blob: 06c171a457b36d40abef9d94b2291446ca03b2d5 [file] [log] [blame]
Clement Courbet063bed92017-11-03 12:12:27 +00001//===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Clement Courbet063bed92017-11-03 12:12:27 +00006//
7//===----------------------------------------------------------------------===//
8//
Clement Courbet6f42de32017-12-18 07:32:48 +00009// This pass tries to expand memcmp() calls into optimally-sized loads and
10// compares for the target.
Clement Courbet063bed92017-11-03 12:12:27 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/Statistic.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/TargetLibraryInfo.h"
17#include "llvm/Analysis/TargetTransformInfo.h"
18#include "llvm/Analysis/ValueTracking.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000019#include "llvm/CodeGen/TargetLowering.h"
Clement Courbet063bed92017-11-03 12:12:27 +000020#include "llvm/CodeGen/TargetPassConfig.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000021#include "llvm/CodeGen/TargetSubtargetInfo.h"
Clement Courbet063bed92017-11-03 12:12:27 +000022#include "llvm/IR/IRBuilder.h"
Clement Courbet063bed92017-11-03 12:12:27 +000023
24using namespace llvm;
25
26#define DEBUG_TYPE "expandmemcmp"
27
28STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
29STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
30STATISTIC(NumMemCmpGreaterThanMax,
31 "Number of memcmp calls with size greater than max size");
32STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
33
Sanjay Patelf3449872018-01-03 20:02:39 +000034static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
Clement Courbet063bed92017-11-03 12:12:27 +000035 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
36 cl::desc("The number of loads per basic block for inline expansion of "
37 "memcmp that is only being compared against zero."));
38
Hiroshi Yamauchic27ff0d2019-04-12 15:05:46 +000039static cl::opt<unsigned> MaxLoadsPerMemcmp(
40 "max-loads-per-memcmp", cl::Hidden,
41 cl::desc("Set maximum number of loads used in expanded memcmp"));
42
43static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
44 "max-loads-per-memcmp-opt-size", cl::Hidden,
45 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
46
Clement Courbet063bed92017-11-03 12:12:27 +000047namespace {
48
49
50// This class provides helper functions to expand a memcmp library call into an
51// inline expansion.
52class MemCmpExpansion {
53 struct ResultBlock {
54 BasicBlock *BB = nullptr;
55 PHINode *PhiSrc1 = nullptr;
56 PHINode *PhiSrc2 = nullptr;
57
58 ResultBlock() = default;
59 };
60
61 CallInst *const CI;
62 ResultBlock ResBlock;
63 const uint64_t Size;
64 unsigned MaxLoadSize;
65 uint64_t NumLoadsNonOneByte;
Sanjay Patelf3449872018-01-03 20:02:39 +000066 const uint64_t NumLoadsPerBlockForZeroCmp;
Clement Courbet063bed92017-11-03 12:12:27 +000067 std::vector<BasicBlock *> LoadCmpBlocks;
68 BasicBlock *EndBlock;
69 PHINode *PhiRes;
70 const bool IsUsedForZeroCmp;
71 const DataLayout &DL;
72 IRBuilder<> Builder;
73 // Represents the decomposition in blocks of the expansion. For example,
74 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
75 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
Clement Courbet063bed92017-11-03 12:12:27 +000076 struct LoadEntry {
77 LoadEntry(unsigned LoadSize, uint64_t Offset)
78 : LoadSize(LoadSize), Offset(Offset) {
Clement Courbet063bed92017-11-03 12:12:27 +000079 }
80
Clement Courbet063bed92017-11-03 12:12:27 +000081 // The size of the load for this block, in bytes.
Clement Courbet36a34802018-12-20 13:01:04 +000082 unsigned LoadSize;
83 // The offset of this load from the base pointer, in bytes.
84 uint64_t Offset;
Clement Courbet063bed92017-11-03 12:12:27 +000085 };
Clement Courbet36a34802018-12-20 13:01:04 +000086 using LoadEntryVector = SmallVector<LoadEntry, 8>;
87 LoadEntryVector LoadSequence;
Clement Courbet063bed92017-11-03 12:12:27 +000088
89 void createLoadCmpBlocks();
90 void createResultBlock();
91 void setupResultBlockPHINodes();
92 void setupEndBlockPHINodes();
93 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
94 void emitLoadCompareBlock(unsigned BlockIndex);
95 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
96 unsigned &LoadIndex);
Clement Courbet36a34802018-12-20 13:01:04 +000097 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
Clement Courbet063bed92017-11-03 12:12:27 +000098 void emitMemCmpResultBlock();
99 Value *getMemCmpExpansionZeroCase();
100 Value *getMemCmpEqZeroOneBlock();
101 Value *getMemCmpOneBlock();
Clement Courbet36a34802018-12-20 13:01:04 +0000102 Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType,
103 uint64_t OffsetBytes);
Clement Courbet063bed92017-11-03 12:12:27 +0000104
Clement Courbet36a34802018-12-20 13:01:04 +0000105 static LoadEntryVector
106 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
107 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
108 static LoadEntryVector
109 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
110 unsigned MaxNumLoads,
111 unsigned &NumLoadsNonOneByte);
112
113public:
Clement Courbet063bed92017-11-03 12:12:27 +0000114 MemCmpExpansion(CallInst *CI, uint64_t Size,
115 const TargetTransformInfo::MemCmpExpansionOptions &Options,
116 unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
Fangrui Songcb0bab82018-07-16 18:51:40 +0000117 unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout);
Clement Courbet063bed92017-11-03 12:12:27 +0000118
119 unsigned getNumBlocks();
120 uint64_t getNumLoads() const { return LoadSequence.size(); }
121
122 Value *getMemCmpExpansion();
123};
124
Clement Courbet36a34802018-12-20 13:01:04 +0000125MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
126 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
127 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
128 NumLoadsNonOneByte = 0;
129 LoadEntryVector LoadSequence;
130 uint64_t Offset = 0;
131 while (Size && !LoadSizes.empty()) {
132 const unsigned LoadSize = LoadSizes.front();
133 const uint64_t NumLoadsForThisSize = Size / LoadSize;
134 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
135 // Do not expand if the total number of loads is larger than what the
136 // target allows. Note that it's important that we exit before completing
137 // the expansion to avoid using a ton of memory to store the expansion for
138 // large sizes.
139 return {};
140 }
141 if (NumLoadsForThisSize > 0) {
142 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
143 LoadSequence.push_back({LoadSize, Offset});
144 Offset += LoadSize;
145 }
146 if (LoadSize > 1)
147 ++NumLoadsNonOneByte;
148 Size = Size % LoadSize;
149 }
150 LoadSizes = LoadSizes.drop_front();
151 }
152 return LoadSequence;
153}
154
155MemCmpExpansion::LoadEntryVector
156MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
157 const unsigned MaxLoadSize,
158 const unsigned MaxNumLoads,
159 unsigned &NumLoadsNonOneByte) {
160 // These are already handled by the greedy approach.
161 if (Size < 2 || MaxLoadSize < 2)
162 return {};
163
164 // We try to do as many non-overlapping loads as possible starting from the
165 // beginning.
166 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
167 assert(NumNonOverlappingLoads && "there must be at least one load");
168 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
169 // an overlapping load.
170 Size = Size - NumNonOverlappingLoads * MaxLoadSize;
171 // Bail if we do not need an overloapping store, this is already handled by
172 // the greedy approach.
173 if (Size == 0)
174 return {};
175 // Bail if the number of loads (non-overlapping + potential overlapping one)
176 // is larger than the max allowed.
177 if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
178 return {};
179
180 // Add non-overlapping loads.
181 LoadEntryVector LoadSequence;
182 uint64_t Offset = 0;
183 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
184 LoadSequence.push_back({MaxLoadSize, Offset});
185 Offset += MaxLoadSize;
186 }
187
188 // Add the last overlapping load.
189 assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
190 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
191 NumLoadsNonOneByte = 1;
192 return LoadSequence;
193}
194
Clement Courbet063bed92017-11-03 12:12:27 +0000195// Initialize the basic block structure required for expansion of memcmp call
196// with given maximum load size and memcmp size parameter.
197// This structure includes:
198// 1. A list of load compare blocks - LoadCmpBlocks.
199// 2. An EndBlock, split from original instruction point, which is the block to
200// return from.
201// 3. ResultBlock, block to branch to for early exit when a
202// LoadCmpBlock finds a difference.
203MemCmpExpansion::MemCmpExpansion(
204 CallInst *const CI, uint64_t Size,
205 const TargetTransformInfo::MemCmpExpansionOptions &Options,
206 const unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
Sanjay Patelf3449872018-01-03 20:02:39 +0000207 const unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout)
Clement Courbet063bed92017-11-03 12:12:27 +0000208 : CI(CI),
209 Size(Size),
210 MaxLoadSize(0),
211 NumLoadsNonOneByte(0),
Sanjay Patelf3449872018-01-03 20:02:39 +0000212 NumLoadsPerBlockForZeroCmp(MaxLoadsPerBlockForZeroCmp),
Clement Courbet063bed92017-11-03 12:12:27 +0000213 IsUsedForZeroCmp(IsUsedForZeroCmp),
214 DL(TheDataLayout),
215 Builder(CI) {
216 assert(Size > 0 && "zero blocks");
217 // Scale the max size down if the target can load more bytes than we need.
Clement Courbet36a34802018-12-20 13:01:04 +0000218 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
219 while (!LoadSizes.empty() && LoadSizes.front() > Size) {
220 LoadSizes = LoadSizes.drop_front();
Clement Courbet063bed92017-11-03 12:12:27 +0000221 }
Clement Courbet36a34802018-12-20 13:01:04 +0000222 assert(!LoadSizes.empty() && "cannot load Size bytes");
223 MaxLoadSize = LoadSizes.front();
Clement Courbet063bed92017-11-03 12:12:27 +0000224 // Compute the decomposition.
Clement Courbet36a34802018-12-20 13:01:04 +0000225 unsigned GreedyNumLoadsNonOneByte = 0;
226 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, MaxNumLoads,
227 GreedyNumLoadsNonOneByte);
228 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
229 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
230 // If we allow overlapping loads and the load sequence is not already optimal,
231 // use overlapping loads.
232 if (Options.AllowOverlappingLoads &&
233 (LoadSequence.empty() || LoadSequence.size() > 2)) {
234 unsigned OverlappingNumLoadsNonOneByte = 0;
235 auto OverlappingLoads = computeOverlappingLoadSequence(
236 Size, MaxLoadSize, MaxNumLoads, OverlappingNumLoadsNonOneByte);
237 if (!OverlappingLoads.empty() &&
238 (LoadSequence.empty() ||
239 OverlappingLoads.size() < LoadSequence.size())) {
240 LoadSequence = OverlappingLoads;
241 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
Clement Courbet063bed92017-11-03 12:12:27 +0000242 }
Clement Courbet063bed92017-11-03 12:12:27 +0000243 }
244 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
245}
246
247unsigned MemCmpExpansion::getNumBlocks() {
248 if (IsUsedForZeroCmp)
Sanjay Patelf3449872018-01-03 20:02:39 +0000249 return getNumLoads() / NumLoadsPerBlockForZeroCmp +
250 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
Clement Courbet063bed92017-11-03 12:12:27 +0000251 return getNumLoads();
252}
253
254void MemCmpExpansion::createLoadCmpBlocks() {
255 for (unsigned i = 0; i < getNumBlocks(); i++) {
256 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
257 EndBlock->getParent(), EndBlock);
258 LoadCmpBlocks.push_back(BB);
259 }
260}
261
262void MemCmpExpansion::createResultBlock() {
263 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
264 EndBlock->getParent(), EndBlock);
265}
266
Clement Courbet36a34802018-12-20 13:01:04 +0000267/// Return a pointer to an element of type `LoadSizeType` at offset
268/// `OffsetBytes`.
269Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source,
270 Type *LoadSizeType,
271 uint64_t OffsetBytes) {
272 if (OffsetBytes > 0) {
273 auto *ByteType = Type::getInt8Ty(CI->getContext());
274 Source = Builder.CreateGEP(
275 ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()),
276 ConstantInt::get(ByteType, OffsetBytes));
277 }
278 return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo());
279}
280
Clement Courbet063bed92017-11-03 12:12:27 +0000281// This function creates the IR instructions for loading and comparing 1 byte.
282// It loads 1 byte from each source of the memcmp parameters with the given
283// GEPIndex. It then subtracts the two loaded values and adds this result to the
284// final phi node for selecting the memcmp result.
285void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
Clement Courbet36a34802018-12-20 13:01:04 +0000286 unsigned OffsetBytes) {
Clement Courbet063bed92017-11-03 12:12:27 +0000287 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
288 Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
Clement Courbet36a34802018-12-20 13:01:04 +0000289 Value *Source1 =
290 getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes);
291 Value *Source2 =
292 getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes);
Clement Courbet063bed92017-11-03 12:12:27 +0000293
294 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
295 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
296
297 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
298 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
299 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
300
301 PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
302
303 if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
304 // Early exit branch if difference found to EndBlock. Otherwise, continue to
305 // next LoadCmpBlock,
306 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
307 ConstantInt::get(Diff->getType(), 0));
308 BranchInst *CmpBr =
309 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
310 Builder.Insert(CmpBr);
311 } else {
312 // The last block has an unconditional branch to EndBlock.
313 BranchInst *CmpBr = BranchInst::Create(EndBlock);
314 Builder.Insert(CmpBr);
315 }
316}
317
318/// Generate an equality comparison for one or more pairs of loaded values.
319/// This is used in the case where the memcmp() call is compared equal or not
320/// equal to zero.
321Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
322 unsigned &LoadIndex) {
323 assert(LoadIndex < getNumLoads() &&
324 "getCompareLoadPairs() called with no remaining loads");
325 std::vector<Value *> XorList, OrList;
Simon Pilgrim2b45a702019-05-18 11:31:48 +0000326 Value *Diff = nullptr;
Clement Courbet063bed92017-11-03 12:12:27 +0000327
328 const unsigned NumLoads =
Sanjay Patelf3449872018-01-03 20:02:39 +0000329 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
Clement Courbet063bed92017-11-03 12:12:27 +0000330
331 // For a single-block expansion, start inserting before the memcmp call.
332 if (LoadCmpBlocks.empty())
333 Builder.SetInsertPoint(CI);
334 else
335 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
336
337 Value *Cmp = nullptr;
338 // If we have multiple loads per block, we need to generate a composite
339 // comparison using xor+or. The type for the combinations is the largest load
340 // type.
341 IntegerType *const MaxLoadType =
342 NumLoads == 1 ? nullptr
343 : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
344 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
345 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
346
347 IntegerType *LoadSizeType =
348 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
349
Clement Courbet36a34802018-12-20 13:01:04 +0000350 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
351 CurLoadEntry.Offset);
352 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
353 CurLoadEntry.Offset);
Clement Courbet063bed92017-11-03 12:12:27 +0000354
355 // Get a constant or load a value for each source address.
356 Value *LoadSrc1 = nullptr;
357 if (auto *Source1C = dyn_cast<Constant>(Source1))
358 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
359 if (!LoadSrc1)
360 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
361
362 Value *LoadSrc2 = nullptr;
363 if (auto *Source2C = dyn_cast<Constant>(Source2))
364 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
365 if (!LoadSrc2)
366 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
367
368 if (NumLoads != 1) {
369 if (LoadSizeType != MaxLoadType) {
370 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
371 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
372 }
373 // If we have multiple loads per block, we need to generate a composite
374 // comparison using xor+or.
375 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
376 Diff = Builder.CreateZExt(Diff, MaxLoadType);
377 XorList.push_back(Diff);
378 } else {
379 // If there's only one load per block, we just compare the loaded values.
380 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
381 }
382 }
383
384 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
385 std::vector<Value *> OutList;
386 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
387 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
388 OutList.push_back(Or);
389 }
390 if (InList.size() % 2 != 0)
391 OutList.push_back(InList.back());
392 return OutList;
393 };
394
395 if (!Cmp) {
396 // Pairwise OR the XOR results.
397 OrList = pairWiseOr(XorList);
398
399 // Pairwise OR the OR results until one result left.
400 while (OrList.size() != 1) {
401 OrList = pairWiseOr(OrList);
402 }
Simon Pilgrim2b45a702019-05-18 11:31:48 +0000403
404 assert(Diff && "Failed to find comparison diff");
Clement Courbet063bed92017-11-03 12:12:27 +0000405 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
406 }
407
408 return Cmp;
409}
410
411void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
412 unsigned &LoadIndex) {
413 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
414
415 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
416 ? EndBlock
417 : LoadCmpBlocks[BlockIndex + 1];
418 // Early exit branch if difference found to ResultBlock. Otherwise,
419 // continue to next LoadCmpBlock or EndBlock.
420 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
421 Builder.Insert(CmpBr);
422
423 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
424 // since early exit to ResultBlock was not taken (no difference was found in
425 // any of the bytes).
426 if (BlockIndex == LoadCmpBlocks.size() - 1) {
427 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
428 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
429 }
430}
431
432// This function creates the IR intructions for loading and comparing using the
433// given LoadSize. It loads the number of bytes specified by LoadSize from each
434// source of the memcmp parameters. It then does a subtract to see if there was
435// a difference in the loaded values. If a difference is found, it branches
436// with an early exit to the ResultBlock for calculating which source was
437// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
438// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
439// a special case through emitLoadCompareByteBlock. The special handling can
440// simply subtract the loaded values and add it to the result phi node.
441void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
442 // There is one load per block in this case, BlockIndex == LoadIndex.
443 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
444
445 if (CurLoadEntry.LoadSize == 1) {
Clement Courbet36a34802018-12-20 13:01:04 +0000446 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
Clement Courbet063bed92017-11-03 12:12:27 +0000447 return;
448 }
449
450 Type *LoadSizeType =
451 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
452 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
453 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
454
Clement Courbete22cf4d2018-12-20 09:58:33 +0000455 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
Clement Courbete22cf4d2018-12-20 09:58:33 +0000456
Clement Courbet36a34802018-12-20 13:01:04 +0000457 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
458 CurLoadEntry.Offset);
459 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
460 CurLoadEntry.Offset);
Clement Courbet063bed92017-11-03 12:12:27 +0000461
462 // Load LoadSizeType from the base address.
463 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
464 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
465
466 if (DL.isLittleEndian()) {
467 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
468 Intrinsic::bswap, LoadSizeType);
469 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
470 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
471 }
472
473 if (LoadSizeType != MaxLoadType) {
474 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
475 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
476 }
477
478 // Add the loaded values to the phi nodes for calculating memcmp result only
479 // if result is not used in a zero equality.
480 if (!IsUsedForZeroCmp) {
481 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
482 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
483 }
484
485 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
486 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
487 ? EndBlock
488 : LoadCmpBlocks[BlockIndex + 1];
489 // Early exit branch if difference found to ResultBlock. Otherwise, continue
490 // to next LoadCmpBlock or EndBlock.
491 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
492 Builder.Insert(CmpBr);
493
494 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
495 // since early exit to ResultBlock was not taken (no difference was found in
496 // any of the bytes).
497 if (BlockIndex == LoadCmpBlocks.size() - 1) {
498 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
499 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
500 }
501}
502
503// This function populates the ResultBlock with a sequence to calculate the
504// memcmp result. It compares the two loaded source values and returns -1 if
505// src1 < src2 and 1 if src1 > src2.
506void MemCmpExpansion::emitMemCmpResultBlock() {
507 // Special case: if memcmp result is used in a zero equality, result does not
508 // need to be calculated and can simply return 1.
509 if (IsUsedForZeroCmp) {
510 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
511 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
512 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
513 PhiRes->addIncoming(Res, ResBlock.BB);
514 BranchInst *NewBr = BranchInst::Create(EndBlock);
515 Builder.Insert(NewBr);
516 return;
517 }
518 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
519 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
520
521 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
522 ResBlock.PhiSrc2);
523
524 Value *Res =
525 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
526 ConstantInt::get(Builder.getInt32Ty(), 1));
527
528 BranchInst *NewBr = BranchInst::Create(EndBlock);
529 Builder.Insert(NewBr);
530 PhiRes->addIncoming(Res, ResBlock.BB);
531}
532
533void MemCmpExpansion::setupResultBlockPHINodes() {
534 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
535 Builder.SetInsertPoint(ResBlock.BB);
536 // Note: this assumes one load per block.
537 ResBlock.PhiSrc1 =
538 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
539 ResBlock.PhiSrc2 =
540 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
541}
542
543void MemCmpExpansion::setupEndBlockPHINodes() {
544 Builder.SetInsertPoint(&EndBlock->front());
545 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
546}
547
548Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
549 unsigned LoadIndex = 0;
550 // This loop populates each of the LoadCmpBlocks with the IR sequence to
551 // handle multiple loads per block.
552 for (unsigned I = 0; I < getNumBlocks(); ++I) {
553 emitLoadCompareBlockMultipleLoads(I, LoadIndex);
554 }
555
556 emitMemCmpResultBlock();
557 return PhiRes;
558}
559
560/// A memcmp expansion that compares equality with 0 and only has one block of
561/// load and compare can bypass the compare, branch, and phi IR that is required
562/// in the general case.
563Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
564 unsigned LoadIndex = 0;
565 Value *Cmp = getCompareLoadPairs(0, LoadIndex);
566 assert(LoadIndex == getNumLoads() && "some entries were not consumed");
567 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
568}
569
570/// A memcmp expansion that only has one block of load and compare can bypass
571/// the compare, branch, and phi IR that is required in the general case.
572Value *MemCmpExpansion::getMemCmpOneBlock() {
Clement Courbet063bed92017-11-03 12:12:27 +0000573 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
574 Value *Source1 = CI->getArgOperand(0);
575 Value *Source2 = CI->getArgOperand(1);
576
577 // Cast source to LoadSizeType*.
578 if (Source1->getType() != LoadSizeType)
579 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
580 if (Source2->getType() != LoadSizeType)
581 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
582
583 // Load LoadSizeType from the base address.
584 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
585 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
586
587 if (DL.isLittleEndian() && Size != 1) {
588 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
589 Intrinsic::bswap, LoadSizeType);
590 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
591 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
592 }
593
594 if (Size < 4) {
595 // The i8 and i16 cases don't need compares. We zext the loaded values and
596 // subtract them to get the suitable negative, zero, or positive i32 result.
597 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
598 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
599 return Builder.CreateSub(LoadSrc1, LoadSrc2);
600 }
601
602 // The result of memcmp is negative, zero, or positive, so produce that by
603 // subtracting 2 extended compare bits: sub (ugt, ult).
604 // If a target prefers to use selects to get -1/0/1, they should be able
605 // to transform this later. The inverse transform (going from selects to math)
606 // may not be possible in the DAG because the selects got converted into
607 // branches before we got there.
608 Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
609 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
610 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
611 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
612 return Builder.CreateSub(ZextUGT, ZextULT);
613}
614
615// This function expands the memcmp call into an inline expansion and returns
616// the memcmp result.
617Value *MemCmpExpansion::getMemCmpExpansion() {
Sanjay Patel5a48aef2018-01-06 16:16:04 +0000618 // Create the basic block framework for a multi-block expansion.
619 if (getNumBlocks() != 1) {
Clement Courbet063bed92017-11-03 12:12:27 +0000620 BasicBlock *StartBlock = CI->getParent();
621 EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
622 setupEndBlockPHINodes();
623 createResultBlock();
624
625 // If return value of memcmp is not used in a zero equality, we need to
626 // calculate which source was larger. The calculation requires the
627 // two loaded source values of each load compare block.
628 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
629 if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
630
631 // Create the number of required load compare basic blocks.
632 createLoadCmpBlocks();
633
634 // Update the terminator added by splitBasicBlock to branch to the first
635 // LoadCmpBlock.
636 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
637 }
638
639 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
640
641 if (IsUsedForZeroCmp)
642 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
643 : getMemCmpExpansionZeroCase();
644
Sanjay Patelf3449872018-01-03 20:02:39 +0000645 if (getNumBlocks() == 1)
646 return getMemCmpOneBlock();
Clement Courbet063bed92017-11-03 12:12:27 +0000647
648 for (unsigned I = 0; I < getNumBlocks(); ++I) {
649 emitLoadCompareBlock(I);
650 }
651
652 emitMemCmpResultBlock();
653 return PhiRes;
654}
655
656// This function checks to see if an expansion of memcmp can be generated.
657// It checks for constant compare size that is less than the max inline size.
658// If an expansion cannot occur, returns false to leave as a library call.
659// Otherwise, the library call is replaced with a new IR instruction sequence.
660/// We want to transform:
661/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
662/// To:
663/// loadbb:
664/// %0 = bitcast i32* %buffer2 to i8*
665/// %1 = bitcast i32* %buffer1 to i8*
666/// %2 = bitcast i8* %1 to i64*
667/// %3 = bitcast i8* %0 to i64*
668/// %4 = load i64, i64* %2
669/// %5 = load i64, i64* %3
670/// %6 = call i64 @llvm.bswap.i64(i64 %4)
671/// %7 = call i64 @llvm.bswap.i64(i64 %5)
672/// %8 = sub i64 %6, %7
673/// %9 = icmp ne i64 %8, 0
674/// br i1 %9, label %res_block, label %loadbb1
675/// res_block: ; preds = %loadbb2,
676/// %loadbb1, %loadbb
677/// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
678/// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
679/// %10 = icmp ult i64 %phi.src1, %phi.src2
680/// %11 = select i1 %10, i32 -1, i32 1
681/// br label %endblock
682/// loadbb1: ; preds = %loadbb
683/// %12 = bitcast i32* %buffer2 to i8*
684/// %13 = bitcast i32* %buffer1 to i8*
685/// %14 = bitcast i8* %13 to i32*
686/// %15 = bitcast i8* %12 to i32*
687/// %16 = getelementptr i32, i32* %14, i32 2
688/// %17 = getelementptr i32, i32* %15, i32 2
689/// %18 = load i32, i32* %16
690/// %19 = load i32, i32* %17
691/// %20 = call i32 @llvm.bswap.i32(i32 %18)
692/// %21 = call i32 @llvm.bswap.i32(i32 %19)
693/// %22 = zext i32 %20 to i64
694/// %23 = zext i32 %21 to i64
695/// %24 = sub i64 %22, %23
696/// %25 = icmp ne i64 %24, 0
697/// br i1 %25, label %res_block, label %loadbb2
698/// loadbb2: ; preds = %loadbb1
699/// %26 = bitcast i32* %buffer2 to i8*
700/// %27 = bitcast i32* %buffer1 to i8*
701/// %28 = bitcast i8* %27 to i16*
702/// %29 = bitcast i8* %26 to i16*
703/// %30 = getelementptr i16, i16* %28, i16 6
704/// %31 = getelementptr i16, i16* %29, i16 6
705/// %32 = load i16, i16* %30
706/// %33 = load i16, i16* %31
707/// %34 = call i16 @llvm.bswap.i16(i16 %32)
708/// %35 = call i16 @llvm.bswap.i16(i16 %33)
709/// %36 = zext i16 %34 to i64
710/// %37 = zext i16 %35 to i64
711/// %38 = sub i64 %36, %37
712/// %39 = icmp ne i64 %38, 0
713/// br i1 %39, label %res_block, label %loadbb3
714/// loadbb3: ; preds = %loadbb2
715/// %40 = bitcast i32* %buffer2 to i8*
716/// %41 = bitcast i32* %buffer1 to i8*
717/// %42 = getelementptr i8, i8* %41, i8 14
718/// %43 = getelementptr i8, i8* %40, i8 14
719/// %44 = load i8, i8* %42
720/// %45 = load i8, i8* %43
721/// %46 = zext i8 %44 to i32
722/// %47 = zext i8 %45 to i32
723/// %48 = sub i32 %46, %47
724/// br label %endblock
725/// endblock: ; preds = %res_block,
726/// %loadbb3
727/// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
728/// ret i32 %phi.res
729static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
730 const TargetLowering *TLI, const DataLayout *DL) {
731 NumMemCmpCalls++;
732
733 // Early exit from expansion if -Oz.
Evandro Menezes85bd3972019-04-04 22:40:06 +0000734 if (CI->getFunction()->hasMinSize())
Clement Courbet063bed92017-11-03 12:12:27 +0000735 return false;
736
737 // Early exit from expansion if size is not a constant.
738 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
739 if (!SizeCast) {
740 NumMemCmpNotConstant++;
741 return false;
742 }
743 const uint64_t SizeVal = SizeCast->getZExtValue();
744
745 if (SizeVal == 0) {
746 return false;
747 }
Clement Courbet063bed92017-11-03 12:12:27 +0000748 // TTI call to check if target would like to expand memcmp. Also, get the
749 // available load sizes.
750 const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
751 const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp);
752 if (!Options) return false;
753
Hiroshi Yamauchic27ff0d2019-04-12 15:05:46 +0000754 const unsigned MaxNumLoads = CI->getFunction()->hasOptSize()
755 ? (MaxLoadsPerMemcmpOptSize.getNumOccurrences()
756 ? MaxLoadsPerMemcmpOptSize
757 : TLI->getMaxExpandSizeMemcmp(true))
758 : (MaxLoadsPerMemcmp.getNumOccurrences()
759 ? MaxLoadsPerMemcmp
760 : TLI->getMaxExpandSizeMemcmp(false));
Clement Courbet063bed92017-11-03 12:12:27 +0000761
Sanjay Patelf3449872018-01-03 20:02:39 +0000762 unsigned NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences()
763 ? MemCmpEqZeroNumLoadsPerBlock
764 : TLI->getMemcmpEqZeroLoadsPerBlock();
765
Clement Courbet063bed92017-11-03 12:12:27 +0000766 MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads,
Sanjay Patelf3449872018-01-03 20:02:39 +0000767 IsUsedForZeroCmp, NumLoadsPerBlock, *DL);
Clement Courbet063bed92017-11-03 12:12:27 +0000768
769 // Don't expand if this will require more loads than desired by the target.
770 if (Expansion.getNumLoads() == 0) {
771 NumMemCmpGreaterThanMax++;
772 return false;
773 }
774
775 NumMemCmpInlined++;
776
777 Value *Res = Expansion.getMemCmpExpansion();
778
779 // Replace call with result of expansion and erase call.
780 CI->replaceAllUsesWith(Res);
781 CI->eraseFromParent();
782
783 return true;
784}
785
786
787
788class ExpandMemCmpPass : public FunctionPass {
789public:
790 static char ID;
791
792 ExpandMemCmpPass() : FunctionPass(ID) {
793 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
794 }
795
796 bool runOnFunction(Function &F) override {
797 if (skipFunction(F)) return false;
798
799 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
800 if (!TPC) {
801 return false;
802 }
803 const TargetLowering* TL =
804 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
805
806 const TargetLibraryInfo *TLI =
807 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
808 const TargetTransformInfo *TTI =
809 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
810 auto PA = runImpl(F, TLI, TTI, TL);
811 return !PA.areAllPreserved();
812 }
813
814private:
815 void getAnalysisUsage(AnalysisUsage &AU) const override {
816 AU.addRequired<TargetLibraryInfoWrapperPass>();
817 AU.addRequired<TargetTransformInfoWrapperPass>();
818 FunctionPass::getAnalysisUsage(AU);
819 }
820
821 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
822 const TargetTransformInfo *TTI,
823 const TargetLowering* TL);
824 // Returns true if a change was made.
825 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
826 const TargetTransformInfo *TTI, const TargetLowering* TL,
827 const DataLayout& DL);
828};
829
830bool ExpandMemCmpPass::runOnBlock(
831 BasicBlock &BB, const TargetLibraryInfo *TLI,
832 const TargetTransformInfo *TTI, const TargetLowering* TL,
833 const DataLayout& DL) {
834 for (Instruction& I : BB) {
835 CallInst *CI = dyn_cast<CallInst>(&I);
836 if (!CI) {
837 continue;
838 }
839 LibFunc Func;
840 if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
Clement Courbet238af522019-03-20 11:51:11 +0000841 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
842 expandMemCmp(CI, TTI, TL, &DL)) {
Clement Courbet063bed92017-11-03 12:12:27 +0000843 return true;
844 }
845 }
846 return false;
847}
848
849
850PreservedAnalyses ExpandMemCmpPass::runImpl(
851 Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
852 const TargetLowering* TL) {
853 const DataLayout& DL = F.getParent()->getDataLayout();
854 bool MadeChanges = false;
855 for (auto BBIt = F.begin(); BBIt != F.end();) {
856 if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
857 MadeChanges = true;
858 // If changes were made, restart the function from the beginning, since
859 // the structure of the function was changed.
860 BBIt = F.begin();
861 } else {
862 ++BBIt;
863 }
864 }
865 return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
866}
867
868} // namespace
869
870char ExpandMemCmpPass::ID = 0;
871INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
872 "Expand memcmp() to load/stores", false, false)
873INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
874INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
875INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
876 "Expand memcmp() to load/stores", false, false)
877
878FunctionPass *llvm::createExpandMemCmpPass() {
879 return new ExpandMemCmpPass();
880}