blob: 6215199aeda8a6a9efb3061d598295c1b6d009ba [file] [log] [blame]
Michael Kruse138a3fb2017-08-04 22:51:23 +00001//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Derive information about array elements between statements ("Zones").
11//
12// The algorithms here work on the scatter space - the image space of the
13// schedule returned by Scop::getSchedule(). We call an element in that space a
14// "timepoint". Timepoints are lexicographically ordered such that we can
15// defined ranges in the scatter space. We use two flavors of such ranges:
16// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
17// space and is directly stored as isl_set.
18//
19// Zones are used to describe the space between timepoints as open sets, i.e.
20// they do not contain the extrema. Using isl rational sets to express these
21// would be overkill. We also cannot store them as the integer timepoints they
22// contain; the (nonempty) zone between 1 and 2 would be empty and
23// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
24// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
25// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
26// Instead, we store the "half-open" integer extrema, including the lower bound,
27// but excluding the upper bound. Examples:
28//
29// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
30// integer points 1 and 2, but not 0 or 3)
31//
32// * { [1] } represents the zone ]0,1[
33//
34// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
35//
36// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
37// speaking the integer points never belong to the zone. However, depending an
38// the interpretation, one might want to include them. Part of the
39// interpretation may not be known when the zone is constructed.
40//
41// Reads are assumed to always take place before writes, hence we can think of
42// reads taking place at the beginning of a timepoint and writes at the end.
43//
44// Let's assume that the zone represents the lifetime of a variable. That is,
45// the zone begins with a write that defines the value during its lifetime and
46// ends with the last read of that value. In the following we consider whether a
47// read/write at the beginning/ending of the lifetime zone should be within the
48// zone or outside of it.
49//
50// * A read at the timepoint that starts the live-range loads the previous
51// value. Hence, exclude the timepoint starting the zone.
52//
53// * A write at the timepoint that starts the live-range is not defined whether
54// it occurs before or after the write that starts the lifetime. We do not
55// allow this situation to occur. Hence, we include the timepoint starting the
56// zone to determine whether they are conflicting.
57//
58// * A read at the timepoint that ends the live-range reads the same variable.
59// We include the timepoint at the end of the zone to include that read into
60// the live-range. Doing otherwise would mean that the two reads access
61// different values, which would mean that the value they read are both alive
62// at the same time but occupy the same variable.
63//
64// * A write at the timepoint that ends the live-range starts a new live-range.
65// It must not be included in the live-range of the previous definition.
66//
67// All combinations of reads and writes at the endpoints are possible, but most
68// of the time only the write->read (for instance, a live-range from definition
69// to last use) and read->write (for instance, an unused range from last use to
70// overwrite) and combinations are interesting (half-open ranges). write->write
71// zones might be useful as well in some context to represent
72// output-dependencies.
73//
74// @see convertZoneToTimepoints
75//
76//
77// The code makes use of maps and sets in many different spaces. To not loose
78// track in which space a set or map is expected to be in, variables holding an
79// isl reference are usually annotated in the comments. They roughly follow isl
80// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
81// meaning as follows:
82//
83// * Space[] - An unspecified tuple. Used for function parameters such that the
84// function caller can use it for anything they like.
85//
86// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
87// isl_id_get_name: Stmt_<NameOfBasicBlock>
88// isl_id_get_user: Pointer to ScopStmt
89//
90// * Element[] - An array element as in the range part of
91// MemoryAccess::getAccessRelation()
92// isl_id_get_name: MemRef_<NameOfArrayVariable>
93// isl_id_get_user: Pointer to ScopArrayInfo
94//
95// * Scatter[] - Scatter space or space of timepoints
96// Has no tuple id
97//
98// * Zone[] - Range between timepoints as described above
99// Has no tuple id
100//
101// * ValInst[] - An llvm::Value as defined at a specific timepoint.
102//
103// A ValInst[] itself can be structured as one of:
104//
105// * [] - An unknown value.
106// Always zero dimensions
107// Has no tuple id
108//
109// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
110// runtime content does not depend on the timepoint.
111// Always zero dimensions
112// isl_id_get_name: Val_<NameOfValue>
113// isl_id_get_user: A pointer to an llvm::Value
114//
115// * SCEV[...] - A synthesizable llvm::SCEV Expression.
116// In contrast to a Value[] is has at least one dimension per
117// SCEVAddRecExpr in the SCEV.
118//
119// * [Domain[] -> Value[]] - An llvm::Value that may change during the
120// Scop's execution.
121// The tuple itself has no id, but it wraps a map space holding a
122// statement instance which defines the llvm::Value as the map's domain
123// and llvm::Value itself as range.
124//
125// @see makeValInst()
126//
127// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
128// statement instance to a timepoint, aka a schedule. There is only one scatter
129// space, but most of the time multiple statements are processed in one set.
130// This is why most of the time isl_union_map has to be used.
131//
132// The basic algorithm works as follows:
133// At first we verify that the SCoP is compatible with this technique. For
134// instance, two writes cannot write to the same location at the same statement
135// instance because we cannot determine within the polyhedral model which one
136// comes first. Once this was verified, we compute zones at which an array
137// element is unused. This computation can fail if it takes too long. Then the
138// main algorithm is executed. Because every store potentially trails an unused
139// zone, we start at stores. We search for a scalar (MemoryKind::Value or
140// MemoryKind::PHI) that we can map to the array element overwritten by the
141// store, preferably one that is used by the store or at least the ScopStmt.
142// When it does not conflict with the lifetime of the values in the array
143// element, the map is applied and the unused zone updated as it is now used. We
144// continue to try to map scalars to the array element until there are no more
145// candidates to map. The algorithm is greedy in the sense that the first scalar
146// not conflicting will be mapped. Other scalars processed later that could have
147// fit the same unused zone will be rejected. As such the result depends on the
148// processing order.
149//
150//===----------------------------------------------------------------------===//
151
152#include "polly/ZoneAlgo.h"
153#include "polly/ScopInfo.h"
154#include "polly/Support/GICHelper.h"
155#include "polly/Support/ISLTools.h"
156#include "polly/Support/VirtualInstruction.h"
157
158#define DEBUG_TYPE "polly-zone"
159
160using namespace polly;
161using namespace llvm;
162
163static isl::union_map computeReachingDefinition(isl::union_map Schedule,
164 isl::union_map Writes,
165 bool InclDef, bool InclRedef) {
166 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
167}
168
169/// Compute the reaching definition of a scalar.
170///
171/// Compared to computeReachingDefinition, there is just one element which is
172/// accessed and therefore only a set if instances that accesses that element is
173/// required.
174///
175/// @param Schedule { DomainWrite[] -> Scatter[] }
176/// @param Writes { DomainWrite[] }
177/// @param InclDef Include the timepoint of the definition to the result.
178/// @param InclRedef Include the timepoint of the overwrite into the result.
179///
180/// @return { Scatter[] -> DomainWrite[] }
181static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
182 isl::union_set Writes,
183 bool InclDef,
184 bool InclRedef) {
185
186 // { DomainWrite[] -> Element[] }
187 auto Defs = give(isl_union_map_from_domain(Writes.take()));
188
189 // { [Element[] -> Scatter[]] -> DomainWrite[] }
190 auto ReachDefs =
191 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
192
193 // { Scatter[] -> DomainWrite[] }
194 return give(isl_union_set_unwrap(
195 isl_union_map_range(isl_union_map_curry(ReachDefs.take()))));
196}
197
198/// Compute the reaching definition of a scalar.
199///
200/// This overload accepts only a single writing statement as an isl_map,
201/// consequently the result also is only a single isl_map.
202///
203/// @param Schedule { DomainWrite[] -> Scatter[] }
204/// @param Writes { DomainWrite[] }
205/// @param InclDef Include the timepoint of the definition to the result.
206/// @param InclRedef Include the timepoint of the overwrite into the result.
207///
208/// @return { Scatter[] -> DomainWrite[] }
209static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
210 isl::set Writes, bool InclDef,
211 bool InclRedef) {
212 auto DomainSpace = give(isl_set_get_space(Writes.keep()));
213 auto ScatterSpace = getScatterSpace(Schedule);
214
215 // { Scatter[] -> DomainWrite[] }
216 auto UMap = computeScalarReachingDefinition(
217 Schedule, give(isl_union_set_from_set(Writes.take())), InclDef,
218 InclRedef);
219
220 auto ResultSpace = give(isl_space_map_from_domain_and_range(
221 ScatterSpace.take(), DomainSpace.take()));
222 return singleton(UMap, ResultSpace);
223}
224
225isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
226 return give(isl_union_map_from_domain(Domain.take()));
227}
228
229/// Create a domain-to-unknown value mapping.
230///
231/// @see makeUnknownForDomain(isl::union_set)
232///
233/// @param Domain { Domain[] }
234///
235/// @return { Domain[] -> ValInst[] }
236static isl::map makeUnknownForDomain(isl::set Domain) {
237 return give(isl_map_from_domain(Domain.take()));
238}
239
Michael Kruse70af4f52017-08-07 18:40:29 +0000240/// Return whether @p Map maps to an unknown value.
241///
242/// @param { [] -> ValInst[] }
243static bool isMapToUnknown(const isl::map &Map) {
244 isl::space Space = Map.get_space().range();
245 return Space.has_tuple_id(isl::dim::set).is_false() &&
246 Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
247}
248
Michael Krusece673582017-08-08 17:00:27 +0000249isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
Michael Kruse70af4f52017-08-07 18:40:29 +0000250 isl::union_map Result = isl::union_map::empty(UMap.get_space());
251 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
252 if (!isMapToUnknown(Map))
253 Result = Result.add_map(Map);
254 return isl::stat::ok;
255 });
256 return Result;
257}
258
Michael Kruse138a3fb2017-08-04 22:51:23 +0000259static std::string printInstruction(Instruction *Instr,
260 bool IsForDebug = false) {
261 std::string Result;
262 raw_string_ostream OS(Result);
263 Instr->print(OS, IsForDebug);
264 OS.flush();
265 size_t i = 0;
266 while (i < Result.size() && Result[i] == ' ')
267 i += 1;
268 return Result.substr(i);
269}
270
271ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
272 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
Tobias Grosser61bd3a42017-08-06 21:42:38 +0000273 Schedule(S->getSchedule()) {
Tobias Grosser31df6f32017-08-06 21:42:25 +0000274 auto Domains = S->getDomains();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000275
276 Schedule =
277 give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
278 ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
279 ScatterSpace = getScatterSpace(Schedule);
280}
281
Tobias Grosser2ef37812017-08-07 22:01:29 +0000282/// Check if all stores in @p Stmt store the very same value.
283///
284/// TODO: In the future we may want to extent this to make the checks
285/// specific to different memory locations.
286static bool onlySameValueWrites(ScopStmt *Stmt) {
287 Value *V = nullptr;
288
289 for (auto *MA : *Stmt) {
290 if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
291 !MA->isOriginalArrayKind())
292 continue;
293
294 if (!V) {
295 V = MA->getAccessValue();
296 continue;
297 }
298
299 if (V != MA->getAccessValue())
300 return false;
301 }
302 return true;
303}
304
Michael Kruse138a3fb2017-08-04 22:51:23 +0000305bool ZoneAlgorithm::isCompatibleStmt(ScopStmt *Stmt) {
306 auto Stores = makeEmptyUnionMap();
307 auto Loads = makeEmptyUnionMap();
308
309 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
310 // order.
311 for (auto *MA : *Stmt) {
312 if (!MA->isLatestArrayKind())
313 continue;
314
315 auto AccRel = give(isl_union_map_from_map(getAccessRelationFor(MA).take()));
316
317 if (MA->isRead()) {
318 // Reject load after store to same location.
319 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
320 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
321 MA->getAccessInstruction());
322 R << "load after store of same element in same statement";
323 R << " (previous stores: " << Stores;
324 R << ", loading: " << AccRel << ")";
325 S->getFunction().getContext().diagnose(R);
326 return false;
327 }
328
329 Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
330
331 continue;
332 }
333
334 if (!isa<StoreInst>(MA->getAccessInstruction())) {
335 DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n");
336 OptimizationRemarkMissed R(PassName, "UnusualStore",
337 MA->getAccessInstruction());
338 R << "encountered write that is not a StoreInst: "
339 << printInstruction(MA->getAccessInstruction());
340 S->getFunction().getContext().diagnose(R);
341 return false;
342 }
343
344 // In region statements the order is less clear, eg. the load and store
345 // might be in a boxed loop.
346 if (Stmt->isRegionStmt() &&
347 !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
348 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
349 MA->getAccessInstruction());
350 R << "store is in a non-affine subregion";
351 S->getFunction().getContext().diagnose(R);
352 return false;
353 }
354
355 // Do not allow more than one store to the same location.
Michael Krusea9033aa2017-08-09 09:29:09 +0000356 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep()) &&
357 !onlySameValueWrites(Stmt)) {
Michael Kruse138a3fb2017-08-04 22:51:23 +0000358 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
359 MA->getAccessInstruction());
Michael Krusea9033aa2017-08-09 09:29:09 +0000360 R << "store after store of same element in same statement";
361 R << " (previous stores: " << Stores;
362 R << ", storing: " << AccRel << ")";
363 S->getFunction().getContext().diagnose(R);
364 return false;
Michael Kruse138a3fb2017-08-04 22:51:23 +0000365 }
366
367 Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
368 }
369
370 return true;
371}
372
373void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
374 assert(MA->isLatestArrayKind());
375 assert(MA->isRead());
Michael Kruse70af4f52017-08-07 18:40:29 +0000376 ScopStmt *Stmt = MA->getStatement();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000377
378 // { DomainRead[] -> Element[] }
379 auto AccRel = getAccessRelationFor(MA);
380 AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
Michael Kruse70af4f52017-08-07 18:40:29 +0000381
382 if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
383 // { DomainRead[] -> ValInst[] }
384 isl::map LoadValInst = makeValInst(
385 Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
386
387 // { DomainRead[] -> [Element[] -> DomainRead[]] }
388 isl::map IncludeElement =
389 give(isl_map_curry(isl_map_domain_map(AccRel.take())));
390
391 // { [Element[] -> DomainRead[]] -> ValInst[] }
392 isl::map EltLoadValInst =
393 give(isl_map_apply_domain(LoadValInst.take(), IncludeElement.take()));
394
395 AllReadValInst = give(
396 isl_union_map_add_map(AllReadValInst.take(), EltLoadValInst.take()));
397 }
Michael Kruse138a3fb2017-08-04 22:51:23 +0000398}
399
400void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
401 assert(MA->isLatestArrayKind());
402 assert(MA->isWrite());
403 auto *Stmt = MA->getStatement();
404
405 // { Domain[] -> Element[] }
406 auto AccRel = getAccessRelationFor(MA);
407
408 if (MA->isMustWrite())
409 AllMustWrites =
410 give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy()));
411
412 if (MA->isMayWrite())
413 AllMayWrites =
414 give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy()));
415
416 // { Domain[] -> ValInst[] }
417 auto WriteValInstance =
418 makeValInst(MA->getAccessValue(), Stmt,
419 LI->getLoopFor(MA->getAccessInstruction()->getParent()),
420 MA->isMustWrite());
421
422 // { Domain[] -> [Element[] -> Domain[]] }
423 auto IncludeElement = give(isl_map_curry(isl_map_domain_map(AccRel.copy())));
424
425 // { [Element[] -> DomainWrite[]] -> ValInst[] }
426 auto EltWriteValInst = give(
427 isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take()));
428
429 AllWriteValInst = give(
430 isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take()));
431}
432
433isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
434 return give(isl_union_set_empty(ParamSpace.copy()));
435}
436
437isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
438 return give(isl_union_map_empty(ParamSpace.copy()));
439}
440
441bool ZoneAlgorithm::isCompatibleScop() {
442 for (auto &Stmt : *S) {
443 if (!isCompatibleStmt(&Stmt))
444 return false;
445 }
446 return true;
447}
448
449isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000450 isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
451 Stmt->getDomainSpace().release(), ScatterSpace.copy()));
Michael Kruse138a3fb2017-08-04 22:51:23 +0000452 return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
453}
454
455isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
456 return getScatterFor(MA->getStatement());
457}
458
459isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
460 return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
461}
462
463isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
464 auto ResultSpace = give(isl_space_map_from_domain_and_range(
465 isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
466 auto UDomain = give(isl_union_set_from_set(Domain.copy()));
467 auto UResult = getScatterFor(std::move(UDomain));
468 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
469 assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
470 Domain.keep()) == isl_bool_true);
471 return Result;
472}
473
474isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000475 return Stmt->getDomain().remove_redundancies();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000476}
477
478isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
479 return getDomainFor(MA->getStatement());
480}
481
482isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
483 auto Domain = getDomainFor(MA);
484 auto AccRel = MA->getLatestAccessRelation();
485 return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
486}
487
488isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
489 auto &Result = ScalarReachDefZone[Stmt];
490 if (Result)
491 return Result;
492
493 auto Domain = getDomainFor(Stmt);
494 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
495 simplify(Result);
496
497 return Result;
498}
499
500isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
501 auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
502 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
503
504 auto StmtResult = getScalarReachingDefinition(Stmt);
505
506 return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
507}
508
509isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
510 return ::makeUnknownForDomain(getDomainFor(Stmt));
511}
512
513isl::id ZoneAlgorithm::makeValueId(Value *V) {
514 if (!V)
515 return nullptr;
516
517 auto &Id = ValueIds[V];
518 if (Id.is_null()) {
519 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
520 std::string(), UseInstructionNames);
521 Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
522 }
523 return Id;
524}
525
526isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
527 auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
528 return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
529 makeValueId(V).take()));
530}
531
532isl::set ZoneAlgorithm::makeValueSet(Value *V) {
533 auto Space = makeValueSpace(V);
534 return give(isl_set_universe(Space.take()));
535}
536
537isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
538 bool IsCertain) {
539 // If the definition/write is conditional, the value at the location could
540 // be either the written value or the old value. Since we cannot know which
541 // one, consider the value to be unknown.
542 if (!IsCertain)
543 return makeUnknownForDomain(UserStmt);
544
545 auto DomainUse = getDomainFor(UserStmt);
546 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
547 switch (VUse.getKind()) {
548 case VirtualUse::Constant:
549 case VirtualUse::Block:
550 case VirtualUse::Hoisted:
551 case VirtualUse::ReadOnly: {
552 // The definition does not depend on the statement which uses it.
553 auto ValSet = makeValueSet(Val);
554 return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
555 }
556
557 case VirtualUse::Synthesizable: {
558 auto *ScevExpr = VUse.getScevExpr();
559 auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
560
561 // Construct the SCEV space.
562 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
563 // expressions, not just all of them.
564 auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
565 const_cast<SCEV *>(ScevExpr)));
566 auto ScevSpace =
567 give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
568 ScevSpace = give(
569 isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
570
571 // { DomainUse[] -> ScevExpr[] }
572 auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
573 UseDomainSpace.copy(), ScevSpace.copy())));
574 return ValInst;
575 }
576
577 case VirtualUse::Intra: {
578 // Definition and use is in the same statement. We do not need to compute
579 // a reaching definition.
580
581 // { llvm::Value }
582 auto ValSet = makeValueSet(Val);
583
584 // { UserDomain[] -> llvm::Value }
585 auto ValInstSet =
586 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
587
588 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
589 auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
590 simplify(Result);
591 return Result;
592 }
593
594 case VirtualUse::Inter: {
595 // The value is defined in a different statement.
596
597 auto *Inst = cast<Instruction>(Val);
598 auto *ValStmt = S->getStmtFor(Inst);
599
600 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
601 // domain. We could use an arbitrary statement, but this could result in
602 // different ValInst[] for the same llvm::Value.
603 if (!ValStmt)
604 return ::makeUnknownForDomain(DomainUse);
605
606 // { DomainDef[] }
607 auto DomainDef = getDomainFor(ValStmt);
608
609 // { Scatter[] -> DomainDef[] }
610 auto ReachDef = getScalarReachingDefinition(DomainDef);
611
612 // { DomainUse[] -> Scatter[] }
613 auto UserSched = getScatterFor(DomainUse);
614
615 // { DomainUse[] -> DomainDef[] }
616 auto UsedInstance =
617 give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
618
619 // { llvm::Value }
620 auto ValSet = makeValueSet(Val);
621
622 // { DomainUse[] -> llvm::Value[] }
623 auto ValInstSet =
624 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
625
626 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
627 auto Result =
628 give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
629
630 simplify(Result);
631 return Result;
632 }
633 }
634 llvm_unreachable("Unhandled use type");
635}
636
637void ZoneAlgorithm::computeCommon() {
638 AllReads = makeEmptyUnionMap();
639 AllMayWrites = makeEmptyUnionMap();
640 AllMustWrites = makeEmptyUnionMap();
641 AllWriteValInst = makeEmptyUnionMap();
Michael Kruse70af4f52017-08-07 18:40:29 +0000642 AllReadValInst = makeEmptyUnionMap();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000643
644 for (auto &Stmt : *S) {
645 for (auto *MA : Stmt) {
646 if (!MA->isLatestArrayKind())
647 continue;
648
649 if (MA->isRead())
650 addArrayReadAccess(MA);
651
652 if (MA->isWrite())
653 addArrayWriteAccess(MA);
654 }
655 }
656
657 // { DomainWrite[] -> Element[] }
Michael Kruse70af4f52017-08-07 18:40:29 +0000658 AllWrites =
Michael Kruse138a3fb2017-08-04 22:51:23 +0000659 give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
660
661 // { [Element[] -> Zone[]] -> DomainWrite[] }
662 WriteReachDefZone =
663 computeReachingDefinition(Schedule, AllWrites, false, true);
664 simplify(WriteReachDefZone);
665}
666
667void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
668 OS.indent(Indent) << "After accesses {\n";
669 for (auto &Stmt : *S) {
670 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
671 for (auto *MA : Stmt)
672 MA->print(OS);
673 }
674 OS.indent(Indent) << "}\n";
675}
Michael Kruse70af4f52017-08-07 18:40:29 +0000676
677isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
678 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
679 isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
680
681 // { [Element[] -> DomainWrite[]] -> ValInst[] }
682 isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
683
684 // { [Element[] -> Zone[]] -> ValInst[] }
685 return EltReachdDef.apply_range(AllKnownWriteValInst);
686}
687
688isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
689 // { Element[] }
690 isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
691
692 // { Element[] -> Scatter[] }
693 isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
694 AllAccessedElts, isl::set::universe(ScatterSpace));
695
696 // This assumes there are no "holes" in
697 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
698 // before the first write or that are not written at all.
699 // { Element[] -> Scatter[] }
700 isl::union_set NonReachDef =
701 EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
702
703 // { [Element[] -> Zone[]] -> ReachDefId[] }
704 isl::union_map DefZone =
705 WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
706
707 // { [Element[] -> Scatter[]] -> Element[] }
708 isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
709
710 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
711 isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
712
713 // { Element[] -> [Zone[] -> ReachDefId[]] }
714 isl::union_map EltDefZone = DefZone.curry();
715
716 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
717 isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
718
719 // { [Element[] -> Scatter[]] -> DomainRead[] }
720 isl::union_map Reads = AllReads.range_product(Schedule).reverse();
721
722 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
723 isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
724
725 // { [Element[] -> Scatter[]] -> ValInst[] }
726 isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
727
728 // { [Element[] -> ReachDefId[]] -> ValInst[] }
729 isl::union_map DefidKnown =
730 DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
731
732 // { [Element[] -> Zone[]] -> ValInst[] }
733 return DefZoneEltDefId.apply_range(DefidKnown);
734}
735
736isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
737 bool FromRead) const {
738 isl::union_map Result = makeEmptyUnionMap();
739
740 if (FromWrite)
741 Result = Result.unite(computeKnownFromMustWrites());
742
743 if (FromRead)
744 Result = Result.unite(computeKnownFromLoad());
745
746 simplify(Result);
747 return Result;
748}