blob: 8acd90122b4a59acc46d1e65f2b1d79f7889fb84 [file] [log] [blame]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00005.. contents::
6 :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM. It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information. Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here. The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26 compiler. No transformations, analyses, or code generators should need to
27 be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30 ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33 LLVM-to-LLVM tools should not need to know anything about the semantics of
34 the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37 LLVM should not put any restrictions of the flavor of the source-language,
38 and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41 to compile a program to native machine code and standard debugging
42 formats. This allows compatibility with traditional machine-code level
43 debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects. The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information. As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process. This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger. Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis. In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86 the source-level state of the program**, regardless of which LLVM
87 optimizations have been run, and without any modification to the
88 optimizations themselves. However, some optimizations may impact the
89 ability to modify the current state of the program with a debugger, such
90 as setting program variables, or calling functions that have been
91 deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94 debugging information, allowing them to update the debugging information
95 as they perform aggressive optimizations. This means that, with effort,
96 the LLVM optimizers could optimize debug code just as well as non-debug
97 code.
98
99* LLVM debug information does not prevent optimizations from
100 happening (for example inlining, basic block reordering/merging/cleanup,
101 tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104 the program, using existing facilities. For example, duplicate
105 information is automatically merged by the linker, and unused information
106 is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger. Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information. It can be run like this:
119
120.. code-block:: bash
121
122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
123 % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes. If
126debugging information influences optimization passes then it will be reported
127as a failure. See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information. In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum. The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`. These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language. :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
David Blaikiec4fe5db2013-05-29 02:05:13 +0000172information appended at the end that is source-language specific. All debugging
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184 !1 = metadata !{
185 i32, ;; A tag
186 ...
187 }
188
189<a name="LLVMDebugVersion">The first field of a descriptor is always an
190``i32`` containing a tag value identifying the content of the descriptor.
191The remaining fields are specific to the descriptor. The values of tags are
192loosely bound to the tag values of DWARF information entries. However, that
David Blaikiec4fe5db2013-05-29 02:05:13 +0000193does not restrict the use of the information supplied to DWARF targets.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000194
195The details of the various descriptors follow.
196
197Compile unit descriptors
198^^^^^^^^^^^^^^^^^^^^^^^^
199
200.. code-block:: llvm
201
202 !0 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +0000203 i32, ;; Tag = 17 (DW_TAG_compile_unit)
204 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000205 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000207 i1, ;; True if this is optimized.
208 metadata, ;; Flags
209 i32 ;; Runtime version
210 metadata ;; List of enums types
211 metadata ;; List of retained types
212 metadata ;; List of subprograms
213 metadata ;; List of global variables
David Blaikiec4fe5db2013-05-29 02:05:13 +0000214 metadata ;; List of imported entities
215 metadata ;; Split debug filename
David Blaikie16409f22014-08-04 20:36:00 +0000216 i32 ;; Debug info emission kind (1 = Full Debug Info, 2 = Line Tables Only)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000217 }
218
219These descriptors contain a source language ID for the file (we use the DWARF
2203.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
David Blaikiec4fe5db2013-05-29 02:05:13 +0000221``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
222strings for the source file name and the working directory, as well as an
223identifier string for the compiler that produced it.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000224
225Compile unit descriptors provide the root context for objects declared in a
226specific compilation unit. File descriptors are defined using this context.
Eli Bendersky78750882012-11-28 00:27:25 +0000227These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
David Blaikiec4fe5db2013-05-29 02:05:13 +0000228keep track of subprograms, global variables, type information, and imported
229entities (declarations and namespaces).
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000230
231.. _format_files:
232
233File descriptors
234^^^^^^^^^^^^^^^^
235
236.. code-block:: llvm
237
238 !0 = metadata !{
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000239 i32, ;; Tag = 41 (DW_TAG_file_type)
240 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000241 }
242
243These descriptors contain information for a file. Global variables and top
244level functions would be defined using this context. File descriptors also
245provide context for source line correspondence.
246
247Each input file is encoded as a separate file descriptor in LLVM debugging
248information output.
249
250.. _format_global_variables:
251
252Global variable descriptors
253^^^^^^^^^^^^^^^^^^^^^^^^^^^
254
255.. code-block:: llvm
256
257 !1 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +0000258 i32, ;; Tag = 52 (DW_TAG_variable)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000259 i32, ;; Unused field.
260 metadata, ;; Reference to context descriptor
261 metadata, ;; Name
262 metadata, ;; Display name (fully qualified C++ name)
263 metadata, ;; MIPS linkage name (for C++)
264 metadata, ;; Reference to file where defined
265 i32, ;; Line number where defined
266 metadata, ;; Reference to type descriptor
267 i1, ;; True if the global is local to compile unit (static)
268 i1, ;; True if the global is defined in the compile unit (not extern)
David Blaikiec4fe5db2013-05-29 02:05:13 +0000269 {}*, ;; Reference to the global variable
270 metadata, ;; The static member declaration, if any
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000271 }
272
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000273These descriptors provide debug information about global variables. They
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000274provide details such as name, type and where the variable is defined. All
275global variables are collected inside the named metadata ``!llvm.dbg.cu``.
276
277.. _format_subprograms:
278
279Subprogram descriptors
280^^^^^^^^^^^^^^^^^^^^^^
281
282.. code-block:: llvm
283
284 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +0000285 i32, ;; Tag = 46 (DW_TAG_subprogram)
286 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000287 metadata, ;; Reference to context descriptor
288 metadata, ;; Name
289 metadata, ;; Display name (fully qualified C++ name)
290 metadata, ;; MIPS linkage name (for C++)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000291 i32, ;; Line number where defined
292 metadata, ;; Reference to type descriptor
293 i1, ;; True if the global is local to compile unit (static)
294 i1, ;; True if the global is defined in the compile unit (not extern)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000295 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
296 i32, ;; Index into a virtual function
297 metadata, ;; indicates which base type contains the vtable pointer for the
298 ;; derived class
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +0000299 i32, ;; Flags - Artificial, Private, Protected, Explicit, Prototyped.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000300 i1, ;; isOptimized
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000301 {}*, ;; Reference to the LLVM function
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000302 metadata, ;; Lists function template parameters
303 metadata, ;; Function declaration descriptor
Dmitri Gribenko2b7dd6b2013-02-16 20:07:40 +0000304 metadata, ;; List of function variables
305 i32 ;; Line number where the scope of the subprogram begins
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000306 }
307
308These descriptors provide debug information about functions, methods and
309subprograms. They provide details such as name, return types and the source
310location where the subprogram is defined.
311
312Block descriptors
313^^^^^^^^^^^^^^^^^
314
315.. code-block:: llvm
316
317 !3 = metadata !{
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000318 i32, ;; Tag = 11 (DW_TAG_lexical_block)
319 metadata, ;; Source directory (including trailing slash) & file pair
320 metadata, ;; Reference to context descriptor
321 i32, ;; Line number
322 i32, ;; Column number
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000323 i32 ;; Unique ID to identify blocks from a template function
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000324 }
325
326This descriptor provides debug information about nested blocks within a
327subprogram. The line number and column numbers are used to dinstinguish two
328lexical blocks at same depth.
329
330.. code-block:: llvm
331
332 !3 = metadata !{
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000333 i32, ;; Tag = 11 (DW_TAG_lexical_block)
334 metadata, ;; Source directory (including trailing slash) & file pair
335 metadata ;; Reference to the scope we're annotating with a file change
David Blaikie2f3f76f2014-08-21 22:45:21 +0000336 i32, ;; DWARF path discriminator value
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000337 }
338
339This descriptor provides a wrapper around a lexical scope to handle file
340changes in the middle of a lexical block.
341
342.. _format_basic_type:
343
344Basic type descriptors
345^^^^^^^^^^^^^^^^^^^^^^
346
347.. code-block:: llvm
348
349 !4 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +0000350 i32, ;; Tag = 36 (DW_TAG_base_type)
Manman Renf5d45352013-08-29 17:07:49 +0000351 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000352 metadata, ;; Reference to context
353 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000354 i32, ;; Line number where defined (may be 0)
355 i64, ;; Size in bits
356 i64, ;; Alignment in bits
357 i64, ;; Offset in bits
358 i32, ;; Flags
359 i32 ;; DWARF type encoding
360 }
361
362These descriptors define primitive types used in the code. Example ``int``,
363``bool`` and ``float``. The context provides the scope of the type, which is
364usually the top level. Since basic types are not usually user defined the
365context and line number can be left as NULL and 0. The size, alignment and
366offset are expressed in bits and can be 64 bit values. The alignment is used
367to round the offset when embedded in a :ref:`composite type
368<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
369The offset is the bit offset if embedded in a :ref:`composite type
370<format_composite_type>`.
371
372The type encoding provides the details of the type. The values are typically
373one of the following:
374
375.. code-block:: llvm
376
377 DW_ATE_address = 1
378 DW_ATE_boolean = 2
379 DW_ATE_float = 4
380 DW_ATE_signed = 5
381 DW_ATE_signed_char = 6
382 DW_ATE_unsigned = 7
383 DW_ATE_unsigned_char = 8
384
385.. _format_derived_type:
386
387Derived type descriptors
388^^^^^^^^^^^^^^^^^^^^^^^^
389
390.. code-block:: llvm
391
392 !5 = metadata !{
393 i32, ;; Tag (see below)
Manman Renf5d45352013-08-29 17:07:49 +0000394 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000395 metadata, ;; Reference to context
396 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000397 i32, ;; Line number where defined (may be 0)
398 i64, ;; Size in bits
399 i64, ;; Alignment in bits
400 i64, ;; Offset in bits
401 i32, ;; Flags to encode attributes, e.g. private
402 metadata, ;; Reference to type derived from
403 metadata, ;; (optional) Name of the Objective C property associated with
David Blaikie8e390ea2013-01-07 06:02:07 +0000404 ;; Objective-C an ivar, or the type of which this
405 ;; pointer-to-member is pointing to members of.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000406 metadata, ;; (optional) Name of the Objective C property getter selector.
407 metadata, ;; (optional) Name of the Objective C property setter selector.
408 i32 ;; (optional) Objective C property attributes.
409 }
410
411These descriptors are used to define types derived from other types. The value
412of the tag varies depending on the meaning. The following are possible tag
413values:
414
415.. code-block:: llvm
416
David Blaikie8e390ea2013-01-07 06:02:07 +0000417 DW_TAG_formal_parameter = 5
418 DW_TAG_member = 13
419 DW_TAG_pointer_type = 15
420 DW_TAG_reference_type = 16
421 DW_TAG_typedef = 22
422 DW_TAG_ptr_to_member_type = 31
423 DW_TAG_const_type = 38
424 DW_TAG_volatile_type = 53
425 DW_TAG_restrict_type = 55
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000426
427``DW_TAG_member`` is used to define a member of a :ref:`composite type
428<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
429of the member is the :ref:`derived type <format_derived_type>`.
430``DW_TAG_formal_parameter`` is used to define a member which is a formal
431argument of a subprogram.
432
433``DW_TAG_typedef`` is used to provide a name for the derived type.
434
435``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
436``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
437:ref:`derived type <format_derived_type>`.
438
439:ref:`Derived type <format_derived_type>` location can be determined from the
440context and line number. The size, alignment and offset are expressed in bits
441and can be 64 bit values. The alignment is used to round the offset when
442embedded in a :ref:`composite type <format_composite_type>` (example to keep
443float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
444in a :ref:`composite type <format_composite_type>`.
445
446Note that the ``void *`` type is expressed as a type derived from NULL.
447
448.. _format_composite_type:
449
450Composite type descriptors
451^^^^^^^^^^^^^^^^^^^^^^^^^^
452
453.. code-block:: llvm
454
455 !6 = metadata !{
456 i32, ;; Tag (see below)
Manman Renf5d45352013-08-29 17:07:49 +0000457 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000458 metadata, ;; Reference to context
459 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000460 i32, ;; Line number where defined (may be 0)
461 i64, ;; Size in bits
462 i64, ;; Alignment in bits
463 i64, ;; Offset in bits
464 i32, ;; Flags
465 metadata, ;; Reference to type derived from
466 metadata, ;; Reference to array of member descriptors
Manman Renf5d45352013-08-29 17:07:49 +0000467 i32, ;; Runtime languages
David Blaikiec4fe5db2013-05-29 02:05:13 +0000468 metadata, ;; Base type containing the vtable pointer for this type
Manman Renf5d45352013-08-29 17:07:49 +0000469 metadata, ;; Template parameters
470 metadata ;; A unique identifier for type uniquing purpose (may be null)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000471 }
472
473These descriptors are used to define types that are composed of 0 or more
474elements. The value of the tag varies depending on the meaning. The following
475are possible tag values:
476
477.. code-block:: llvm
478
479 DW_TAG_array_type = 1
480 DW_TAG_enumeration_type = 4
481 DW_TAG_structure_type = 19
482 DW_TAG_union_type = 23
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000483 DW_TAG_subroutine_type = 21
484 DW_TAG_inheritance = 28
485
486The vector flag indicates that an array type is a native packed vector.
487
Eric Christopher72a52952013-01-08 01:53:52 +0000488The members of array types (tag = ``DW_TAG_array_type``) are
489:ref:`subrange descriptors <format_subrange>`, each
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000490representing the range of subscripts at that level of indexing.
491
492The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
493:ref:`enumerator descriptors <format_enumerator>`, each representing the
494definition of enumeration value for the set. All enumeration type descriptors
495are collected inside the named metadata ``!llvm.dbg.cu``.
496
497The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
498``DW_TAG_union_type``) types are any one of the :ref:`basic
499<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
500<format_composite_type>` type descriptors, each representing a field member of
501the structure or union.
502
503For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
504information about base classes, static members and member functions. If a
505member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
506of ``DW_TAG_inheritance``, then the type represents a base class. If the member
507of is a :ref:`global variable descriptor <format_global_variables>` then it
508represents a static member. And, if the member is a :ref:`subprogram
509descriptor <format_subprograms>` then it represents a member function. For
510static members and member functions, ``getName()`` returns the members link or
511the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
512
513The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
514is the return type for the subroutine. The remaining elements are the formal
515arguments to the subroutine.
516
517:ref:`Composite type <format_composite_type>` location can be determined from
518the context and line number. The size, alignment and offset are expressed in
519bits and can be 64 bit values. The alignment is used to round the offset when
520embedded in a :ref:`composite type <format_composite_type>` (as an example, to
521keep float doubles on 64 bit boundaries). The offset is the bit offset if
522embedded in a :ref:`composite type <format_composite_type>`.
523
524.. _format_subrange:
525
526Subrange descriptors
527^^^^^^^^^^^^^^^^^^^^
528
529.. code-block:: llvm
530
531 !42 = metadata !{
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000532 i32, ;; Tag = 33 (DW_TAG_subrange_type)
533 i64, ;; Low value
534 i64 ;; High value
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000535 }
536
537These descriptors are used to define ranges of array subscripts for an array
538:ref:`composite type <format_composite_type>`. The low value defines the lower
539bounds typically zero for C/C++. The high value is the upper bounds. Values
540are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
541the array bounds are not included in generated debugging information.
542
543.. _format_enumerator:
544
545Enumerator descriptors
546^^^^^^^^^^^^^^^^^^^^^^
547
548.. code-block:: llvm
549
550 !6 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +0000551 i32, ;; Tag = 40 (DW_TAG_enumerator)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000552 metadata, ;; Name
553 i64 ;; Value
554 }
555
556These descriptors are used to define members of an enumeration :ref:`composite
557type <format_composite_type>`, it associates the name to the value.
558
559Local variables
560^^^^^^^^^^^^^^^
561
562.. code-block:: llvm
563
564 !7 = metadata !{
565 i32, ;; Tag (see below)
566 metadata, ;; Context
567 metadata, ;; Name
568 metadata, ;; Reference to file where defined
569 i32, ;; 24 bit - Line number where defined
570 ;; 8 bit - Argument number. 1 indicates 1st argument.
Adrian Prantl1a1647c2014-03-18 02:34:58 +0000571 metadata, ;; Reference to the type descriptor
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000572 i32, ;; flags
573 metadata ;; (optional) Reference to inline location
Adrian Prantl87b7eb92014-10-01 18:55:02 +0000574 metadata ;; (optional) Reference to a complex expression.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000575 }
576
577These descriptors are used to define variables local to a sub program. The
578value of the tag depends on the usage of the variable:
579
580.. code-block:: llvm
581
582 DW_TAG_auto_variable = 256
583 DW_TAG_arg_variable = 257
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000584
585An auto variable is any variable declared in the body of the function. An
586argument variable is any variable that appears as a formal argument to the
Eric Christopher9948d5e2013-01-08 00:16:33 +0000587function.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000588
589The context is either the subprogram or block where the variable is defined.
590Name the source variable name. Context and line indicate where the variable
591was defined. Type descriptor defines the declared type of the variable.
592
Adrian Prantl87b7eb92014-10-01 18:55:02 +0000593Complex Expressions
594^^^^^^^^^^^^^^^^^^^
595.. code-block:: llvm
596
597 !8 = metadata !{
598 i32, ;; DW_TAG_expression
599 ...
600 }
601
602Complex expressions describe variable storage locations in terms of
603prefix-notated DWARF expressions. Currently the only supported
604operators are ``DW_OP_plus``, ``DW_OP_deref``, and ``DW_OP_piece``.
605
606The ``DW_OP_piece`` operator is used for (typically larger aggregate)
Adrian Prantlb1416832014-08-01 22:11:58 +0000607variables that are fragmented across several locations. It takes two
608i32 arguments, an offset and a size in bytes to describe which piece
609of the variable is at this location.
610
611
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000612.. _format_common_intrinsics:
613
614Debugger intrinsic functions
615^^^^^^^^^^^^^^^^^^^^^^^^^^^^
616
617LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
618provide debug information at various points in generated code.
619
620``llvm.dbg.declare``
621^^^^^^^^^^^^^^^^^^^^
622
623.. code-block:: llvm
624
625 void %llvm.dbg.declare(metadata, metadata)
626
627This intrinsic provides information about a local element (e.g., variable).
628The first argument is metadata holding the alloca for the variable. The second
629argument is metadata containing a description of the variable.
630
631``llvm.dbg.value``
632^^^^^^^^^^^^^^^^^^
633
634.. code-block:: llvm
635
636 void %llvm.dbg.value(metadata, i64, metadata)
637
638This intrinsic provides information when a user source variable is set to a new
639value. The first argument is the new value (wrapped as metadata). The second
640argument is the offset in the user source variable where the new value is
641written. The third argument is metadata containing a description of the user
642source variable.
643
644Object lifetimes and scoping
645============================
646
647In many languages, the local variables in functions can have their lifetimes or
648scopes limited to a subset of a function. In the C family of languages, for
649example, variables are only live (readable and writable) within the source
650block that they are defined in. In functional languages, values are only
651readable after they have been defined. Though this is a very obvious concept,
652it is non-trivial to model in LLVM, because it has no notion of scoping in this
653sense, and does not want to be tied to a language's scoping rules.
654
655In order to handle this, the LLVM debug format uses the metadata attached to
656llvm instructions to encode line number and scoping information. Consider the
657following C fragment, for example:
658
659.. code-block:: c
660
661 1. void foo() {
662 2. int X = 21;
663 3. int Y = 22;
664 4. {
665 5. int Z = 23;
666 6. Z = X;
667 7. }
668 8. X = Y;
669 9. }
670
671Compiled to LLVM, this function would be represented like this:
672
673.. code-block:: llvm
674
Bill Wendlinge814a372013-10-27 04:50:34 +0000675 define void @foo() #0 {
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000676 entry:
Bill Wendlinge814a372013-10-27 04:50:34 +0000677 %X = alloca i32, align 4
678 %Y = alloca i32, align 4
679 %Z = alloca i32, align 4
680 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
David Blaikiec4fe5db2013-05-29 02:05:13 +0000681 ; [debug line = 2:7] [debug variable = X]
Bill Wendlinge814a372013-10-27 04:50:34 +0000682 store i32 21, i32* %X, align 4, !dbg !12
683 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14
David Blaikiec4fe5db2013-05-29 02:05:13 +0000684 ; [debug line = 3:7] [debug variable = Y]
Bill Wendlinge814a372013-10-27 04:50:34 +0000685 store i32 22, i32* %Y, align 4, !dbg !14
David Blaikiec4fe5db2013-05-29 02:05:13 +0000686 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
687 ; [debug line = 5:9] [debug variable = Z]
Bill Wendlinge814a372013-10-27 04:50:34 +0000688 store i32 23, i32* %Z, align 4, !dbg !17
689 %0 = load i32* %X, align 4, !dbg !18
David Blaikiec4fe5db2013-05-29 02:05:13 +0000690 [debug line = 6:5]
Bill Wendlinge814a372013-10-27 04:50:34 +0000691 store i32 %0, i32* %Z, align 4, !dbg !18
692 %1 = load i32* %Y, align 4, !dbg !19
David Blaikiec4fe5db2013-05-29 02:05:13 +0000693 [debug line = 8:3]
Bill Wendlinge814a372013-10-27 04:50:34 +0000694 store i32 %1, i32* %X, align 4, !dbg !19
695 ret void, !dbg !20
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000696 }
697
David Blaikiec4fe5db2013-05-29 02:05:13 +0000698 ; Function Attrs: nounwind readnone
699 declare void @llvm.dbg.declare(metadata, metadata) #1
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000700
Bill Wendlinge814a372013-10-27 04:50:34 +0000701 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false"
702 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"
703 "no-infs-fp-math"="false" "no-nans-fp-math"="false"
704 "stack-protector-buffer-size"="8" "unsafe-fp-math"="false"
David Blaikiec4fe5db2013-05-29 02:05:13 +0000705 "use-soft-float"="false" }
706 attributes #1 = { nounwind readnone }
707
708 !llvm.dbg.cu = !{!0}
Bill Wendlinge814a372013-10-27 04:50:34 +0000709 !llvm.module.flags = !{!8}
710 !llvm.ident = !{!9}
711
David Blaikiec4fe5db2013-05-29 02:05:13 +0000712 !0 = metadata !{i32 786449, metadata !1, i32 12,
Bill Wendlinge814a372013-10-27 04:50:34 +0000713 metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)",
714 i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3,
715 metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
David Blaikiec4fe5db2013-05-29 02:05:13 +0000716 [/private/tmp/foo.c] \
Bill Wendlinge814a372013-10-27 04:50:34 +0000717 [DW_LANG_C99]
718 !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"}
David Blaikiec4fe5db2013-05-29 02:05:13 +0000719 !2 = metadata !{i32 0}
720 !3 = metadata !{metadata !4}
721 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
Bill Wendlinge814a372013-10-27 04:50:34 +0000722 metadata !"foo", metadata !"", i32 1, metadata !6,
723 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
724 void ()* @foo, null, null, metadata !2, i32 1}
David Blaikiec4fe5db2013-05-29 02:05:13 +0000725 ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
Bill Wendlinge814a372013-10-27 04:50:34 +0000726 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \
727 [/private/tmp/t.c]
728 !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0,
729 i64 0, i32 0, null, metadata !7, i32 0, null, null, null}
David Blaikiec4fe5db2013-05-29 02:05:13 +0000730 ; [ DW_TAG_subroutine_type ] \
731 [line 0, size 0, align 0, offset 0] [from ]
732 !7 = metadata !{null}
Bill Wendlinge814a372013-10-27 04:50:34 +0000733 !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2}
734 !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"}
735 !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2,
736 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
737 [line 2]
738 !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32,
739 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
740 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
741 !12 = metadata !{i32 2, i32 0, metadata !4, null}
742 !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3,
743 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
David Blaikiec4fe5db2013-05-29 02:05:13 +0000744 [line 3]
Bill Wendlinge814a372013-10-27 04:50:34 +0000745 !14 = metadata !{i32 3, i32 0, metadata !4, null}
746 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5,
747 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
David Blaikiec4fe5db2013-05-29 02:05:13 +0000748 [line 5]
David Blaikie2f3f76f2014-08-21 22:45:21 +0000749 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
Bill Wendlinge814a372013-10-27 04:50:34 +0000750 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
751 !17 = metadata !{i32 5, i32 0, metadata !16, null}
752 !18 = metadata !{i32 6, i32 0, metadata !16, null}
753 !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ]
754 !20 = metadata !{i32 9, i32 0, metadata !4, null}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000755
756This example illustrates a few important details about LLVM debugging
757information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
758location information, which are attached to an instruction, are applied
759together to allow a debugger to analyze the relationship between statements,
760variable definitions, and the code used to implement the function.
761
762.. code-block:: llvm
763
Bill Wendlinge814a372013-10-27 04:50:34 +0000764 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
David Blaikiec4fe5db2013-05-29 02:05:13 +0000765 ; [debug line = 2:7] [debug variable = X]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000766
767The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
Bill Wendlinge814a372013-10-27 04:50:34 +0000768variable ``X``. The metadata ``!dbg !12`` attached to the intrinsic provides
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000769scope information for the variable ``X``.
770
771.. code-block:: llvm
772
Bill Wendlinge814a372013-10-27 04:50:34 +0000773 !12 = metadata !{i32 2, i32 0, metadata !4, null}
David Blaikiec4fe5db2013-05-29 02:05:13 +0000774 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
Bill Wendlinge814a372013-10-27 04:50:34 +0000775 metadata !"foo", metadata !"", i32 1, metadata !6,
776 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
777 void ()* @foo, null, null, metadata !2, i32 1}
778 ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000779
Bill Wendlinge814a372013-10-27 04:50:34 +0000780Here ``!12`` is metadata providing location information. It has four fields:
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000781line number, column number, scope, and original scope. The original scope
782represents inline location if this instruction is inlined inside a caller, and
David Blaikiec4fe5db2013-05-29 02:05:13 +0000783is null otherwise. In this example, scope is encoded by ``!4``, a
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000784:ref:`subprogram descriptor <format_subprograms>`. This way the location
785information attached to the intrinsics indicates that the variable ``X`` is
786declared at line number 2 at a function level scope in function ``foo``.
787
788Now lets take another example.
789
790.. code-block:: llvm
791
David Blaikiec4fe5db2013-05-29 02:05:13 +0000792 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
793 ; [debug line = 5:9] [debug variable = Z]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000794
David Blaikiec4fe5db2013-05-29 02:05:13 +0000795The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
796variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000797scope information for the variable ``Z``.
798
799.. code-block:: llvm
800
David Blaikie2f3f76f2014-08-21 22:45:21 +0000801 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
Bill Wendlinge814a372013-10-27 04:50:34 +0000802 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
803 !17 = metadata !{i32 5, i32 0, metadata !16, null}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000804
David Blaikiec4fe5db2013-05-29 02:05:13 +0000805Here ``!15`` indicates that ``Z`` is declared at line number 5 and
Bill Wendlinge814a372013-10-27 04:50:34 +0000806column number 0 inside of lexical scope ``!16``. The lexical scope itself
David Blaikiec4fe5db2013-05-29 02:05:13 +0000807resides inside of subprogram ``!4`` described above.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000808
809The scope information attached with each instruction provides a straightforward
810way to find instructions covered by a scope.
811
812.. _ccxx_frontend:
813
814C/C++ front-end specific debug information
815==========================================
816
817The C and C++ front-ends represent information about the program in a format
818that is effectively identical to `DWARF 3.0
819<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
820content. This allows code generators to trivially support native debuggers by
821generating standard dwarf information, and contains enough information for
822non-dwarf targets to translate it as needed.
823
824This section describes the forms used to represent C and C++ programs. Other
825languages could pattern themselves after this (which itself is tuned to
826representing programs in the same way that DWARF 3 does), or they could choose
827to provide completely different forms if they don't fit into the DWARF model.
828As support for debugging information gets added to the various LLVM
829source-language front-ends, the information used should be documented here.
830
831The following sections provide examples of various C/C++ constructs and the
832debug information that would best describe those constructs.
833
834C/C++ source file information
835-----------------------------
836
837Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
838directory ``/Users/mine/sources``, the following code:
839
840.. code-block:: c
841
842 #include "MyHeader.h"
843
844 int main(int argc, char *argv[]) {
845 return 0;
846 }
847
848a C/C++ front-end would generate the following descriptors:
849
850.. code-block:: llvm
851
852 ...
853 ;;
854 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
855 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +0000856 !0 = metadata !{
857 i32 786449, ;; Tag
858 metadata !1, ;; File/directory name
859 i32 4, ;; Language Id
860 metadata !"clang version 3.4 ",
861 i1 false, ;; Optimized compile unit
862 metadata !"", ;; Compiler flags
863 i32 0, ;; Runtime version
864 metadata !2, ;; Enumeration types
865 metadata !2, ;; Retained types
866 metadata !3, ;; Subprograms
867 metadata !2, ;; Global variables
868 metadata !2, ;; Imported entities (declarations and namespaces)
869 metadata !"" ;; Split debug filename
David Blaikief8517122014-08-04 20:32:48 +0000870 1, ;; Full debug info
David Blaikiec4fe5db2013-05-29 02:05:13 +0000871 }
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000872
873 ;;
874 ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
875 ;;
876 !1 = metadata !{
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000877 metadata !"MySource.cpp",
David Blaikiec4fe5db2013-05-29 02:05:13 +0000878 metadata !"/Users/mine/sources"
879 }
880 !5 = metadata !{
881 i32 786473, ;; Tag
882 metadata !1
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000883 }
884
885 ;;
886 ;; Define the file for the file "/Users/mine/sources/Myheader.h"
887 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +0000888 !14 = metadata !{
889 i32 786473, ;; Tag
890 metadata !15
891 }
892 !15 = metadata !{
893 metadata !"./MyHeader.h",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000894 metadata !"/Users/mine/sources",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000895 }
896
897 ...
898
899``llvm::Instruction`` provides easy access to metadata attached with an
900instruction. One can extract line number information encoded in LLVM IR using
901``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
902
903.. code-block:: c++
904
905 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
906 DILocation Loc(N); // DILocation is in DebugInfo.h
907 unsigned Line = Loc.getLineNumber();
908 StringRef File = Loc.getFilename();
909 StringRef Dir = Loc.getDirectory();
910 }
911
912C/C++ global variable information
913---------------------------------
914
915Given an integer global variable declared as follows:
916
917.. code-block:: c
918
919 int MyGlobal = 100;
920
921a C/C++ front-end would generate the following descriptors:
922
923.. code-block:: llvm
924
925 ;;
926 ;; Define the global itself.
927 ;;
928 %MyGlobal = global int 100
929 ...
930 ;;
931 ;; List of debug info of globals
932 ;;
933 !llvm.dbg.cu = !{!0}
934
935 ;; Define the compile unit.
936 !0 = metadata !{
937 i32 786449, ;; Tag
938 i32 0, ;; Context
939 i32 4, ;; Language
940 metadata !"foo.cpp", ;; File
941 metadata !"/Volumes/Data/tmp", ;; Directory
942 metadata !"clang version 3.1 ", ;; Producer
943 i1 true, ;; Deprecated field
944 i1 false, ;; "isOptimized"?
945 metadata !"", ;; Flags
946 i32 0, ;; Runtime Version
947 metadata !1, ;; Enum Types
948 metadata !1, ;; Retained Types
949 metadata !1, ;; Subprograms
David Blaikiec4fe5db2013-05-29 02:05:13 +0000950 metadata !3, ;; Global Variables
951 metadata !1, ;; Imported entities
952 "", ;; Split debug filename
David Blaikief8517122014-08-04 20:32:48 +0000953 1, ;; Full debug info
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000954 } ; [ DW_TAG_compile_unit ]
955
956 ;; The Array of Global Variables
957 !3 = metadata !{
958 metadata !4
959 }
960
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000961 ;;
962 ;; Define the global variable itself.
963 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +0000964 !4 = metadata !{
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000965 i32 786484, ;; Tag
966 i32 0, ;; Unused
967 null, ;; Unused
968 metadata !"MyGlobal", ;; Name
969 metadata !"MyGlobal", ;; Display Name
970 metadata !"", ;; Linkage Name
971 metadata !6, ;; File
972 i32 1, ;; Line
973 metadata !7, ;; Type
974 i32 0, ;; IsLocalToUnit
975 i32 1, ;; IsDefinition
David Blaikiec4fe5db2013-05-29 02:05:13 +0000976 i32* @MyGlobal, ;; LLVM-IR Value
977 null ;; Static member declaration
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000978 } ; [ DW_TAG_variable ]
979
980 ;;
981 ;; Define the file
982 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +0000983 !5 = metadata !{
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000984 metadata !"foo.cpp", ;; File
985 metadata !"/Volumes/Data/tmp", ;; Directory
David Blaikiec4fe5db2013-05-29 02:05:13 +0000986 }
987 !6 = metadata !{
988 i32 786473, ;; Tag
989 metadata !5 ;; Unused
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000990 } ; [ DW_TAG_file_type ]
991
992 ;;
993 ;; Define the type
994 ;;
995 !7 = metadata !{
996 i32 786468, ;; Tag
997 null, ;; Unused
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000998 null, ;; Unused
David Blaikiec4fe5db2013-05-29 02:05:13 +0000999 metadata !"int", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001000 i32 0, ;; Line
1001 i64 32, ;; Size in Bits
1002 i64 32, ;; Align in Bits
1003 i64 0, ;; Offset
1004 i32 0, ;; Flags
1005 i32 5 ;; Encoding
1006 } ; [ DW_TAG_base_type ]
1007
1008C/C++ function information
1009--------------------------
1010
1011Given a function declared as follows:
1012
1013.. code-block:: c
1014
1015 int main(int argc, char *argv[]) {
1016 return 0;
1017 }
1018
1019a C/C++ front-end would generate the following descriptors:
1020
1021.. code-block:: llvm
1022
1023 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +00001024 ;; Define the anchor for subprograms.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001025 ;;
1026 !6 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001027 i32 786484, ;; Tag
1028 metadata !1, ;; File
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001029 metadata !1, ;; Context
1030 metadata !"main", ;; Name
1031 metadata !"main", ;; Display name
1032 metadata !"main", ;; Linkage name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001033 i32 1, ;; Line number
1034 metadata !4, ;; Type
1035 i1 false, ;; Is local
1036 i1 true, ;; Is definition
1037 i32 0, ;; Virtuality attribute, e.g. pure virtual function
1038 i32 0, ;; Index into virtual table for C++ methods
1039 i32 0, ;; Type that holds virtual table.
1040 i32 0, ;; Flags
1041 i1 false, ;; True if this function is optimized
1042 Function *, ;; Pointer to llvm::Function
David Blaikiec4fe5db2013-05-29 02:05:13 +00001043 null, ;; Function template parameters
1044 null, ;; List of function variables (emitted when optimizing)
1045 1 ;; Line number of the opening '{' of the function
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001046 }
1047 ;;
1048 ;; Define the subprogram itself.
1049 ;;
1050 define i32 @main(i32 %argc, i8** %argv) {
1051 ...
1052 }
1053
1054C/C++ basic types
1055-----------------
1056
1057The following are the basic type descriptors for C/C++ core types:
1058
1059bool
1060^^^^
1061
1062.. code-block:: llvm
1063
1064 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001065 i32 786468, ;; Tag
1066 null, ;; File
1067 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001068 metadata !"bool", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001069 i32 0, ;; Line number
1070 i64 8, ;; Size in Bits
1071 i64 8, ;; Align in Bits
1072 i64 0, ;; Offset in Bits
1073 i32 0, ;; Flags
1074 i32 2 ;; Encoding
1075 }
1076
1077char
1078^^^^
1079
1080.. code-block:: llvm
1081
1082 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001083 i32 786468, ;; Tag
1084 null, ;; File
1085 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001086 metadata !"char", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001087 i32 0, ;; Line number
1088 i64 8, ;; Size in Bits
1089 i64 8, ;; Align in Bits
1090 i64 0, ;; Offset in Bits
1091 i32 0, ;; Flags
1092 i32 6 ;; Encoding
1093 }
1094
1095unsigned char
1096^^^^^^^^^^^^^
1097
1098.. code-block:: llvm
1099
1100 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001101 i32 786468, ;; Tag
1102 null, ;; File
1103 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001104 metadata !"unsigned char",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001105 i32 0, ;; Line number
1106 i64 8, ;; Size in Bits
1107 i64 8, ;; Align in Bits
1108 i64 0, ;; Offset in Bits
1109 i32 0, ;; Flags
1110 i32 8 ;; Encoding
1111 }
1112
1113short
1114^^^^^
1115
1116.. code-block:: llvm
1117
1118 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001119 i32 786468, ;; Tag
1120 null, ;; File
1121 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001122 metadata !"short int",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001123 i32 0, ;; Line number
1124 i64 16, ;; Size in Bits
1125 i64 16, ;; Align in Bits
1126 i64 0, ;; Offset in Bits
1127 i32 0, ;; Flags
1128 i32 5 ;; Encoding
1129 }
1130
1131unsigned short
1132^^^^^^^^^^^^^^
1133
1134.. code-block:: llvm
1135
1136 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001137 i32 786468, ;; Tag
1138 null, ;; File
1139 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001140 metadata !"short unsigned int",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001141 i32 0, ;; Line number
1142 i64 16, ;; Size in Bits
1143 i64 16, ;; Align in Bits
1144 i64 0, ;; Offset in Bits
1145 i32 0, ;; Flags
1146 i32 7 ;; Encoding
1147 }
1148
1149int
1150^^^
1151
1152.. code-block:: llvm
1153
1154 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001155 i32 786468, ;; Tag
1156 null, ;; File
1157 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001158 metadata !"int", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001159 i32 0, ;; Line number
1160 i64 32, ;; Size in Bits
1161 i64 32, ;; Align in Bits
1162 i64 0, ;; Offset in Bits
1163 i32 0, ;; Flags
1164 i32 5 ;; Encoding
1165 }
1166
1167unsigned int
1168^^^^^^^^^^^^
1169
1170.. code-block:: llvm
1171
1172 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001173 i32 786468, ;; Tag
1174 null, ;; File
1175 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001176 metadata !"unsigned int",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001177 i32 0, ;; Line number
1178 i64 32, ;; Size in Bits
1179 i64 32, ;; Align in Bits
1180 i64 0, ;; Offset in Bits
1181 i32 0, ;; Flags
1182 i32 7 ;; Encoding
1183 }
1184
1185long long
1186^^^^^^^^^
1187
1188.. code-block:: llvm
1189
1190 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001191 i32 786468, ;; Tag
1192 null, ;; File
1193 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001194 metadata !"long long int",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001195 i32 0, ;; Line number
1196 i64 64, ;; Size in Bits
1197 i64 64, ;; Align in Bits
1198 i64 0, ;; Offset in Bits
1199 i32 0, ;; Flags
1200 i32 5 ;; Encoding
1201 }
1202
1203unsigned long long
1204^^^^^^^^^^^^^^^^^^
1205
1206.. code-block:: llvm
1207
1208 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001209 i32 786468, ;; Tag
1210 null, ;; File
1211 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001212 metadata !"long long unsigned int",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001213 i32 0, ;; Line number
1214 i64 64, ;; Size in Bits
1215 i64 64, ;; Align in Bits
1216 i64 0, ;; Offset in Bits
1217 i32 0, ;; Flags
1218 i32 7 ;; Encoding
1219 }
1220
1221float
1222^^^^^
1223
1224.. code-block:: llvm
1225
1226 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001227 i32 786468, ;; Tag
1228 null, ;; File
1229 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001230 metadata !"float",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001231 i32 0, ;; Line number
1232 i64 32, ;; Size in Bits
1233 i64 32, ;; Align in Bits
1234 i64 0, ;; Offset in Bits
1235 i32 0, ;; Flags
1236 i32 4 ;; Encoding
1237 }
1238
1239double
1240^^^^^^
1241
1242.. code-block:: llvm
1243
1244 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001245 i32 786468, ;; Tag
1246 null, ;; File
1247 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001248 metadata !"double",;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001249 i32 0, ;; Line number
1250 i64 64, ;; Size in Bits
1251 i64 64, ;; Align in Bits
1252 i64 0, ;; Offset in Bits
1253 i32 0, ;; Flags
1254 i32 4 ;; Encoding
1255 }
1256
1257C/C++ derived types
1258-------------------
1259
1260Given the following as an example of C/C++ derived type:
1261
1262.. code-block:: c
1263
1264 typedef const int *IntPtr;
1265
1266a C/C++ front-end would generate the following descriptors:
1267
1268.. code-block:: llvm
1269
1270 ;;
1271 ;; Define the typedef "IntPtr".
1272 ;;
1273 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001274 i32 786454, ;; Tag
1275 metadata !3, ;; File
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001276 metadata !1, ;; Context
1277 metadata !"IntPtr", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001278 i32 0, ;; Line number
1279 i64 0, ;; Size in bits
1280 i64 0, ;; Align in bits
1281 i64 0, ;; Offset in bits
1282 i32 0, ;; Flags
1283 metadata !4 ;; Derived From type
1284 }
1285 ;;
1286 ;; Define the pointer type.
1287 ;;
1288 !4 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001289 i32 786447, ;; Tag
1290 null, ;; File
1291 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001292 metadata !"", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001293 i32 0, ;; Line number
1294 i64 64, ;; Size in bits
1295 i64 64, ;; Align in bits
1296 i64 0, ;; Offset in bits
1297 i32 0, ;; Flags
1298 metadata !5 ;; Derived From type
1299 }
1300 ;;
1301 ;; Define the const type.
1302 ;;
1303 !5 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001304 i32 786470, ;; Tag
1305 null, ;; File
1306 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001307 metadata !"", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001308 i32 0, ;; Line number
David Blaikiec4fe5db2013-05-29 02:05:13 +00001309 i64 0, ;; Size in bits
1310 i64 0, ;; Align in bits
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001311 i64 0, ;; Offset in bits
1312 i32 0, ;; Flags
1313 metadata !6 ;; Derived From type
1314 }
1315 ;;
1316 ;; Define the int type.
1317 ;;
1318 !6 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001319 i32 786468, ;; Tag
1320 null, ;; File
1321 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001322 metadata !"int", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001323 i32 0, ;; Line number
1324 i64 32, ;; Size in bits
1325 i64 32, ;; Align in bits
1326 i64 0, ;; Offset in bits
1327 i32 0, ;; Flags
David Blaikiec4fe5db2013-05-29 02:05:13 +00001328 i32 5 ;; Encoding
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001329 }
1330
1331C/C++ struct/union types
1332------------------------
1333
1334Given the following as an example of C/C++ struct type:
1335
1336.. code-block:: c
1337
1338 struct Color {
1339 unsigned Red;
1340 unsigned Green;
1341 unsigned Blue;
1342 };
1343
1344a C/C++ front-end would generate the following descriptors:
1345
1346.. code-block:: llvm
1347
1348 ;;
1349 ;; Define basic type for unsigned int.
1350 ;;
1351 !5 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001352 i32 786468, ;; Tag
1353 null, ;; File
1354 null, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001355 metadata !"unsigned int",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001356 i32 0, ;; Line number
1357 i64 32, ;; Size in Bits
1358 i64 32, ;; Align in Bits
1359 i64 0, ;; Offset in Bits
1360 i32 0, ;; Flags
1361 i32 7 ;; Encoding
1362 }
1363 ;;
1364 ;; Define composite type for struct Color.
1365 ;;
1366 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001367 i32 786451, ;; Tag
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001368 metadata !1, ;; Compile unit
David Blaikiec4fe5db2013-05-29 02:05:13 +00001369 null, ;; Context
1370 metadata !"Color", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001371 i32 1, ;; Line number
1372 i64 96, ;; Size in bits
1373 i64 32, ;; Align in bits
1374 i64 0, ;; Offset in bits
1375 i32 0, ;; Flags
1376 null, ;; Derived From
1377 metadata !3, ;; Elements
David Blaikiec4fe5db2013-05-29 02:05:13 +00001378 i32 0, ;; Runtime Language
1379 null, ;; Base type containing the vtable pointer for this type
1380 null ;; Template parameters
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001381 }
1382
1383 ;;
1384 ;; Define the Red field.
1385 ;;
1386 !4 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001387 i32 786445, ;; Tag
1388 metadata !1, ;; File
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001389 metadata !1, ;; Context
1390 metadata !"Red", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001391 i32 2, ;; Line number
1392 i64 32, ;; Size in bits
1393 i64 32, ;; Align in bits
1394 i64 0, ;; Offset in bits
1395 i32 0, ;; Flags
1396 metadata !5 ;; Derived From type
1397 }
1398
1399 ;;
1400 ;; Define the Green field.
1401 ;;
1402 !6 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001403 i32 786445, ;; Tag
1404 metadata !1, ;; File
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001405 metadata !1, ;; Context
1406 metadata !"Green", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001407 i32 3, ;; Line number
1408 i64 32, ;; Size in bits
1409 i64 32, ;; Align in bits
1410 i64 32, ;; Offset in bits
1411 i32 0, ;; Flags
1412 metadata !5 ;; Derived From type
1413 }
1414
1415 ;;
1416 ;; Define the Blue field.
1417 ;;
1418 !7 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001419 i32 786445, ;; Tag
1420 metadata !1, ;; File
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001421 metadata !1, ;; Context
1422 metadata !"Blue", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001423 i32 4, ;; Line number
1424 i64 32, ;; Size in bits
1425 i64 32, ;; Align in bits
1426 i64 64, ;; Offset in bits
1427 i32 0, ;; Flags
1428 metadata !5 ;; Derived From type
1429 }
1430
1431 ;;
1432 ;; Define the array of fields used by the composite type Color.
1433 ;;
1434 !3 = metadata !{metadata !4, metadata !6, metadata !7}
1435
1436C/C++ enumeration types
1437-----------------------
1438
1439Given the following as an example of C/C++ enumeration type:
1440
1441.. code-block:: c
1442
1443 enum Trees {
1444 Spruce = 100,
1445 Oak = 200,
1446 Maple = 300
1447 };
1448
1449a C/C++ front-end would generate the following descriptors:
1450
1451.. code-block:: llvm
1452
1453 ;;
1454 ;; Define composite type for enum Trees
1455 ;;
1456 !2 = metadata !{
David Blaikiec4fe5db2013-05-29 02:05:13 +00001457 i32 786436, ;; Tag
1458 metadata !1, ;; File
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001459 metadata !1, ;; Context
1460 metadata !"Trees", ;; Name
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001461 i32 1, ;; Line number
1462 i64 32, ;; Size in bits
1463 i64 32, ;; Align in bits
1464 i64 0, ;; Offset in bits
1465 i32 0, ;; Flags
1466 null, ;; Derived From type
1467 metadata !3, ;; Elements
1468 i32 0 ;; Runtime language
1469 }
1470
1471 ;;
1472 ;; Define the array of enumerators used by composite type Trees.
1473 ;;
1474 !3 = metadata !{metadata !4, metadata !5, metadata !6}
1475
1476 ;;
1477 ;; Define Spruce enumerator.
1478 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +00001479 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001480
1481 ;;
1482 ;; Define Oak enumerator.
1483 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +00001484 !5 = metadata !{i32 786472, metadata !"Oak", i64 200}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001485
1486 ;;
1487 ;; Define Maple enumerator.
1488 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +00001489 !6 = metadata !{i32 786472, metadata !"Maple", i64 300}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001490
1491Debugging information format
1492============================
1493
1494Debugging Information Extension for Objective C Properties
1495----------------------------------------------------------
1496
1497Introduction
1498^^^^^^^^^^^^
1499
1500Objective C provides a simpler way to declare and define accessor methods using
1501declared properties. The language provides features to declare a property and
1502to let compiler synthesize accessor methods.
1503
1504The debugger lets developer inspect Objective C interfaces and their instance
1505variables and class variables. However, the debugger does not know anything
1506about the properties defined in Objective C interfaces. The debugger consumes
1507information generated by compiler in DWARF format. The format does not support
1508encoding of Objective C properties. This proposal describes DWARF extensions to
1509encode Objective C properties, which the debugger can use to let developers
1510inspect Objective C properties.
1511
1512Proposal
1513^^^^^^^^
1514
1515Objective C properties exist separately from class members. A property can be
1516defined only by "setter" and "getter" selectors, and be calculated anew on each
1517access. Or a property can just be a direct access to some declared ivar.
1518Finally it can have an ivar "automatically synthesized" for it by the compiler,
1519in which case the property can be referred to in user code directly using the
1520standard C dereference syntax as well as through the property "dot" syntax, but
1521there is no entry in the ``@interface`` declaration corresponding to this ivar.
1522
1523To facilitate debugging, these properties we will add a new DWARF TAG into the
1524``DW_TAG_structure_type`` definition for the class to hold the description of a
1525given property, and a set of DWARF attributes that provide said description.
1526The property tag will also contain the name and declared type of the property.
1527
1528If there is a related ivar, there will also be a DWARF property attribute placed
1529in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1530for that property. And in the case where the compiler synthesizes the ivar
1531directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1532ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1533to access this ivar directly in code, and with the property attribute pointing
1534back to the property it is backing.
1535
1536The following examples will serve as illustration for our discussion:
1537
1538.. code-block:: objc
1539
1540 @interface I1 {
1541 int n2;
1542 }
1543
1544 @property int p1;
1545 @property int p2;
1546 @end
1547
1548 @implementation I1
1549 @synthesize p1;
1550 @synthesize p2 = n2;
1551 @end
1552
1553This produces the following DWARF (this is a "pseudo dwarfdump" output):
1554
1555.. code-block:: none
1556
1557 0x00000100: TAG_structure_type [7] *
1558 AT_APPLE_runtime_class( 0x10 )
1559 AT_name( "I1" )
1560 AT_decl_file( "Objc_Property.m" )
1561 AT_decl_line( 3 )
1562
1563 0x00000110 TAG_APPLE_property
1564 AT_name ( "p1" )
1565 AT_type ( {0x00000150} ( int ) )
1566
1567 0x00000120: TAG_APPLE_property
1568 AT_name ( "p2" )
1569 AT_type ( {0x00000150} ( int ) )
1570
1571 0x00000130: TAG_member [8]
1572 AT_name( "_p1" )
1573 AT_APPLE_property ( {0x00000110} "p1" )
1574 AT_type( {0x00000150} ( int ) )
1575 AT_artificial ( 0x1 )
1576
1577 0x00000140: TAG_member [8]
1578 AT_name( "n2" )
1579 AT_APPLE_property ( {0x00000120} "p2" )
1580 AT_type( {0x00000150} ( int ) )
1581
1582 0x00000150: AT_type( ( int ) )
1583
1584Note, the current convention is that the name of the ivar for an
1585auto-synthesized property is the name of the property from which it derives
1586with an underscore prepended, as is shown in the example. But we actually
1587don't need to know this convention, since we are given the name of the ivar
1588directly.
1589
1590Also, it is common practice in ObjC to have different property declarations in
1591the @interface and @implementation - e.g. to provide a read-only property in
1592the interface,and a read-write interface in the implementation. In that case,
1593the compiler should emit whichever property declaration will be in force in the
1594current translation unit.
1595
1596Developers can decorate a property with attributes which are encoded using
1597``DW_AT_APPLE_property_attribute``.
1598
1599.. code-block:: objc
1600
1601 @property (readonly, nonatomic) int pr;
1602
1603.. code-block:: none
1604
1605 TAG_APPLE_property [8]
1606 AT_name( "pr" )
1607 AT_type ( {0x00000147} (int) )
1608 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1609
1610The setter and getter method names are attached to the property using
1611``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1612
1613.. code-block:: objc
1614
1615 @interface I1
1616 @property (setter=myOwnP3Setter:) int p3;
1617 -(void)myOwnP3Setter:(int)a;
1618 @end
1619
1620 @implementation I1
1621 @synthesize p3;
1622 -(void)myOwnP3Setter:(int)a{ }
1623 @end
1624
1625The DWARF for this would be:
1626
1627.. code-block:: none
1628
1629 0x000003bd: TAG_structure_type [7] *
1630 AT_APPLE_runtime_class( 0x10 )
1631 AT_name( "I1" )
1632 AT_decl_file( "Objc_Property.m" )
1633 AT_decl_line( 3 )
1634
1635 0x000003cd TAG_APPLE_property
1636 AT_name ( "p3" )
1637 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1638 AT_type( {0x00000147} ( int ) )
1639
1640 0x000003f3: TAG_member [8]
1641 AT_name( "_p3" )
1642 AT_type ( {0x00000147} ( int ) )
1643 AT_APPLE_property ( {0x000003cd} )
1644 AT_artificial ( 0x1 )
1645
1646New DWARF Tags
1647^^^^^^^^^^^^^^
1648
1649+-----------------------+--------+
1650| TAG | Value |
1651+=======================+========+
1652| DW_TAG_APPLE_property | 0x4200 |
1653+-----------------------+--------+
1654
1655New DWARF Attributes
1656^^^^^^^^^^^^^^^^^^^^
1657
1658+--------------------------------+--------+-----------+
1659| Attribute | Value | Classes |
1660+================================+========+===========+
1661| DW_AT_APPLE_property | 0x3fed | Reference |
1662+--------------------------------+--------+-----------+
1663| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1664+--------------------------------+--------+-----------+
1665| DW_AT_APPLE_property_setter | 0x3fea | String |
1666+--------------------------------+--------+-----------+
1667| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1668+--------------------------------+--------+-----------+
1669
1670New DWARF Constants
1671^^^^^^^^^^^^^^^^^^^
1672
1673+--------------------------------+-------+
1674| Name | Value |
1675+================================+=======+
1676| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1677+--------------------------------+-------+
1678| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1679+--------------------------------+-------+
1680| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1681+--------------------------------+-------+
1682| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1683+--------------------------------+-------+
1684| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1685+--------------------------------+-------+
1686| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1687+--------------------------------+-------+
1688
1689Name Accelerator Tables
1690-----------------------
1691
1692Introduction
1693^^^^^^^^^^^^
1694
1695The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1696debugger needs. The "``pub``" in the section name indicates that the entries
1697in the table are publicly visible names only. This means no static or hidden
1698functions show up in the "``.debug_pubnames``". No static variables or private
1699class variables are in the "``.debug_pubtypes``". Many compilers add different
1700things to these tables, so we can't rely upon the contents between gcc, icc, or
1701clang.
1702
1703The typical query given by users tends not to match up with the contents of
1704these tables. For example, the DWARF spec states that "In the case of the name
1705of a function member or static data member of a C++ structure, class or union,
1706the name presented in the "``.debug_pubnames``" section is not the simple name
1707given by the ``DW_AT_name attribute`` of the referenced debugging information
1708entry, but rather the fully qualified name of the data or function member."
1709So the only names in these tables for complex C++ entries is a fully
1710qualified name. Debugger users tend not to enter their search strings as
1711"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1712"``a::b::c``". So the name entered in the name table must be demangled in
1713order to chop it up appropriately and additional names must be manually entered
1714into the table to make it effective as a name lookup table for debuggers to
1715se.
1716
1717All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1718its inconsistent and useless public-only name content making it a waste of
1719space in the object file. These tables, when they are written to disk, are not
1720sorted in any way, leaving every debugger to do its own parsing and sorting.
1721These tables also include an inlined copy of the string values in the table
1722itself making the tables much larger than they need to be on disk, especially
1723for large C++ programs.
1724
1725Can't we just fix the sections by adding all of the names we need to this
1726table? No, because that is not what the tables are defined to contain and we
1727won't know the difference between the old bad tables and the new good tables.
1728At best we could make our own renamed sections that contain all of the data we
1729need.
1730
1731These tables are also insufficient for what a debugger like LLDB needs. LLDB
1732uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1733often asked to look for type "``foo``" or namespace "``bar``", or list items in
1734namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1735tables. Since clang asks a lot of questions when it is parsing an expression,
1736we need to be very fast when looking up names, as it happens a lot. Having new
1737accelerator tables that are optimized for very quick lookups will benefit this
1738type of debugging experience greatly.
1739
1740We would like to generate name lookup tables that can be mapped into memory
1741from disk, and used as is, with little or no up-front parsing. We would also
1742be able to control the exact content of these different tables so they contain
1743exactly what we need. The Name Accelerator Tables were designed to fix these
1744issues. In order to solve these issues we need to:
1745
1746* Have a format that can be mapped into memory from disk and used as is
1747* Lookups should be very fast
1748* Extensible table format so these tables can be made by many producers
1749* Contain all of the names needed for typical lookups out of the box
1750* Strict rules for the contents of tables
1751
1752Table size is important and the accelerator table format should allow the reuse
1753of strings from common string tables so the strings for the names are not
1754duplicated. We also want to make sure the table is ready to be used as-is by
1755simply mapping the table into memory with minimal header parsing.
1756
1757The name lookups need to be fast and optimized for the kinds of lookups that
1758debuggers tend to do. Optimally we would like to touch as few parts of the
1759mapped table as possible when doing a name lookup and be able to quickly find
1760the name entry we are looking for, or discover there are no matches. In the
1761case of debuggers we optimized for lookups that fail most of the time.
1762
1763Each table that is defined should have strict rules on exactly what is in the
1764accelerator tables and documented so clients can rely on the content.
1765
1766Hash Tables
1767^^^^^^^^^^^
1768
1769Standard Hash Tables
1770""""""""""""""""""""
1771
1772Typical hash tables have a header, buckets, and each bucket points to the
1773bucket contents:
1774
1775.. code-block:: none
1776
1777 .------------.
1778 | HEADER |
1779 |------------|
1780 | BUCKETS |
1781 |------------|
1782 | DATA |
1783 `------------'
1784
1785The BUCKETS are an array of offsets to DATA for each hash:
1786
1787.. code-block:: none
1788
1789 .------------.
1790 | 0x00001000 | BUCKETS[0]
1791 | 0x00002000 | BUCKETS[1]
1792 | 0x00002200 | BUCKETS[2]
1793 | 0x000034f0 | BUCKETS[3]
1794 | | ...
1795 | 0xXXXXXXXX | BUCKETS[n_buckets]
1796 '------------'
1797
1798So for ``bucket[3]`` in the example above, we have an offset into the table
17990x000034f0 which points to a chain of entries for the bucket. Each bucket must
1800contain a next pointer, full 32 bit hash value, the string itself, and the data
1801for the current string value.
1802
1803.. code-block:: none
1804
1805 .------------.
1806 0x000034f0: | 0x00003500 | next pointer
1807 | 0x12345678 | 32 bit hash
1808 | "erase" | string value
1809 | data[n] | HashData for this bucket
1810 |------------|
1811 0x00003500: | 0x00003550 | next pointer
1812 | 0x29273623 | 32 bit hash
1813 | "dump" | string value
1814 | data[n] | HashData for this bucket
1815 |------------|
1816 0x00003550: | 0x00000000 | next pointer
1817 | 0x82638293 | 32 bit hash
1818 | "main" | string value
1819 | data[n] | HashData for this bucket
1820 `------------'
1821
1822The problem with this layout for debuggers is that we need to optimize for the
1823negative lookup case where the symbol we're searching for is not present. So
1824if we were to lookup "``printf``" in the table above, we would make a 32 hash
1825for "``printf``", it might match ``bucket[3]``. We would need to go to the
1826offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1827so, we need to read the next pointer, then read the hash, compare it, and skip
1828to the next bucket. Each time we are skipping many bytes in memory and
1829touching new cache pages just to do the compare on the full 32 bit hash. All
1830of these accesses then tell us that we didn't have a match.
1831
1832Name Hash Tables
1833""""""""""""""""
1834
1835To solve the issues mentioned above we have structured the hash tables a bit
1836differently: a header, buckets, an array of all unique 32 bit hash values,
1837followed by an array of hash value data offsets, one for each hash value, then
1838the data for all hash values:
1839
1840.. code-block:: none
1841
1842 .-------------.
1843 | HEADER |
1844 |-------------|
1845 | BUCKETS |
1846 |-------------|
1847 | HASHES |
1848 |-------------|
1849 | OFFSETS |
1850 |-------------|
1851 | DATA |
1852 `-------------'
1853
1854The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1855making all of the full 32 bit hash values contiguous in memory, we allow
1856ourselves to efficiently check for a match while touching as little memory as
1857possible. Most often checking the 32 bit hash values is as far as the lookup
1858goes. If it does match, it usually is a match with no collisions. So for a
1859table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1860values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1861``OFFSETS`` as:
1862
1863.. code-block:: none
1864
1865 .-------------------------.
1866 | HEADER.magic | uint32_t
1867 | HEADER.version | uint16_t
1868 | HEADER.hash_function | uint16_t
1869 | HEADER.bucket_count | uint32_t
1870 | HEADER.hashes_count | uint32_t
1871 | HEADER.header_data_len | uint32_t
1872 | HEADER_DATA | HeaderData
1873 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +00001874 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001875 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +00001876 | HASHES | uint32_t[n_hashes] // 32 bit hash values
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001877 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +00001878 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001879 |-------------------------|
1880 | ALL HASH DATA |
1881 `-------------------------'
1882
1883So taking the exact same data from the standard hash example above we end up
1884with:
1885
1886.. code-block:: none
1887
1888 .------------.
1889 | HEADER |
1890 |------------|
1891 | 0 | BUCKETS[0]
1892 | 2 | BUCKETS[1]
1893 | 5 | BUCKETS[2]
1894 | 6 | BUCKETS[3]
1895 | | ...
1896 | ... | BUCKETS[n_buckets]
1897 |------------|
1898 | 0x........ | HASHES[0]
1899 | 0x........ | HASHES[1]
1900 | 0x........ | HASHES[2]
1901 | 0x........ | HASHES[3]
1902 | 0x........ | HASHES[4]
1903 | 0x........ | HASHES[5]
1904 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1905 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1906 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1907 | 0x........ | HASHES[9]
1908 | 0x........ | HASHES[10]
1909 | 0x........ | HASHES[11]
1910 | 0x........ | HASHES[12]
1911 | 0x........ | HASHES[13]
1912 | 0x........ | HASHES[n_hashes]
1913 |------------|
1914 | 0x........ | OFFSETS[0]
1915 | 0x........ | OFFSETS[1]
1916 | 0x........ | OFFSETS[2]
1917 | 0x........ | OFFSETS[3]
1918 | 0x........ | OFFSETS[4]
1919 | 0x........ | OFFSETS[5]
1920 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1921 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1922 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1923 | 0x........ | OFFSETS[9]
1924 | 0x........ | OFFSETS[10]
1925 | 0x........ | OFFSETS[11]
1926 | 0x........ | OFFSETS[12]
1927 | 0x........ | OFFSETS[13]
1928 | 0x........ | OFFSETS[n_hashes]
1929 |------------|
1930 | |
1931 | |
1932 | |
1933 | |
1934 | |
1935 |------------|
1936 0x000034f0: | 0x00001203 | .debug_str ("erase")
1937 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1938 | 0x........ | HashData[0]
1939 | 0x........ | HashData[1]
1940 | 0x........ | HashData[2]
1941 | 0x........ | HashData[3]
1942 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1943 |------------|
1944 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1945 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1946 | 0x........ | HashData[0]
1947 | 0x........ | HashData[1]
1948 | 0x00001203 | String offset into .debug_str ("dump")
1949 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1950 | 0x........ | HashData[0]
1951 | 0x........ | HashData[1]
1952 | 0x........ | HashData[2]
1953 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1954 |------------|
1955 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1956 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1957 | 0x........ | HashData[0]
1958 | 0x........ | HashData[1]
1959 | 0x........ | HashData[2]
1960 | 0x........ | HashData[3]
1961 | 0x........ | HashData[4]
1962 | 0x........ | HashData[5]
1963 | 0x........ | HashData[6]
1964 | 0x........ | HashData[7]
1965 | 0x........ | HashData[8]
1966 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1967 `------------'
1968
1969So we still have all of the same data, we just organize it more efficiently for
1970debugger lookup. If we repeat the same "``printf``" lookup from above, we
1971would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1972hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1973is the index into the ``HASHES`` table. We would then compare any consecutive
197432 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1975``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1976``n_buckets`` is still 3. In the case of a failed lookup we would access the
1977memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1978before we know that we have no match. We don't end up marching through
1979multiple words of memory and we really keep the number of processor data cache
1980lines being accessed as small as possible.
1981
1982The string hash that is used for these lookup tables is the Daniel J.
1983Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1984very good hash for all kinds of names in programs with very few hash
1985collisions.
1986
1987Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1988
1989Details
1990^^^^^^^
1991
1992These name hash tables are designed to be generic where specializations of the
1993table get to define additional data that goes into the header ("``HeaderData``"),
1994how the string value is stored ("``KeyType``") and the content of the data for each
1995hash value.
1996
1997Header Layout
1998"""""""""""""
1999
2000The header has a fixed part, and the specialized part. The exact format of the
2001header is:
2002
2003.. code-block:: c
2004
2005 struct Header
2006 {
2007 uint32_t magic; // 'HASH' magic value to allow endian detection
2008 uint16_t version; // Version number
2009 uint16_t hash_function; // The hash function enumeration that was used
2010 uint32_t bucket_count; // The number of buckets in this hash table
2011 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
2012 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
2013 // Specifically the length of the following HeaderData field - this does not
2014 // include the size of the preceding fields
2015 HeaderData header_data; // Implementation specific header data
2016 };
2017
2018The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
2019encoded as an ASCII integer. This allows the detection of the start of the
2020hash table and also allows the table's byte order to be determined so the table
2021can be correctly extracted. The "``magic``" value is followed by a 16 bit
2022``version`` number which allows the table to be revised and modified in the
2023future. The current version number is 1. ``hash_function`` is a ``uint16_t``
2024enumeration that specifies which hash function was used to produce this table.
2025The current values for the hash function enumerations include:
2026
2027.. code-block:: c
2028
2029 enum HashFunctionType
2030 {
2031 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
2032 };
2033
2034``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
2035are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
2036hash values that are in the ``HASHES`` array, and is the same number of offsets
2037are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
2038in bytes of the ``HeaderData`` that is filled in by specialized versions of
2039this table.
2040
2041Fixed Lookup
2042""""""""""""
2043
2044The header is followed by the buckets, hashes, offsets, and hash value data.
2045
2046.. code-block:: c
2047
2048 struct FixedTable
2049 {
2050 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
2051 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
2052 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
2053 };
2054
2055``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
2056``hashes`` array contains all of the 32 bit hash values for all names in the
2057hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
2058array that points to the data for the hash value.
2059
2060This table setup makes it very easy to repurpose these tables to contain
2061different data, while keeping the lookup mechanism the same for all tables.
2062This layout also makes it possible to save the table to disk and map it in
2063later and do very efficient name lookups with little or no parsing.
2064
2065DWARF lookup tables can be implemented in a variety of ways and can store a lot
2066of information for each name. We want to make the DWARF tables extensible and
2067able to store the data efficiently so we have used some of the DWARF features
2068that enable efficient data storage to define exactly what kind of data we store
2069for each name.
2070
2071The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2072We might want to store an offset to all of the debug information entries (DIEs)
2073for each name. To keep things extensible, we create a list of items, or
2074Atoms, that are contained in the data for each name. First comes the type of
2075the data in each atom:
2076
2077.. code-block:: c
2078
2079 enum AtomType
2080 {
2081 eAtomTypeNULL = 0u,
2082 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
2083 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
2084 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2085 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
2086 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
2087 };
2088
2089The enumeration values and their meanings are:
2090
2091.. code-block:: none
2092
2093 eAtomTypeNULL - a termination atom that specifies the end of the atom list
2094 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
2095 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
2096 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2097 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2098 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
2099
2100Then we allow each atom type to define the atom type and how the data for each
2101atom type data is encoded:
2102
2103.. code-block:: c
2104
2105 struct Atom
2106 {
2107 uint16_t type; // AtomType enum value
2108 uint16_t form; // DWARF DW_FORM_XXX defines
2109 };
2110
2111The ``form`` type above is from the DWARF specification and defines the exact
2112encoding of the data for the Atom type. See the DWARF specification for the
2113``DW_FORM_`` definitions.
2114
2115.. code-block:: c
2116
2117 struct HeaderData
2118 {
2119 uint32_t die_offset_base;
2120 uint32_t atom_count;
2121 Atoms atoms[atom_count0];
2122 };
2123
2124``HeaderData`` defines the base DIE offset that should be added to any atoms
2125that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2126``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
2127what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2128each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2129should be interpreted.
2130
2131For the current implementations of the "``.apple_names``" (all functions +
2132globals), the "``.apple_types``" (names of all types that are defined), and
2133the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2134array to be:
2135
2136.. code-block:: c
2137
2138 HeaderData.atom_count = 1;
2139 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2140 HeaderData.atoms[0].form = DW_FORM_data4;
2141
2142This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
Eric Christopher911f1d32013-03-19 23:10:26 +00002143encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
2144multiple matching DIEs in a single file, which could come up with an inlined
2145function for instance. Future tables could include more information about the
2146DIE such as flags indicating if the DIE is a function, method, block,
2147or inlined.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00002148
2149The KeyType for the DWARF table is a 32 bit string table offset into the
Eric Christopher911f1d32013-03-19 23:10:26 +00002150".debug_str" table. The ".debug_str" is the string table for the DWARF which
2151may already contain copies of all of the strings. This helps make sure, with
2152help from the compiler, that we reuse the strings between all of the DWARF
2153sections and keeps the hash table size down. Another benefit to having the
2154compiler generate all strings as DW_FORM_strp in the debug info, is that
2155DWARF parsing can be made much faster.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00002156
2157After a lookup is made, we get an offset into the hash data. The hash data
Eric Christopher911f1d32013-03-19 23:10:26 +00002158needs to be able to deal with 32 bit hash collisions, so the chunk of data
2159at the offset in the hash data consists of a triple:
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00002160
2161.. code-block:: c
2162
2163 uint32_t str_offset
2164 uint32_t hash_data_count
2165 HashData[hash_data_count]
2166
2167If "str_offset" is zero, then the bucket contents are done. 99.9% of the
Eric Christopher911f1d32013-03-19 23:10:26 +00002168hash data chunks contain a single item (no 32 bit hash collision):
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00002169
2170.. code-block:: none
2171
2172 .------------.
2173 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2174 | 0x00000004 | uint32_t HashData count
2175 | 0x........ | uint32_t HashData[0] DIE offset
2176 | 0x........ | uint32_t HashData[1] DIE offset
2177 | 0x........ | uint32_t HashData[2] DIE offset
2178 | 0x........ | uint32_t HashData[3] DIE offset
2179 | 0x00000000 | uint32_t KeyType (end of hash chain)
2180 `------------'
2181
2182If there are collisions, you will have multiple valid string offsets:
2183
2184.. code-block:: none
2185
2186 .------------.
2187 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2188 | 0x00000004 | uint32_t HashData count
2189 | 0x........ | uint32_t HashData[0] DIE offset
2190 | 0x........ | uint32_t HashData[1] DIE offset
2191 | 0x........ | uint32_t HashData[2] DIE offset
2192 | 0x........ | uint32_t HashData[3] DIE offset
2193 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2194 | 0x00000002 | uint32_t HashData count
2195 | 0x........ | uint32_t HashData[0] DIE offset
2196 | 0x........ | uint32_t HashData[1] DIE offset
2197 | 0x00000000 | uint32_t KeyType (end of hash chain)
2198 `------------'
2199
2200Current testing with real world C++ binaries has shown that there is around 1
220132 bit hash collision per 100,000 name entries.
2202
2203Contents
2204^^^^^^^^
2205
2206As we said, we want to strictly define exactly what is included in the
2207different tables. For DWARF, we have 3 tables: "``.apple_names``",
2208"``.apple_types``", and "``.apple_namespaces``".
2209
2210"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2211``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2212``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2213``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
2214``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2215static variables). All global and static variables should be included,
2216including those scoped within functions and classes. For example using the
2217following code:
2218
2219.. code-block:: c
2220
2221 static int var = 0;
2222
2223 void f ()
2224 {
2225 static int var = 0;
2226 }
2227
2228Both of the static ``var`` variables would be included in the table. All
2229functions should emit both their full names and their basenames. For C or C++,
2230the full name is the mangled name (if available) which is usually in the
2231``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2232function basename. If global or static variables have a mangled name in a
2233``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2234simple name found in the ``DW_AT_name`` attribute.
2235
2236"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2237tag is one of:
2238
2239* DW_TAG_array_type
2240* DW_TAG_class_type
2241* DW_TAG_enumeration_type
2242* DW_TAG_pointer_type
2243* DW_TAG_reference_type
2244* DW_TAG_string_type
2245* DW_TAG_structure_type
2246* DW_TAG_subroutine_type
2247* DW_TAG_typedef
2248* DW_TAG_union_type
2249* DW_TAG_ptr_to_member_type
2250* DW_TAG_set_type
2251* DW_TAG_subrange_type
2252* DW_TAG_base_type
2253* DW_TAG_const_type
2254* DW_TAG_constant
2255* DW_TAG_file_type
2256* DW_TAG_namelist
2257* DW_TAG_packed_type
2258* DW_TAG_volatile_type
2259* DW_TAG_restrict_type
2260* DW_TAG_interface_type
2261* DW_TAG_unspecified_type
2262* DW_TAG_shared_type
2263
2264Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2265not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2266value). For example, using the following code:
2267
2268.. code-block:: c
2269
2270 int main ()
2271 {
2272 int *b = 0;
2273 return *b;
2274 }
2275
2276We get a few type DIEs:
2277
2278.. code-block:: none
2279
2280 0x00000067: TAG_base_type [5]
2281 AT_encoding( DW_ATE_signed )
2282 AT_name( "int" )
2283 AT_byte_size( 0x04 )
2284
2285 0x0000006e: TAG_pointer_type [6]
2286 AT_type( {0x00000067} ( int ) )
2287 AT_byte_size( 0x08 )
2288
2289The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2290
2291"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2292If we run into a namespace that has no name this is an anonymous namespace, and
2293the name should be output as "``(anonymous namespace)``" (without the quotes).
2294Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
2295standard C++ library that demangles mangled names.
2296
2297
2298Language Extensions and File Format Changes
2299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2300
2301Objective-C Extensions
2302""""""""""""""""""""""
2303
2304"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2305Objective-C class. The name used in the hash table is the name of the
2306Objective-C class itself. If the Objective-C class has a category, then an
2307entry is made for both the class name without the category, and for the class
2308name with the category. So if we have a DIE at offset 0x1234 with a name of
2309method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2310an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2311"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
2312track down all Objective-C methods for an Objective-C class when doing
2313expressions. It is needed because of the dynamic nature of Objective-C where
2314anyone can add methods to a class. The DWARF for Objective-C methods is also
2315emitted differently from C++ classes where the methods are not usually
2316contained in the class definition, they are scattered about across one or more
2317compile units. Categories can also be defined in different shared libraries.
2318So we need to be able to quickly find all of the methods and class functions
2319given the Objective-C class name, or quickly find all methods and class
2320functions for a class + category name. This table does not contain any
2321selector names, it just maps Objective-C class names (or class names +
2322category) to all of the methods and class functions. The selectors are added
2323as function basenames in the "``.debug_names``" section.
2324
2325In the "``.apple_names``" section for Objective-C functions, the full name is
2326the entire function name with the brackets ("``-[NSString
2327stringWithCString:]``") and the basename is the selector only
2328("``stringWithCString:``").
2329
2330Mach-O Changes
2331""""""""""""""
2332
Alp Tokerf907b892013-12-05 05:44:44 +00002333The sections names for the apple hash tables are for non-mach-o files. For
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00002334mach-o files, the sections should be contained in the ``__DWARF`` segment with
2335names as follows:
2336
2337* "``.apple_names``" -> "``__apple_names``"
2338* "``.apple_types``" -> "``__apple_types``"
2339* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2340* "``.apple_objc``" -> "``__apple_objc``"
2341