blob: a8e36dd12e058211d214da4df7ecf18a5c776a12 [file] [log] [blame]
NAKAMURA Takumi84965032015-09-22 11:14:12 +00001//===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
James Molloy87405c72015-08-14 11:09:09 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a demanded bits analysis. A demanded bit is one that
11// contributes to a result; bits that are not demanded can be either zero or
12// one without affecting control or data flow. For example in this sequence:
13//
14// %1 = add i32 %x, %y
15// %2 = trunc i32 %1 to i16
16//
17// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18// trunc.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Analysis/DemandedBits.h"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/DepthFirstIterator.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Analysis/AssumptionCache.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Dominators.h"
34#include "llvm/IR/InstIterator.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/Operator.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44#define DEBUG_TYPE "demanded-bits"
45
46char DemandedBits::ID = 0;
47INITIALIZE_PASS_BEGIN(DemandedBits, "demanded-bits", "Demanded bits analysis",
48 false, false)
49INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
50INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
51INITIALIZE_PASS_END(DemandedBits, "demanded-bits", "Demanded bits analysis",
52 false, false)
53
54DemandedBits::DemandedBits() : FunctionPass(ID) {
55 initializeDemandedBitsPass(*PassRegistry::getPassRegistry());
56}
57
NAKAMURA Takumi70ad98a2015-09-22 11:13:55 +000058void DemandedBits::getAnalysisUsage(AnalysisUsage &AU) const {
James Molloy87405c72015-08-14 11:09:09 +000059 AU.setPreservesCFG();
60 AU.addRequired<AssumptionCacheTracker>();
61 AU.addRequired<DominatorTreeWrapperPass>();
62 AU.setPreservesAll();
63}
64
65static bool isAlwaysLive(Instruction *I) {
66 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
67 I->isEHPad() || I->mayHaveSideEffects();
68}
69
70void
71DemandedBits::determineLiveOperandBits(const Instruction *UserI,
72 const Instruction *I, unsigned OperandNo,
73 const APInt &AOut, APInt &AB,
74 APInt &KnownZero, APInt &KnownOne,
75 APInt &KnownZero2, APInt &KnownOne2) {
76 unsigned BitWidth = AB.getBitWidth();
77
78 // We're called once per operand, but for some instructions, we need to
79 // compute known bits of both operands in order to determine the live bits of
80 // either (when both operands are instructions themselves). We don't,
81 // however, want to do this twice, so we cache the result in APInts that live
82 // in the caller. For the two-relevant-operands case, both operand values are
83 // provided here.
84 auto ComputeKnownBits =
85 [&](unsigned BitWidth, const Value *V1, const Value *V2) {
86 const DataLayout &DL = I->getModule()->getDataLayout();
87 KnownZero = APInt(BitWidth, 0);
88 KnownOne = APInt(BitWidth, 0);
89 computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
90 AC, UserI, DT);
91
92 if (V2) {
93 KnownZero2 = APInt(BitWidth, 0);
94 KnownOne2 = APInt(BitWidth, 0);
95 computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
96 0, AC, UserI, DT);
97 }
98 };
99
100 switch (UserI->getOpcode()) {
101 default: break;
102 case Instruction::Call:
103 case Instruction::Invoke:
104 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
105 switch (II->getIntrinsicID()) {
106 default: break;
107 case Intrinsic::bswap:
108 // The alive bits of the input are the swapped alive bits of
109 // the output.
110 AB = AOut.byteSwap();
111 break;
112 case Intrinsic::ctlz:
113 if (OperandNo == 0) {
114 // We need some output bits, so we need all bits of the
115 // input to the left of, and including, the leftmost bit
116 // known to be one.
117 ComputeKnownBits(BitWidth, I, nullptr);
118 AB = APInt::getHighBitsSet(BitWidth,
119 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
120 }
121 break;
122 case Intrinsic::cttz:
123 if (OperandNo == 0) {
124 // We need some output bits, so we need all bits of the
125 // input to the right of, and including, the rightmost bit
126 // known to be one.
127 ComputeKnownBits(BitWidth, I, nullptr);
128 AB = APInt::getLowBitsSet(BitWidth,
129 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
130 }
131 break;
132 }
133 break;
134 case Instruction::Add:
135 case Instruction::Sub:
136 // Find the highest live output bit. We don't need any more input
137 // bits than that (adds, and thus subtracts, ripple only to the
138 // left).
139 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
140 break;
141 case Instruction::Shl:
142 if (OperandNo == 0)
143 if (ConstantInt *CI =
144 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
145 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
146 AB = AOut.lshr(ShiftAmt);
147
148 // If the shift is nuw/nsw, then the high bits are not dead
149 // (because we've promised that they *must* be zero).
150 const ShlOperator *S = cast<ShlOperator>(UserI);
151 if (S->hasNoSignedWrap())
152 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
153 else if (S->hasNoUnsignedWrap())
154 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
155 }
156 break;
157 case Instruction::LShr:
158 if (OperandNo == 0)
159 if (ConstantInt *CI =
160 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
161 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
162 AB = AOut.shl(ShiftAmt);
163
164 // If the shift is exact, then the low bits are not dead
165 // (they must be zero).
166 if (cast<LShrOperator>(UserI)->isExact())
167 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
168 }
169 break;
170 case Instruction::AShr:
171 if (OperandNo == 0)
172 if (ConstantInt *CI =
173 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
174 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
175 AB = AOut.shl(ShiftAmt);
176 // Because the high input bit is replicated into the
177 // high-order bits of the result, if we need any of those
178 // bits, then we must keep the highest input bit.
179 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
180 .getBoolValue())
181 AB.setBit(BitWidth-1);
182
183 // If the shift is exact, then the low bits are not dead
184 // (they must be zero).
185 if (cast<AShrOperator>(UserI)->isExact())
186 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
187 }
188 break;
189 case Instruction::And:
190 AB = AOut;
191
192 // For bits that are known zero, the corresponding bits in the
193 // other operand are dead (unless they're both zero, in which
194 // case they can't both be dead, so just mark the LHS bits as
195 // dead).
196 if (OperandNo == 0) {
197 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
198 AB &= ~KnownZero2;
199 } else {
200 if (!isa<Instruction>(UserI->getOperand(0)))
201 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
202 AB &= ~(KnownZero & ~KnownZero2);
203 }
204 break;
205 case Instruction::Or:
206 AB = AOut;
207
208 // For bits that are known one, the corresponding bits in the
209 // other operand are dead (unless they're both one, in which
210 // case they can't both be dead, so just mark the LHS bits as
211 // dead).
212 if (OperandNo == 0) {
213 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
214 AB &= ~KnownOne2;
215 } else {
216 if (!isa<Instruction>(UserI->getOperand(0)))
217 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
218 AB &= ~(KnownOne & ~KnownOne2);
219 }
220 break;
221 case Instruction::Xor:
222 case Instruction::PHI:
223 AB = AOut;
224 break;
225 case Instruction::Trunc:
226 AB = AOut.zext(BitWidth);
227 break;
228 case Instruction::ZExt:
229 AB = AOut.trunc(BitWidth);
230 break;
231 case Instruction::SExt:
232 AB = AOut.trunc(BitWidth);
233 // Because the high input bit is replicated into the
234 // high-order bits of the result, if we need any of those
235 // bits, then we must keep the highest input bit.
236 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
237 AOut.getBitWidth() - BitWidth))
238 .getBoolValue())
239 AB.setBit(BitWidth-1);
240 break;
241 case Instruction::Select:
242 if (OperandNo != 0)
243 AB = AOut;
244 break;
245 }
246}
247
248bool DemandedBits::runOnFunction(Function& F) {
249 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
250 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
251
252 Visited.clear();
253 AliveBits.clear();
254
255 SmallVector<Instruction*, 128> Worklist;
256
257 // Collect the set of "root" instructions that are known live.
258 for (Instruction &I : instructions(F)) {
259 if (!isAlwaysLive(&I))
260 continue;
261
262 DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
263 // For integer-valued instructions, set up an initial empty set of alive
264 // bits and add the instruction to the work list. For other instructions
265 // add their operands to the work list (for integer values operands, mark
266 // all bits as live).
267 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
268 if (!AliveBits.count(&I)) {
269 AliveBits[&I] = APInt(IT->getBitWidth(), 0);
270 Worklist.push_back(&I);
271 }
272
273 continue;
274 }
275
276 // Non-integer-typed instructions...
277 for (Use &OI : I.operands()) {
278 if (Instruction *J = dyn_cast<Instruction>(OI)) {
279 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
280 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
281 Worklist.push_back(J);
282 }
283 }
284 // To save memory, we don't add I to the Visited set here. Instead, we
285 // check isAlwaysLive on every instruction when searching for dead
286 // instructions later (we need to check isAlwaysLive for the
287 // integer-typed instructions anyway).
288 }
289
290 // Propagate liveness backwards to operands.
291 while (!Worklist.empty()) {
292 Instruction *UserI = Worklist.pop_back_val();
293
294 DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
295 APInt AOut;
296 if (UserI->getType()->isIntegerTy()) {
297 AOut = AliveBits[UserI];
298 DEBUG(dbgs() << " Alive Out: " << AOut);
299 }
300 DEBUG(dbgs() << "\n");
301
302 if (!UserI->getType()->isIntegerTy())
303 Visited.insert(UserI);
304
305 APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
306 // Compute the set of alive bits for each operand. These are anded into the
307 // existing set, if any, and if that changes the set of alive bits, the
308 // operand is added to the work-list.
309 for (Use &OI : UserI->operands()) {
310 if (Instruction *I = dyn_cast<Instruction>(OI)) {
311 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
312 unsigned BitWidth = IT->getBitWidth();
313 APInt AB = APInt::getAllOnesValue(BitWidth);
314 if (UserI->getType()->isIntegerTy() && !AOut &&
315 !isAlwaysLive(UserI)) {
316 AB = APInt(BitWidth, 0);
317 } else {
NAKAMURA Takumi84965032015-09-22 11:14:12 +0000318 // If all bits of the output are dead, then all bits of the input
James Molloy87405c72015-08-14 11:09:09 +0000319 // Bits of each operand that are used to compute alive bits of the
320 // output are alive, all others are dead.
321 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
322 KnownZero, KnownOne,
323 KnownZero2, KnownOne2);
324 }
325
326 // If we've added to the set of alive bits (or the operand has not
327 // been previously visited), then re-queue the operand to be visited
328 // again.
329 APInt ABPrev(BitWidth, 0);
330 auto ABI = AliveBits.find(I);
331 if (ABI != AliveBits.end())
332 ABPrev = ABI->second;
333
334 APInt ABNew = AB | ABPrev;
335 if (ABNew != ABPrev || ABI == AliveBits.end()) {
336 AliveBits[I] = std::move(ABNew);
337 Worklist.push_back(I);
338 }
339 } else if (!Visited.count(I)) {
340 Worklist.push_back(I);
341 }
342 }
343 }
344 }
345
346 return false;
347}
348
349APInt DemandedBits::getDemandedBits(Instruction *I) {
350 const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
351 if (AliveBits.count(I))
352 return AliveBits[I];
353 return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
354}
355
356bool DemandedBits::isInstructionDead(Instruction *I) {
357 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
358 !isAlwaysLive(I);
359}
360
361FunctionPass *llvm::createDemandedBitsPass() {
362 return new DemandedBits();
363}