Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 1 | //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// |
| 2 | // |
Chandler Carruth | 2946cd7 | 2019-01-19 08:50:56 +0000 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This pass optimizes atomic operations by using a single lane of a wavefront |
| 11 | /// to perform the atomic operation, thus reducing contention on that memory |
| 12 | /// location. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "AMDGPU.h" |
| 17 | #include "AMDGPUSubtarget.h" |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 18 | #include "SIDefines.h" |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 19 | #include "llvm/Analysis/LegacyDivergenceAnalysis.h" |
| 20 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 21 | #include "llvm/IR/IRBuilder.h" |
| 22 | #include "llvm/IR/InstVisitor.h" |
| 23 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 24 | |
| 25 | #define DEBUG_TYPE "amdgpu-atomic-optimizer" |
| 26 | |
| 27 | using namespace llvm; |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 28 | using namespace llvm::AMDGPU; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 29 | |
| 30 | namespace { |
| 31 | |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 32 | struct ReplacementInfo { |
| 33 | Instruction *I; |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 34 | AtomicRMWInst::BinOp Op; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 35 | unsigned ValIdx; |
| 36 | bool ValDivergent; |
| 37 | }; |
| 38 | |
| 39 | class AMDGPUAtomicOptimizer : public FunctionPass, |
| 40 | public InstVisitor<AMDGPUAtomicOptimizer> { |
| 41 | private: |
| 42 | SmallVector<ReplacementInfo, 8> ToReplace; |
| 43 | const LegacyDivergenceAnalysis *DA; |
| 44 | const DataLayout *DL; |
| 45 | DominatorTree *DT; |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 46 | const GCNSubtarget *ST; |
Neil Henning | 233a02d | 2018-11-05 12:04:48 +0000 | [diff] [blame] | 47 | bool IsPixelShader; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 48 | |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 49 | Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, |
| 50 | Value *const Identity) const; |
| 51 | Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const; |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 52 | void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx, |
| 53 | bool ValDivergent) const; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 54 | |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 55 | public: |
| 56 | static char ID; |
| 57 | |
| 58 | AMDGPUAtomicOptimizer() : FunctionPass(ID) {} |
| 59 | |
| 60 | bool runOnFunction(Function &F) override; |
| 61 | |
| 62 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 63 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 64 | AU.addRequired<LegacyDivergenceAnalysis>(); |
| 65 | AU.addRequired<TargetPassConfig>(); |
| 66 | } |
| 67 | |
| 68 | void visitAtomicRMWInst(AtomicRMWInst &I); |
| 69 | void visitIntrinsicInst(IntrinsicInst &I); |
| 70 | }; |
| 71 | |
| 72 | } // namespace |
| 73 | |
| 74 | char AMDGPUAtomicOptimizer::ID = 0; |
| 75 | |
| 76 | char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; |
| 77 | |
| 78 | bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { |
| 79 | if (skipFunction(F)) { |
| 80 | return false; |
| 81 | } |
| 82 | |
| 83 | DA = &getAnalysis<LegacyDivergenceAnalysis>(); |
| 84 | DL = &F.getParent()->getDataLayout(); |
| 85 | DominatorTreeWrapperPass *const DTW = |
| 86 | getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| 87 | DT = DTW ? &DTW->getDomTree() : nullptr; |
| 88 | const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); |
| 89 | const TargetMachine &TM = TPC.getTM<TargetMachine>(); |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 90 | ST = &TM.getSubtarget<GCNSubtarget>(F); |
Neil Henning | 233a02d | 2018-11-05 12:04:48 +0000 | [diff] [blame] | 91 | IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 92 | |
| 93 | visit(F); |
| 94 | |
| 95 | const bool Changed = !ToReplace.empty(); |
| 96 | |
| 97 | for (ReplacementInfo &Info : ToReplace) { |
| 98 | optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); |
| 99 | } |
| 100 | |
| 101 | ToReplace.clear(); |
| 102 | |
| 103 | return Changed; |
| 104 | } |
| 105 | |
| 106 | void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { |
| 107 | // Early exit for unhandled address space atomic instructions. |
| 108 | switch (I.getPointerAddressSpace()) { |
| 109 | default: |
| 110 | return; |
| 111 | case AMDGPUAS::GLOBAL_ADDRESS: |
| 112 | case AMDGPUAS::LOCAL_ADDRESS: |
| 113 | break; |
| 114 | } |
| 115 | |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 116 | AtomicRMWInst::BinOp Op = I.getOperation(); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 117 | |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 118 | switch (Op) { |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 119 | default: |
| 120 | return; |
| 121 | case AtomicRMWInst::Add: |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 122 | case AtomicRMWInst::Sub: |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 123 | case AtomicRMWInst::And: |
| 124 | case AtomicRMWInst::Or: |
| 125 | case AtomicRMWInst::Xor: |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 126 | case AtomicRMWInst::Max: |
| 127 | case AtomicRMWInst::Min: |
| 128 | case AtomicRMWInst::UMax: |
| 129 | case AtomicRMWInst::UMin: |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 130 | break; |
| 131 | } |
| 132 | |
| 133 | const unsigned PtrIdx = 0; |
| 134 | const unsigned ValIdx = 1; |
| 135 | |
| 136 | // If the pointer operand is divergent, then each lane is doing an atomic |
| 137 | // operation on a different address, and we cannot optimize that. |
Jay Foad | dcb7532 | 2019-07-29 10:22:09 +0000 | [diff] [blame] | 138 | if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) { |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 139 | return; |
| 140 | } |
| 141 | |
Jay Foad | dcb7532 | 2019-07-29 10:22:09 +0000 | [diff] [blame] | 142 | const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 143 | |
| 144 | // If the value operand is divergent, each lane is contributing a different |
| 145 | // value to the atomic calculation. We can only optimize divergent values if |
| 146 | // we have DPP available on our subtarget, and the atomic operation is 32 |
| 147 | // bits. |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 148 | if (ValDivergent && |
| 149 | (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 150 | return; |
| 151 | } |
| 152 | |
| 153 | // If we get here, we can optimize the atomic using a single wavefront-wide |
| 154 | // atomic operation to do the calculation for the entire wavefront, so |
| 155 | // remember the instruction so we can come back to it. |
| 156 | const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; |
| 157 | |
| 158 | ToReplace.push_back(Info); |
| 159 | } |
| 160 | |
| 161 | void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 162 | AtomicRMWInst::BinOp Op; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 163 | |
| 164 | switch (I.getIntrinsicID()) { |
| 165 | default: |
| 166 | return; |
| 167 | case Intrinsic::amdgcn_buffer_atomic_add: |
| 168 | case Intrinsic::amdgcn_struct_buffer_atomic_add: |
| 169 | case Intrinsic::amdgcn_raw_buffer_atomic_add: |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 170 | Op = AtomicRMWInst::Add; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 171 | break; |
| 172 | case Intrinsic::amdgcn_buffer_atomic_sub: |
| 173 | case Intrinsic::amdgcn_struct_buffer_atomic_sub: |
| 174 | case Intrinsic::amdgcn_raw_buffer_atomic_sub: |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 175 | Op = AtomicRMWInst::Sub; |
| 176 | break; |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 177 | case Intrinsic::amdgcn_buffer_atomic_and: |
| 178 | case Intrinsic::amdgcn_struct_buffer_atomic_and: |
| 179 | case Intrinsic::amdgcn_raw_buffer_atomic_and: |
| 180 | Op = AtomicRMWInst::And; |
| 181 | break; |
| 182 | case Intrinsic::amdgcn_buffer_atomic_or: |
| 183 | case Intrinsic::amdgcn_struct_buffer_atomic_or: |
| 184 | case Intrinsic::amdgcn_raw_buffer_atomic_or: |
| 185 | Op = AtomicRMWInst::Or; |
| 186 | break; |
| 187 | case Intrinsic::amdgcn_buffer_atomic_xor: |
| 188 | case Intrinsic::amdgcn_struct_buffer_atomic_xor: |
| 189 | case Intrinsic::amdgcn_raw_buffer_atomic_xor: |
| 190 | Op = AtomicRMWInst::Xor; |
| 191 | break; |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 192 | case Intrinsic::amdgcn_buffer_atomic_smin: |
| 193 | case Intrinsic::amdgcn_struct_buffer_atomic_smin: |
| 194 | case Intrinsic::amdgcn_raw_buffer_atomic_smin: |
| 195 | Op = AtomicRMWInst::Min; |
| 196 | break; |
| 197 | case Intrinsic::amdgcn_buffer_atomic_umin: |
| 198 | case Intrinsic::amdgcn_struct_buffer_atomic_umin: |
| 199 | case Intrinsic::amdgcn_raw_buffer_atomic_umin: |
| 200 | Op = AtomicRMWInst::UMin; |
| 201 | break; |
| 202 | case Intrinsic::amdgcn_buffer_atomic_smax: |
| 203 | case Intrinsic::amdgcn_struct_buffer_atomic_smax: |
| 204 | case Intrinsic::amdgcn_raw_buffer_atomic_smax: |
| 205 | Op = AtomicRMWInst::Max; |
| 206 | break; |
| 207 | case Intrinsic::amdgcn_buffer_atomic_umax: |
| 208 | case Intrinsic::amdgcn_struct_buffer_atomic_umax: |
| 209 | case Intrinsic::amdgcn_raw_buffer_atomic_umax: |
| 210 | Op = AtomicRMWInst::UMax; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 211 | break; |
| 212 | } |
| 213 | |
| 214 | const unsigned ValIdx = 0; |
| 215 | |
Jay Foad | dcb7532 | 2019-07-29 10:22:09 +0000 | [diff] [blame] | 216 | const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 217 | |
| 218 | // If the value operand is divergent, each lane is contributing a different |
| 219 | // value to the atomic calculation. We can only optimize divergent values if |
| 220 | // we have DPP available on our subtarget, and the atomic operation is 32 |
| 221 | // bits. |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 222 | if (ValDivergent && |
| 223 | (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 224 | return; |
| 225 | } |
| 226 | |
| 227 | // If any of the other arguments to the intrinsic are divergent, we can't |
| 228 | // optimize the operation. |
| 229 | for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { |
Jay Foad | dcb7532 | 2019-07-29 10:22:09 +0000 | [diff] [blame] | 230 | if (DA->isDivergentUse(&I.getOperandUse(Idx))) { |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 231 | return; |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | // If we get here, we can optimize the atomic using a single wavefront-wide |
| 236 | // atomic operation to do the calculation for the entire wavefront, so |
| 237 | // remember the instruction so we can come back to it. |
| 238 | const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; |
| 239 | |
| 240 | ToReplace.push_back(Info); |
| 241 | } |
| 242 | |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 243 | // Use the builder to create the non-atomic counterpart of the specified |
| 244 | // atomicrmw binary op. |
| 245 | static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op, |
| 246 | Value *LHS, Value *RHS) { |
| 247 | CmpInst::Predicate Pred; |
| 248 | |
| 249 | switch (Op) { |
| 250 | default: |
| 251 | llvm_unreachable("Unhandled atomic op"); |
| 252 | case AtomicRMWInst::Add: |
| 253 | return B.CreateBinOp(Instruction::Add, LHS, RHS); |
| 254 | case AtomicRMWInst::Sub: |
| 255 | return B.CreateBinOp(Instruction::Sub, LHS, RHS); |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 256 | case AtomicRMWInst::And: |
| 257 | return B.CreateBinOp(Instruction::And, LHS, RHS); |
| 258 | case AtomicRMWInst::Or: |
| 259 | return B.CreateBinOp(Instruction::Or, LHS, RHS); |
| 260 | case AtomicRMWInst::Xor: |
| 261 | return B.CreateBinOp(Instruction::Xor, LHS, RHS); |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 262 | |
| 263 | case AtomicRMWInst::Max: |
| 264 | Pred = CmpInst::ICMP_SGT; |
| 265 | break; |
| 266 | case AtomicRMWInst::Min: |
| 267 | Pred = CmpInst::ICMP_SLT; |
| 268 | break; |
| 269 | case AtomicRMWInst::UMax: |
| 270 | Pred = CmpInst::ICMP_UGT; |
| 271 | break; |
| 272 | case AtomicRMWInst::UMin: |
| 273 | Pred = CmpInst::ICMP_ULT; |
| 274 | break; |
| 275 | } |
| 276 | Value *Cond = B.CreateICmp(Pred, LHS, RHS); |
| 277 | return B.CreateSelect(Cond, LHS, RHS); |
| 278 | } |
| 279 | |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 280 | // Use the builder to create an inclusive scan of V across the wavefront, with |
| 281 | // all lanes active. |
| 282 | Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, |
| 283 | Value *V, Value *const Identity) const { |
| 284 | Type *const Ty = V->getType(); |
| 285 | Module *M = B.GetInsertBlock()->getModule(); |
| 286 | Function *UpdateDPP = |
| 287 | Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); |
| 288 | Function *PermLaneX16 = |
| 289 | Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {}); |
| 290 | Function *ReadLane = |
| 291 | Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); |
| 292 | |
| 293 | for (unsigned Idx = 0; Idx < 4; Idx++) { |
| 294 | V = buildNonAtomicBinOp( |
| 295 | B, Op, V, |
| 296 | B.CreateCall(UpdateDPP, |
| 297 | {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx), |
| 298 | B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); |
| 299 | } |
| 300 | if (ST->hasDPPBroadcasts()) { |
| 301 | // GFX9 has DPP row broadcast operations. |
| 302 | V = buildNonAtomicBinOp( |
| 303 | B, Op, V, |
| 304 | B.CreateCall(UpdateDPP, |
| 305 | {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa), |
| 306 | B.getInt32(0xf), B.getFalse()})); |
| 307 | V = buildNonAtomicBinOp( |
| 308 | B, Op, V, |
| 309 | B.CreateCall(UpdateDPP, |
| 310 | {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc), |
| 311 | B.getInt32(0xf), B.getFalse()})); |
| 312 | } else { |
| 313 | // On GFX10 all DPP operations are confined to a single row. To get cross- |
| 314 | // row operations we have to use permlane or readlane. |
| 315 | |
| 316 | // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes |
| 317 | // 48..63). |
| 318 | Value *const PermX = |
| 319 | B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1), |
| 320 | B.getFalse(), B.getFalse()}); |
| 321 | V = buildNonAtomicBinOp( |
| 322 | B, Op, V, |
| 323 | B.CreateCall(UpdateDPP, |
| 324 | {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID), |
| 325 | B.getInt32(0xa), B.getInt32(0xf), B.getFalse()})); |
| 326 | if (!ST->isWave32()) { |
| 327 | // Combine lane 31 into lanes 32..63. |
| 328 | Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)}); |
| 329 | V = buildNonAtomicBinOp( |
| 330 | B, Op, V, |
| 331 | B.CreateCall(UpdateDPP, |
| 332 | {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID), |
| 333 | B.getInt32(0xc), B.getInt32(0xf), B.getFalse()})); |
| 334 | } |
| 335 | } |
| 336 | return V; |
| 337 | } |
| 338 | |
| 339 | // Use the builder to create a shift right of V across the wavefront, with all |
| 340 | // lanes active, to turn an inclusive scan into an exclusive scan. |
| 341 | Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V, |
| 342 | Value *const Identity) const { |
| 343 | Type *const Ty = V->getType(); |
| 344 | Module *M = B.GetInsertBlock()->getModule(); |
| 345 | Function *UpdateDPP = |
| 346 | Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); |
| 347 | Function *ReadLane = |
| 348 | Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); |
| 349 | Function *WriteLane = |
| 350 | Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {}); |
| 351 | |
| 352 | if (ST->hasDPPWavefrontShifts()) { |
| 353 | // GFX9 has DPP wavefront shift operations. |
| 354 | V = B.CreateCall(UpdateDPP, |
| 355 | {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf), |
| 356 | B.getInt32(0xf), B.getFalse()}); |
| 357 | } else { |
| 358 | // On GFX10 all DPP operations are confined to a single row. To get cross- |
| 359 | // row operations we have to use permlane or readlane. |
| 360 | Value *Old = V; |
| 361 | V = B.CreateCall(UpdateDPP, |
| 362 | {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1), |
| 363 | B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); |
| 364 | |
| 365 | // Copy the old lane 15 to the new lane 16. |
| 366 | V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}), |
| 367 | B.getInt32(16), V}); |
| 368 | |
| 369 | if (!ST->isWave32()) { |
| 370 | // Copy the old lane 31 to the new lane 32. |
| 371 | V = B.CreateCall( |
| 372 | WriteLane, |
| 373 | {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V}); |
| 374 | |
| 375 | // Copy the old lane 47 to the new lane 48. |
| 376 | V = B.CreateCall( |
| 377 | WriteLane, |
| 378 | {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V}); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | return V; |
| 383 | } |
| 384 | |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 385 | static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op, |
| 386 | unsigned BitWidth) { |
| 387 | switch (Op) { |
| 388 | default: |
| 389 | llvm_unreachable("Unhandled atomic op"); |
| 390 | case AtomicRMWInst::Add: |
| 391 | case AtomicRMWInst::Sub: |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 392 | case AtomicRMWInst::Or: |
| 393 | case AtomicRMWInst::Xor: |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 394 | case AtomicRMWInst::UMax: |
| 395 | return APInt::getMinValue(BitWidth); |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 396 | case AtomicRMWInst::And: |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 397 | case AtomicRMWInst::UMin: |
| 398 | return APInt::getMaxValue(BitWidth); |
| 399 | case AtomicRMWInst::Max: |
| 400 | return APInt::getSignedMinValue(BitWidth); |
| 401 | case AtomicRMWInst::Min: |
| 402 | return APInt::getSignedMaxValue(BitWidth); |
| 403 | } |
| 404 | } |
| 405 | |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 406 | void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 407 | AtomicRMWInst::BinOp Op, |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 408 | unsigned ValIdx, |
| 409 | bool ValDivergent) const { |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 410 | // Start building just before the instruction. |
| 411 | IRBuilder<> B(&I); |
| 412 | |
Neil Henning | 233a02d | 2018-11-05 12:04:48 +0000 | [diff] [blame] | 413 | // If we are in a pixel shader, because of how we have to mask out helper |
| 414 | // lane invocations, we need to record the entry and exit BB's. |
| 415 | BasicBlock *PixelEntryBB = nullptr; |
| 416 | BasicBlock *PixelExitBB = nullptr; |
| 417 | |
| 418 | // If we're optimizing an atomic within a pixel shader, we need to wrap the |
| 419 | // entire atomic operation in a helper-lane check. We do not want any helper |
| 420 | // lanes that are around only for the purposes of derivatives to take part |
| 421 | // in any cross-lane communication, and we use a branch on whether the lane is |
| 422 | // live to do this. |
| 423 | if (IsPixelShader) { |
| 424 | // Record I's original position as the entry block. |
| 425 | PixelEntryBB = I.getParent(); |
| 426 | |
| 427 | Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); |
| 428 | Instruction *const NonHelperTerminator = |
| 429 | SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); |
| 430 | |
| 431 | // Record I's new position as the exit block. |
| 432 | PixelExitBB = I.getParent(); |
| 433 | |
| 434 | I.moveBefore(NonHelperTerminator); |
| 435 | B.SetInsertPoint(&I); |
| 436 | } |
| 437 | |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 438 | Type *const Ty = I.getType(); |
| 439 | const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); |
| 440 | Type *const VecTy = VectorType::get(B.getInt32Ty(), 2); |
| 441 | |
| 442 | // This is the value in the atomic operation we need to combine in order to |
| 443 | // reduce the number of atomic operations. |
| 444 | Value *const V = I.getOperand(ValIdx); |
| 445 | |
| 446 | // We need to know how many lanes are active within the wavefront, and we do |
Neil Henning | 8c10fa1 | 2019-02-11 14:44:14 +0000 | [diff] [blame] | 447 | // this by doing a ballot of active lanes. |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 448 | Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize()); |
Jay Foad | 3890235 | 2019-07-08 07:04:58 +0000 | [diff] [blame] | 449 | CallInst *const Ballot = B.CreateIntrinsic( |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 450 | Intrinsic::amdgcn_icmp, {WaveTy, B.getInt32Ty()}, |
Jay Foad | 3890235 | 2019-07-08 07:04:58 +0000 | [diff] [blame] | 451 | {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)}); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 452 | |
| 453 | // We need to know how many lanes are active within the wavefront that are |
| 454 | // below us. If we counted each lane linearly starting from 0, a lane is |
| 455 | // below us only if its associated index was less than ours. We do this by |
| 456 | // using the mbcnt intrinsic. |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 457 | Value *Mbcnt; |
| 458 | if (ST->isWave32()) { |
| 459 | Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, |
| 460 | {Ballot, B.getInt32(0)}); |
| 461 | } else { |
| 462 | Value *const BitCast = B.CreateBitCast(Ballot, VecTy); |
| 463 | Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); |
| 464 | Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); |
| 465 | Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, |
| 466 | {ExtractLo, B.getInt32(0)}); |
| 467 | Mbcnt = |
| 468 | B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt}); |
| 469 | } |
| 470 | Mbcnt = B.CreateIntCast(Mbcnt, Ty, false); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 471 | |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 472 | Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth)); |
| 473 | |
| 474 | Value *ExclScan = nullptr; |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 475 | Value *NewV = nullptr; |
| 476 | |
| 477 | // If we have a divergent value in each lane, we need to combine the value |
| 478 | // using DPP. |
| 479 | if (ValDivergent) { |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 480 | // First we need to set all inactive invocations to the identity value, so |
| 481 | // that they can correctly contribute to the final result. |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 482 | NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 483 | |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 484 | const AtomicRMWInst::BinOp ScanOp = |
| 485 | Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op; |
| 486 | NewV = buildScan(B, ScanOp, NewV, Identity); |
| 487 | ExclScan = buildShiftRight(B, NewV, Identity); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 488 | |
| 489 | // Read the value from the last lane, which has accumlated the values of |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 490 | // each active lane in the wavefront. This will be our new value which we |
| 491 | // will provide to the atomic operation. |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 492 | Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 493 | if (TyBitWidth == 64) { |
| 494 | Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); |
| 495 | Value *const ExtractHi = |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 496 | B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty()); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 497 | CallInst *const ReadLaneLo = B.CreateIntrinsic( |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 498 | Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx}); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 499 | CallInst *const ReadLaneHi = B.CreateIntrinsic( |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 500 | Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx}); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 501 | Value *const PartialInsert = B.CreateInsertElement( |
| 502 | UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); |
| 503 | Value *const Insert = |
| 504 | B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); |
| 505 | NewV = B.CreateBitCast(Insert, Ty); |
| 506 | } else if (TyBitWidth == 32) { |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 507 | NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 508 | {NewV, LastLaneIdx}); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 509 | } else { |
| 510 | llvm_unreachable("Unhandled atomic bit width"); |
| 511 | } |
Neil Henning | 8c10fa1 | 2019-02-11 14:44:14 +0000 | [diff] [blame] | 512 | |
| 513 | // Finally mark the readlanes in the WWM section. |
| 514 | NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 515 | } else { |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 516 | switch (Op) { |
| 517 | default: |
| 518 | llvm_unreachable("Unhandled atomic op"); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 519 | |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 520 | case AtomicRMWInst::Add: |
| 521 | case AtomicRMWInst::Sub: { |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 522 | // The new value we will be contributing to the atomic operation is the |
| 523 | // old value times the number of active lanes. |
| 524 | Value *const Ctpop = B.CreateIntCast( |
| 525 | B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); |
| 526 | NewV = B.CreateMul(V, Ctpop); |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 527 | break; |
| 528 | } |
| 529 | |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 530 | case AtomicRMWInst::And: |
| 531 | case AtomicRMWInst::Or: |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 532 | case AtomicRMWInst::Max: |
| 533 | case AtomicRMWInst::Min: |
| 534 | case AtomicRMWInst::UMax: |
| 535 | case AtomicRMWInst::UMin: |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 536 | // These operations with a uniform value are idempotent: doing the atomic |
| 537 | // operation multiple times has the same effect as doing it once. |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 538 | NewV = V; |
| 539 | break; |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 540 | |
| 541 | case AtomicRMWInst::Xor: |
| 542 | // The new value we will be contributing to the atomic operation is the |
| 543 | // old value times the parity of the number of active lanes. |
| 544 | Value *const Ctpop = B.CreateIntCast( |
| 545 | B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); |
| 546 | NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1)); |
| 547 | break; |
Jay Foad | 17060f0 | 2019-07-16 17:44:54 +0000 | [diff] [blame] | 548 | } |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 549 | } |
| 550 | |
| 551 | // We only want a single lane to enter our new control flow, and we do this |
| 552 | // by checking if there are any active lanes below us. Only one lane will |
| 553 | // have 0 active lanes below us, so that will be the only one to progress. |
Jay Foad | 70235c6 | 2019-07-17 13:40:03 +0000 | [diff] [blame] | 554 | Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0)); |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 555 | |
| 556 | // Store I's original basic block before we split the block. |
| 557 | BasicBlock *const EntryBB = I.getParent(); |
| 558 | |
| 559 | // We need to introduce some new control flow to force a single lane to be |
| 560 | // active. We do this by splitting I's basic block at I, and introducing the |
| 561 | // new block such that: |
| 562 | // entry --> single_lane -\ |
| 563 | // \------------------> exit |
| 564 | Instruction *const SingleLaneTerminator = |
| 565 | SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); |
| 566 | |
| 567 | // Move the IR builder into single_lane next. |
| 568 | B.SetInsertPoint(SingleLaneTerminator); |
| 569 | |
| 570 | // Clone the original atomic operation into single lane, replacing the |
| 571 | // original value with our newly created one. |
| 572 | Instruction *const NewI = I.clone(); |
| 573 | B.Insert(NewI); |
| 574 | NewI->setOperand(ValIdx, NewV); |
| 575 | |
| 576 | // Move the IR builder into exit next, and start inserting just before the |
| 577 | // original instruction. |
| 578 | B.SetInsertPoint(&I); |
| 579 | |
Jay Foad | 298500a | 2019-07-22 07:19:44 +0000 | [diff] [blame] | 580 | const bool NeedResult = !I.use_empty(); |
| 581 | if (NeedResult) { |
| 582 | // Create a PHI node to get our new atomic result into the exit block. |
Neil Henning | 233a02d | 2018-11-05 12:04:48 +0000 | [diff] [blame] | 583 | PHINode *const PHI = B.CreatePHI(Ty, 2); |
Jay Foad | 298500a | 2019-07-22 07:19:44 +0000 | [diff] [blame] | 584 | PHI->addIncoming(UndefValue::get(Ty), EntryBB); |
| 585 | PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); |
| 586 | |
| 587 | // We need to broadcast the value who was the lowest active lane (the first |
| 588 | // lane) to all other lanes in the wavefront. We use an intrinsic for this, |
| 589 | // but have to handle 64-bit broadcasts with two calls to this intrinsic. |
| 590 | Value *BroadcastI = nullptr; |
| 591 | |
| 592 | if (TyBitWidth == 64) { |
| 593 | Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); |
| 594 | Value *const ExtractHi = |
Jay Foad | eac2386 | 2019-08-23 10:07:43 +0000 | [diff] [blame] | 595 | B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty()); |
Jay Foad | 298500a | 2019-07-22 07:19:44 +0000 | [diff] [blame] | 596 | CallInst *const ReadFirstLaneLo = |
| 597 | B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); |
| 598 | CallInst *const ReadFirstLaneHi = |
| 599 | B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); |
| 600 | Value *const PartialInsert = B.CreateInsertElement( |
| 601 | UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); |
| 602 | Value *const Insert = |
| 603 | B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); |
| 604 | BroadcastI = B.CreateBitCast(Insert, Ty); |
| 605 | } else if (TyBitWidth == 32) { |
| 606 | |
| 607 | BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); |
| 608 | } else { |
| 609 | llvm_unreachable("Unhandled atomic bit width"); |
| 610 | } |
| 611 | |
| 612 | // Now that we have the result of our single atomic operation, we need to |
| 613 | // get our individual lane's slice into the result. We use the lane offset |
| 614 | // we previously calculated combined with the atomic result value we got |
| 615 | // from the first lane, to get our lane's index into the atomic result. |
| 616 | Value *LaneOffset = nullptr; |
| 617 | if (ValDivergent) { |
| 618 | LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan); |
| 619 | } else { |
| 620 | switch (Op) { |
| 621 | default: |
| 622 | llvm_unreachable("Unhandled atomic op"); |
| 623 | case AtomicRMWInst::Add: |
| 624 | case AtomicRMWInst::Sub: |
| 625 | LaneOffset = B.CreateMul(V, Mbcnt); |
| 626 | break; |
| 627 | case AtomicRMWInst::And: |
| 628 | case AtomicRMWInst::Or: |
| 629 | case AtomicRMWInst::Max: |
| 630 | case AtomicRMWInst::Min: |
| 631 | case AtomicRMWInst::UMax: |
| 632 | case AtomicRMWInst::UMin: |
| 633 | LaneOffset = B.CreateSelect(Cond, Identity, V); |
| 634 | break; |
| 635 | case AtomicRMWInst::Xor: |
| 636 | LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1)); |
| 637 | break; |
| 638 | } |
| 639 | } |
| 640 | Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset); |
| 641 | |
| 642 | if (IsPixelShader) { |
| 643 | // Need a final PHI to reconverge to above the helper lane branch mask. |
| 644 | B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); |
| 645 | |
| 646 | PHINode *const PHI = B.CreatePHI(Ty, 2); |
| 647 | PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); |
| 648 | PHI->addIncoming(Result, I.getParent()); |
| 649 | I.replaceAllUsesWith(PHI); |
| 650 | } else { |
| 651 | // Replace the original atomic instruction with the new one. |
| 652 | I.replaceAllUsesWith(Result); |
| 653 | } |
Neil Henning | 233a02d | 2018-11-05 12:04:48 +0000 | [diff] [blame] | 654 | } |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 655 | |
| 656 | // And delete the original. |
| 657 | I.eraseFromParent(); |
| 658 | } |
| 659 | |
Neil Henning | 6641657 | 2018-10-08 15:49:19 +0000 | [diff] [blame] | 660 | INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, |
| 661 | "AMDGPU atomic optimizations", false, false) |
| 662 | INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) |
| 663 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| 664 | INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, |
| 665 | "AMDGPU atomic optimizations", false, false) |
| 666 | |
| 667 | FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { |
| 668 | return new AMDGPUAtomicOptimizer(); |
| 669 | } |