blob: a74917fd1de580d873878a3a7db422727baa338e [file] [log] [blame]
Stephen Canon9ae6fd52010-07-04 06:15:44 +00001//===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Howard Hinnant5b791f62010-11-16 22:13:33 +00005// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
Stephen Canon9ae6fd52010-07-04 06:15:44 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements single-precision soft-float division
11// with the IEEE-754 default rounding (to nearest, ties to even).
12//
13// For simplicity, this implementation currently flushes denormals to zero.
14// It should be a fairly straightforward exercise to implement gradual
15// underflow with correct rounding.
16//
17//===----------------------------------------------------------------------===//
18
19#define SINGLE_PRECISION
20#include "fp_lib.h"
21
Joerg Sonnenberger6e99daa2014-03-01 15:30:50 +000022COMPILER_RT_ABI fp_t
23__divsf3(fp_t a, fp_t b) {
Yi Konga140d522018-12-10 22:52:59 +000024
Stephen Canon9ae6fd52010-07-04 06:15:44 +000025 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
26 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
27 const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
Yi Konga140d522018-12-10 22:52:59 +000028
Stephen Canon9ae6fd52010-07-04 06:15:44 +000029 rep_t aSignificand = toRep(a) & significandMask;
30 rep_t bSignificand = toRep(b) & significandMask;
31 int scale = 0;
Yi Konga140d522018-12-10 22:52:59 +000032
Stephen Canon9ae6fd52010-07-04 06:15:44 +000033 // Detect if a or b is zero, denormal, infinity, or NaN.
34 if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
Yi Konga140d522018-12-10 22:52:59 +000035
Stephen Canon9ae6fd52010-07-04 06:15:44 +000036 const rep_t aAbs = toRep(a) & absMask;
37 const rep_t bAbs = toRep(b) & absMask;
Yi Konga140d522018-12-10 22:52:59 +000038
Stephen Canon9ae6fd52010-07-04 06:15:44 +000039 // NaN / anything = qNaN
40 if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
41 // anything / NaN = qNaN
42 if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
Yi Konga140d522018-12-10 22:52:59 +000043
Stephen Canon9ae6fd52010-07-04 06:15:44 +000044 if (aAbs == infRep) {
45 // infinity / infinity = NaN
46 if (bAbs == infRep) return fromRep(qnanRep);
47 // infinity / anything else = +/- infinity
48 else return fromRep(aAbs | quotientSign);
49 }
Yi Konga140d522018-12-10 22:52:59 +000050
Stephen Canon9ae6fd52010-07-04 06:15:44 +000051 // anything else / infinity = +/- 0
52 if (bAbs == infRep) return fromRep(quotientSign);
Yi Konga140d522018-12-10 22:52:59 +000053
Stephen Canon9ae6fd52010-07-04 06:15:44 +000054 if (!aAbs) {
55 // zero / zero = NaN
56 if (!bAbs) return fromRep(qnanRep);
57 // zero / anything else = +/- zero
58 else return fromRep(quotientSign);
59 }
60 // anything else / zero = +/- infinity
61 if (!bAbs) return fromRep(infRep | quotientSign);
Yi Konga140d522018-12-10 22:52:59 +000062
Stephen Canon9ae6fd52010-07-04 06:15:44 +000063 // one or both of a or b is denormal, the other (if applicable) is a
64 // normal number. Renormalize one or both of a and b, and set scale to
65 // include the necessary exponent adjustment.
66 if (aAbs < implicitBit) scale += normalize(&aSignificand);
67 if (bAbs < implicitBit) scale -= normalize(&bSignificand);
68 }
Yi Konga140d522018-12-10 22:52:59 +000069
Stephen Canon9ae6fd52010-07-04 06:15:44 +000070 // Or in the implicit significand bit. (If we fell through from the
71 // denormal path it was already set by normalize( ), but setting it twice
72 // won't hurt anything.)
73 aSignificand |= implicitBit;
74 bSignificand |= implicitBit;
75 int quotientExponent = aExponent - bExponent + scale;
Yi Konga140d522018-12-10 22:52:59 +000076
Stephen Canon9ae6fd52010-07-04 06:15:44 +000077 // Align the significand of b as a Q31 fixed-point number in the range
78 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
79 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
80 // is accurate to about 3.5 binary digits.
81 uint32_t q31b = bSignificand << 8;
82 uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
Yi Konga140d522018-12-10 22:52:59 +000083
Stephen Canon9ae6fd52010-07-04 06:15:44 +000084 // Now refine the reciprocal estimate using a Newton-Raphson iteration:
85 //
86 // x1 = x0 * (2 - x0 * b)
87 //
88 // This doubles the number of correct binary digits in the approximation
89 // with each iteration, so after three iterations, we have about 28 binary
90 // digits of accuracy.
91 uint32_t correction;
92 correction = -((uint64_t)reciprocal * q31b >> 32);
93 reciprocal = (uint64_t)reciprocal * correction >> 31;
94 correction = -((uint64_t)reciprocal * q31b >> 32);
95 reciprocal = (uint64_t)reciprocal * correction >> 31;
96 correction = -((uint64_t)reciprocal * q31b >> 32);
97 reciprocal = (uint64_t)reciprocal * correction >> 31;
Yi Konga140d522018-12-10 22:52:59 +000098
Stephen Canon9ae6fd52010-07-04 06:15:44 +000099 // Exhaustive testing shows that the error in reciprocal after three steps
100 // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
101 // expectations. We bump the reciprocal by a tiny value to force the error
102 // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
103 // be specific). This also causes 1/1 to give a sensible approximation
104 // instead of zero (due to overflow).
105 reciprocal -= 2;
Yi Konga140d522018-12-10 22:52:59 +0000106
Stephen Canon9ae6fd52010-07-04 06:15:44 +0000107 // The numerical reciprocal is accurate to within 2^-28, lies in the
108 // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
109 // than the true reciprocal of b. Multiplying a by this reciprocal thus
110 // gives a numerical q = a/b in Q24 with the following properties:
111 //
112 // 1. q < a/b
113 // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
114 // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
115 // from the fact that we truncate the product, and the 2^27 term
116 // is the error in the reciprocal of b scaled by the maximum
117 // possible value of a. As a consequence of this error bound,
Yi Konga140d522018-12-10 22:52:59 +0000118 // either q or nextafter(q) is the correctly rounded
Stephen Canon9ae6fd52010-07-04 06:15:44 +0000119 rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
Yi Konga140d522018-12-10 22:52:59 +0000120
Stephen Canon9ae6fd52010-07-04 06:15:44 +0000121 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
122 // In either case, we are going to compute a residual of the form
123 //
124 // r = a - q*b
125 //
126 // We know from the construction of q that r satisfies:
127 //
128 // 0 <= r < ulp(q)*b
Yi Konga140d522018-12-10 22:52:59 +0000129 //
Stephen Canon9ae6fd52010-07-04 06:15:44 +0000130 // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
131 // already have the correct result. The exact halfway case cannot occur.
132 // We also take this time to right shift quotient if it falls in the [1,2)
133 // range and adjust the exponent accordingly.
134 rep_t residual;
135 if (quotient < (implicitBit << 1)) {
136 residual = (aSignificand << 24) - quotient * bSignificand;
137 quotientExponent--;
138 } else {
139 quotient >>= 1;
140 residual = (aSignificand << 23) - quotient * bSignificand;
141 }
142
143 const int writtenExponent = quotientExponent + exponentBias;
Yi Konga140d522018-12-10 22:52:59 +0000144
Stephen Canon9ae6fd52010-07-04 06:15:44 +0000145 if (writtenExponent >= maxExponent) {
146 // If we have overflowed the exponent, return infinity.
147 return fromRep(infRep | quotientSign);
148 }
Yi Konga140d522018-12-10 22:52:59 +0000149
Stephen Canon9ae6fd52010-07-04 06:15:44 +0000150 else if (writtenExponent < 1) {
151 // Flush denormals to zero. In the future, it would be nice to add
152 // code to round them correctly.
153 return fromRep(quotientSign);
154 }
Yi Konga140d522018-12-10 22:52:59 +0000155
Stephen Canon9ae6fd52010-07-04 06:15:44 +0000156 else {
157 const bool round = (residual << 1) > bSignificand;
158 // Clear the implicit bit
159 rep_t absResult = quotient & significandMask;
160 // Insert the exponent
161 absResult |= (rep_t)writtenExponent << significandBits;
162 // Round
163 absResult += round;
164 // Insert the sign and return
165 return fromRep(absResult | quotientSign);
166 }
167}
Saleem Abdulrasool36ac5dd2017-05-16 16:41:37 +0000168
169#if defined(__ARM_EABI__)
Eli Friedman0d586d02017-10-03 21:25:07 +0000170#if defined(COMPILER_RT_ARMHF_TARGET)
Saleem Abdulrasool36ac5dd2017-05-16 16:41:37 +0000171AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) {
172 return __divsf3(a, b);
173}
Eli Friedman0d586d02017-10-03 21:25:07 +0000174#else
175AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) COMPILER_RT_ALIAS(__divsf3);
Saleem Abdulrasool36ac5dd2017-05-16 16:41:37 +0000176#endif
Eli Friedman0d586d02017-10-03 21:25:07 +0000177#endif