Reid Kleckner | 27fd307 | 2019-01-28 21:28:43 +0000 | [diff] [blame] | 1 | //=== ARMCallingConv.cpp - ARM Custom CC Routines ---------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the custom routines for the ARM Calling Convention that |
| 10 | // aren't done by tablegen, and includes the table generated implementations. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "ARM.h" |
| 15 | #include "ARMCallingConv.h" |
| 16 | #include "ARMSubtarget.h" |
| 17 | #include "ARMRegisterInfo.h" |
| 18 | using namespace llvm; |
| 19 | |
| 20 | // APCS f64 is in register pairs, possibly split to stack |
| 21 | static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 22 | CCValAssign::LocInfo &LocInfo, |
| 23 | CCState &State, bool CanFail) { |
| 24 | static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; |
| 25 | |
| 26 | // Try to get the first register. |
| 27 | if (unsigned Reg = State.AllocateReg(RegList)) |
| 28 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 29 | else { |
| 30 | // For the 2nd half of a v2f64, do not fail. |
| 31 | if (CanFail) |
| 32 | return false; |
| 33 | |
| 34 | // Put the whole thing on the stack. |
| 35 | State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, |
| 36 | State.AllocateStack(8, 4), |
| 37 | LocVT, LocInfo)); |
| 38 | return true; |
| 39 | } |
| 40 | |
| 41 | // Try to get the second register. |
| 42 | if (unsigned Reg = State.AllocateReg(RegList)) |
| 43 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 44 | else |
| 45 | State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, |
| 46 | State.AllocateStack(4, 4), |
| 47 | LocVT, LocInfo)); |
| 48 | return true; |
| 49 | } |
| 50 | |
| 51 | static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 52 | CCValAssign::LocInfo &LocInfo, |
| 53 | ISD::ArgFlagsTy &ArgFlags, |
| 54 | CCState &State) { |
| 55 | if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) |
| 56 | return false; |
| 57 | if (LocVT == MVT::v2f64 && |
| 58 | !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) |
| 59 | return false; |
| 60 | return true; // we handled it |
| 61 | } |
| 62 | |
| 63 | // AAPCS f64 is in aligned register pairs |
| 64 | static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 65 | CCValAssign::LocInfo &LocInfo, |
| 66 | CCState &State, bool CanFail) { |
| 67 | static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 }; |
| 68 | static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 }; |
| 69 | static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 }; |
| 70 | static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; |
| 71 | |
| 72 | unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList); |
| 73 | if (Reg == 0) { |
| 74 | |
| 75 | // If we had R3 unallocated only, now we still must to waste it. |
| 76 | Reg = State.AllocateReg(GPRArgRegs); |
| 77 | assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64"); |
| 78 | |
| 79 | // For the 2nd half of a v2f64, do not just fail. |
| 80 | if (CanFail) |
| 81 | return false; |
| 82 | |
| 83 | // Put the whole thing on the stack. |
| 84 | State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, |
| 85 | State.AllocateStack(8, 8), |
| 86 | LocVT, LocInfo)); |
| 87 | return true; |
| 88 | } |
| 89 | |
| 90 | unsigned i; |
| 91 | for (i = 0; i < 2; ++i) |
| 92 | if (HiRegList[i] == Reg) |
| 93 | break; |
| 94 | |
| 95 | unsigned T = State.AllocateReg(LoRegList[i]); |
| 96 | (void)T; |
| 97 | assert(T == LoRegList[i] && "Could not allocate register"); |
| 98 | |
| 99 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 100 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], |
| 101 | LocVT, LocInfo)); |
| 102 | return true; |
| 103 | } |
| 104 | |
| 105 | static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 106 | CCValAssign::LocInfo &LocInfo, |
| 107 | ISD::ArgFlagsTy &ArgFlags, |
| 108 | CCState &State) { |
| 109 | if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) |
| 110 | return false; |
| 111 | if (LocVT == MVT::v2f64 && |
| 112 | !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) |
| 113 | return false; |
| 114 | return true; // we handled it |
| 115 | } |
| 116 | |
| 117 | static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 118 | CCValAssign::LocInfo &LocInfo, CCState &State) { |
| 119 | static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 }; |
| 120 | static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 }; |
| 121 | |
| 122 | unsigned Reg = State.AllocateReg(HiRegList, LoRegList); |
| 123 | if (Reg == 0) |
| 124 | return false; // we didn't handle it |
| 125 | |
| 126 | unsigned i; |
| 127 | for (i = 0; i < 2; ++i) |
| 128 | if (HiRegList[i] == Reg) |
| 129 | break; |
| 130 | |
| 131 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 132 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], |
| 133 | LocVT, LocInfo)); |
| 134 | return true; |
| 135 | } |
| 136 | |
| 137 | static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 138 | CCValAssign::LocInfo &LocInfo, |
| 139 | ISD::ArgFlagsTy &ArgFlags, |
| 140 | CCState &State) { |
| 141 | if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) |
| 142 | return false; |
| 143 | if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) |
| 144 | return false; |
| 145 | return true; // we handled it |
| 146 | } |
| 147 | |
| 148 | static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 149 | CCValAssign::LocInfo &LocInfo, |
| 150 | ISD::ArgFlagsTy &ArgFlags, |
| 151 | CCState &State) { |
| 152 | return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, |
| 153 | State); |
| 154 | } |
| 155 | |
| 156 | static const MCPhysReg RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; |
| 157 | |
| 158 | static const MCPhysReg SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3, |
| 159 | ARM::S4, ARM::S5, ARM::S6, ARM::S7, |
| 160 | ARM::S8, ARM::S9, ARM::S10, ARM::S11, |
| 161 | ARM::S12, ARM::S13, ARM::S14, ARM::S15 }; |
| 162 | static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3, |
| 163 | ARM::D4, ARM::D5, ARM::D6, ARM::D7 }; |
| 164 | static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 }; |
| 165 | |
| 166 | |
| 167 | // Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA |
| 168 | // has InConsecutiveRegs set, and that the last member also has |
| 169 | // InConsecutiveRegsLast set. We must process all members of the HA before |
| 170 | // we can allocate it, as we need to know the total number of registers that |
| 171 | // will be needed in order to (attempt to) allocate a contiguous block. |
| 172 | static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT, |
| 173 | MVT &LocVT, |
| 174 | CCValAssign::LocInfo &LocInfo, |
| 175 | ISD::ArgFlagsTy &ArgFlags, |
| 176 | CCState &State) { |
| 177 | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); |
| 178 | |
| 179 | // AAPCS HFAs must have 1-4 elements, all of the same type |
| 180 | if (PendingMembers.size() > 0) |
| 181 | assert(PendingMembers[0].getLocVT() == LocVT); |
| 182 | |
| 183 | // Add the argument to the list to be allocated once we know the size of the |
| 184 | // aggregate. Store the type's required alignmnent as extra info for later: in |
| 185 | // the [N x i64] case all trace has been removed by the time we actually get |
| 186 | // to do allocation. |
| 187 | PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo, |
| 188 | ArgFlags.getOrigAlign())); |
| 189 | |
| 190 | if (!ArgFlags.isInConsecutiveRegsLast()) |
| 191 | return true; |
| 192 | |
| 193 | // Try to allocate a contiguous block of registers, each of the correct |
| 194 | // size to hold one member. |
| 195 | auto &DL = State.getMachineFunction().getDataLayout(); |
| 196 | unsigned StackAlign = DL.getStackAlignment(); |
| 197 | unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign); |
| 198 | |
| 199 | ArrayRef<MCPhysReg> RegList; |
| 200 | switch (LocVT.SimpleTy) { |
| 201 | case MVT::i32: { |
| 202 | RegList = RRegList; |
| 203 | unsigned RegIdx = State.getFirstUnallocated(RegList); |
| 204 | |
| 205 | // First consume all registers that would give an unaligned object. Whether |
| 206 | // we go on stack or in regs, no-one will be using them in future. |
| 207 | unsigned RegAlign = alignTo(Align, 4) / 4; |
| 208 | while (RegIdx % RegAlign != 0 && RegIdx < RegList.size()) |
| 209 | State.AllocateReg(RegList[RegIdx++]); |
| 210 | |
| 211 | break; |
| 212 | } |
| 213 | case MVT::f16: |
| 214 | case MVT::f32: |
| 215 | RegList = SRegList; |
| 216 | break; |
| 217 | case MVT::v4f16: |
| 218 | case MVT::f64: |
| 219 | RegList = DRegList; |
| 220 | break; |
| 221 | case MVT::v8f16: |
| 222 | case MVT::v2f64: |
| 223 | RegList = QRegList; |
| 224 | break; |
| 225 | default: |
| 226 | llvm_unreachable("Unexpected member type for block aggregate"); |
| 227 | break; |
| 228 | } |
| 229 | |
| 230 | unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size()); |
| 231 | if (RegResult) { |
| 232 | for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin(); |
| 233 | It != PendingMembers.end(); ++It) { |
| 234 | It->convertToReg(RegResult); |
| 235 | State.addLoc(*It); |
| 236 | ++RegResult; |
| 237 | } |
| 238 | PendingMembers.clear(); |
| 239 | return true; |
| 240 | } |
| 241 | |
| 242 | // Register allocation failed, we'll be needing the stack |
| 243 | unsigned Size = LocVT.getSizeInBits() / 8; |
| 244 | if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) { |
| 245 | // If nothing else has used the stack until this point, a non-HFA aggregate |
| 246 | // can be split between regs and stack. |
| 247 | unsigned RegIdx = State.getFirstUnallocated(RegList); |
| 248 | for (auto &It : PendingMembers) { |
| 249 | if (RegIdx >= RegList.size()) |
| 250 | It.convertToMem(State.AllocateStack(Size, Size)); |
| 251 | else |
| 252 | It.convertToReg(State.AllocateReg(RegList[RegIdx++])); |
| 253 | |
| 254 | State.addLoc(It); |
| 255 | } |
| 256 | PendingMembers.clear(); |
| 257 | return true; |
| 258 | } else if (LocVT != MVT::i32) |
| 259 | RegList = SRegList; |
| 260 | |
| 261 | // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core) |
| 262 | for (auto Reg : RegList) |
| 263 | State.AllocateReg(Reg); |
| 264 | |
| 265 | // After the first item has been allocated, the rest are packed as tightly as |
| 266 | // possible. (E.g. an incoming i64 would have starting Align of 8, but we'll |
| 267 | // be allocating a bunch of i32 slots). |
| 268 | unsigned RestAlign = std::min(Align, Size); |
| 269 | |
| 270 | for (auto &It : PendingMembers) { |
| 271 | It.convertToMem(State.AllocateStack(Size, Align)); |
| 272 | State.addLoc(It); |
| 273 | Align = RestAlign; |
| 274 | } |
| 275 | |
| 276 | // All pending members have now been allocated |
| 277 | PendingMembers.clear(); |
| 278 | |
| 279 | // This will be allocated by the last member of the aggregate |
| 280 | return true; |
| 281 | } |
| 282 | |
| 283 | // Include the table generated calling convention implementations. |
| 284 | #include "ARMGenCallingConv.inc" |