blob: 85aab5dda0f25b0b90c209f3673e7e24775cd6f6 [file] [log] [blame]
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +00001===================================
2Compiling CUDA C/C++ with LLVM
3===================================
4
5.. contents::
6 :local:
7
8Introduction
9============
10
11This document contains the user guides and the internals of compiling CUDA
12C/C++ with LLVM. It is aimed at both users who want to compile CUDA with LLVM
13and developers who want to improve LLVM for GPUs. This document assumes a basic
14familiarity with CUDA. Information about CUDA programming can be found in the
15`CUDA programming guide
16<http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html>`_.
17
18How to Build LLVM with CUDA Support
19===================================
20
Jingyue Wu313496b2016-01-30 23:48:47 +000021CUDA support is still in development and works the best in the trunk version
22of LLVM. Below is a quick summary of downloading and building the trunk
23version. Consult the `Getting Started
24<http://llvm.org/docs/GettingStarted.html>`_ page for more details on setting
25up LLVM.
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +000026
27#. Checkout LLVM
28
29 .. code-block:: console
30
31 $ cd where-you-want-llvm-to-live
32 $ svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
33
34#. Checkout Clang
35
36 .. code-block:: console
37
38 $ cd where-you-want-llvm-to-live
39 $ cd llvm/tools
40 $ svn co http://llvm.org/svn/llvm-project/cfe/trunk clang
41
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +000042#. Configure and build LLVM and Clang
43
44 .. code-block:: console
45
46 $ cd where-you-want-llvm-to-live
47 $ mkdir build
48 $ cd build
49 $ cmake [options] ..
50 $ make
51
52How to Compile CUDA C/C++ with LLVM
53===================================
54
55We assume you have installed the CUDA driver and runtime. Consult the `NVIDIA
Jingyue Wuf190ed42016-03-30 05:05:40 +000056CUDA installation guide
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +000057<https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html>`_ if
58you have not.
59
60Suppose you want to compile and run the following CUDA program (``axpy.cu``)
61which multiplies a ``float`` array by a ``float`` scalar (AXPY).
62
63.. code-block:: c++
64
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +000065 #include <iostream>
66
67 __global__ void axpy(float a, float* x, float* y) {
68 y[threadIdx.x] = a * x[threadIdx.x];
69 }
70
71 int main(int argc, char* argv[]) {
72 const int kDataLen = 4;
73
74 float a = 2.0f;
75 float host_x[kDataLen] = {1.0f, 2.0f, 3.0f, 4.0f};
76 float host_y[kDataLen];
77
78 // Copy input data to device.
79 float* device_x;
80 float* device_y;
Jingyue Wu313496b2016-01-30 23:48:47 +000081 cudaMalloc(&device_x, kDataLen * sizeof(float));
82 cudaMalloc(&device_y, kDataLen * sizeof(float));
83 cudaMemcpy(device_x, host_x, kDataLen * sizeof(float),
84 cudaMemcpyHostToDevice);
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +000085
86 // Launch the kernel.
87 axpy<<<1, kDataLen>>>(a, device_x, device_y);
88
89 // Copy output data to host.
Jingyue Wu313496b2016-01-30 23:48:47 +000090 cudaDeviceSynchronize();
91 cudaMemcpy(host_y, device_y, kDataLen * sizeof(float),
92 cudaMemcpyDeviceToHost);
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +000093
94 // Print the results.
95 for (int i = 0; i < kDataLen; ++i) {
96 std::cout << "y[" << i << "] = " << host_y[i] << "\n";
97 }
98
Jingyue Wu313496b2016-01-30 23:48:47 +000099 cudaDeviceReset();
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +0000100 return 0;
101 }
102
103The command line for compilation is similar to what you would use for C++.
104
105.. code-block:: console
106
Jingyue Wu313496b2016-01-30 23:48:47 +0000107 $ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch> \
108 -L<CUDA install path>/<lib64 or lib> \
109 -lcudart_static -ldl -lrt -pthread
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +0000110 $ ./axpy
111 y[0] = 2
112 y[1] = 4
113 y[2] = 6
114 y[3] = 8
115
Jingyue Wu313496b2016-01-30 23:48:47 +0000116``<CUDA install path>`` is the root directory where you installed CUDA SDK,
117typically ``/usr/local/cuda``. ``<GPU arch>`` is `the compute capability of
118your GPU <https://developer.nvidia.com/cuda-gpus>`_. For example, if you want
119to run your program on a GPU with compute capability of 3.5, you should specify
120``--cuda-gpu-arch=sm_35``.
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +0000121
Justin Lebar84473cd2016-09-07 20:09:46 +0000122Note: You cannot pass ``compute_XX`` as an argument to ``--cuda-gpu-arch``;
123only ``sm_XX`` is currently supported. However, clang always includes PTX in
124its binaries, so e.g. a binary compiled with ``--cuda-gpu-arch=sm_30`` would be
125forwards-compatible with e.g. ``sm_35`` GPUs.
126
127You can pass ``--cuda-gpu-arch`` multiple times to compile for multiple archs.
128
Justin Lebar32835c82016-03-21 23:05:15 +0000129Detecting clang vs NVCC
130=======================
131
132Although clang's CUDA implementation is largely compatible with NVCC's, you may
133still want to detect when you're compiling CUDA code specifically with clang.
134
Justin Lebar068a7942016-03-23 22:43:10 +0000135This is tricky, because NVCC may invoke clang as part of its own compilation
136process! For example, NVCC uses the host compiler's preprocessor when
137compiling for device code, and that host compiler may in fact be clang.
Justin Lebar32835c82016-03-21 23:05:15 +0000138
139When clang is actually compiling CUDA code -- rather than being used as a
140subtool of NVCC's -- it defines the ``__CUDA__`` macro. ``__CUDA_ARCH__`` is
141defined only in device mode (but will be defined if NVCC is using clang as a
142preprocessor). So you can use the following incantations to detect clang CUDA
143compilation, in host and device modes:
144
145.. code-block:: c++
146
147 #if defined(__clang__) && defined(__CUDA__) && !defined(__CUDA_ARCH__)
148 // clang compiling CUDA code, host mode.
149 #endif
150
151 #if defined(__clang__) && defined(__CUDA__) && defined(__CUDA_ARCH__)
152 // clang compiling CUDA code, device mode.
153 #endif
154
Justin Lebar068a7942016-03-23 22:43:10 +0000155Both clang and nvcc define ``__CUDACC__`` during CUDA compilation. You can
156detect NVCC specifically by looking for ``__NVCC__``.
Justin Lebar32835c82016-03-21 23:05:15 +0000157
Justin Lebarb649e752016-05-25 23:11:31 +0000158Flags that control numerical code
159=================================
160
161If you're using GPUs, you probably care about making numerical code run fast.
162GPU hardware allows for more control over numerical operations than most CPUs,
163but this results in more compiler options for you to juggle.
164
165Flags you may wish to tweak include:
166
167* ``-ffp-contract={on,off,fast}`` (defaults to ``fast`` on host and device when
168 compiling CUDA) Controls whether the compiler emits fused multiply-add
169 operations.
170
171 * ``off``: never emit fma operations, and prevent ptxas from fusing multiply
172 and add instructions.
173 * ``on``: fuse multiplies and adds within a single statement, but never
174 across statements (C11 semantics). Prevent ptxas from fusing other
175 multiplies and adds.
176 * ``fast``: fuse multiplies and adds wherever profitable, even across
177 statements. Doesn't prevent ptxas from fusing additional multiplies and
178 adds.
179
180 Fused multiply-add instructions can be much faster than the unfused
181 equivalents, but because the intermediate result in an fma is not rounded,
182 this flag can affect numerical code.
183
184* ``-fcuda-flush-denormals-to-zero`` (default: off) When this is enabled,
185 floating point operations may flush `denormal
186 <https://en.wikipedia.org/wiki/Denormal_number>`_ inputs and/or outputs to 0.
187 Operations on denormal numbers are often much slower than the same operations
188 on normal numbers.
189
190* ``-fcuda-approx-transcendentals`` (default: off) When this is enabled, the
191 compiler may emit calls to faster, approximate versions of transcendental
192 functions, instead of using the slower, fully IEEE-compliant versions. For
193 example, this flag allows clang to emit the ptx ``sin.approx.f32``
194 instruction.
195
196 This is implied by ``-ffast-math``.
197
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +0000198Optimizations
199=============
200
201CPU and GPU have different design philosophies and architectures. For example, a
202typical CPU has branch prediction, out-of-order execution, and is superscalar,
203whereas a typical GPU has none of these. Due to such differences, an
204optimization pipeline well-tuned for CPUs may be not suitable for GPUs.
205
206LLVM performs several general and CUDA-specific optimizations for GPUs. The
207list below shows some of the more important optimizations for GPUs. Most of
208them have been upstreamed to ``lib/Transforms/Scalar`` and
209``lib/Target/NVPTX``. A few of them have not been upstreamed due to lack of a
210customizable target-independent optimization pipeline.
211
212* **Straight-line scalar optimizations**. These optimizations reduce redundancy
213 in straight-line code. Details can be found in the `design document for
214 straight-line scalar optimizations <https://goo.gl/4Rb9As>`_.
215
216* **Inferring memory spaces**. `This optimization
Jingyue Wuf190ed42016-03-30 05:05:40 +0000217 <https://github.com/llvm-mirror/llvm/blob/master/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp>`_
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +0000218 infers the memory space of an address so that the backend can emit faster
Jingyue Wuf190ed42016-03-30 05:05:40 +0000219 special loads and stores from it.
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +0000220
221* **Aggressive loop unrooling and function inlining**. Loop unrolling and
222 function inlining need to be more aggressive for GPUs than for CPUs because
223 control flow transfer in GPU is more expensive. They also promote other
224 optimizations such as constant propagation and SROA which sometimes speed up
225 code by over 10x. An empirical inline threshold for GPUs is 1100. This
226 configuration has yet to be upstreamed with a target-specific optimization
227 pipeline. LLVM also provides `loop unrolling pragmas
228 <http://clang.llvm.org/docs/AttributeReference.html#pragma-unroll-pragma-nounroll>`_
229 and ``__attribute__((always_inline))`` for programmers to force unrolling and
230 inling.
231
232* **Aggressive speculative execution**. `This transformation
233 <http://llvm.org/docs/doxygen/html/SpeculativeExecution_8cpp_source.html>`_ is
234 mainly for promoting straight-line scalar optimizations which are most
235 effective on code along dominator paths.
236
237* **Memory-space alias analysis**. `This alias analysis
Jingyue Wu03d90e52015-11-18 22:01:44 +0000238 <http://reviews.llvm.org/D12414>`_ infers that two pointers in different
Jingyue Wu4f2a6cb2015-11-10 22:35:47 +0000239 special memory spaces do not alias. It has yet to be integrated to the new
240 alias analysis infrastructure; the new infrastructure does not run
241 target-specific alias analysis.
242
243* **Bypassing 64-bit divides**. `An existing optimization
244 <http://llvm.org/docs/doxygen/html/BypassSlowDivision_8cpp_source.html>`_
245 enabled in the NVPTX backend. 64-bit integer divides are much slower than
246 32-bit ones on NVIDIA GPUs due to lack of a divide unit. Many of the 64-bit
247 divides in our benchmarks have a divisor and dividend which fit in 32-bits at
248 runtime. This optimization provides a fast path for this common case.
Jingyue Wubec78182016-02-23 23:34:49 +0000249
Jingyue Wuf190ed42016-03-30 05:05:40 +0000250Publication
251===========
252
253| `gpucc: An Open-Source GPGPU Compiler <http://dl.acm.org/citation.cfm?id=2854041>`_
254| Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, Robert Hundt
255| *Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO 2016)*
256| `Slides for the CGO talk <http://wujingyue.com/docs/gpucc-talk.pdf>`_
257
258Tutorial
259========
260
261`CGO 2016 gpucc tutorial <http://wujingyue.com/docs/gpucc-tutorial.pdf>`_
262
Jingyue Wubec78182016-02-23 23:34:49 +0000263Obtaining Help
264==============
265
266To obtain help on LLVM in general and its CUDA support, see `the LLVM
267community <http://llvm.org/docs/#mailing-lists>`_.