Chandler Carruth | 572e340 | 2014-04-21 11:12:00 +0000 | [diff] [blame] | 1 | //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "llvm/Analysis/CGSCCPassManager.h" |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame^] | 11 | #include "llvm/IR/CallSite.h" |
Chandler Carruth | 572e340 | 2014-04-21 11:12:00 +0000 | [diff] [blame] | 12 | |
| 13 | using namespace llvm; |
| 14 | |
Chandler Carruth | 2a54094 | 2016-02-27 10:38:10 +0000 | [diff] [blame] | 15 | namespace llvm { |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame^] | 16 | |
| 17 | // Explicit instantiations for the core proxy templates. |
| 18 | template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; |
| 19 | template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, |
| 20 | LazyCallGraph &, CGSCCUpdateResult &>; |
Chandler Carruth | 2a54094 | 2016-02-27 10:38:10 +0000 | [diff] [blame] | 21 | template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; |
| 22 | template class OuterAnalysisManagerProxy<ModuleAnalysisManager, |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame^] | 23 | LazyCallGraph::SCC, LazyCallGraph &>; |
Chandler Carruth | 2a54094 | 2016-02-27 10:38:10 +0000 | [diff] [blame] | 24 | template class InnerAnalysisManagerProxy<FunctionAnalysisManager, |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame^] | 25 | LazyCallGraph::SCC, LazyCallGraph &>; |
Chandler Carruth | 2a54094 | 2016-02-27 10:38:10 +0000 | [diff] [blame] | 26 | template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame^] | 27 | |
| 28 | /// Explicitly specialize the pass manager run method to handle call graph |
| 29 | /// updates. |
| 30 | template <> |
| 31 | PreservedAnalyses |
| 32 | PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, |
| 33 | CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, |
| 34 | CGSCCAnalysisManager &AM, |
| 35 | LazyCallGraph &G, CGSCCUpdateResult &UR) { |
| 36 | PreservedAnalyses PA = PreservedAnalyses::all(); |
| 37 | |
| 38 | if (DebugLogging) |
| 39 | dbgs() << "Starting CGSCC pass manager run.\n"; |
| 40 | |
| 41 | // The SCC may be refined while we are running passes over it, so set up |
| 42 | // a pointer that we can update. |
| 43 | LazyCallGraph::SCC *C = &InitialC; |
| 44 | |
| 45 | for (auto &Pass : Passes) { |
| 46 | if (DebugLogging) |
| 47 | dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; |
| 48 | |
| 49 | PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); |
| 50 | |
| 51 | // Update the SCC if necessary. |
| 52 | C = UR.UpdatedC ? UR.UpdatedC : C; |
| 53 | |
| 54 | // Check that we didn't miss any update scenario. |
| 55 | assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!"); |
| 56 | assert(C->begin() != C->end() && "Cannot have an empty SCC!"); |
| 57 | |
| 58 | // Update the analysis manager as each pass runs and potentially |
| 59 | // invalidates analyses. We also update the preserved set of analyses |
| 60 | // based on what analyses we have already handled the invalidation for |
| 61 | // here and don't need to invalidate when finished. |
| 62 | PassPA = AM.invalidate(*C, std::move(PassPA)); |
| 63 | |
| 64 | // Finally, we intersect the final preserved analyses to compute the |
| 65 | // aggregate preserved set for this pass manager. |
| 66 | PA.intersect(std::move(PassPA)); |
| 67 | |
| 68 | // FIXME: Historically, the pass managers all called the LLVM context's |
| 69 | // yield function here. We don't have a generic way to acquire the |
| 70 | // context and it isn't yet clear what the right pattern is for yielding |
| 71 | // in the new pass manager so it is currently omitted. |
| 72 | // ...getContext().yield(); |
| 73 | } |
| 74 | |
| 75 | if (DebugLogging) |
| 76 | dbgs() << "Finished CGSCC pass manager run.\n"; |
| 77 | |
| 78 | return PA; |
| 79 | } |
| 80 | |
| 81 | } // End llvm namespace |
| 82 | |
| 83 | namespace { |
| 84 | /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c |
| 85 | /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly |
| 86 | /// added SCCs. |
| 87 | /// |
| 88 | /// The range of new SCCs must be in postorder already. The SCC they were split |
| 89 | /// out of must be provided as \p C. The current node being mutated and |
| 90 | /// triggering updates must be passed as \p N. |
| 91 | /// |
| 92 | /// This function returns the SCC containing \p N. This will be either \p C if |
| 93 | /// no new SCCs have been split out, or it will be the new SCC containing \p N. |
| 94 | template <typename SCCRangeT> |
| 95 | LazyCallGraph::SCC * |
| 96 | incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, |
| 97 | LazyCallGraph::Node &N, LazyCallGraph::SCC *C, |
| 98 | CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, |
| 99 | bool DebugLogging = false) { |
| 100 | typedef LazyCallGraph::SCC SCC; |
| 101 | |
| 102 | if (NewSCCRange.begin() == NewSCCRange.end()) |
| 103 | return C; |
| 104 | |
| 105 | // Invalidate the analyses of the current SCC and add it to the worklist since |
| 106 | // it has changed its shape. |
| 107 | AM.invalidate(*C, PreservedAnalyses::none()); |
| 108 | UR.CWorklist.insert(C); |
| 109 | if (DebugLogging) |
| 110 | dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; |
| 111 | |
| 112 | SCC *OldC = C; |
| 113 | (void)OldC; |
| 114 | |
| 115 | // Update the current SCC. Note that if we have new SCCs, this must actually |
| 116 | // change the SCC. |
| 117 | assert(C != &*NewSCCRange.begin() && |
| 118 | "Cannot insert new SCCs without changing current SCC!"); |
| 119 | C = &*NewSCCRange.begin(); |
| 120 | assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); |
| 121 | |
| 122 | for (SCC &NewC : |
| 123 | reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) { |
| 124 | assert(C != &NewC && "No need to re-visit the current SCC!"); |
| 125 | assert(OldC != &NewC && "Already handled the original SCC!"); |
| 126 | UR.CWorklist.insert(&NewC); |
| 127 | if (DebugLogging) |
| 128 | dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"; |
| 129 | } |
| 130 | return C; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( |
| 135 | LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, |
| 136 | CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) { |
| 137 | typedef LazyCallGraph::Node Node; |
| 138 | typedef LazyCallGraph::Edge Edge; |
| 139 | typedef LazyCallGraph::SCC SCC; |
| 140 | typedef LazyCallGraph::RefSCC RefSCC; |
| 141 | |
| 142 | RefSCC &InitialRC = InitialC.getOuterRefSCC(); |
| 143 | SCC *C = &InitialC; |
| 144 | RefSCC *RC = &InitialRC; |
| 145 | Function &F = N.getFunction(); |
| 146 | |
| 147 | // Walk the function body and build up the set of retained, promoted, and |
| 148 | // demoted edges. |
| 149 | SmallVector<Constant *, 16> Worklist; |
| 150 | SmallPtrSet<Constant *, 16> Visited; |
| 151 | SmallPtrSet<Function *, 16> RetainedEdges; |
| 152 | SmallSetVector<Function *, 4> PromotedRefTargets; |
| 153 | SmallSetVector<Function *, 4> DemotedCallTargets; |
| 154 | // First walk the function and handle all called functions. We do this first |
| 155 | // because if there is a single call edge, whether there are ref edges is |
| 156 | // irrelevant. |
| 157 | for (BasicBlock &BB : F) |
| 158 | for (Instruction &I : BB) |
| 159 | if (auto CS = CallSite(&I)) |
| 160 | if (Function *Callee = CS.getCalledFunction()) |
| 161 | if (Visited.insert(Callee).second && !Callee->isDeclaration()) { |
| 162 | const Edge *E = N.lookup(*Callee); |
| 163 | // FIXME: We should really handle adding new calls. While it will |
| 164 | // make downstream usage more complex, there is no fundamental |
| 165 | // limitation and it will allow passes within the CGSCC to be a bit |
| 166 | // more flexible in what transforms they can do. Until then, we |
| 167 | // verify that new calls haven't been introduced. |
| 168 | assert(E && "No function transformations should introduce *new* " |
| 169 | "call edges! Any new calls should be modeled as " |
| 170 | "promoted existing ref edges!"); |
| 171 | RetainedEdges.insert(Callee); |
| 172 | if (!E->isCall()) |
| 173 | PromotedRefTargets.insert(Callee); |
| 174 | } |
| 175 | |
| 176 | // Now walk all references. |
| 177 | for (BasicBlock &BB : F) |
| 178 | for (Instruction &I : BB) { |
| 179 | for (Value *Op : I.operand_values()) |
| 180 | if (Constant *C = dyn_cast<Constant>(Op)) |
| 181 | if (Visited.insert(C).second) |
| 182 | Worklist.push_back(C); |
| 183 | |
| 184 | LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) { |
| 185 | // Skip declarations. |
| 186 | if (Referee.isDeclaration()) |
| 187 | return; |
| 188 | |
| 189 | const Edge *E = N.lookup(Referee); |
| 190 | // FIXME: Similarly to new calls, we also currently preclude |
| 191 | // introducing new references. See above for details. |
| 192 | assert(E && "No function transformations should introduce *new* ref " |
| 193 | "edges! Any new ref edges would require IPO which " |
| 194 | "function passes aren't allowed to do!"); |
| 195 | RetainedEdges.insert(&Referee); |
| 196 | if (E->isCall()) |
| 197 | DemotedCallTargets.insert(&Referee); |
| 198 | }); |
| 199 | } |
| 200 | |
| 201 | // First remove all of the edges that are no longer present in this function. |
| 202 | // We have to build a list of dead targets first and then remove them as the |
| 203 | // data structures will all be invalidated by removing them. |
| 204 | SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets; |
| 205 | for (Edge &E : N) |
| 206 | if (!RetainedEdges.count(&E.getFunction())) |
| 207 | DeadTargets.push_back({E.getNode(), E.getKind()}); |
| 208 | for (auto DeadTarget : DeadTargets) { |
| 209 | Node &TargetN = *DeadTarget.getPointer(); |
| 210 | bool IsCall = DeadTarget.getInt() == Edge::Call; |
| 211 | SCC &TargetC = *G.lookupSCC(TargetN); |
| 212 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| 213 | |
| 214 | if (&TargetRC != RC) { |
| 215 | RC->removeOutgoingEdge(N, TargetN); |
| 216 | if (DebugLogging) |
| 217 | dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN |
| 218 | << "'\n"; |
| 219 | continue; |
| 220 | } |
| 221 | if (DebugLogging) |
| 222 | dbgs() << "Deleting internal " << (IsCall ? "call" : "ref") |
| 223 | << " edge from '" << N << "' to '" << TargetN << "'\n"; |
| 224 | |
| 225 | if (IsCall) |
| 226 | C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, |
| 227 | C, AM, UR, DebugLogging); |
| 228 | |
| 229 | auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN); |
| 230 | if (!NewRefSCCs.empty()) { |
| 231 | // Note that we don't bother to invalidate analyses as ref-edge |
| 232 | // connectivity is not really observable in any way and is intended |
| 233 | // exclusively to be used for ordering of transforms rather than for |
| 234 | // analysis conclusions. |
| 235 | |
| 236 | // The RC worklist is in reverse postorder, so we first enqueue the |
| 237 | // current RefSCC as it will remain the parent of all split RefSCCs, then |
| 238 | // we enqueue the new ones in RPO except for the one which contains the |
| 239 | // source node as that is the "bottom" we will continue processing in the |
| 240 | // bottom-up walk. |
| 241 | UR.RCWorklist.insert(RC); |
| 242 | if (DebugLogging) |
| 243 | dbgs() << "Enqueuing the existing RefSCC in the update worklist: " |
| 244 | << *RC << "\n"; |
| 245 | // Update the RC to the "bottom". |
| 246 | assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); |
| 247 | RC = &C->getOuterRefSCC(); |
| 248 | assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); |
| 249 | for (RefSCC *NewRC : reverse(NewRefSCCs)) |
| 250 | if (NewRC != RC) { |
| 251 | UR.RCWorklist.insert(NewRC); |
| 252 | if (DebugLogging) |
| 253 | dbgs() << "Enqueuing a new RefSCC in the update worklist: " |
| 254 | << *NewRC << "\n"; |
| 255 | } |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | // Next demote all the call edges that are now ref edges. This helps make |
| 260 | // the SCCs small which should minimize the work below as we don't want to |
| 261 | // form cycles that this would break. |
| 262 | for (Function *RefTarget : DemotedCallTargets) { |
| 263 | Node &TargetN = *G.lookup(*RefTarget); |
| 264 | SCC &TargetC = *G.lookupSCC(TargetN); |
| 265 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| 266 | |
| 267 | // The easy case is when the target RefSCC is not this RefSCC. This is |
| 268 | // only supported when the target RefSCC is a child of this RefSCC. |
| 269 | if (&TargetRC != RC) { |
| 270 | assert(RC->isAncestorOf(TargetRC) && |
| 271 | "Cannot potentially form RefSCC cycles here!"); |
| 272 | RC->switchOutgoingEdgeToRef(N, TargetN); |
| 273 | if (DebugLogging) |
| 274 | dbgs() << "Switch outgoing call edge to a ref edge from '" << N |
| 275 | << "' to '" << TargetN << "'\n"; |
| 276 | continue; |
| 277 | } |
| 278 | |
| 279 | // Otherwise we are switching an internal call edge to a ref edge. This |
| 280 | // may split up some SCCs. |
| 281 | C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, C, |
| 282 | AM, UR, DebugLogging); |
| 283 | } |
| 284 | |
| 285 | // Now promote ref edges into call edges. |
| 286 | for (Function *CallTarget : PromotedRefTargets) { |
| 287 | Node &TargetN = *G.lookup(*CallTarget); |
| 288 | SCC &TargetC = *G.lookupSCC(TargetN); |
| 289 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| 290 | |
| 291 | // The easy case is when the target RefSCC is not this RefSCC. This is |
| 292 | // only supported when the target RefSCC is a child of this RefSCC. |
| 293 | if (&TargetRC != RC) { |
| 294 | assert(RC->isAncestorOf(TargetRC) && |
| 295 | "Cannot potentially form RefSCC cycles here!"); |
| 296 | RC->switchOutgoingEdgeToCall(N, TargetN); |
| 297 | if (DebugLogging) |
| 298 | dbgs() << "Switch outgoing ref edge to a call edge from '" << N |
| 299 | << "' to '" << TargetN << "'\n"; |
| 300 | continue; |
| 301 | } |
| 302 | if (DebugLogging) |
| 303 | dbgs() << "Switch an internal ref edge to a call edge from '" << N |
| 304 | << "' to '" << TargetN << "'\n"; |
| 305 | |
| 306 | // Otherwise we are switching an internal ref edge to a call edge. This |
| 307 | // may merge away some SCCs, and we add those to the UpdateResult. We also |
| 308 | // need to make sure to update the worklist in the event SCCs have moved |
| 309 | // before the current one in the post-order sequence. |
| 310 | auto InitialSCCIndex = RC->find(*C) - RC->begin(); |
| 311 | auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN); |
| 312 | if (!InvalidatedSCCs.empty()) { |
| 313 | C = &TargetC; |
| 314 | assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); |
| 315 | |
| 316 | // Any analyses cached for this SCC are no longer precise as the shape |
| 317 | // has changed by introducing this cycle. |
| 318 | AM.invalidate(*C, PreservedAnalyses::none()); |
| 319 | |
| 320 | for (SCC *InvalidatedC : InvalidatedSCCs) { |
| 321 | assert(InvalidatedC != C && "Cannot invalidate the current SCC!"); |
| 322 | UR.InvalidatedSCCs.insert(InvalidatedC); |
| 323 | |
| 324 | // Also clear any cached analyses for the SCCs that are dead. This |
| 325 | // isn't really necessary for correctness but can release memory. |
| 326 | AM.clear(*InvalidatedC); |
| 327 | } |
| 328 | } |
| 329 | auto NewSCCIndex = RC->find(*C) - RC->begin(); |
| 330 | if (InitialSCCIndex < NewSCCIndex) { |
| 331 | // Put our current SCC back onto the worklist as we'll visit other SCCs |
| 332 | // that are now definitively ordered prior to the current one in the |
| 333 | // post-order sequence, and may end up observing more precise context to |
| 334 | // optimize the current SCC. |
| 335 | UR.CWorklist.insert(C); |
| 336 | if (DebugLogging) |
| 337 | dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; |
| 338 | // Enqueue in reverse order as we pop off the back of the worklist. |
| 339 | for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex, |
| 340 | RC->begin() + NewSCCIndex))) { |
| 341 | UR.CWorklist.insert(&MovedC); |
| 342 | if (DebugLogging) |
| 343 | dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC |
| 344 | << "\n"; |
| 345 | } |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); |
| 350 | assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); |
| 351 | assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); |
| 352 | |
| 353 | // Record the current RefSCC and SCC for higher layers of the CGSCC pass |
| 354 | // manager now that all the updates have been applied. |
| 355 | if (RC != &InitialRC) |
| 356 | UR.UpdatedRC = RC; |
| 357 | if (C != &InitialC) |
| 358 | UR.UpdatedC = C; |
| 359 | |
| 360 | return *C; |
Chandler Carruth | 572e340 | 2014-04-21 11:12:00 +0000 | [diff] [blame] | 361 | } |