blob: 84577dd182a42869a90e0a7ef9b25584f345885d [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LoopPredication pass tries to convert loop variant range checks to loop
11// invariant by widening checks across loop iterations. For example, it will
12// convert
13//
14// for (i = 0; i < n; i++) {
15// guard(i < len);
16// ...
17// }
18//
19// to
20//
21// for (i = 0; i < n; i++) {
22// guard(n - 1 < len);
23// ...
24// }
25//
26// After this transformation the condition of the guard is loop invariant, so
27// loop-unswitch can later unswitch the loop by this condition which basically
28// predicates the loop by the widened condition:
29//
30// if (n - 1 < len)
31// for (i = 0; i < n; i++) {
32// ...
33// }
34// else
35// deoptimize
36//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000037// It's tempting to rely on SCEV here, but it has proven to be problematic.
38// Generally the facts SCEV provides about the increment step of add
39// recurrences are true if the backedge of the loop is taken, which implicitly
40// assumes that the guard doesn't fail. Using these facts to optimize the
41// guard results in a circular logic where the guard is optimized under the
42// assumption that it never fails.
43//
44// For example, in the loop below the induction variable will be marked as nuw
45// basing on the guard. Basing on nuw the guard predicate will be considered
46// monotonic. Given a monotonic condition it's tempting to replace the induction
47// variable in the condition with its value on the last iteration. But this
48// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49//
50// for (int i = b; i != e; i++)
51// guard(i u< len)
52//
53// One of the ways to reason about this problem is to use an inductive proof
54// approach. Given the loop:
55//
56// if (B(Start)) {
57// do {
58// I = PHI(Start, I.INC)
59// I.INC = I + Step
60// guard(G(I));
61// } while (B(I.INC));
62// }
63//
64// where B(x) and G(x) are predicates that map integers to booleans, we want a
65// loop invariant expression M such the following program has the same semantics
66// as the above:
67//
68// if (B(Start)) {
69// do {
70// I = PHI(Start, I.INC)
71// I.INC = I + Step
72// guard(G(Start) && M);
73// } while (B(I.INC));
74// }
75//
76// One solution for M is M = forall X . (G(X) && B(X + Step)) => G(X + Step)
77//
78// Informal proof that the transformation above is correct:
79//
80// By the definition of guards we can rewrite the guard condition to:
81// G(I) && G(Start) && M
82//
83// Let's prove that for each iteration of the loop:
84// G(Start) && M => G(I)
85// And the condition above can be simplified to G(Start) && M.
86//
87// Induction base.
88// G(Start) && M => G(Start)
89//
90// Induction step. Assuming G(Start) && M => G(I) on the subsequent
91// iteration:
92//
93// B(I + Step) is true because it's the backedge condition.
94// G(I) is true because the backedge is guarded by this condition.
95//
96// So M = forall X . (G(X) && B(X + Step)) => G(X + Step) implies
97// G(I + Step).
98//
99// Note that we can use anything stronger than M, i.e. any condition which
100// implies M.
101//
102// For now the transformation is limited to the following case:
103// * The loop has a single latch with either ult or slt icmp condition.
104// * The step of the IV used in the latch condition is 1.
105// * The IV of the latch condition is the same as the post increment IV of the
106// guard condition.
107// * The guard condition is ult.
108//
109// In this case the latch is of the from:
110// ++i u< latchLimit or ++i s< latchLimit
111// and the guard is of the form:
112// i u< guardLimit
113//
114// For the unsigned latch comparison case M is:
115// forall X . X u< guardLimit && (X + 1) u< latchLimit =>
116// (X + 1) u< guardLimit
117//
118// This is true if latchLimit u<= guardLimit since then
119// (X + 1) u< latchLimit u<= guardLimit == (X + 1) u< guardLimit.
120//
121// So the widened condition is:
122// i.start u< guardLimit && latchLimit u<= guardLimit
123//
124// For the signed latch comparison case M is:
125// forall X . X u< guardLimit && (X + 1) s< latchLimit =>
126// (X + 1) u< guardLimit
127//
128// The only way the antecedent can be true and the consequent can be false is
129// if
130// X == guardLimit - 1
131// (and guardLimit is non-zero, but we won't use this latter fact).
132// If X == guardLimit - 1 then the second half of the antecedent is
133// guardLimit s< latchLimit
134// and its negation is
135// latchLimit s<= guardLimit.
136//
137// In other words, if latchLimit s<= guardLimit then:
138// (the ranges below are written in ConstantRange notation, where [A, B) is the
139// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
140//
141// forall X . X u< guardLimit && (X + 1) s< latchLimit => (X + 1) u< guardLimit
142// == forall X . X u< guardLimit && (X + 1) s< guardLimit => (X + 1) u< guardLimit
143// == forall X . X in [0, guardLimit) && (X + 1) in [INT_MIN, guardLimit) => (X + 1) in [0, guardLimit)
144// == forall X . X in [0, guardLimit) && X in [INT_MAX, guardLimit-1) => X in [-1, guardLimit-1)
145// == forall X . X in [0, guardLimit-1) => X in [-1, guardLimit-1)
146// == true
147//
148// So the widened condition is:
149// i.start u< guardLimit && latchLimit s<= guardLimit
150//
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000151//===----------------------------------------------------------------------===//
152
153#include "llvm/Transforms/Scalar/LoopPredication.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000154#include "llvm/Analysis/LoopInfo.h"
155#include "llvm/Analysis/LoopPass.h"
156#include "llvm/Analysis/ScalarEvolution.h"
157#include "llvm/Analysis/ScalarEvolutionExpander.h"
158#include "llvm/Analysis/ScalarEvolutionExpressions.h"
159#include "llvm/IR/Function.h"
160#include "llvm/IR/GlobalValue.h"
161#include "llvm/IR/IntrinsicInst.h"
162#include "llvm/IR/Module.h"
163#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000164#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000165#include "llvm/Support/Debug.h"
166#include "llvm/Transforms/Scalar.h"
167#include "llvm/Transforms/Utils/LoopUtils.h"
168
169#define DEBUG_TYPE "loop-predication"
170
171using namespace llvm;
172
173namespace {
174class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000175 /// Represents an induction variable check:
176 /// icmp Pred, <induction variable>, <loop invariant limit>
177 struct LoopICmp {
178 ICmpInst::Predicate Pred;
179 const SCEVAddRecExpr *IV;
180 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000181 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
182 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000183 : Pred(Pred), IV(IV), Limit(Limit) {}
184 LoopICmp() {}
185 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000186
187 ScalarEvolution *SE;
188
189 Loop *L;
190 const DataLayout *DL;
191 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000192 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000193
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000194 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
195 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
196 ICI->getOperand(1));
197 }
198 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
199 Value *RHS);
200
201 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000202
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000203 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
204 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
205 Instruction *InsertAt);
206
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000207 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
208 IRBuilder<> &Builder);
209 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
210
211public:
212 LoopPredication(ScalarEvolution *SE) : SE(SE){};
213 bool runOnLoop(Loop *L);
214};
215
216class LoopPredicationLegacyPass : public LoopPass {
217public:
218 static char ID;
219 LoopPredicationLegacyPass() : LoopPass(ID) {
220 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
221 }
222
223 void getAnalysisUsage(AnalysisUsage &AU) const override {
224 getLoopAnalysisUsage(AU);
225 }
226
227 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
228 if (skipLoop(L))
229 return false;
230 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
231 LoopPredication LP(SE);
232 return LP.runOnLoop(L);
233 }
234};
235
236char LoopPredicationLegacyPass::ID = 0;
237} // end namespace llvm
238
239INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
240 "Loop predication", false, false)
241INITIALIZE_PASS_DEPENDENCY(LoopPass)
242INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
243 "Loop predication", false, false)
244
245Pass *llvm::createLoopPredicationPass() {
246 return new LoopPredicationLegacyPass();
247}
248
249PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
250 LoopStandardAnalysisResults &AR,
251 LPMUpdater &U) {
252 LoopPredication LP(&AR.SE);
253 if (!LP.runOnLoop(&L))
254 return PreservedAnalyses::all();
255
256 return getLoopPassPreservedAnalyses();
257}
258
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000259Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000260LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
261 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000262 const SCEV *LHSS = SE->getSCEV(LHS);
263 if (isa<SCEVCouldNotCompute>(LHSS))
264 return None;
265 const SCEV *RHSS = SE->getSCEV(RHS);
266 if (isa<SCEVCouldNotCompute>(RHSS))
267 return None;
268
269 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
270 if (SE->isLoopInvariant(LHSS, L)) {
271 std::swap(LHS, RHS);
272 std::swap(LHSS, RHSS);
273 Pred = ICmpInst::getSwappedPredicate(Pred);
274 }
275
276 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
277 if (!AR || AR->getLoop() != L)
278 return None;
279
280 return LoopICmp(Pred, AR, RHSS);
281}
282
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000283Value *LoopPredication::expandCheck(SCEVExpander &Expander,
284 IRBuilder<> &Builder,
285 ICmpInst::Predicate Pred, const SCEV *LHS,
286 const SCEV *RHS, Instruction *InsertAt) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000287 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
288
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000289 Type *Ty = LHS->getType();
290 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
291 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
292 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
293 return Builder.CreateICmp(Pred, LHSV, RHSV);
294}
295
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000296/// If ICI can be widened to a loop invariant condition emits the loop
297/// invariant condition in the loop preheader and return it, otherwise
298/// returns None.
299Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
300 SCEVExpander &Expander,
301 IRBuilder<> &Builder) {
302 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
303 DEBUG(ICI->dump());
304
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000305 // parseLoopStructure guarantees that the latch condition is:
306 // ++i u< latchLimit or ++i s< latchLimit
307 // We are looking for the range checks of the form:
308 // i u< guardLimit
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000309 auto RangeCheck = parseLoopICmp(ICI);
Artur Pilipenkoedee2512017-05-22 12:06:57 +0000310 if (!RangeCheck) {
311 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000312 return None;
Artur Pilipenkoedee2512017-05-22 12:06:57 +0000313 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000314 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
315 DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
316 << ")!\n");
317 return None;
318 }
319 auto *RangeCheckIV = RangeCheck->IV;
320 auto *PostIncRangeCheckIV = RangeCheckIV->getPostIncExpr(*SE);
321 if (LatchCheck.IV != PostIncRangeCheckIV) {
322 DEBUG(dbgs() << "Post increment range check IV (" << *PostIncRangeCheckIV
323 << ") is not the same as latch IV (" << *LatchCheck.IV
324 << ")!\n");
325 return None;
326 }
327 assert(RangeCheckIV->getStepRecurrence(*SE)->isOne() && "must be one");
328 const SCEV *Start = RangeCheckIV->getStart();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000329
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000330 // Generate the widened condition. See the file header comment for reasoning.
331 // If the latch condition is unsigned:
332 // i.start u< guardLimit && latchLimit u<= guardLimit
333 // If the latch condition is signed:
334 // i.start u< guardLimit && latchLimit s<= guardLimit
335
336 auto LimitCheckPred = ICmpInst::isSigned(LatchCheck.Pred)
337 ? ICmpInst::ICMP_SLE
338 : ICmpInst::ICMP_ULE;
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000339
340 auto CanExpand = [this](const SCEV *S) {
341 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
342 };
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000343 if (!CanExpand(Start) || !CanExpand(LatchCheck.Limit) ||
344 !CanExpand(RangeCheck->Limit))
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000345 return None;
346
Artur Pilipenko0860bfc2017-02-27 15:44:49 +0000347 Instruction *InsertAt = Preheader->getTerminator();
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000348 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred,
349 Start, RangeCheck->Limit, InsertAt);
350 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred,
351 LatchCheck.Limit, RangeCheck->Limit, InsertAt);
352 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000353}
354
355bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
356 SCEVExpander &Expander) {
357 DEBUG(dbgs() << "Processing guard:\n");
358 DEBUG(Guard->dump());
359
360 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
361
362 // The guard condition is expected to be in form of:
363 // cond1 && cond2 && cond3 ...
364 // Iterate over subconditions looking for for icmp conditions which can be
365 // widened across loop iterations. Widening these conditions remember the
366 // resulting list of subconditions in Checks vector.
367 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
368 SmallPtrSet<Value *, 4> Visited;
369
370 SmallVector<Value *, 4> Checks;
371
372 unsigned NumWidened = 0;
373 do {
374 Value *Condition = Worklist.pop_back_val();
375 if (!Visited.insert(Condition).second)
376 continue;
377
378 Value *LHS, *RHS;
379 using namespace llvm::PatternMatch;
380 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
381 Worklist.push_back(LHS);
382 Worklist.push_back(RHS);
383 continue;
384 }
385
386 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
387 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
388 Checks.push_back(NewRangeCheck.getValue());
389 NumWidened++;
390 continue;
391 }
392 }
393
394 // Save the condition as is if we can't widen it
395 Checks.push_back(Condition);
396 } while (Worklist.size() != 0);
397
398 if (NumWidened == 0)
399 return false;
400
401 // Emit the new guard condition
402 Builder.SetInsertPoint(Guard);
403 Value *LastCheck = nullptr;
404 for (auto *Check : Checks)
405 if (!LastCheck)
406 LastCheck = Check;
407 else
408 LastCheck = Builder.CreateAnd(LastCheck, Check);
409 Guard->setOperand(0, LastCheck);
410
411 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
412 return true;
413}
414
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000415Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
416 using namespace PatternMatch;
417
418 BasicBlock *LoopLatch = L->getLoopLatch();
419 if (!LoopLatch) {
420 DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
421 return None;
422 }
423
424 ICmpInst::Predicate Pred;
425 Value *LHS, *RHS;
426 BasicBlock *TrueDest, *FalseDest;
427
428 if (!match(LoopLatch->getTerminator(),
429 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
430 FalseDest))) {
431 DEBUG(dbgs() << "Failed to match the latch terminator!\n");
432 return None;
433 }
434 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
435 "One of the latch's destinations must be the header");
436 if (TrueDest != L->getHeader())
437 Pred = ICmpInst::getInversePredicate(Pred);
438
439 auto Result = parseLoopICmp(Pred, LHS, RHS);
440 if (!Result) {
441 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
442 return None;
443 }
444
445 if (Result->Pred != ICmpInst::ICMP_ULT &&
446 Result->Pred != ICmpInst::ICMP_SLT) {
447 DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
448 << ")!\n");
449 return None;
450 }
451
452 // Check affine first, so if it's not we don't try to compute the step
453 // recurrence.
454 if (!Result->IV->isAffine()) {
455 DEBUG(dbgs() << "The induction variable is not affine!\n");
456 return None;
457 }
458
459 auto *Step = Result->IV->getStepRecurrence(*SE);
460 if (!Step->isOne()) {
461 DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
462 return None;
463 }
464
465 return Result;
466}
467
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000468bool LoopPredication::runOnLoop(Loop *Loop) {
469 L = Loop;
470
471 DEBUG(dbgs() << "Analyzing ");
472 DEBUG(L->dump());
473
474 Module *M = L->getHeader()->getModule();
475
476 // There is nothing to do if the module doesn't use guards
477 auto *GuardDecl =
478 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
479 if (!GuardDecl || GuardDecl->use_empty())
480 return false;
481
482 DL = &M->getDataLayout();
483
484 Preheader = L->getLoopPreheader();
485 if (!Preheader)
486 return false;
487
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000488 auto LatchCheckOpt = parseLoopLatchICmp();
489 if (!LatchCheckOpt)
490 return false;
491 LatchCheck = *LatchCheckOpt;
492
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000493 // Collect all the guards into a vector and process later, so as not
494 // to invalidate the instruction iterator.
495 SmallVector<IntrinsicInst *, 4> Guards;
496 for (const auto BB : L->blocks())
497 for (auto &I : *BB)
498 if (auto *II = dyn_cast<IntrinsicInst>(&I))
499 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
500 Guards.push_back(II);
501
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000502 if (Guards.empty())
503 return false;
504
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000505 SCEVExpander Expander(*SE, *DL, "loop-predication");
506
507 bool Changed = false;
508 for (auto *Guard : Guards)
509 Changed |= widenGuardConditions(Guard, Expander);
510
511 return Changed;
512}