __kmp_place_num_threads_per_core);
3082 int i, j, k, n_old = 0, n_new = 0;
3083 for ( i = 0; i < nPackages; ++i ) {
3084 for ( j = 0; j < nCoresPerPkg; ++j ) {
Andrey Churbanov12875572015-03-10 09:00:36 +00003085 if ( j < __kmp_place_core_offset || j >= __kmp_place_core_offset + __kmp_place_num_cores ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003086 n_old += __kmp_nThreadsPerCore; // skip not-requested core
3087 } else {
3088 for ( k = 0; k < __kmp_nThreadsPerCore; ++k ) {
Andrey Churbanov12875572015-03-10 09:00:36 +00003089 if ( k < __kmp_place_num_threads_per_core ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003090 newAddr[n_new] = (*pAddr)[n_old]; // copy requested core' data to new location
3091 n_new++;
3092 }
3093 n_old++;
3094 }
3095 }
3096 }
3097 }
3098 nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg
3099 __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore
3100 __kmp_avail_proc = n_new; // correct avail_proc
3101 __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores
3102
3103 __kmp_free( *pAddr );
3104 *pAddr = newAddr; // replace old topology with new one
3105}
3106
Jim Cownie5e8470a2013-09-27 10:38:44 +00003107
3108static AddrUnsPair *address2os = NULL;
3109static int * procarr = NULL;
3110static int __kmp_aff_depth = 0;
3111
3112static void
3113__kmp_aux_affinity_initialize(void)
3114{
3115 if (__kmp_affinity_masks != NULL) {
3116 KMP_ASSERT(fullMask != NULL);
3117 return;
3118 }
3119
3120 //
3121 // Create the "full" mask - this defines all of the processors that we
3122 // consider to be in the machine model. If respect is set, then it is
3123 // the initialization thread's affinity mask. Otherwise, it is all
3124 // processors that we know about on the machine.
3125 //
3126 if (fullMask == NULL) {
3127 fullMask = (kmp_affin_mask_t *)__kmp_allocate(__kmp_affin_mask_size);
3128 }
3129 if (KMP_AFFINITY_CAPABLE()) {
3130 if (__kmp_affinity_respect_mask) {
3131 __kmp_get_system_affinity(fullMask, TRUE);
3132
3133 //
3134 // Count the number of available processors.
3135 //
3136 unsigned i;
3137 __kmp_avail_proc = 0;
3138 for (i = 0; i < KMP_CPU_SETSIZE; ++i) {
3139 if (! KMP_CPU_ISSET(i, fullMask)) {
3140 continue;
3141 }
3142 __kmp_avail_proc++;
3143 }
3144 if (__kmp_avail_proc > __kmp_xproc) {
3145 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3146 && (__kmp_affinity_type != affinity_none))) {
3147 KMP_WARNING(ErrorInitializeAffinity);
3148 }
3149 __kmp_affinity_type = affinity_none;
Andrey Churbanov1f037e42015-03-10 09:15:26 +00003150 KMP_AFFINITY_DISABLE();
Jim Cownie5e8470a2013-09-27 10:38:44 +00003151 return;
3152 }
3153 }
3154 else {
3155 __kmp_affinity_entire_machine_mask(fullMask);
3156 __kmp_avail_proc = __kmp_xproc;
3157 }
3158 }
3159
3160 int depth = -1;
3161 kmp_i18n_id_t msg_id = kmp_i18n_null;
3162
3163 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00003164 // For backward compatibility, setting KMP_CPUINFO_FILE =>
Jim Cownie5e8470a2013-09-27 10:38:44 +00003165 // KMP_TOPOLOGY_METHOD=cpuinfo
3166 //
3167 if ((__kmp_cpuinfo_file != NULL) &&
3168 (__kmp_affinity_top_method == affinity_top_method_all)) {
3169 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
3170 }
3171
3172 if (__kmp_affinity_top_method == affinity_top_method_all) {
3173 //
3174 // In the default code path, errors are not fatal - we just try using
3175 // another method. We only emit a warning message if affinity is on,
3176 // or the verbose flag is set, an the nowarnings flag was not set.
3177 //
3178 const char *file_name = NULL;
3179 int line = 0;
3180
3181# if KMP_ARCH_X86 || KMP_ARCH_X86_64
3182
3183 if (__kmp_affinity_verbose) {
3184 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
3185 }
3186
3187 file_name = NULL;
3188 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3189 if (depth == 0) {
3190 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3191 KMP_ASSERT(address2os == NULL);
3192 return;
3193 }
3194
3195 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003196 if (__kmp_affinity_verbose) {
3197 if (msg_id != kmp_i18n_null) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003198 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id),
3199 KMP_I18N_STR(DecodingLegacyAPIC));
3200 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003201 else {
3202 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
3203 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003204 }
3205
3206 file_name = NULL;
3207 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3208 if (depth == 0) {
3209 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3210 KMP_ASSERT(address2os == NULL);
3211 return;
3212 }
3213 }
3214
3215# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3216
3217# if KMP_OS_LINUX
3218
3219 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003220 if (__kmp_affinity_verbose) {
3221 if (msg_id != kmp_i18n_null) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003222 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
3223 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003224 else {
3225 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
3226 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003227 }
3228
3229 FILE *f = fopen("/proc/cpuinfo", "r");
3230 if (f == NULL) {
3231 msg_id = kmp_i18n_str_CantOpenCpuinfo;
3232 }
3233 else {
3234 file_name = "/proc/cpuinfo";
3235 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3236 fclose(f);
3237 if (depth == 0) {
3238 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3239 KMP_ASSERT(address2os == NULL);
3240 return;
3241 }
3242 }
3243 }
3244
3245# endif /* KMP_OS_LINUX */
3246
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003247# if KMP_GROUP_AFFINITY
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003248
3249 if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
3250 if (__kmp_affinity_verbose) {
3251 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3252 }
3253
3254 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3255 KMP_ASSERT(depth != 0);
3256 }
3257
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003258# endif /* KMP_GROUP_AFFINITY */
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003259
Jim Cownie5e8470a2013-09-27 10:38:44 +00003260 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003261 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003262 if (file_name == NULL) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003263 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003264 }
3265 else if (line == 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003266 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003267 }
3268 else {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003269 KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003270 }
3271 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003272 // FIXME - print msg if msg_id = kmp_i18n_null ???
Jim Cownie5e8470a2013-09-27 10:38:44 +00003273
3274 file_name = "";
3275 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3276 if (depth == 0) {
3277 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3278 KMP_ASSERT(address2os == NULL);
3279 return;
3280 }
3281 KMP_ASSERT(depth > 0);
3282 KMP_ASSERT(address2os != NULL);
3283 }
3284 }
3285
3286 //
3287 // If the user has specified that a paricular topology discovery method
3288 // is to be used, then we abort if that method fails. The exception is
3289 // group affinity, which might have been implicitly set.
3290 //
3291
3292# if KMP_ARCH_X86 || KMP_ARCH_X86_64
3293
3294 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
3295 if (__kmp_affinity_verbose) {
3296 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3297 KMP_I18N_STR(Decodingx2APIC));
3298 }
3299
3300 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3301 if (depth == 0) {
3302 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3303 KMP_ASSERT(address2os == NULL);
3304 return;
3305 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003306 if (depth < 0) {
3307 KMP_ASSERT(msg_id != kmp_i18n_null);
3308 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3309 }
3310 }
3311 else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
3312 if (__kmp_affinity_verbose) {
3313 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3314 KMP_I18N_STR(DecodingLegacyAPIC));
3315 }
3316
3317 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3318 if (depth == 0) {
3319 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3320 KMP_ASSERT(address2os == NULL);
3321 return;
3322 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003323 if (depth < 0) {
3324 KMP_ASSERT(msg_id != kmp_i18n_null);
3325 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3326 }
3327 }
3328
3329# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3330
3331 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
3332 const char *filename;
3333 if (__kmp_cpuinfo_file != NULL) {
3334 filename = __kmp_cpuinfo_file;
3335 }
3336 else {
3337 filename = "/proc/cpuinfo";
3338 }
3339
3340 if (__kmp_affinity_verbose) {
3341 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
3342 }
3343
3344 FILE *f = fopen(filename, "r");
3345 if (f == NULL) {
3346 int code = errno;
3347 if (__kmp_cpuinfo_file != NULL) {
3348 __kmp_msg(
3349 kmp_ms_fatal,
3350 KMP_MSG(CantOpenFileForReading, filename),
3351 KMP_ERR(code),
3352 KMP_HNT(NameComesFrom_CPUINFO_FILE),
3353 __kmp_msg_null
3354 );
3355 }
3356 else {
3357 __kmp_msg(
3358 kmp_ms_fatal,
3359 KMP_MSG(CantOpenFileForReading, filename),
3360 KMP_ERR(code),
3361 __kmp_msg_null
3362 );
3363 }
3364 }
3365 int line = 0;
3366 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3367 fclose(f);
3368 if (depth < 0) {
3369 KMP_ASSERT(msg_id != kmp_i18n_null);
3370 if (line > 0) {
3371 KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id));
3372 }
3373 else {
3374 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
3375 }
3376 }
3377 if (__kmp_affinity_type == affinity_none) {
3378 KMP_ASSERT(depth == 0);
3379 KMP_ASSERT(address2os == NULL);
3380 return;
3381 }
3382 }
3383
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003384# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00003385
3386 else if (__kmp_affinity_top_method == affinity_top_method_group) {
3387 if (__kmp_affinity_verbose) {
3388 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3389 }
3390
3391 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3392 KMP_ASSERT(depth != 0);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003393 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003394 KMP_ASSERT(msg_id != kmp_i18n_null);
3395 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003396 }
3397 }
3398
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003399# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +00003400
3401 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
3402 if (__kmp_affinity_verbose) {
3403 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
3404 }
3405
3406 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3407 if (depth == 0) {
3408 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3409 KMP_ASSERT(address2os == NULL);
3410 return;
3411 }
3412 // should not fail
3413 KMP_ASSERT(depth > 0);
3414 KMP_ASSERT(address2os != NULL);
3415 }
3416
3417 if (address2os == NULL) {
3418 if (KMP_AFFINITY_CAPABLE()
3419 && (__kmp_affinity_verbose || (__kmp_affinity_warnings
3420 && (__kmp_affinity_type != affinity_none)))) {
3421 KMP_WARNING(ErrorInitializeAffinity);
3422 }
3423 __kmp_affinity_type = affinity_none;
Andrey Churbanov1f037e42015-03-10 09:15:26 +00003424 KMP_AFFINITY_DISABLE();
Jim Cownie5e8470a2013-09-27 10:38:44 +00003425 return;
3426 }
3427
Jim Cownie5e8470a2013-09-27 10:38:44 +00003428 __kmp_apply_thread_places(&address2os, depth);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003429
3430 //
3431 // Create the table of masks, indexed by thread Id.
3432 //
3433 unsigned maxIndex;
3434 unsigned numUnique;
3435 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique,
3436 address2os, __kmp_avail_proc);
3437 if (__kmp_affinity_gran_levels == 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003438 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003439 }
3440
3441 //
3442 // Set the childNums vector in all Address objects. This must be done
3443 // before we can sort using __kmp_affinity_cmp_Address_child_num(),
3444 // which takes into account the setting of __kmp_affinity_compact.
3445 //
3446 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
3447
3448 switch (__kmp_affinity_type) {
3449
3450 case affinity_explicit:
3451 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
3452# if OMP_40_ENABLED
3453 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
3454# endif
3455 {
3456 __kmp_affinity_process_proclist(&__kmp_affinity_masks,
3457 &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
3458 maxIndex);
3459 }
3460# if OMP_40_ENABLED
3461 else {
3462 __kmp_affinity_process_placelist(&__kmp_affinity_masks,
3463 &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
3464 maxIndex);
3465 }
3466# endif
3467 if (__kmp_affinity_num_masks == 0) {
3468 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3469 && (__kmp_affinity_type != affinity_none))) {
3470 KMP_WARNING(AffNoValidProcID);
3471 }
3472 __kmp_affinity_type = affinity_none;
3473 return;
3474 }
3475 break;
3476
3477 //
3478 // The other affinity types rely on sorting the Addresses according
3479 // to some permutation of the machine topology tree. Set
3480 // __kmp_affinity_compact and __kmp_affinity_offset appropriately,
3481 // then jump to a common code fragment to do the sort and create
3482 // the array of affinity masks.
3483 //
3484
3485 case affinity_logical:
3486 __kmp_affinity_compact = 0;
3487 if (__kmp_affinity_offset) {
3488 __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
3489 % __kmp_avail_proc;
3490 }
3491 goto sortAddresses;
3492
3493 case affinity_physical:
3494 if (__kmp_nThreadsPerCore > 1) {
3495 __kmp_affinity_compact = 1;
3496 if (__kmp_affinity_compact >= depth) {
3497 __kmp_affinity_compact = 0;
3498 }
3499 } else {
3500 __kmp_affinity_compact = 0;
3501 }
3502 if (__kmp_affinity_offset) {
3503 __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
3504 % __kmp_avail_proc;
3505 }
3506 goto sortAddresses;
3507
3508 case affinity_scatter:
3509 if (__kmp_affinity_compact >= depth) {
3510 __kmp_affinity_compact = 0;
3511 }
3512 else {
3513 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
3514 }
3515 goto sortAddresses;
3516
3517 case affinity_compact:
3518 if (__kmp_affinity_compact >= depth) {
3519 __kmp_affinity_compact = depth - 1;
3520 }
3521 goto sortAddresses;
3522
Jim Cownie5e8470a2013-09-27 10:38:44 +00003523 case affinity_balanced:
Jonathan Peytoncaf09fe2015-05-27 23:27:33 +00003524 // Balanced works only for the case of a single package
Jim Cownie5e8470a2013-09-27 10:38:44 +00003525 if( nPackages > 1 ) {
3526 if( __kmp_affinity_verbose || __kmp_affinity_warnings ) {
3527 KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" );
3528 }
3529 __kmp_affinity_type = affinity_none;
3530 return;
3531 } else if( __kmp_affinity_uniform_topology() ) {
3532 break;
3533 } else { // Non-uniform topology
3534
3535 // Save the depth for further usage
3536 __kmp_aff_depth = depth;
3537
3538 // Number of hyper threads per core in HT machine
3539 int nth_per_core = __kmp_nThreadsPerCore;
3540
3541 int core_level;
3542 if( nth_per_core > 1 ) {
3543 core_level = depth - 2;
3544 } else {
3545 core_level = depth - 1;
3546 }
3547 int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
3548 int nproc = nth_per_core * ncores;
3549
3550 procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
3551 for( int i = 0; i < nproc; i++ ) {
3552 procarr[ i ] = -1;
3553 }
3554
3555 for( int i = 0; i < __kmp_avail_proc; i++ ) {
3556 int proc = address2os[ i ].second;
3557 // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread.
3558 // If there is only one thread per core then depth == 2: level 0 - package,
3559 // level 1 - core.
3560 int level = depth - 1;
3561
3562 // __kmp_nth_per_core == 1
3563 int thread = 0;
3564 int core = address2os[ i ].first.labels[ level ];
3565 // If the thread level exists, that is we have more than one thread context per core
3566 if( nth_per_core > 1 ) {
3567 thread = address2os[ i ].first.labels[ level ] % nth_per_core;
3568 core = address2os[ i ].first.labels[ level - 1 ];
3569 }
3570 procarr[ core * nth_per_core + thread ] = proc;
3571 }
3572
3573 break;
3574 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003575
3576 sortAddresses:
3577 //
3578 // Allocate the gtid->affinity mask table.
3579 //
3580 if (__kmp_affinity_dups) {
3581 __kmp_affinity_num_masks = __kmp_avail_proc;
3582 }
3583 else {
3584 __kmp_affinity_num_masks = numUnique;
3585 }
3586
3587# if OMP_40_ENABLED
3588 if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel )
3589 && ( __kmp_affinity_num_places > 0 )
3590 && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) {
3591 __kmp_affinity_num_masks = __kmp_affinity_num_places;
3592 }
3593# endif
3594
3595 __kmp_affinity_masks = (kmp_affin_mask_t*)__kmp_allocate(
3596 __kmp_affinity_num_masks * __kmp_affin_mask_size);
3597
3598 //
3599 // Sort the address2os table according to the current setting of
3600 // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
3601 //
3602 qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
3603 __kmp_affinity_cmp_Address_child_num);
3604 {
3605 int i;
3606 unsigned j;
3607 for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
3608 if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) {
3609 continue;
3610 }
3611 unsigned osId = address2os[i].second;
3612 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
3613 kmp_affin_mask_t *dest
3614 = KMP_CPU_INDEX(__kmp_affinity_masks, j);
3615 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
3616 KMP_CPU_COPY(dest, src);
3617 if (++j >= __kmp_affinity_num_masks) {
3618 break;
3619 }
3620 }
3621 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
3622 }
3623 break;
3624
3625 default:
3626 KMP_ASSERT2(0, "Unexpected affinity setting");
3627 }
3628
3629 __kmp_free(osId2Mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003630 machine_hierarchy.init(address2os, __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003631}
3632
3633
3634void
3635__kmp_affinity_initialize(void)
3636{
3637 //
3638 // Much of the code above was written assumming that if a machine was not
3639 // affinity capable, then __kmp_affinity_type == affinity_none. We now
3640 // explicitly represent this as __kmp_affinity_type == affinity_disabled.
3641 //
3642 // There are too many checks for __kmp_affinity_type == affinity_none
3643 // in this code. Instead of trying to change them all, check if
3644 // __kmp_affinity_type == affinity_disabled, and if so, slam it with
3645 // affinity_none, call the real initialization routine, then restore
3646 // __kmp_affinity_type to affinity_disabled.
3647 //
3648 int disabled = (__kmp_affinity_type == affinity_disabled);
3649 if (! KMP_AFFINITY_CAPABLE()) {
3650 KMP_ASSERT(disabled);
3651 }
3652 if (disabled) {
3653 __kmp_affinity_type = affinity_none;
3654 }
3655 __kmp_aux_affinity_initialize();
3656 if (disabled) {
3657 __kmp_affinity_type = affinity_disabled;
3658 }
3659}
3660
3661
3662void
3663__kmp_affinity_uninitialize(void)
3664{
3665 if (__kmp_affinity_masks != NULL) {
3666 __kmp_free(__kmp_affinity_masks);
3667 __kmp_affinity_masks = NULL;
3668 }
3669 if (fullMask != NULL) {
3670 KMP_CPU_FREE(fullMask);
3671 fullMask = NULL;
3672 }
3673 __kmp_affinity_num_masks = 0;
3674# if OMP_40_ENABLED
3675 __kmp_affinity_num_places = 0;
3676# endif
3677 if (__kmp_affinity_proclist != NULL) {
3678 __kmp_free(__kmp_affinity_proclist);
3679 __kmp_affinity_proclist = NULL;
3680 }
3681 if( address2os != NULL ) {
3682 __kmp_free( address2os );
3683 address2os = NULL;
3684 }
3685 if( procarr != NULL ) {
3686 __kmp_free( procarr );
3687 procarr = NULL;
3688 }
3689}
3690
3691
3692void
3693__kmp_affinity_set_init_mask(int gtid, int isa_root)
3694{
3695 if (! KMP_AFFINITY_CAPABLE()) {
3696 return;
3697 }
3698
3699 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
3700 if (th->th.th_affin_mask == NULL) {
3701 KMP_CPU_ALLOC(th->th.th_affin_mask);
3702 }
3703 else {
3704 KMP_CPU_ZERO(th->th.th_affin_mask);
3705 }
3706
3707 //
3708 // Copy the thread mask to the kmp_info_t strucuture.
3709 // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one
3710 // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask
3711 // is set, then the full mask is the same as the mask of the initialization
3712 // thread.
3713 //
3714 kmp_affin_mask_t *mask;
3715 int i;
3716
3717# if OMP_40_ENABLED
3718 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
3719# endif
3720 {
Andrey Churbanovf28f6132015-01-13 14:54:00 +00003721 if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced)
Jim Cownie5e8470a2013-09-27 10:38:44 +00003722 ) {
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003723# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00003724 if (__kmp_num_proc_groups > 1) {
3725 return;
3726 }
3727# endif
3728 KMP_ASSERT(fullMask != NULL);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003729 i = KMP_PLACE_ALL;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003730 mask = fullMask;
3731 }
3732 else {
3733 KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
3734 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
3735 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
3736 }
3737 }
3738# if OMP_40_ENABLED
3739 else {
3740 if ((! isa_root)
3741 || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003742# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00003743 if (__kmp_num_proc_groups > 1) {
3744 return;
3745 }
3746# endif
3747 KMP_ASSERT(fullMask != NULL);
3748 i = KMP_PLACE_ALL;
3749 mask = fullMask;
3750 }
3751 else {
3752 //
3753 // int i = some hash function or just a counter that doesn't
3754 // always start at 0. Use gtid for now.
3755 //
3756 KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
3757 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
3758 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
3759 }
3760 }
3761# endif
3762
3763# if OMP_40_ENABLED
3764 th->th.th_current_place = i;
3765 if (isa_root) {
3766 th->th.th_new_place = i;
3767 th->th.th_first_place = 0;
3768 th->th.th_last_place = __kmp_affinity_num_masks - 1;
3769 }
3770
3771 if (i == KMP_PLACE_ALL) {
3772 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
3773 gtid));
3774 }
3775 else {
3776 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
3777 gtid, i));
3778 }
3779# else
3780 if (i == -1) {
3781 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n",
3782 gtid));
3783 }
3784 else {
3785 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
3786 gtid, i));
3787 }
3788# endif /* OMP_40_ENABLED */
3789
3790 KMP_CPU_COPY(th->th.th_affin_mask, mask);
3791
3792 if (__kmp_affinity_verbose) {
3793 char buf[KMP_AFFIN_MASK_PRINT_LEN];
3794 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3795 th->th.th_affin_mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003796 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid,
3797 buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003798 }
3799
3800# if KMP_OS_WINDOWS
3801 //
3802 // On Windows* OS, the process affinity mask might have changed.
3803 // If the user didn't request affinity and this call fails,
3804 // just continue silently. See CQ171393.
3805 //
3806 if ( __kmp_affinity_type == affinity_none ) {
3807 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
3808 }
3809 else
3810# endif
3811 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
3812}
3813
3814
3815# if OMP_40_ENABLED
3816
3817void
3818__kmp_affinity_set_place(int gtid)
3819{
3820 int retval;
3821
3822 if (! KMP_AFFINITY_CAPABLE()) {
3823 return;
3824 }
3825
3826 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
3827
3828 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n",
3829 gtid, th->th.th_new_place, th->th.th_current_place));
3830
3831 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00003832 // Check that the new place is within this thread's partition.
Jim Cownie5e8470a2013-09-27 10:38:44 +00003833 //
3834 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003835 KMP_ASSERT(th->th.th_new_place >= 0);
3836 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003837 if (th->th.th_first_place <= th->th.th_last_place) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003838 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place)
Jim Cownie5e8470a2013-09-27 10:38:44 +00003839 && (th->th.th_new_place <= th->th.th_last_place));
3840 }
3841 else {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003842 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place)
Jim Cownie5e8470a2013-09-27 10:38:44 +00003843 || (th->th.th_new_place >= th->th.th_last_place));
3844 }
3845
3846 //
3847 // Copy the thread mask to the kmp_info_t strucuture,
3848 // and set this thread's affinity.
3849 //
3850 kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks,
3851 th->th.th_new_place);
3852 KMP_CPU_COPY(th->th.th_affin_mask, mask);
3853 th->th.th_current_place = th->th.th_new_place;
3854
3855 if (__kmp_affinity_verbose) {
3856 char buf[KMP_AFFIN_MASK_PRINT_LEN];
3857 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3858 th->th.th_affin_mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003859 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
3860 gtid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003861 }
3862 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
3863}
3864
3865# endif /* OMP_40_ENABLED */
3866
3867
3868int
3869__kmp_aux_set_affinity(void **mask)
3870{
3871 int gtid;
3872 kmp_info_t *th;
3873 int retval;
3874
3875 if (! KMP_AFFINITY_CAPABLE()) {
3876 return -1;
3877 }
3878
3879 gtid = __kmp_entry_gtid();
3880 KA_TRACE(1000, ;{
3881 char buf[KMP_AFFIN_MASK_PRINT_LEN];
3882 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3883 (kmp_affin_mask_t *)(*mask));
3884 __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n",
3885 gtid, buf);
3886 });
3887
3888 if (__kmp_env_consistency_check) {
3889 if ((mask == NULL) || (*mask == NULL)) {
3890 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
3891 }
3892 else {
3893 unsigned proc;
3894 int num_procs = 0;
3895
3896 for (proc = 0; proc < KMP_CPU_SETSIZE; proc++) {
3897 if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
3898 continue;
3899 }
3900 num_procs++;
3901 if (! KMP_CPU_ISSET(proc, fullMask)) {
3902 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
3903 break;
3904 }
3905 }
3906 if (num_procs == 0) {
3907 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
3908 }
3909
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003910# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00003911 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
3912 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
3913 }
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003914# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +00003915
3916 }
3917 }
3918
3919 th = __kmp_threads[gtid];
3920 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
3921 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
3922 if (retval == 0) {
3923 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
3924 }
3925
3926# if OMP_40_ENABLED
3927 th->th.th_current_place = KMP_PLACE_UNDEFINED;
3928 th->th.th_new_place = KMP_PLACE_UNDEFINED;
3929 th->th.th_first_place = 0;
3930 th->th.th_last_place = __kmp_affinity_num_masks - 1;
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003931
3932 //
3933 // Turn off 4.0 affinity for the current tread at this parallel level.
3934 //
3935 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003936# endif
3937
3938 return retval;
3939}
3940
3941
3942int
3943__kmp_aux_get_affinity(void **mask)
3944{
3945 int gtid;
3946 int retval;
3947 kmp_info_t *th;
3948
3949 if (! KMP_AFFINITY_CAPABLE()) {
3950 return -1;
3951 }
3952
3953 gtid = __kmp_entry_gtid();
3954 th = __kmp_threads[gtid];
3955 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
3956
3957 KA_TRACE(1000, ;{
3958 char buf[KMP_AFFIN_MASK_PRINT_LEN];
3959 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3960 th->th.th_affin_mask);
3961 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf);
3962 });
3963
3964 if (__kmp_env_consistency_check) {
3965 if ((mask == NULL) || (*mask == NULL)) {
3966 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
3967 }
3968 }
3969
3970# if !KMP_OS_WINDOWS
3971
3972 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
3973 KA_TRACE(1000, ;{
3974 char buf[KMP_AFFIN_MASK_PRINT_LEN];
3975 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3976 (kmp_affin_mask_t *)(*mask));
3977 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf);
3978 });
3979 return retval;
3980
3981# else
3982
3983 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
3984 return 0;
3985
3986# endif /* KMP_OS_WINDOWS */
3987
3988}
3989
Jim Cownie5e8470a2013-09-27 10:38:44 +00003990int
3991__kmp_aux_set_affinity_mask_proc(int proc, void **mask)
3992{
3993 int retval;
3994
3995 if (! KMP_AFFINITY_CAPABLE()) {
3996 return -1;
3997 }
3998
3999 KA_TRACE(1000, ;{
4000 int gtid = __kmp_entry_gtid();
4001 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4002 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4003 (kmp_affin_mask_t *)(*mask));
4004 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n",
4005 proc, gtid, buf);
4006 });
4007
4008 if (__kmp_env_consistency_check) {
4009 if ((mask == NULL) || (*mask == NULL)) {
4010 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4011 }
4012 }
4013
4014 if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) {
4015 return -1;
4016 }
4017 if (! KMP_CPU_ISSET(proc, fullMask)) {
4018 return -2;
4019 }
4020
4021 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4022 return 0;
4023}
4024
4025
4026int
4027__kmp_aux_unset_affinity_mask_proc(int proc, void **mask)
4028{
4029 int retval;
4030
4031 if (! KMP_AFFINITY_CAPABLE()) {
4032 return -1;
4033 }
4034
4035 KA_TRACE(1000, ;{
4036 int gtid = __kmp_entry_gtid();
4037 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4038 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4039 (kmp_affin_mask_t *)(*mask));
4040 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n",
4041 proc, gtid, buf);
4042 });
4043
4044 if (__kmp_env_consistency_check) {
4045 if ((mask == NULL) || (*mask == NULL)) {
4046 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4047 }
4048 }
4049
4050 if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) {
4051 return -1;
4052 }
4053 if (! KMP_CPU_ISSET(proc, fullMask)) {
4054 return -2;
4055 }
4056
4057 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4058 return 0;
4059}
4060
4061
4062int
4063__kmp_aux_get_affinity_mask_proc(int proc, void **mask)
4064{
4065 int retval;
4066
4067 if (! KMP_AFFINITY_CAPABLE()) {
4068 return -1;
4069 }
4070
4071 KA_TRACE(1000, ;{
4072 int gtid = __kmp_entry_gtid();
4073 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4074 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4075 (kmp_affin_mask_t *)(*mask));
4076 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n",
4077 proc, gtid, buf);
4078 });
4079
4080 if (__kmp_env_consistency_check) {
4081 if ((mask == NULL) || (*mask == NULL)) {
Andrey Churbanov4b2f17a2015-01-29 15:49:22 +00004082 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004083 }
4084 }
4085
4086 if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) {
4087 return 0;
4088 }
4089 if (! KMP_CPU_ISSET(proc, fullMask)) {
4090 return 0;
4091 }
4092
4093 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4094}
4095
Jim Cownie5e8470a2013-09-27 10:38:44 +00004096
4097// Dynamic affinity settings - Affinity balanced
4098void __kmp_balanced_affinity( int tid, int nthreads )
4099{
4100 if( __kmp_affinity_uniform_topology() ) {
4101 int coreID;
4102 int threadID;
4103 // Number of hyper threads per core in HT machine
4104 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4105 // Number of cores
4106 int ncores = __kmp_ncores;
4107 // How many threads will be bound to each core
4108 int chunk = nthreads / ncores;
4109 // How many cores will have an additional thread bound to it - "big cores"
4110 int big_cores = nthreads % ncores;
4111 // Number of threads on the big cores
4112 int big_nth = ( chunk + 1 ) * big_cores;
4113 if( tid < big_nth ) {
4114 coreID = tid / (chunk + 1 );
4115 threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ;
4116 } else { //tid >= big_nth
4117 coreID = ( tid - big_cores ) / chunk;
4118 threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ;
4119 }
4120
4121 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4122 "Illegal set affinity operation when not capable");
4123
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00004124 kmp_affin_mask_t *mask = (kmp_affin_mask_t *)KMP_ALLOCA(__kmp_affin_mask_size);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004125 KMP_CPU_ZERO(mask);
4126
4127 // Granularity == thread
4128 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4129 int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second;
4130 KMP_CPU_SET( osID, mask);
4131 } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4132 for( int i = 0; i < __kmp_nth_per_core; i++ ) {
4133 int osID;
4134 osID = address2os[ coreID * __kmp_nth_per_core + i ].second;
4135 KMP_CPU_SET( osID, mask);
4136 }
4137 }
4138 if (__kmp_affinity_verbose) {
4139 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4140 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004141 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4142 tid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004143 }
4144 __kmp_set_system_affinity( mask, TRUE );
4145 } else { // Non-uniform topology
4146
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00004147 kmp_affin_mask_t *mask = (kmp_affin_mask_t *)KMP_ALLOCA(__kmp_affin_mask_size);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004148 KMP_CPU_ZERO(mask);
4149
4150 // Number of hyper threads per core in HT machine
4151 int nth_per_core = __kmp_nThreadsPerCore;
4152 int core_level;
4153 if( nth_per_core > 1 ) {
4154 core_level = __kmp_aff_depth - 2;
4155 } else {
4156 core_level = __kmp_aff_depth - 1;
4157 }
4158
4159 // Number of cores - maximum value; it does not count trail cores with 0 processors
4160 int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
4161
4162 // For performance gain consider the special case nthreads == __kmp_avail_proc
4163 if( nthreads == __kmp_avail_proc ) {
4164 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4165 int osID = address2os[ tid ].second;
4166 KMP_CPU_SET( osID, mask);
4167 } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4168 int coreID = address2os[ tid ].first.labels[ core_level ];
4169 // We'll count found osIDs for the current core; they can be not more than nth_per_core;
4170 // since the address2os is sortied we can break when cnt==nth_per_core
4171 int cnt = 0;
4172 for( int i = 0; i < __kmp_avail_proc; i++ ) {
4173 int osID = address2os[ i ].second;
4174 int core = address2os[ i ].first.labels[ core_level ];
4175 if( core == coreID ) {
4176 KMP_CPU_SET( osID, mask);
4177 cnt++;
4178 if( cnt == nth_per_core ) {
4179 break;
4180 }
4181 }
4182 }
4183 }
4184 } else if( nthreads <= __kmp_ncores ) {
4185
4186 int core = 0;
4187 for( int i = 0; i < ncores; i++ ) {
4188 // Check if this core from procarr[] is in the mask
4189 int in_mask = 0;
4190 for( int j = 0; j < nth_per_core; j++ ) {
4191 if( procarr[ i * nth_per_core + j ] != - 1 ) {
4192 in_mask = 1;
4193 break;
4194 }
4195 }
4196 if( in_mask ) {
4197 if( tid == core ) {
4198 for( int j = 0; j < nth_per_core; j++ ) {
4199 int osID = procarr[ i * nth_per_core + j ];
4200 if( osID != -1 ) {
4201 KMP_CPU_SET( osID, mask );
4202 // For granularity=thread it is enough to set the first available osID for this core
4203 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4204 break;
4205 }
4206 }
4207 }
4208 break;
4209 } else {
4210 core++;
4211 }
4212 }
4213 }
4214
4215 } else { // nthreads > __kmp_ncores
4216
4217 // Array to save the number of processors at each core
Jonathan Peyton7be075332015-06-22 15:53:50 +00004218 int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004219 // Array to save the number of cores with "x" available processors;
Jonathan Peyton7be075332015-06-22 15:53:50 +00004220 int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00004221 // Array to save the number of cores with # procs from x to nth_per_core
Jonathan Peyton7be075332015-06-22 15:53:50 +00004222 int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00004223
4224 for( int i = 0; i <= nth_per_core; i++ ) {
4225 ncores_with_x_procs[ i ] = 0;
4226 ncores_with_x_to_max_procs[ i ] = 0;
4227 }
4228
4229 for( int i = 0; i < ncores; i++ ) {
4230 int cnt = 0;
4231 for( int j = 0; j < nth_per_core; j++ ) {
4232 if( procarr[ i * nth_per_core + j ] != -1 ) {
4233 cnt++;
4234 }
4235 }
4236 nproc_at_core[ i ] = cnt;
4237 ncores_with_x_procs[ cnt ]++;
4238 }
4239
4240 for( int i = 0; i <= nth_per_core; i++ ) {
4241 for( int j = i; j <= nth_per_core; j++ ) {
4242 ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ];
4243 }
4244 }
4245
4246 // Max number of processors
4247 int nproc = nth_per_core * ncores;
4248 // An array to keep number of threads per each context
4249 int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
4250 for( int i = 0; i < nproc; i++ ) {
4251 newarr[ i ] = 0;
4252 }
4253
4254 int nth = nthreads;
4255 int flag = 0;
4256 while( nth > 0 ) {
4257 for( int j = 1; j <= nth_per_core; j++ ) {
4258 int cnt = ncores_with_x_to_max_procs[ j ];
4259 for( int i = 0; i < ncores; i++ ) {
4260 // Skip the core with 0 processors
4261 if( nproc_at_core[ i ] == 0 ) {
4262 continue;
4263 }
4264 for( int k = 0; k < nth_per_core; k++ ) {
4265 if( procarr[ i * nth_per_core + k ] != -1 ) {
4266 if( newarr[ i * nth_per_core + k ] == 0 ) {
4267 newarr[ i * nth_per_core + k ] = 1;
4268 cnt--;
4269 nth--;
4270 break;
4271 } else {
4272 if( flag != 0 ) {
4273 newarr[ i * nth_per_core + k ] ++;
4274 cnt--;
4275 nth--;
4276 break;
4277 }
4278 }
4279 }
4280 }
4281 if( cnt == 0 || nth == 0 ) {
4282 break;
4283 }
4284 }
4285 if( nth == 0 ) {
4286 break;
4287 }
4288 }
4289 flag = 1;
4290 }
4291 int sum = 0;
4292 for( int i = 0; i < nproc; i++ ) {
4293 sum += newarr[ i ];
4294 if( sum > tid ) {
4295 // Granularity == thread
4296 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4297 int osID = procarr[ i ];
4298 KMP_CPU_SET( osID, mask);
4299 } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4300 int coreID = i / nth_per_core;
4301 for( int ii = 0; ii < nth_per_core; ii++ ) {
4302 int osID = procarr[ coreID * nth_per_core + ii ];
4303 if( osID != -1 ) {
4304 KMP_CPU_SET( osID, mask);
4305 }
4306 }
4307 }
4308 break;
4309 }
4310 }
4311 __kmp_free( newarr );
4312 }
4313
4314 if (__kmp_affinity_verbose) {
4315 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4316 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004317 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4318 tid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004319 }
4320 __kmp_set_system_affinity( mask, TRUE );
4321 }
4322}
4323
Alp Toker763b9392014-02-28 09:42:41 +00004324#endif // KMP_AFFINITY_SUPPORTED