blob: 7bb07ccef323c360cf139a295bf287f66f586517 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
15#include "AArch64PerfectShuffle.h"
16#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64MachineFunctionInfo.h"
18#include "AArch64TargetMachine.h"
19#include "AArch64TargetObjectFile.h"
20#include "MCTargetDesc/AArch64AddressingModes.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Type.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36#define DEBUG_TYPE "aarch64-lower"
37
38STATISTIC(NumTailCalls, "Number of tail calls");
39STATISTIC(NumShiftInserts, "Number of vector shift inserts");
40
41enum AlignMode {
42 StrictAlign,
43 NoStrictAlign
44};
45
46static cl::opt<AlignMode>
47Align(cl::desc("Load/store alignment support"),
48 cl::Hidden, cl::init(NoStrictAlign),
49 cl::values(
50 clEnumValN(StrictAlign, "aarch64-strict-align",
51 "Disallow all unaligned memory accesses"),
52 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
53 "Allow unaligned memory accesses"),
54 clEnumValEnd));
55
56// Place holder until extr generation is tested fully.
57static cl::opt<bool>
58EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
59 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
60 cl::init(true));
61
62static cl::opt<bool>
63EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
64 cl::desc("Allow AArch64 SLI/SRI formation"),
65 cl::init(false));
66
67//===----------------------------------------------------------------------===//
68// AArch64 Lowering public interface.
69//===----------------------------------------------------------------------===//
Eric Christopher89958332014-05-31 00:07:32 +000070static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
71 if (TT.isOSBinFormatMachO())
Tim Northover3b0846e2014-05-24 12:50:23 +000072 return new AArch64_MachoTargetObjectFile();
73
74 return new AArch64_ELFTargetObjectFile();
75}
76
77AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
Eric Christopher89958332014-05-31 00:07:32 +000078 : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
Tim Northover3b0846e2014-05-24 12:50:23 +000079 Subtarget = &TM.getSubtarget<AArch64Subtarget>();
80
81 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
82 // we have to make something up. Arbitrarily, choose ZeroOrOne.
83 setBooleanContents(ZeroOrOneBooleanContent);
84 // When comparing vectors the result sets the different elements in the
85 // vector to all-one or all-zero.
86 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
87
88 // Set up the register classes.
89 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
90 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
91
92 if (Subtarget->hasFPARMv8()) {
93 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
94 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
95 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
96 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
97 }
98
99 if (Subtarget->hasNEON()) {
100 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
101 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
102 // Someone set us up the NEON.
103 addDRTypeForNEON(MVT::v2f32);
104 addDRTypeForNEON(MVT::v8i8);
105 addDRTypeForNEON(MVT::v4i16);
106 addDRTypeForNEON(MVT::v2i32);
107 addDRTypeForNEON(MVT::v1i64);
108 addDRTypeForNEON(MVT::v1f64);
109
110 addQRTypeForNEON(MVT::v4f32);
111 addQRTypeForNEON(MVT::v2f64);
112 addQRTypeForNEON(MVT::v16i8);
113 addQRTypeForNEON(MVT::v8i16);
114 addQRTypeForNEON(MVT::v4i32);
115 addQRTypeForNEON(MVT::v2i64);
116 }
117
118 // Compute derived properties from the register classes
119 computeRegisterProperties();
120
121 // Provide all sorts of operation actions
122 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
123 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
124 setOperationAction(ISD::SETCC, MVT::i32, Custom);
125 setOperationAction(ISD::SETCC, MVT::i64, Custom);
126 setOperationAction(ISD::SETCC, MVT::f32, Custom);
127 setOperationAction(ISD::SETCC, MVT::f64, Custom);
128 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
129 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
130 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
131 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
132 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
133 setOperationAction(ISD::SELECT, MVT::i32, Custom);
134 setOperationAction(ISD::SELECT, MVT::i64, Custom);
135 setOperationAction(ISD::SELECT, MVT::f32, Custom);
136 setOperationAction(ISD::SELECT, MVT::f64, Custom);
137 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
138 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
139 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
140 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
141 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
142 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
143
144 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
145 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
146 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
147
148 setOperationAction(ISD::FREM, MVT::f32, Expand);
149 setOperationAction(ISD::FREM, MVT::f64, Expand);
150 setOperationAction(ISD::FREM, MVT::f80, Expand);
151
152 // Custom lowering hooks are needed for XOR
153 // to fold it into CSINC/CSINV.
154 setOperationAction(ISD::XOR, MVT::i32, Custom);
155 setOperationAction(ISD::XOR, MVT::i64, Custom);
156
157 // Virtually no operation on f128 is legal, but LLVM can't expand them when
158 // there's a valid register class, so we need custom operations in most cases.
159 setOperationAction(ISD::FABS, MVT::f128, Expand);
160 setOperationAction(ISD::FADD, MVT::f128, Custom);
161 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
162 setOperationAction(ISD::FCOS, MVT::f128, Expand);
163 setOperationAction(ISD::FDIV, MVT::f128, Custom);
164 setOperationAction(ISD::FMA, MVT::f128, Expand);
165 setOperationAction(ISD::FMUL, MVT::f128, Custom);
166 setOperationAction(ISD::FNEG, MVT::f128, Expand);
167 setOperationAction(ISD::FPOW, MVT::f128, Expand);
168 setOperationAction(ISD::FREM, MVT::f128, Expand);
169 setOperationAction(ISD::FRINT, MVT::f128, Expand);
170 setOperationAction(ISD::FSIN, MVT::f128, Expand);
171 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
172 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
173 setOperationAction(ISD::FSUB, MVT::f128, Custom);
174 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
175 setOperationAction(ISD::SETCC, MVT::f128, Custom);
176 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
177 setOperationAction(ISD::SELECT, MVT::f128, Custom);
178 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
179 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
180
181 // Lowering for many of the conversions is actually specified by the non-f128
182 // type. The LowerXXX function will be trivial when f128 isn't involved.
183 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
184 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
185 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
186 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
187 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
188 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
189 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
190 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
191 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
192 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
193 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
194 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
195 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
196 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
197
198 // Variable arguments.
199 setOperationAction(ISD::VASTART, MVT::Other, Custom);
200 setOperationAction(ISD::VAARG, MVT::Other, Custom);
201 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
202 setOperationAction(ISD::VAEND, MVT::Other, Expand);
203
204 // Variable-sized objects.
205 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
206 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
207 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
208
209 // Exception handling.
210 // FIXME: These are guesses. Has this been defined yet?
211 setExceptionPointerRegister(AArch64::X0);
212 setExceptionSelectorRegister(AArch64::X1);
213
214 // Constant pool entries
215 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
216
217 // BlockAddress
218 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
219
220 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
221 setOperationAction(ISD::ADDC, MVT::i32, Custom);
222 setOperationAction(ISD::ADDE, MVT::i32, Custom);
223 setOperationAction(ISD::SUBC, MVT::i32, Custom);
224 setOperationAction(ISD::SUBE, MVT::i32, Custom);
225 setOperationAction(ISD::ADDC, MVT::i64, Custom);
226 setOperationAction(ISD::ADDE, MVT::i64, Custom);
227 setOperationAction(ISD::SUBC, MVT::i64, Custom);
228 setOperationAction(ISD::SUBE, MVT::i64, Custom);
229
230 // AArch64 lacks both left-rotate and popcount instructions.
231 setOperationAction(ISD::ROTL, MVT::i32, Expand);
232 setOperationAction(ISD::ROTL, MVT::i64, Expand);
233
234 // AArch64 doesn't have {U|S}MUL_LOHI.
235 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
236 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
237
238
239 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
240 // counterparts, which AArch64 supports directly.
241 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
242 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
243 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
244 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
245
246 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
247 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
248
249 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
250 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
251 setOperationAction(ISD::SREM, MVT::i32, Expand);
252 setOperationAction(ISD::SREM, MVT::i64, Expand);
253 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
254 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
255 setOperationAction(ISD::UREM, MVT::i32, Expand);
256 setOperationAction(ISD::UREM, MVT::i64, Expand);
257
258 // Custom lower Add/Sub/Mul with overflow.
259 setOperationAction(ISD::SADDO, MVT::i32, Custom);
260 setOperationAction(ISD::SADDO, MVT::i64, Custom);
261 setOperationAction(ISD::UADDO, MVT::i32, Custom);
262 setOperationAction(ISD::UADDO, MVT::i64, Custom);
263 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
264 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
265 setOperationAction(ISD::USUBO, MVT::i32, Custom);
266 setOperationAction(ISD::USUBO, MVT::i64, Custom);
267 setOperationAction(ISD::SMULO, MVT::i32, Custom);
268 setOperationAction(ISD::SMULO, MVT::i64, Custom);
269 setOperationAction(ISD::UMULO, MVT::i32, Custom);
270 setOperationAction(ISD::UMULO, MVT::i64, Custom);
271
272 setOperationAction(ISD::FSIN, MVT::f32, Expand);
273 setOperationAction(ISD::FSIN, MVT::f64, Expand);
274 setOperationAction(ISD::FCOS, MVT::f32, Expand);
275 setOperationAction(ISD::FCOS, MVT::f64, Expand);
276 setOperationAction(ISD::FPOW, MVT::f32, Expand);
277 setOperationAction(ISD::FPOW, MVT::f64, Expand);
278 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
279 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
280
281 // AArch64 has implementations of a lot of rounding-like FP operations.
282 static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
283 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
284 MVT Ty = RoundingTypes[I];
285 setOperationAction(ISD::FFLOOR, Ty, Legal);
286 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
287 setOperationAction(ISD::FCEIL, Ty, Legal);
288 setOperationAction(ISD::FRINT, Ty, Legal);
289 setOperationAction(ISD::FTRUNC, Ty, Legal);
290 setOperationAction(ISD::FROUND, Ty, Legal);
291 }
292
293 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
294
295 if (Subtarget->isTargetMachO()) {
296 // For iOS, we don't want to the normal expansion of a libcall to
297 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
298 // traffic.
299 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
300 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
301 } else {
302 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
303 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
304 }
305
306 // AArch64 does not have floating-point extending loads, i1 sign-extending
307 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
308 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
309 setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
310 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
311 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
312 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
313 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
314 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
315 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
316 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
317 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
318 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
319 // Indexed loads and stores are supported.
320 for (unsigned im = (unsigned)ISD::PRE_INC;
321 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
322 setIndexedLoadAction(im, MVT::i8, Legal);
323 setIndexedLoadAction(im, MVT::i16, Legal);
324 setIndexedLoadAction(im, MVT::i32, Legal);
325 setIndexedLoadAction(im, MVT::i64, Legal);
326 setIndexedLoadAction(im, MVT::f64, Legal);
327 setIndexedLoadAction(im, MVT::f32, Legal);
328 setIndexedStoreAction(im, MVT::i8, Legal);
329 setIndexedStoreAction(im, MVT::i16, Legal);
330 setIndexedStoreAction(im, MVT::i32, Legal);
331 setIndexedStoreAction(im, MVT::i64, Legal);
332 setIndexedStoreAction(im, MVT::f64, Legal);
333 setIndexedStoreAction(im, MVT::f32, Legal);
334 }
335
336 // Trap.
337 setOperationAction(ISD::TRAP, MVT::Other, Legal);
338
339 // We combine OR nodes for bitfield operations.
340 setTargetDAGCombine(ISD::OR);
341
342 // Vector add and sub nodes may conceal a high-half opportunity.
343 // Also, try to fold ADD into CSINC/CSINV..
344 setTargetDAGCombine(ISD::ADD);
345 setTargetDAGCombine(ISD::SUB);
346
347 setTargetDAGCombine(ISD::XOR);
348 setTargetDAGCombine(ISD::SINT_TO_FP);
349 setTargetDAGCombine(ISD::UINT_TO_FP);
350
351 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
352
353 setTargetDAGCombine(ISD::ANY_EXTEND);
354 setTargetDAGCombine(ISD::ZERO_EXTEND);
355 setTargetDAGCombine(ISD::SIGN_EXTEND);
356 setTargetDAGCombine(ISD::BITCAST);
357 setTargetDAGCombine(ISD::CONCAT_VECTORS);
358 setTargetDAGCombine(ISD::STORE);
359
360 setTargetDAGCombine(ISD::MUL);
361
362 setTargetDAGCombine(ISD::SELECT);
363 setTargetDAGCombine(ISD::VSELECT);
364
365 setTargetDAGCombine(ISD::INTRINSIC_VOID);
366 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
367 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
368
369 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
370 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
371 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
372
373 setStackPointerRegisterToSaveRestore(AArch64::SP);
374
375 setSchedulingPreference(Sched::Hybrid);
376
377 // Enable TBZ/TBNZ
378 MaskAndBranchFoldingIsLegal = true;
379
380 setMinFunctionAlignment(2);
381
382 RequireStrictAlign = (Align == StrictAlign);
383
384 setHasExtractBitsInsn(true);
385
386 if (Subtarget->hasNEON()) {
387 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
388 // silliness like this:
389 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
390 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
391 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
392 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
393 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
394 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
395 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
396 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
397 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
398 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
399 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
400 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
401 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
402 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
403 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
404 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
405 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
406 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
407 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
408 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
409 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
410 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
411 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
412 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
413 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
414
415 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
416 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
417 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
418 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
419 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
420
421 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
422
423 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
424 // elements smaller than i32, so promote the input to i32 first.
425 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
426 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
427 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
428 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
429 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
430 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
431 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
432 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
433 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
434
435 // AArch64 doesn't have MUL.2d:
436 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
437 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
438 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
439 // Likewise, narrowing and extending vector loads/stores aren't handled
440 // directly.
441 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
442 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
443
444 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
445 Expand);
446
447 setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
448 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
449 setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
450 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
451
452 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
453
454 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
455 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
456 setTruncStoreAction((MVT::SimpleValueType)VT,
457 (MVT::SimpleValueType)InnerVT, Expand);
458 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
459 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
460 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
461 }
462
463 // AArch64 has implementations of a lot of rounding-like FP operations.
464 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
465 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
466 MVT Ty = RoundingVecTypes[I];
467 setOperationAction(ISD::FFLOOR, Ty, Legal);
468 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
469 setOperationAction(ISD::FCEIL, Ty, Legal);
470 setOperationAction(ISD::FRINT, Ty, Legal);
471 setOperationAction(ISD::FTRUNC, Ty, Legal);
472 setOperationAction(ISD::FROUND, Ty, Legal);
473 }
474 }
475}
476
477void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
478 if (VT == MVT::v2f32) {
479 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
480 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
481
482 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
483 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
484 } else if (VT == MVT::v2f64 || VT == MVT::v4f32) {
485 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
486 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
487
488 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
489 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
490 }
491
492 // Mark vector float intrinsics as expand.
493 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
494 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
495 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
496 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
497 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
498 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
499 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
500 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
501 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
502 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
503 }
504
505 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
506 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
507 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
508 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
509 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
510 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
511 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
512 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
513 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
514 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
515 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
516 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
517
518 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
519 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
520 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
521 setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
522
523 // CNT supports only B element sizes.
524 if (VT != MVT::v8i8 && VT != MVT::v16i8)
525 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
526
527 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
528 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
529 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
530 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
531 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
532
533 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
534 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
535
536 if (Subtarget->isLittleEndian()) {
537 for (unsigned im = (unsigned)ISD::PRE_INC;
538 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
539 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
540 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
541 }
542 }
543}
544
545void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
546 addRegisterClass(VT, &AArch64::FPR64RegClass);
547 addTypeForNEON(VT, MVT::v2i32);
548}
549
550void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
551 addRegisterClass(VT, &AArch64::FPR128RegClass);
552 addTypeForNEON(VT, MVT::v4i32);
553}
554
555EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
556 if (!VT.isVector())
557 return MVT::i32;
558 return VT.changeVectorElementTypeToInteger();
559}
560
561/// computeKnownBitsForTargetNode - Determine which of the bits specified in
562/// Mask are known to be either zero or one and return them in the
563/// KnownZero/KnownOne bitsets.
564void AArch64TargetLowering::computeKnownBitsForTargetNode(
565 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
566 const SelectionDAG &DAG, unsigned Depth) const {
567 switch (Op.getOpcode()) {
568 default:
569 break;
570 case AArch64ISD::CSEL: {
571 APInt KnownZero2, KnownOne2;
572 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
573 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
574 KnownZero &= KnownZero2;
575 KnownOne &= KnownOne2;
576 break;
577 }
578 case ISD::INTRINSIC_W_CHAIN: {
579 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
580 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
581 switch (IntID) {
582 default: return;
583 case Intrinsic::aarch64_ldaxr:
584 case Intrinsic::aarch64_ldxr: {
585 unsigned BitWidth = KnownOne.getBitWidth();
586 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
587 unsigned MemBits = VT.getScalarType().getSizeInBits();
588 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
589 return;
590 }
591 }
592 break;
593 }
594 case ISD::INTRINSIC_WO_CHAIN:
595 case ISD::INTRINSIC_VOID: {
596 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
597 switch (IntNo) {
598 default:
599 break;
600 case Intrinsic::aarch64_neon_umaxv:
601 case Intrinsic::aarch64_neon_uminv: {
602 // Figure out the datatype of the vector operand. The UMINV instruction
603 // will zero extend the result, so we can mark as known zero all the
604 // bits larger than the element datatype. 32-bit or larget doesn't need
605 // this as those are legal types and will be handled by isel directly.
606 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
607 unsigned BitWidth = KnownZero.getBitWidth();
608 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
609 assert(BitWidth >= 8 && "Unexpected width!");
610 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
611 KnownZero |= Mask;
612 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
613 assert(BitWidth >= 16 && "Unexpected width!");
614 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
615 KnownZero |= Mask;
616 }
617 break;
618 } break;
619 }
620 }
621 }
622}
623
624MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
625 return MVT::i64;
626}
627
628unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
629 // FIXME: On AArch64, this depends on the type.
630 // Basically, the addressable offsets are o to 4095 * Ty.getSizeInBytes().
631 // and the offset has to be a multiple of the related size in bytes.
632 return 4095;
633}
634
635FastISel *
636AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
637 const TargetLibraryInfo *libInfo) const {
638 return AArch64::createFastISel(funcInfo, libInfo);
639}
640
641const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
642 switch (Opcode) {
643 default:
644 return nullptr;
645 case AArch64ISD::CALL: return "AArch64ISD::CALL";
646 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
647 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
648 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
649 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
650 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
651 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
652 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
653 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
654 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
655 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
656 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
657 case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
658 case AArch64ISD::ADC: return "AArch64ISD::ADC";
659 case AArch64ISD::SBC: return "AArch64ISD::SBC";
660 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
661 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
662 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
663 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
664 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
665 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
666 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
667 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
668 case AArch64ISD::DUP: return "AArch64ISD::DUP";
669 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
670 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
671 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
672 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
673 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
674 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
675 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
676 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
677 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
678 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
679 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
680 case AArch64ISD::BICi: return "AArch64ISD::BICi";
681 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
682 case AArch64ISD::BSL: return "AArch64ISD::BSL";
683 case AArch64ISD::NEG: return "AArch64ISD::NEG";
684 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
685 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
686 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
687 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
688 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
689 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
690 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
691 case AArch64ISD::REV16: return "AArch64ISD::REV16";
692 case AArch64ISD::REV32: return "AArch64ISD::REV32";
693 case AArch64ISD::REV64: return "AArch64ISD::REV64";
694 case AArch64ISD::EXT: return "AArch64ISD::EXT";
695 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
696 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
697 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
698 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
699 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
700 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
701 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
702 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
703 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
704 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
705 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
706 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
707 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
708 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
709 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
710 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
711 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
712 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
713 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
714 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
715 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
716 case AArch64ISD::NOT: return "AArch64ISD::NOT";
717 case AArch64ISD::BIT: return "AArch64ISD::BIT";
718 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
719 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
720 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
721 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
722 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
723 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
724 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
725 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
726 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
727 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
728 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
729 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
730 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
731 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
732 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
733 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
734 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
735 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
736 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
737 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
738 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
739 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
740 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
741 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
742 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
743 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
744 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
745 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
746 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
747 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
748 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
749 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
750 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
751 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
752 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
753 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
754 }
755}
756
757MachineBasicBlock *
758AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
759 MachineBasicBlock *MBB) const {
760 // We materialise the F128CSEL pseudo-instruction as some control flow and a
761 // phi node:
762
763 // OrigBB:
764 // [... previous instrs leading to comparison ...]
765 // b.ne TrueBB
766 // b EndBB
767 // TrueBB:
768 // ; Fallthrough
769 // EndBB:
770 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
771
772 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
773 MachineFunction *MF = MBB->getParent();
774 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
775 DebugLoc DL = MI->getDebugLoc();
776 MachineFunction::iterator It = MBB;
777 ++It;
778
779 unsigned DestReg = MI->getOperand(0).getReg();
780 unsigned IfTrueReg = MI->getOperand(1).getReg();
781 unsigned IfFalseReg = MI->getOperand(2).getReg();
782 unsigned CondCode = MI->getOperand(3).getImm();
783 bool NZCVKilled = MI->getOperand(4).isKill();
784
785 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
786 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
787 MF->insert(It, TrueBB);
788 MF->insert(It, EndBB);
789
790 // Transfer rest of current basic-block to EndBB
791 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
792 MBB->end());
793 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
794
795 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
796 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
797 MBB->addSuccessor(TrueBB);
798 MBB->addSuccessor(EndBB);
799
800 // TrueBB falls through to the end.
801 TrueBB->addSuccessor(EndBB);
802
803 if (!NZCVKilled) {
804 TrueBB->addLiveIn(AArch64::NZCV);
805 EndBB->addLiveIn(AArch64::NZCV);
806 }
807
808 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
809 .addReg(IfTrueReg)
810 .addMBB(TrueBB)
811 .addReg(IfFalseReg)
812 .addMBB(MBB);
813
814 MI->eraseFromParent();
815 return EndBB;
816}
817
818MachineBasicBlock *
819AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
820 MachineBasicBlock *BB) const {
821 switch (MI->getOpcode()) {
822 default:
823#ifndef NDEBUG
824 MI->dump();
825#endif
826 assert(0 && "Unexpected instruction for custom inserter!");
827 break;
828
829 case AArch64::F128CSEL:
830 return EmitF128CSEL(MI, BB);
831
832 case TargetOpcode::STACKMAP:
833 case TargetOpcode::PATCHPOINT:
834 return emitPatchPoint(MI, BB);
835 }
836 llvm_unreachable("Unexpected instruction for custom inserter!");
837}
838
839//===----------------------------------------------------------------------===//
840// AArch64 Lowering private implementation.
841//===----------------------------------------------------------------------===//
842
843//===----------------------------------------------------------------------===//
844// Lowering Code
845//===----------------------------------------------------------------------===//
846
847/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
848/// CC
849static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
850 switch (CC) {
851 default:
852 llvm_unreachable("Unknown condition code!");
853 case ISD::SETNE:
854 return AArch64CC::NE;
855 case ISD::SETEQ:
856 return AArch64CC::EQ;
857 case ISD::SETGT:
858 return AArch64CC::GT;
859 case ISD::SETGE:
860 return AArch64CC::GE;
861 case ISD::SETLT:
862 return AArch64CC::LT;
863 case ISD::SETLE:
864 return AArch64CC::LE;
865 case ISD::SETUGT:
866 return AArch64CC::HI;
867 case ISD::SETUGE:
868 return AArch64CC::HS;
869 case ISD::SETULT:
870 return AArch64CC::LO;
871 case ISD::SETULE:
872 return AArch64CC::LS;
873 }
874}
875
876/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
877static void changeFPCCToAArch64CC(ISD::CondCode CC,
878 AArch64CC::CondCode &CondCode,
879 AArch64CC::CondCode &CondCode2) {
880 CondCode2 = AArch64CC::AL;
881 switch (CC) {
882 default:
883 llvm_unreachable("Unknown FP condition!");
884 case ISD::SETEQ:
885 case ISD::SETOEQ:
886 CondCode = AArch64CC::EQ;
887 break;
888 case ISD::SETGT:
889 case ISD::SETOGT:
890 CondCode = AArch64CC::GT;
891 break;
892 case ISD::SETGE:
893 case ISD::SETOGE:
894 CondCode = AArch64CC::GE;
895 break;
896 case ISD::SETOLT:
897 CondCode = AArch64CC::MI;
898 break;
899 case ISD::SETOLE:
900 CondCode = AArch64CC::LS;
901 break;
902 case ISD::SETONE:
903 CondCode = AArch64CC::MI;
904 CondCode2 = AArch64CC::GT;
905 break;
906 case ISD::SETO:
907 CondCode = AArch64CC::VC;
908 break;
909 case ISD::SETUO:
910 CondCode = AArch64CC::VS;
911 break;
912 case ISD::SETUEQ:
913 CondCode = AArch64CC::EQ;
914 CondCode2 = AArch64CC::VS;
915 break;
916 case ISD::SETUGT:
917 CondCode = AArch64CC::HI;
918 break;
919 case ISD::SETUGE:
920 CondCode = AArch64CC::PL;
921 break;
922 case ISD::SETLT:
923 case ISD::SETULT:
924 CondCode = AArch64CC::LT;
925 break;
926 case ISD::SETLE:
927 case ISD::SETULE:
928 CondCode = AArch64CC::LE;
929 break;
930 case ISD::SETNE:
931 case ISD::SETUNE:
932 CondCode = AArch64CC::NE;
933 break;
934 }
935}
936
937/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
938/// CC usable with the vector instructions. Fewer operations are available
939/// without a real NZCV register, so we have to use less efficient combinations
940/// to get the same effect.
941static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
942 AArch64CC::CondCode &CondCode,
943 AArch64CC::CondCode &CondCode2,
944 bool &Invert) {
945 Invert = false;
946 switch (CC) {
947 default:
948 // Mostly the scalar mappings work fine.
949 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
950 break;
951 case ISD::SETUO:
952 Invert = true; // Fallthrough
953 case ISD::SETO:
954 CondCode = AArch64CC::MI;
955 CondCode2 = AArch64CC::GE;
956 break;
957 case ISD::SETUEQ:
958 case ISD::SETULT:
959 case ISD::SETULE:
960 case ISD::SETUGT:
961 case ISD::SETUGE:
962 // All of the compare-mask comparisons are ordered, but we can switch
963 // between the two by a double inversion. E.g. ULE == !OGT.
964 Invert = true;
965 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
966 break;
967 }
968}
969
970static bool isLegalArithImmed(uint64_t C) {
971 // Matches AArch64DAGToDAGISel::SelectArithImmed().
972 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
973}
974
975static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
976 SDLoc dl, SelectionDAG &DAG) {
977 EVT VT = LHS.getValueType();
978
979 if (VT.isFloatingPoint())
980 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
981
982 // The CMP instruction is just an alias for SUBS, and representing it as
983 // SUBS means that it's possible to get CSE with subtract operations.
984 // A later phase can perform the optimization of setting the destination
985 // register to WZR/XZR if it ends up being unused.
986 unsigned Opcode = AArch64ISD::SUBS;
987
988 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
989 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
990 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
991 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
992 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
993 // can be set differently by this operation. It comes down to whether
994 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
995 // everything is fine. If not then the optimization is wrong. Thus general
996 // comparisons are only valid if op2 != 0.
997
998 // So, finally, the only LLVM-native comparisons that don't mention C and V
999 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1000 // the absence of information about op2.
1001 Opcode = AArch64ISD::ADDS;
1002 RHS = RHS.getOperand(1);
1003 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1004 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1005 !isUnsignedIntSetCC(CC)) {
1006 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1007 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1008 // of the signed comparisons.
1009 Opcode = AArch64ISD::ANDS;
1010 RHS = LHS.getOperand(1);
1011 LHS = LHS.getOperand(0);
1012 }
1013
1014 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1015 .getValue(1);
1016}
1017
1018static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1019 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1020 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1021 EVT VT = RHS.getValueType();
1022 uint64_t C = RHSC->getZExtValue();
1023 if (!isLegalArithImmed(C)) {
1024 // Constant does not fit, try adjusting it by one?
1025 switch (CC) {
1026 default:
1027 break;
1028 case ISD::SETLT:
1029 case ISD::SETGE:
1030 if ((VT == MVT::i32 && C != 0x80000000 &&
1031 isLegalArithImmed((uint32_t)(C - 1))) ||
1032 (VT == MVT::i64 && C != 0x80000000ULL &&
1033 isLegalArithImmed(C - 1ULL))) {
1034 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1035 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1036 RHS = DAG.getConstant(C, VT);
1037 }
1038 break;
1039 case ISD::SETULT:
1040 case ISD::SETUGE:
1041 if ((VT == MVT::i32 && C != 0 &&
1042 isLegalArithImmed((uint32_t)(C - 1))) ||
1043 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1044 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1045 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1046 RHS = DAG.getConstant(C, VT);
1047 }
1048 break;
1049 case ISD::SETLE:
1050 case ISD::SETGT:
1051 if ((VT == MVT::i32 && C != 0x7fffffff &&
1052 isLegalArithImmed((uint32_t)(C + 1))) ||
1053 (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
1054 isLegalArithImmed(C + 1ULL))) {
1055 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1056 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1057 RHS = DAG.getConstant(C, VT);
1058 }
1059 break;
1060 case ISD::SETULE:
1061 case ISD::SETUGT:
1062 if ((VT == MVT::i32 && C != 0xffffffff &&
1063 isLegalArithImmed((uint32_t)(C + 1))) ||
1064 (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
1065 isLegalArithImmed(C + 1ULL))) {
1066 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1067 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1068 RHS = DAG.getConstant(C, VT);
1069 }
1070 break;
1071 }
1072 }
1073 }
1074
1075 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1076 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
1077 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1078 return Cmp;
1079}
1080
1081static std::pair<SDValue, SDValue>
1082getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1083 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1084 "Unsupported value type");
1085 SDValue Value, Overflow;
1086 SDLoc DL(Op);
1087 SDValue LHS = Op.getOperand(0);
1088 SDValue RHS = Op.getOperand(1);
1089 unsigned Opc = 0;
1090 switch (Op.getOpcode()) {
1091 default:
1092 llvm_unreachable("Unknown overflow instruction!");
1093 case ISD::SADDO:
1094 Opc = AArch64ISD::ADDS;
1095 CC = AArch64CC::VS;
1096 break;
1097 case ISD::UADDO:
1098 Opc = AArch64ISD::ADDS;
1099 CC = AArch64CC::HS;
1100 break;
1101 case ISD::SSUBO:
1102 Opc = AArch64ISD::SUBS;
1103 CC = AArch64CC::VS;
1104 break;
1105 case ISD::USUBO:
1106 Opc = AArch64ISD::SUBS;
1107 CC = AArch64CC::LO;
1108 break;
1109 // Multiply needs a little bit extra work.
1110 case ISD::SMULO:
1111 case ISD::UMULO: {
1112 CC = AArch64CC::NE;
1113 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1114 if (Op.getValueType() == MVT::i32) {
1115 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1116 // For a 32 bit multiply with overflow check we want the instruction
1117 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1118 // need to generate the following pattern:
1119 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1120 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1121 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1122 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1123 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1124 DAG.getConstant(0, MVT::i64));
1125 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1126 // operation. We need to clear out the upper 32 bits, because we used a
1127 // widening multiply that wrote all 64 bits. In the end this should be a
1128 // noop.
1129 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1130 if (IsSigned) {
1131 // The signed overflow check requires more than just a simple check for
1132 // any bit set in the upper 32 bits of the result. These bits could be
1133 // just the sign bits of a negative number. To perform the overflow
1134 // check we have to arithmetic shift right the 32nd bit of the result by
1135 // 31 bits. Then we compare the result to the upper 32 bits.
1136 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1137 DAG.getConstant(32, MVT::i64));
1138 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1139 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1140 DAG.getConstant(31, MVT::i64));
1141 // It is important that LowerBits is last, otherwise the arithmetic
1142 // shift will not be folded into the compare (SUBS).
1143 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1144 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1145 .getValue(1);
1146 } else {
1147 // The overflow check for unsigned multiply is easy. We only need to
1148 // check if any of the upper 32 bits are set. This can be done with a
1149 // CMP (shifted register). For that we need to generate the following
1150 // pattern:
1151 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1152 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1153 DAG.getConstant(32, MVT::i64));
1154 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1155 Overflow =
1156 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1157 UpperBits).getValue(1);
1158 }
1159 break;
1160 }
1161 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1162 // For the 64 bit multiply
1163 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1164 if (IsSigned) {
1165 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1166 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1167 DAG.getConstant(63, MVT::i64));
1168 // It is important that LowerBits is last, otherwise the arithmetic
1169 // shift will not be folded into the compare (SUBS).
1170 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1171 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1172 .getValue(1);
1173 } else {
1174 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1175 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1176 Overflow =
1177 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1178 UpperBits).getValue(1);
1179 }
1180 break;
1181 }
1182 } // switch (...)
1183
1184 if (Opc) {
1185 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1186
1187 // Emit the AArch64 operation with overflow check.
1188 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1189 Overflow = Value.getValue(1);
1190 }
1191 return std::make_pair(Value, Overflow);
1192}
1193
1194SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1195 RTLIB::Libcall Call) const {
1196 SmallVector<SDValue, 2> Ops;
1197 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1198 Ops.push_back(Op.getOperand(i));
1199
1200 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1201 SDLoc(Op)).first;
1202}
1203
1204static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1205 SDValue Sel = Op.getOperand(0);
1206 SDValue Other = Op.getOperand(1);
1207
1208 // If neither operand is a SELECT_CC, give up.
1209 if (Sel.getOpcode() != ISD::SELECT_CC)
1210 std::swap(Sel, Other);
1211 if (Sel.getOpcode() != ISD::SELECT_CC)
1212 return Op;
1213
1214 // The folding we want to perform is:
1215 // (xor x, (select_cc a, b, cc, 0, -1) )
1216 // -->
1217 // (csel x, (xor x, -1), cc ...)
1218 //
1219 // The latter will get matched to a CSINV instruction.
1220
1221 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1222 SDValue LHS = Sel.getOperand(0);
1223 SDValue RHS = Sel.getOperand(1);
1224 SDValue TVal = Sel.getOperand(2);
1225 SDValue FVal = Sel.getOperand(3);
1226 SDLoc dl(Sel);
1227
1228 // FIXME: This could be generalized to non-integer comparisons.
1229 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1230 return Op;
1231
1232 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1233 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1234
1235 // The the values aren't constants, this isn't the pattern we're looking for.
1236 if (!CFVal || !CTVal)
1237 return Op;
1238
1239 // We can commute the SELECT_CC by inverting the condition. This
1240 // might be needed to make this fit into a CSINV pattern.
1241 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1242 std::swap(TVal, FVal);
1243 std::swap(CTVal, CFVal);
1244 CC = ISD::getSetCCInverse(CC, true);
1245 }
1246
1247 // If the constants line up, perform the transform!
1248 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1249 SDValue CCVal;
1250 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1251
1252 FVal = Other;
1253 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1254 DAG.getConstant(-1ULL, Other.getValueType()));
1255
1256 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1257 CCVal, Cmp);
1258 }
1259
1260 return Op;
1261}
1262
1263static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1264 EVT VT = Op.getValueType();
1265
1266 // Let legalize expand this if it isn't a legal type yet.
1267 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1268 return SDValue();
1269
1270 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1271
1272 unsigned Opc;
1273 bool ExtraOp = false;
1274 switch (Op.getOpcode()) {
1275 default:
1276 assert(0 && "Invalid code");
1277 case ISD::ADDC:
1278 Opc = AArch64ISD::ADDS;
1279 break;
1280 case ISD::SUBC:
1281 Opc = AArch64ISD::SUBS;
1282 break;
1283 case ISD::ADDE:
1284 Opc = AArch64ISD::ADCS;
1285 ExtraOp = true;
1286 break;
1287 case ISD::SUBE:
1288 Opc = AArch64ISD::SBCS;
1289 ExtraOp = true;
1290 break;
1291 }
1292
1293 if (!ExtraOp)
1294 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1295 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1296 Op.getOperand(2));
1297}
1298
1299static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1300 // Let legalize expand this if it isn't a legal type yet.
1301 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1302 return SDValue();
1303
1304 AArch64CC::CondCode CC;
1305 // The actual operation that sets the overflow or carry flag.
1306 SDValue Value, Overflow;
1307 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1308
1309 // We use 0 and 1 as false and true values.
1310 SDValue TVal = DAG.getConstant(1, MVT::i32);
1311 SDValue FVal = DAG.getConstant(0, MVT::i32);
1312
1313 // We use an inverted condition, because the conditional select is inverted
1314 // too. This will allow it to be selected to a single instruction:
1315 // CSINC Wd, WZR, WZR, invert(cond).
1316 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1317 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1318 CCVal, Overflow);
1319
1320 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1321 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1322}
1323
1324// Prefetch operands are:
1325// 1: Address to prefetch
1326// 2: bool isWrite
1327// 3: int locality (0 = no locality ... 3 = extreme locality)
1328// 4: bool isDataCache
1329static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1330 SDLoc DL(Op);
1331 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1332 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1333 // The data thing is not used.
1334 // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1335
1336 bool IsStream = !Locality;
1337 // When the locality number is set
1338 if (Locality) {
1339 // The front-end should have filtered out the out-of-range values
1340 assert(Locality <= 3 && "Prefetch locality out-of-range");
1341 // The locality degree is the opposite of the cache speed.
1342 // Put the number the other way around.
1343 // The encoding starts at 0 for level 1
1344 Locality = 3 - Locality;
1345 }
1346
1347 // built the mask value encoding the expected behavior.
1348 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
1349 (Locality << 1) | // Cache level bits
1350 (unsigned)IsStream; // Stream bit
1351 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1352 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1353}
1354
1355SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1356 SelectionDAG &DAG) const {
1357 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1358
1359 RTLIB::Libcall LC;
1360 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1361
1362 return LowerF128Call(Op, DAG, LC);
1363}
1364
1365SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1366 SelectionDAG &DAG) const {
1367 if (Op.getOperand(0).getValueType() != MVT::f128) {
1368 // It's legal except when f128 is involved
1369 return Op;
1370 }
1371
1372 RTLIB::Libcall LC;
1373 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1374
1375 // FP_ROUND node has a second operand indicating whether it is known to be
1376 // precise. That doesn't take part in the LibCall so we can't directly use
1377 // LowerF128Call.
1378 SDValue SrcVal = Op.getOperand(0);
1379 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1380 /*isSigned*/ false, SDLoc(Op)).first;
1381}
1382
1383static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1384 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1385 // Any additional optimization in this function should be recorded
1386 // in the cost tables.
1387 EVT InVT = Op.getOperand(0).getValueType();
1388 EVT VT = Op.getValueType();
1389
1390 // FP_TO_XINT conversion from the same type are legal.
1391 if (VT.getSizeInBits() == InVT.getSizeInBits())
1392 return Op;
1393
1394 if (InVT == MVT::v2f64 || InVT == MVT::v4f32) {
1395 SDLoc dl(Op);
1396 SDValue Cv =
1397 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1398 Op.getOperand(0));
1399 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
1400 } else if (InVT == MVT::v2f32) {
1401 SDLoc dl(Op);
1402 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0));
1403 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1404 }
1405
1406 // Type changing conversions are illegal.
1407 return SDValue();
1408}
1409
1410SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1411 SelectionDAG &DAG) const {
1412 if (Op.getOperand(0).getValueType().isVector())
1413 return LowerVectorFP_TO_INT(Op, DAG);
1414
1415 if (Op.getOperand(0).getValueType() != MVT::f128) {
1416 // It's legal except when f128 is involved
1417 return Op;
1418 }
1419
1420 RTLIB::Libcall LC;
1421 if (Op.getOpcode() == ISD::FP_TO_SINT)
1422 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1423 else
1424 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1425
1426 SmallVector<SDValue, 2> Ops;
1427 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1428 Ops.push_back(Op.getOperand(i));
1429
1430 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1431 SDLoc(Op)).first;
1432}
1433
1434static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1435 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1436 // Any additional optimization in this function should be recorded
1437 // in the cost tables.
1438 EVT VT = Op.getValueType();
1439 SDLoc dl(Op);
1440 SDValue In = Op.getOperand(0);
1441 EVT InVT = In.getValueType();
1442
1443 // v2i32 to v2f32 is legal.
1444 if (VT == MVT::v2f32 && InVT == MVT::v2i32)
1445 return Op;
1446
1447 // This function only handles v2f64 outputs.
1448 if (VT == MVT::v2f64) {
1449 // Extend the input argument to a v2i64 that we can feed into the
1450 // floating point conversion. Zero or sign extend based on whether
1451 // we're doing a signed or unsigned float conversion.
1452 unsigned Opc =
1453 Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
1454 assert(Op.getNumOperands() == 1 && "FP conversions take one argument");
1455 SDValue Promoted = DAG.getNode(Opc, dl, MVT::v2i64, Op.getOperand(0));
1456 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Promoted);
1457 }
1458
1459 // Scalarize v2i64 to v2f32 conversions.
1460 std::vector<SDValue> BuildVectorOps;
1461 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
1462 SDValue Sclr = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, In,
1463 DAG.getConstant(i, MVT::i64));
1464 Sclr = DAG.getNode(Op->getOpcode(), dl, MVT::f32, Sclr);
1465 BuildVectorOps.push_back(Sclr);
1466 }
1467
1468 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, BuildVectorOps);
1469}
1470
1471SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1472 SelectionDAG &DAG) const {
1473 if (Op.getValueType().isVector())
1474 return LowerVectorINT_TO_FP(Op, DAG);
1475
1476 // i128 conversions are libcalls.
1477 if (Op.getOperand(0).getValueType() == MVT::i128)
1478 return SDValue();
1479
1480 // Other conversions are legal, unless it's to the completely software-based
1481 // fp128.
1482 if (Op.getValueType() != MVT::f128)
1483 return Op;
1484
1485 RTLIB::Libcall LC;
1486 if (Op.getOpcode() == ISD::SINT_TO_FP)
1487 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1488 else
1489 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1490
1491 return LowerF128Call(Op, DAG, LC);
1492}
1493
1494SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1495 SelectionDAG &DAG) const {
1496 // For iOS, we want to call an alternative entry point: __sincos_stret,
1497 // which returns the values in two S / D registers.
1498 SDLoc dl(Op);
1499 SDValue Arg = Op.getOperand(0);
1500 EVT ArgVT = Arg.getValueType();
1501 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1502
1503 ArgListTy Args;
1504 ArgListEntry Entry;
1505
1506 Entry.Node = Arg;
1507 Entry.Ty = ArgTy;
1508 Entry.isSExt = false;
1509 Entry.isZExt = false;
1510 Args.push_back(Entry);
1511
1512 const char *LibcallName =
1513 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1514 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1515
1516 StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
1517 TargetLowering::CallLoweringInfo CLI(DAG);
1518 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
1519 .setCallee(CallingConv::Fast, RetTy, Callee, &Args, 0);
1520
1521 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1522 return CallResult.first;
1523}
1524
1525SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1526 SelectionDAG &DAG) const {
1527 switch (Op.getOpcode()) {
1528 default:
1529 llvm_unreachable("unimplemented operand");
1530 return SDValue();
1531 case ISD::GlobalAddress:
1532 return LowerGlobalAddress(Op, DAG);
1533 case ISD::GlobalTLSAddress:
1534 return LowerGlobalTLSAddress(Op, DAG);
1535 case ISD::SETCC:
1536 return LowerSETCC(Op, DAG);
1537 case ISD::BR_CC:
1538 return LowerBR_CC(Op, DAG);
1539 case ISD::SELECT:
1540 return LowerSELECT(Op, DAG);
1541 case ISD::SELECT_CC:
1542 return LowerSELECT_CC(Op, DAG);
1543 case ISD::JumpTable:
1544 return LowerJumpTable(Op, DAG);
1545 case ISD::ConstantPool:
1546 return LowerConstantPool(Op, DAG);
1547 case ISD::BlockAddress:
1548 return LowerBlockAddress(Op, DAG);
1549 case ISD::VASTART:
1550 return LowerVASTART(Op, DAG);
1551 case ISD::VACOPY:
1552 return LowerVACOPY(Op, DAG);
1553 case ISD::VAARG:
1554 return LowerVAARG(Op, DAG);
1555 case ISD::ADDC:
1556 case ISD::ADDE:
1557 case ISD::SUBC:
1558 case ISD::SUBE:
1559 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1560 case ISD::SADDO:
1561 case ISD::UADDO:
1562 case ISD::SSUBO:
1563 case ISD::USUBO:
1564 case ISD::SMULO:
1565 case ISD::UMULO:
1566 return LowerXALUO(Op, DAG);
1567 case ISD::FADD:
1568 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1569 case ISD::FSUB:
1570 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1571 case ISD::FMUL:
1572 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1573 case ISD::FDIV:
1574 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1575 case ISD::FP_ROUND:
1576 return LowerFP_ROUND(Op, DAG);
1577 case ISD::FP_EXTEND:
1578 return LowerFP_EXTEND(Op, DAG);
1579 case ISD::FRAMEADDR:
1580 return LowerFRAMEADDR(Op, DAG);
1581 case ISD::RETURNADDR:
1582 return LowerRETURNADDR(Op, DAG);
1583 case ISD::INSERT_VECTOR_ELT:
1584 return LowerINSERT_VECTOR_ELT(Op, DAG);
1585 case ISD::EXTRACT_VECTOR_ELT:
1586 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1587 case ISD::BUILD_VECTOR:
1588 return LowerBUILD_VECTOR(Op, DAG);
1589 case ISD::VECTOR_SHUFFLE:
1590 return LowerVECTOR_SHUFFLE(Op, DAG);
1591 case ISD::EXTRACT_SUBVECTOR:
1592 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1593 case ISD::SRA:
1594 case ISD::SRL:
1595 case ISD::SHL:
1596 return LowerVectorSRA_SRL_SHL(Op, DAG);
1597 case ISD::SHL_PARTS:
1598 return LowerShiftLeftParts(Op, DAG);
1599 case ISD::SRL_PARTS:
1600 case ISD::SRA_PARTS:
1601 return LowerShiftRightParts(Op, DAG);
1602 case ISD::CTPOP:
1603 return LowerCTPOP(Op, DAG);
1604 case ISD::FCOPYSIGN:
1605 return LowerFCOPYSIGN(Op, DAG);
1606 case ISD::AND:
1607 return LowerVectorAND(Op, DAG);
1608 case ISD::OR:
1609 return LowerVectorOR(Op, DAG);
1610 case ISD::XOR:
1611 return LowerXOR(Op, DAG);
1612 case ISD::PREFETCH:
1613 return LowerPREFETCH(Op, DAG);
1614 case ISD::SINT_TO_FP:
1615 case ISD::UINT_TO_FP:
1616 return LowerINT_TO_FP(Op, DAG);
1617 case ISD::FP_TO_SINT:
1618 case ISD::FP_TO_UINT:
1619 return LowerFP_TO_INT(Op, DAG);
1620 case ISD::FSINCOS:
1621 return LowerFSINCOS(Op, DAG);
1622 }
1623}
1624
1625/// getFunctionAlignment - Return the Log2 alignment of this function.
1626unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1627 return 2;
1628}
1629
1630//===----------------------------------------------------------------------===//
1631// Calling Convention Implementation
1632//===----------------------------------------------------------------------===//
1633
1634#include "AArch64GenCallingConv.inc"
1635
1636/// Selects the correct CCAssignFn for a the given CallingConvention
1637/// value.
1638CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1639 bool IsVarArg) const {
1640 switch (CC) {
1641 default:
1642 llvm_unreachable("Unsupported calling convention.");
1643 case CallingConv::WebKit_JS:
1644 return CC_AArch64_WebKit_JS;
1645 case CallingConv::C:
1646 case CallingConv::Fast:
1647 if (!Subtarget->isTargetDarwin())
1648 return CC_AArch64_AAPCS;
1649 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1650 }
1651}
1652
1653SDValue AArch64TargetLowering::LowerFormalArguments(
1654 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1655 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1656 SmallVectorImpl<SDValue> &InVals) const {
1657 MachineFunction &MF = DAG.getMachineFunction();
1658 MachineFrameInfo *MFI = MF.getFrameInfo();
1659
1660 // Assign locations to all of the incoming arguments.
1661 SmallVector<CCValAssign, 16> ArgLocs;
1662 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1663 getTargetMachine(), ArgLocs, *DAG.getContext());
1664
1665 // At this point, Ins[].VT may already be promoted to i32. To correctly
1666 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
1667 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
1668 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
1669 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
1670 // LocVT.
1671 unsigned NumArgs = Ins.size();
1672 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
1673 unsigned CurArgIdx = 0;
1674 for (unsigned i = 0; i != NumArgs; ++i) {
1675 MVT ValVT = Ins[i].VT;
1676 std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
1677 CurArgIdx = Ins[i].OrigArgIndex;
1678
1679 // Get type of the original argument.
1680 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
1681 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
1682 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00001683 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00001684 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00001685 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00001686 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00001687
1688 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
1689 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00001690 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00001691 assert(!Res && "Call operand has unhandled type");
1692 (void)Res;
1693 }
1694 assert(ArgLocs.size() == Ins.size());
1695 SmallVector<SDValue, 16> ArgValues;
1696 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1697 CCValAssign &VA = ArgLocs[i];
1698
1699 if (Ins[i].Flags.isByVal()) {
1700 // Byval is used for HFAs in the PCS, but the system should work in a
1701 // non-compliant manner for larger structs.
1702 EVT PtrTy = getPointerTy();
1703 int Size = Ins[i].Flags.getByValSize();
1704 unsigned NumRegs = (Size + 7) / 8;
1705
1706 // FIXME: This works on big-endian for composite byvals, which are the common
1707 // case. It should also work for fundamental types too.
1708 unsigned FrameIdx =
1709 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
1710 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1711 InVals.push_back(FrameIdxN);
1712
1713 continue;
1714 } if (VA.isRegLoc()) {
1715 // Arguments stored in registers.
1716 EVT RegVT = VA.getLocVT();
1717
1718 SDValue ArgValue;
1719 const TargetRegisterClass *RC;
1720
1721 if (RegVT == MVT::i32)
1722 RC = &AArch64::GPR32RegClass;
1723 else if (RegVT == MVT::i64)
1724 RC = &AArch64::GPR64RegClass;
1725 else if (RegVT == MVT::f32)
1726 RC = &AArch64::FPR32RegClass;
1727 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
1728 RC = &AArch64::FPR64RegClass;
1729 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
1730 RC = &AArch64::FPR128RegClass;
1731 else
1732 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1733
1734 // Transform the arguments in physical registers into virtual ones.
1735 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1736 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
1737
1738 // If this is an 8, 16 or 32-bit value, it is really passed promoted
1739 // to 64 bits. Insert an assert[sz]ext to capture this, then
1740 // truncate to the right size.
1741 switch (VA.getLocInfo()) {
1742 default:
1743 llvm_unreachable("Unknown loc info!");
1744 case CCValAssign::Full:
1745 break;
1746 case CCValAssign::BCvt:
1747 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
1748 break;
Tim Northover47e003c2014-05-26 17:21:53 +00001749 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00001750 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00001751 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00001752 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
1753 // nodes after our lowering.
1754 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00001755 break;
1756 }
1757
1758 InVals.push_back(ArgValue);
1759
1760 } else { // VA.isRegLoc()
1761 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
1762 unsigned ArgOffset = VA.getLocMemOffset();
1763 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1764
1765 uint32_t BEAlign = 0;
1766 if (ArgSize < 8 && !Subtarget->isLittleEndian())
1767 BEAlign = 8 - ArgSize;
1768
1769 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
1770
1771 // Create load nodes to retrieve arguments from the stack.
1772 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1773 SDValue ArgValue;
1774
Tim Northover47e003c2014-05-26 17:21:53 +00001775 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1776 switch (VA.getLocInfo()) {
1777 default:
1778 break;
1779 case CCValAssign::SExt:
1780 ExtType = ISD::SEXTLOAD;
1781 break;
1782 case CCValAssign::ZExt:
1783 ExtType = ISD::ZEXTLOAD;
1784 break;
1785 case CCValAssign::AExt:
1786 ExtType = ISD::EXTLOAD;
1787 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00001788 }
1789
Tim Northover47e003c2014-05-26 17:21:53 +00001790 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getValVT(), Chain, FIN,
1791 MachinePointerInfo::getFixedStack(FI),
1792 VA.getLocVT(),
1793 false, false, false, 0);
1794
Tim Northover3b0846e2014-05-24 12:50:23 +00001795 InVals.push_back(ArgValue);
1796 }
1797 }
1798
1799 // varargs
1800 if (isVarArg) {
1801 if (!Subtarget->isTargetDarwin()) {
1802 // The AAPCS variadic function ABI is identical to the non-variadic
1803 // one. As a result there may be more arguments in registers and we should
1804 // save them for future reference.
1805 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
1806 }
1807
1808 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1809 // This will point to the next argument passed via stack.
1810 unsigned StackOffset = CCInfo.getNextStackOffset();
1811 // We currently pass all varargs at 8-byte alignment.
1812 StackOffset = ((StackOffset + 7) & ~7);
1813 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
1814 }
1815
1816 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1817 unsigned StackArgSize = CCInfo.getNextStackOffset();
1818 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1819 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1820 // This is a non-standard ABI so by fiat I say we're allowed to make full
1821 // use of the stack area to be popped, which must be aligned to 16 bytes in
1822 // any case:
1823 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1824
1825 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1826 // a multiple of 16.
1827 FuncInfo->setArgumentStackToRestore(StackArgSize);
1828
1829 // This realignment carries over to the available bytes below. Our own
1830 // callers will guarantee the space is free by giving an aligned value to
1831 // CALLSEQ_START.
1832 }
1833 // Even if we're not expected to free up the space, it's useful to know how
1834 // much is there while considering tail calls (because we can reuse it).
1835 FuncInfo->setBytesInStackArgArea(StackArgSize);
1836
1837 return Chain;
1838}
1839
1840void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
1841 SelectionDAG &DAG, SDLoc DL,
1842 SDValue &Chain) const {
1843 MachineFunction &MF = DAG.getMachineFunction();
1844 MachineFrameInfo *MFI = MF.getFrameInfo();
1845 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1846
1847 SmallVector<SDValue, 8> MemOps;
1848
1849 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
1850 AArch64::X3, AArch64::X4, AArch64::X5,
1851 AArch64::X6, AArch64::X7 };
1852 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
1853 unsigned FirstVariadicGPR =
1854 CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
1855
1856 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
1857 int GPRIdx = 0;
1858 if (GPRSaveSize != 0) {
1859 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
1860
1861 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
1862
1863 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
1864 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
1865 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
1866 SDValue Store =
1867 DAG.getStore(Val.getValue(1), DL, Val, FIN,
1868 MachinePointerInfo::getStack(i * 8), false, false, 0);
1869 MemOps.push_back(Store);
1870 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1871 DAG.getConstant(8, getPointerTy()));
1872 }
1873 }
1874 FuncInfo->setVarArgsGPRIndex(GPRIdx);
1875 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
1876
1877 if (Subtarget->hasFPARMv8()) {
1878 static const MCPhysReg FPRArgRegs[] = {
1879 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
1880 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
1881 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
1882 unsigned FirstVariadicFPR =
1883 CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
1884
1885 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
1886 int FPRIdx = 0;
1887 if (FPRSaveSize != 0) {
1888 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
1889
1890 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
1891
1892 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
1893 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
1894 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
1895
1896 SDValue Store =
1897 DAG.getStore(Val.getValue(1), DL, Val, FIN,
1898 MachinePointerInfo::getStack(i * 16), false, false, 0);
1899 MemOps.push_back(Store);
1900 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1901 DAG.getConstant(16, getPointerTy()));
1902 }
1903 }
1904 FuncInfo->setVarArgsFPRIndex(FPRIdx);
1905 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
1906 }
1907
1908 if (!MemOps.empty()) {
1909 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1910 }
1911}
1912
1913/// LowerCallResult - Lower the result values of a call into the
1914/// appropriate copies out of appropriate physical registers.
1915SDValue AArch64TargetLowering::LowerCallResult(
1916 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1917 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1918 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1919 SDValue ThisVal) const {
1920 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
1921 ? RetCC_AArch64_WebKit_JS
1922 : RetCC_AArch64_AAPCS;
1923 // Assign locations to each value returned by this call.
1924 SmallVector<CCValAssign, 16> RVLocs;
1925 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1926 getTargetMachine(), RVLocs, *DAG.getContext());
1927 CCInfo.AnalyzeCallResult(Ins, RetCC);
1928
1929 // Copy all of the result registers out of their specified physreg.
1930 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1931 CCValAssign VA = RVLocs[i];
1932
1933 // Pass 'this' value directly from the argument to return value, to avoid
1934 // reg unit interference
1935 if (i == 0 && isThisReturn) {
1936 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
1937 "unexpected return calling convention register assignment");
1938 InVals.push_back(ThisVal);
1939 continue;
1940 }
1941
1942 SDValue Val =
1943 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
1944 Chain = Val.getValue(1);
1945 InFlag = Val.getValue(2);
1946
1947 switch (VA.getLocInfo()) {
1948 default:
1949 llvm_unreachable("Unknown loc info!");
1950 case CCValAssign::Full:
1951 break;
1952 case CCValAssign::BCvt:
1953 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1954 break;
1955 }
1956
1957 InVals.push_back(Val);
1958 }
1959
1960 return Chain;
1961}
1962
1963bool AArch64TargetLowering::isEligibleForTailCallOptimization(
1964 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
1965 bool isCalleeStructRet, bool isCallerStructRet,
1966 const SmallVectorImpl<ISD::OutputArg> &Outs,
1967 const SmallVectorImpl<SDValue> &OutVals,
1968 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
1969 // For CallingConv::C this function knows whether the ABI needs
1970 // changing. That's not true for other conventions so they will have to opt in
1971 // manually.
1972 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1973 return false;
1974
1975 const MachineFunction &MF = DAG.getMachineFunction();
1976 const Function *CallerF = MF.getFunction();
1977 CallingConv::ID CallerCC = CallerF->getCallingConv();
1978 bool CCMatch = CallerCC == CalleeCC;
1979
1980 // Byval parameters hand the function a pointer directly into the stack area
1981 // we want to reuse during a tail call. Working around this *is* possible (see
1982 // X86) but less efficient and uglier in LowerCall.
1983 for (Function::const_arg_iterator i = CallerF->arg_begin(),
1984 e = CallerF->arg_end();
1985 i != e; ++i)
1986 if (i->hasByValAttr())
1987 return false;
1988
1989 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1990 if (IsTailCallConvention(CalleeCC) && CCMatch)
1991 return true;
1992 return false;
1993 }
1994
1995 // Now we search for cases where we can use a tail call without changing the
1996 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1997 // concept.
1998
1999 // I want anyone implementing a new calling convention to think long and hard
2000 // about this assert.
2001 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2002 "Unexpected variadic calling convention");
2003
2004 if (isVarArg && !Outs.empty()) {
2005 // At least two cases here: if caller is fastcc then we can't have any
2006 // memory arguments (we'd be expected to clean up the stack afterwards). If
2007 // caller is C then we could potentially use its argument area.
2008
2009 // FIXME: for now we take the most conservative of these in both cases:
2010 // disallow all variadic memory operands.
2011 SmallVector<CCValAssign, 16> ArgLocs;
2012 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2013 getTargetMachine(), ArgLocs, *DAG.getContext());
2014
2015 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2016 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2017 if (!ArgLocs[i].isRegLoc())
2018 return false;
2019 }
2020
2021 // If the calling conventions do not match, then we'd better make sure the
2022 // results are returned in the same way as what the caller expects.
2023 if (!CCMatch) {
2024 SmallVector<CCValAssign, 16> RVLocs1;
2025 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2026 getTargetMachine(), RVLocs1, *DAG.getContext());
2027 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2028
2029 SmallVector<CCValAssign, 16> RVLocs2;
2030 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2031 getTargetMachine(), RVLocs2, *DAG.getContext());
2032 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2033
2034 if (RVLocs1.size() != RVLocs2.size())
2035 return false;
2036 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2037 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2038 return false;
2039 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2040 return false;
2041 if (RVLocs1[i].isRegLoc()) {
2042 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2043 return false;
2044 } else {
2045 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2046 return false;
2047 }
2048 }
2049 }
2050
2051 // Nothing more to check if the callee is taking no arguments
2052 if (Outs.empty())
2053 return true;
2054
2055 SmallVector<CCValAssign, 16> ArgLocs;
2056 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2057 getTargetMachine(), ArgLocs, *DAG.getContext());
2058
2059 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2060
2061 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2062
2063 // If the stack arguments for this call would fit into our own save area then
2064 // the call can be made tail.
2065 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2066}
2067
2068SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2069 SelectionDAG &DAG,
2070 MachineFrameInfo *MFI,
2071 int ClobberedFI) const {
2072 SmallVector<SDValue, 8> ArgChains;
2073 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2074 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2075
2076 // Include the original chain at the beginning of the list. When this is
2077 // used by target LowerCall hooks, this helps legalize find the
2078 // CALLSEQ_BEGIN node.
2079 ArgChains.push_back(Chain);
2080
2081 // Add a chain value for each stack argument corresponding
2082 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2083 UE = DAG.getEntryNode().getNode()->use_end();
2084 U != UE; ++U)
2085 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2086 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2087 if (FI->getIndex() < 0) {
2088 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2089 int64_t InLastByte = InFirstByte;
2090 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2091
2092 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2093 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2094 ArgChains.push_back(SDValue(L, 1));
2095 }
2096
2097 // Build a tokenfactor for all the chains.
2098 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2099}
2100
2101bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2102 bool TailCallOpt) const {
2103 return CallCC == CallingConv::Fast && TailCallOpt;
2104}
2105
2106bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2107 return CallCC == CallingConv::Fast;
2108}
2109
2110/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2111/// and add input and output parameter nodes.
2112SDValue
2113AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2114 SmallVectorImpl<SDValue> &InVals) const {
2115 SelectionDAG &DAG = CLI.DAG;
2116 SDLoc &DL = CLI.DL;
2117 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2118 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2119 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2120 SDValue Chain = CLI.Chain;
2121 SDValue Callee = CLI.Callee;
2122 bool &IsTailCall = CLI.IsTailCall;
2123 CallingConv::ID CallConv = CLI.CallConv;
2124 bool IsVarArg = CLI.IsVarArg;
2125
2126 MachineFunction &MF = DAG.getMachineFunction();
2127 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2128 bool IsThisReturn = false;
2129
2130 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2131 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2132 bool IsSibCall = false;
2133
2134 if (IsTailCall) {
2135 // Check if it's really possible to do a tail call.
2136 IsTailCall = isEligibleForTailCallOptimization(
2137 Callee, CallConv, IsVarArg, IsStructRet,
2138 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2139 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2140 report_fatal_error("failed to perform tail call elimination on a call "
2141 "site marked musttail");
2142
2143 // A sibling call is one where we're under the usual C ABI and not planning
2144 // to change that but can still do a tail call:
2145 if (!TailCallOpt && IsTailCall)
2146 IsSibCall = true;
2147
2148 if (IsTailCall)
2149 ++NumTailCalls;
2150 }
2151
2152 // Analyze operands of the call, assigning locations to each operand.
2153 SmallVector<CCValAssign, 16> ArgLocs;
2154 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2155 getTargetMachine(), ArgLocs, *DAG.getContext());
2156
2157 if (IsVarArg) {
2158 // Handle fixed and variable vector arguments differently.
2159 // Variable vector arguments always go into memory.
2160 unsigned NumArgs = Outs.size();
2161
2162 for (unsigned i = 0; i != NumArgs; ++i) {
2163 MVT ArgVT = Outs[i].VT;
2164 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2165 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2166 /*IsVarArg=*/ !Outs[i].IsFixed);
2167 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2168 assert(!Res && "Call operand has unhandled type");
2169 (void)Res;
2170 }
2171 } else {
2172 // At this point, Outs[].VT may already be promoted to i32. To correctly
2173 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2174 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2175 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2176 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2177 // LocVT.
2178 unsigned NumArgs = Outs.size();
2179 for (unsigned i = 0; i != NumArgs; ++i) {
2180 MVT ValVT = Outs[i].VT;
2181 // Get type of the original argument.
2182 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2183 /*AllowUnknown*/ true);
2184 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2185 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2186 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002187 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002188 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002189 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002190 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002191
2192 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002193 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002194 assert(!Res && "Call operand has unhandled type");
2195 (void)Res;
2196 }
2197 }
2198
2199 // Get a count of how many bytes are to be pushed on the stack.
2200 unsigned NumBytes = CCInfo.getNextStackOffset();
2201
2202 if (IsSibCall) {
2203 // Since we're not changing the ABI to make this a tail call, the memory
2204 // operands are already available in the caller's incoming argument space.
2205 NumBytes = 0;
2206 }
2207
2208 // FPDiff is the byte offset of the call's argument area from the callee's.
2209 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2210 // by this amount for a tail call. In a sibling call it must be 0 because the
2211 // caller will deallocate the entire stack and the callee still expects its
2212 // arguments to begin at SP+0. Completely unused for non-tail calls.
2213 int FPDiff = 0;
2214
2215 if (IsTailCall && !IsSibCall) {
2216 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2217
2218 // Since callee will pop argument stack as a tail call, we must keep the
2219 // popped size 16-byte aligned.
2220 NumBytes = RoundUpToAlignment(NumBytes, 16);
2221
2222 // FPDiff will be negative if this tail call requires more space than we
2223 // would automatically have in our incoming argument space. Positive if we
2224 // can actually shrink the stack.
2225 FPDiff = NumReusableBytes - NumBytes;
2226
2227 // The stack pointer must be 16-byte aligned at all times it's used for a
2228 // memory operation, which in practice means at *all* times and in
2229 // particular across call boundaries. Therefore our own arguments started at
2230 // a 16-byte aligned SP and the delta applied for the tail call should
2231 // satisfy the same constraint.
2232 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2233 }
2234
2235 // Adjust the stack pointer for the new arguments...
2236 // These operations are automatically eliminated by the prolog/epilog pass
2237 if (!IsSibCall)
2238 Chain =
2239 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2240
2241 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2242
2243 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2244 SmallVector<SDValue, 8> MemOpChains;
2245
2246 // Walk the register/memloc assignments, inserting copies/loads.
2247 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2248 ++i, ++realArgIdx) {
2249 CCValAssign &VA = ArgLocs[i];
2250 SDValue Arg = OutVals[realArgIdx];
2251 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2252
2253 // Promote the value if needed.
2254 switch (VA.getLocInfo()) {
2255 default:
2256 llvm_unreachable("Unknown loc info!");
2257 case CCValAssign::Full:
2258 break;
2259 case CCValAssign::SExt:
2260 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2261 break;
2262 case CCValAssign::ZExt:
2263 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2264 break;
2265 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002266 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2267 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2268 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2269 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2270 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002271 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2272 break;
2273 case CCValAssign::BCvt:
2274 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2275 break;
2276 case CCValAssign::FPExt:
2277 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2278 break;
2279 }
2280
2281 if (VA.isRegLoc()) {
2282 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2283 assert(VA.getLocVT() == MVT::i64 &&
2284 "unexpected calling convention register assignment");
2285 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2286 "unexpected use of 'returned'");
2287 IsThisReturn = true;
2288 }
2289 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2290 } else {
2291 assert(VA.isMemLoc());
2292
2293 SDValue DstAddr;
2294 MachinePointerInfo DstInfo;
2295
2296 // FIXME: This works on big-endian for composite byvals, which are the
2297 // common case. It should also work for fundamental types too.
2298 uint32_t BEAlign = 0;
2299 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
2300 : VA.getLocVT().getSizeInBits();
2301 OpSize = (OpSize + 7) / 8;
2302 if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
2303 if (OpSize < 8)
2304 BEAlign = 8 - OpSize;
2305 }
2306 unsigned LocMemOffset = VA.getLocMemOffset();
2307 int32_t Offset = LocMemOffset + BEAlign;
2308 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2309 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2310
2311 if (IsTailCall) {
2312 Offset = Offset + FPDiff;
2313 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2314
2315 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2316 DstInfo = MachinePointerInfo::getFixedStack(FI);
2317
2318 // Make sure any stack arguments overlapping with where we're storing
2319 // are loaded before this eventual operation. Otherwise they'll be
2320 // clobbered.
2321 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2322 } else {
2323 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2324
2325 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2326 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2327 }
2328
2329 if (Outs[i].Flags.isByVal()) {
2330 SDValue SizeNode =
2331 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2332 SDValue Cpy = DAG.getMemcpy(
2333 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2334 /*isVolatile = */ false,
2335 /*alwaysInline = */ false, DstInfo, MachinePointerInfo());
2336
2337 MemOpChains.push_back(Cpy);
2338 } else {
2339 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2340 // promoted to a legal register type i32, we should truncate Arg back to
2341 // i1/i8/i16.
2342 if (Arg.getValueType().isSimple() &&
2343 Arg.getValueType().getSimpleVT() == MVT::i32 &&
2344 (VA.getLocVT() == MVT::i1 || VA.getLocVT() == MVT::i8 ||
2345 VA.getLocVT() == MVT::i16))
2346 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getLocVT(), Arg);
2347
2348 SDValue Store =
2349 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2350 MemOpChains.push_back(Store);
2351 }
2352 }
2353 }
2354
2355 if (!MemOpChains.empty())
2356 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2357
2358 // Build a sequence of copy-to-reg nodes chained together with token chain
2359 // and flag operands which copy the outgoing args into the appropriate regs.
2360 SDValue InFlag;
2361 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2362 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2363 RegsToPass[i].second, InFlag);
2364 InFlag = Chain.getValue(1);
2365 }
2366
2367 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2368 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2369 // node so that legalize doesn't hack it.
2370 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2371 Subtarget->isTargetMachO()) {
2372 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2373 const GlobalValue *GV = G->getGlobal();
2374 bool InternalLinkage = GV->hasInternalLinkage();
2375 if (InternalLinkage)
2376 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2377 else {
2378 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2379 AArch64II::MO_GOT);
2380 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2381 }
2382 } else if (ExternalSymbolSDNode *S =
2383 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2384 const char *Sym = S->getSymbol();
2385 Callee =
2386 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2387 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2388 }
2389 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2390 const GlobalValue *GV = G->getGlobal();
2391 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2392 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2393 const char *Sym = S->getSymbol();
2394 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2395 }
2396
2397 // We don't usually want to end the call-sequence here because we would tidy
2398 // the frame up *after* the call, however in the ABI-changing tail-call case
2399 // we've carefully laid out the parameters so that when sp is reset they'll be
2400 // in the correct location.
2401 if (IsTailCall && !IsSibCall) {
2402 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2403 DAG.getIntPtrConstant(0, true), InFlag, DL);
2404 InFlag = Chain.getValue(1);
2405 }
2406
2407 std::vector<SDValue> Ops;
2408 Ops.push_back(Chain);
2409 Ops.push_back(Callee);
2410
2411 if (IsTailCall) {
2412 // Each tail call may have to adjust the stack by a different amount, so
2413 // this information must travel along with the operation for eventual
2414 // consumption by emitEpilogue.
2415 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2416 }
2417
2418 // Add argument registers to the end of the list so that they are known live
2419 // into the call.
2420 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2421 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2422 RegsToPass[i].second.getValueType()));
2423
2424 // Add a register mask operand representing the call-preserved registers.
2425 const uint32_t *Mask;
2426 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2427 const AArch64RegisterInfo *ARI =
2428 static_cast<const AArch64RegisterInfo *>(TRI);
2429 if (IsThisReturn) {
2430 // For 'this' returns, use the X0-preserving mask if applicable
2431 Mask = ARI->getThisReturnPreservedMask(CallConv);
2432 if (!Mask) {
2433 IsThisReturn = false;
2434 Mask = ARI->getCallPreservedMask(CallConv);
2435 }
2436 } else
2437 Mask = ARI->getCallPreservedMask(CallConv);
2438
2439 assert(Mask && "Missing call preserved mask for calling convention");
2440 Ops.push_back(DAG.getRegisterMask(Mask));
2441
2442 if (InFlag.getNode())
2443 Ops.push_back(InFlag);
2444
2445 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2446
2447 // If we're doing a tall call, use a TC_RETURN here rather than an
2448 // actual call instruction.
2449 if (IsTailCall)
2450 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2451
2452 // Returns a chain and a flag for retval copy to use.
2453 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2454 InFlag = Chain.getValue(1);
2455
2456 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2457 ? RoundUpToAlignment(NumBytes, 16)
2458 : 0;
2459
2460 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2461 DAG.getIntPtrConstant(CalleePopBytes, true),
2462 InFlag, DL);
2463 if (!Ins.empty())
2464 InFlag = Chain.getValue(1);
2465
2466 // Handle result values, copying them out of physregs into vregs that we
2467 // return.
2468 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2469 InVals, IsThisReturn,
2470 IsThisReturn ? OutVals[0] : SDValue());
2471}
2472
2473bool AArch64TargetLowering::CanLowerReturn(
2474 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2475 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2476 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2477 ? RetCC_AArch64_WebKit_JS
2478 : RetCC_AArch64_AAPCS;
2479 SmallVector<CCValAssign, 16> RVLocs;
2480 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
2481 return CCInfo.CheckReturn(Outs, RetCC);
2482}
2483
2484SDValue
2485AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2486 bool isVarArg,
2487 const SmallVectorImpl<ISD::OutputArg> &Outs,
2488 const SmallVectorImpl<SDValue> &OutVals,
2489 SDLoc DL, SelectionDAG &DAG) const {
2490 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2491 ? RetCC_AArch64_WebKit_JS
2492 : RetCC_AArch64_AAPCS;
2493 SmallVector<CCValAssign, 16> RVLocs;
2494 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2495 getTargetMachine(), RVLocs, *DAG.getContext());
2496 CCInfo.AnalyzeReturn(Outs, RetCC);
2497
2498 // Copy the result values into the output registers.
2499 SDValue Flag;
2500 SmallVector<SDValue, 4> RetOps(1, Chain);
2501 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2502 ++i, ++realRVLocIdx) {
2503 CCValAssign &VA = RVLocs[i];
2504 assert(VA.isRegLoc() && "Can only return in registers!");
2505 SDValue Arg = OutVals[realRVLocIdx];
2506
2507 switch (VA.getLocInfo()) {
2508 default:
2509 llvm_unreachable("Unknown loc info!");
2510 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002511 if (Outs[i].ArgVT == MVT::i1) {
2512 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2513 // value. This is strictly redundant on Darwin (which uses "zeroext
2514 // i1"), but will be optimised out before ISel.
2515 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2516 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2517 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002518 break;
2519 case CCValAssign::BCvt:
2520 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2521 break;
2522 }
2523
2524 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2525 Flag = Chain.getValue(1);
2526 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2527 }
2528
2529 RetOps[0] = Chain; // Update chain.
2530
2531 // Add the flag if we have it.
2532 if (Flag.getNode())
2533 RetOps.push_back(Flag);
2534
2535 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2536}
2537
2538//===----------------------------------------------------------------------===//
2539// Other Lowering Code
2540//===----------------------------------------------------------------------===//
2541
2542SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2543 SelectionDAG &DAG) const {
2544 EVT PtrVT = getPointerTy();
2545 SDLoc DL(Op);
2546 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2547 unsigned char OpFlags =
2548 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2549
2550 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2551 "unexpected offset in global node");
2552
2553 // This also catched the large code model case for Darwin.
2554 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2555 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2556 // FIXME: Once remat is capable of dealing with instructions with register
2557 // operands, expand this into two nodes instead of using a wrapper node.
2558 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2559 }
2560
2561 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2562 const unsigned char MO_NC = AArch64II::MO_NC;
2563 return DAG.getNode(
2564 AArch64ISD::WrapperLarge, DL, PtrVT,
2565 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2566 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2567 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2568 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2569 } else {
2570 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2571 // the only correct model on Darwin.
2572 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2573 OpFlags | AArch64II::MO_PAGE);
2574 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2575 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2576
2577 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2578 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2579 }
2580}
2581
2582/// \brief Convert a TLS address reference into the correct sequence of loads
2583/// and calls to compute the variable's address (for Darwin, currently) and
2584/// return an SDValue containing the final node.
2585
2586/// Darwin only has one TLS scheme which must be capable of dealing with the
2587/// fully general situation, in the worst case. This means:
2588/// + "extern __thread" declaration.
2589/// + Defined in a possibly unknown dynamic library.
2590///
2591/// The general system is that each __thread variable has a [3 x i64] descriptor
2592/// which contains information used by the runtime to calculate the address. The
2593/// only part of this the compiler needs to know about is the first xword, which
2594/// contains a function pointer that must be called with the address of the
2595/// entire descriptor in "x0".
2596///
2597/// Since this descriptor may be in a different unit, in general even the
2598/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2599/// is:
2600/// adrp x0, _var@TLVPPAGE
2601/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2602/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2603/// ; the function pointer
2604/// blr x1 ; Uses descriptor address in x0
2605/// ; Address of _var is now in x0.
2606///
2607/// If the address of _var's descriptor *is* known to the linker, then it can
2608/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2609/// a slight efficiency gain.
2610SDValue
2611AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2612 SelectionDAG &DAG) const {
2613 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2614
2615 SDLoc DL(Op);
2616 MVT PtrVT = getPointerTy();
2617 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2618
2619 SDValue TLVPAddr =
2620 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2621 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
2622
2623 // The first entry in the descriptor is a function pointer that we must call
2624 // to obtain the address of the variable.
2625 SDValue Chain = DAG.getEntryNode();
2626 SDValue FuncTLVGet =
2627 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
2628 false, true, true, 8);
2629 Chain = FuncTLVGet.getValue(1);
2630
2631 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2632 MFI->setAdjustsStack(true);
2633
2634 // TLS calls preserve all registers except those that absolutely must be
2635 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2636 // silly).
2637 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2638 const AArch64RegisterInfo *ARI =
2639 static_cast<const AArch64RegisterInfo *>(TRI);
2640 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2641
2642 // Finally, we can make the call. This is just a degenerate version of a
2643 // normal AArch64 call node: x0 takes the address of the descriptor, and
2644 // returns the address of the variable in this thread.
2645 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
2646 Chain =
2647 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2648 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
2649 DAG.getRegisterMask(Mask), Chain.getValue(1));
2650 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
2651}
2652
2653/// When accessing thread-local variables under either the general-dynamic or
2654/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
2655/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
2656/// is a function pointer to carry out the resolution. This function takes the
2657/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
2658/// other registers (except LR, NZCV) are preserved.
2659///
2660/// Thus, the ideal call sequence on AArch64 is:
2661///
2662/// adrp x0, :tlsdesc:thread_var
2663/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
2664/// add x0, x0, :tlsdesc_lo12:thread_var
2665/// .tlsdesccall thread_var
2666/// blr x8
2667/// (TPIDR_EL0 offset now in x0).
2668///
2669/// The ".tlsdesccall" directive instructs the assembler to insert a particular
2670/// relocation to help the linker relax this sequence if it turns out to be too
2671/// conservative.
2672///
2673/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
2674/// is harmless.
2675SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
2676 SDValue DescAddr, SDLoc DL,
2677 SelectionDAG &DAG) const {
2678 EVT PtrVT = getPointerTy();
2679
2680 // The function we need to call is simply the first entry in the GOT for this
2681 // descriptor, load it in preparation.
2682 SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
2683
2684 // TLS calls preserve all registers except those that absolutely must be
2685 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2686 // silly).
2687 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2688 const AArch64RegisterInfo *ARI =
2689 static_cast<const AArch64RegisterInfo *>(TRI);
2690 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2691
2692 // The function takes only one argument: the address of the descriptor itself
2693 // in X0.
2694 SDValue Glue, Chain;
2695 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2696 Glue = Chain.getValue(1);
2697
2698 // We're now ready to populate the argument list, as with a normal call:
2699 SmallVector<SDValue, 6> Ops;
2700 Ops.push_back(Chain);
2701 Ops.push_back(Func);
2702 Ops.push_back(SymAddr);
2703 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2704 Ops.push_back(DAG.getRegisterMask(Mask));
2705 Ops.push_back(Glue);
2706
2707 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2708 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
2709 Glue = Chain.getValue(1);
2710
2711 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2712}
2713
2714SDValue
2715AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
2716 SelectionDAG &DAG) const {
2717 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
2718 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2719 "ELF TLS only supported in small memory model");
2720 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2721
2722 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2723
2724 SDValue TPOff;
2725 EVT PtrVT = getPointerTy();
2726 SDLoc DL(Op);
2727 const GlobalValue *GV = GA->getGlobal();
2728
2729 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2730
2731 if (Model == TLSModel::LocalExec) {
2732 SDValue HiVar = DAG.getTargetGlobalAddress(
2733 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2734 SDValue LoVar = DAG.getTargetGlobalAddress(
2735 GV, DL, PtrVT, 0,
2736 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2737
2738 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2739 DAG.getTargetConstant(16, MVT::i32)),
2740 0);
2741 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
2742 DAG.getTargetConstant(0, MVT::i32)),
2743 0);
2744 } else if (Model == TLSModel::InitialExec) {
2745 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2746 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
2747 } else if (Model == TLSModel::LocalDynamic) {
2748 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2749 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2750 // the beginning of the module's TLS region, followed by a DTPREL offset
2751 // calculation.
2752
2753 // These accesses will need deduplicating if there's more than one.
2754 AArch64FunctionInfo *MFI =
2755 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
2756 MFI->incNumLocalDynamicTLSAccesses();
2757
2758 // Accesses used in this sequence go via the TLS descriptor which lives in
2759 // the GOT. Prepare an address we can use to handle this.
2760 SDValue HiDesc = DAG.getTargetExternalSymbol(
2761 "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2762 SDValue LoDesc = DAG.getTargetExternalSymbol(
2763 "_TLS_MODULE_BASE_", PtrVT,
2764 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2765
2766 // First argument to the descriptor call is the address of the descriptor
2767 // itself.
2768 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2769 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2770
2771 // The call needs a relocation too for linker relaxation. It doesn't make
2772 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2773 // the address.
2774 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2775 AArch64II::MO_TLS);
2776
2777 // Now we can calculate the offset from TPIDR_EL0 to this module's
2778 // thread-local area.
2779 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2780
2781 // Now use :dtprel_whatever: operations to calculate this variable's offset
2782 // in its thread-storage area.
2783 SDValue HiVar = DAG.getTargetGlobalAddress(
2784 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2785 SDValue LoVar = DAG.getTargetGlobalAddress(
2786 GV, DL, MVT::i64, 0,
2787 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2788
2789 SDValue DTPOff =
2790 SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2791 DAG.getTargetConstant(16, MVT::i32)),
2792 0);
2793 DTPOff =
2794 SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
2795 DAG.getTargetConstant(0, MVT::i32)),
2796 0);
2797
2798 TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
2799 } else if (Model == TLSModel::GeneralDynamic) {
2800 // Accesses used in this sequence go via the TLS descriptor which lives in
2801 // the GOT. Prepare an address we can use to handle this.
2802 SDValue HiDesc = DAG.getTargetGlobalAddress(
2803 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2804 SDValue LoDesc = DAG.getTargetGlobalAddress(
2805 GV, DL, PtrVT, 0,
2806 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2807
2808 // First argument to the descriptor call is the address of the descriptor
2809 // itself.
2810 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2811 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2812
2813 // The call needs a relocation too for linker relaxation. It doesn't make
2814 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2815 // the address.
2816 SDValue SymAddr =
2817 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2818
2819 // Finally we can make a call to calculate the offset from tpidr_el0.
2820 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2821 } else
2822 llvm_unreachable("Unsupported ELF TLS access model");
2823
2824 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2825}
2826
2827SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2828 SelectionDAG &DAG) const {
2829 if (Subtarget->isTargetDarwin())
2830 return LowerDarwinGlobalTLSAddress(Op, DAG);
2831 else if (Subtarget->isTargetELF())
2832 return LowerELFGlobalTLSAddress(Op, DAG);
2833
2834 llvm_unreachable("Unexpected platform trying to use TLS");
2835}
2836SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2837 SDValue Chain = Op.getOperand(0);
2838 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2839 SDValue LHS = Op.getOperand(2);
2840 SDValue RHS = Op.getOperand(3);
2841 SDValue Dest = Op.getOperand(4);
2842 SDLoc dl(Op);
2843
2844 // Handle f128 first, since lowering it will result in comparing the return
2845 // value of a libcall against zero, which is just what the rest of LowerBR_CC
2846 // is expecting to deal with.
2847 if (LHS.getValueType() == MVT::f128) {
2848 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2849
2850 // If softenSetCCOperands returned a scalar, we need to compare the result
2851 // against zero to select between true and false values.
2852 if (!RHS.getNode()) {
2853 RHS = DAG.getConstant(0, LHS.getValueType());
2854 CC = ISD::SETNE;
2855 }
2856 }
2857
2858 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
2859 // instruction.
2860 unsigned Opc = LHS.getOpcode();
2861 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
2862 cast<ConstantSDNode>(RHS)->isOne() &&
2863 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2864 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
2865 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
2866 "Unexpected condition code.");
2867 // Only lower legal XALUO ops.
2868 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
2869 return SDValue();
2870
2871 // The actual operation with overflow check.
2872 AArch64CC::CondCode OFCC;
2873 SDValue Value, Overflow;
2874 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
2875
2876 if (CC == ISD::SETNE)
2877 OFCC = getInvertedCondCode(OFCC);
2878 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
2879
2880 return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
2881 CCVal, Overflow);
2882 }
2883
2884 if (LHS.getValueType().isInteger()) {
2885 assert((LHS.getValueType() == RHS.getValueType()) &&
2886 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
2887
2888 // If the RHS of the comparison is zero, we can potentially fold this
2889 // to a specialized branch.
2890 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
2891 if (RHSC && RHSC->getZExtValue() == 0) {
2892 if (CC == ISD::SETEQ) {
2893 // See if we can use a TBZ to fold in an AND as well.
2894 // TBZ has a smaller branch displacement than CBZ. If the offset is
2895 // out of bounds, a late MI-layer pass rewrites branches.
2896 // 403.gcc is an example that hits this case.
2897 if (LHS.getOpcode() == ISD::AND &&
2898 isa<ConstantSDNode>(LHS.getOperand(1)) &&
2899 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
2900 SDValue Test = LHS.getOperand(0);
2901 uint64_t Mask = LHS.getConstantOperandVal(1);
2902
2903 // TBZ only operates on i64's, but the ext should be free.
2904 if (Test.getValueType() == MVT::i32)
2905 Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
2906
2907 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
2908 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
2909 }
2910
2911 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
2912 } else if (CC == ISD::SETNE) {
2913 // See if we can use a TBZ to fold in an AND as well.
2914 // TBZ has a smaller branch displacement than CBZ. If the offset is
2915 // out of bounds, a late MI-layer pass rewrites branches.
2916 // 403.gcc is an example that hits this case.
2917 if (LHS.getOpcode() == ISD::AND &&
2918 isa<ConstantSDNode>(LHS.getOperand(1)) &&
2919 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
2920 SDValue Test = LHS.getOperand(0);
2921 uint64_t Mask = LHS.getConstantOperandVal(1);
2922
2923 // TBNZ only operates on i64's, but the ext should be free.
2924 if (Test.getValueType() == MVT::i32)
2925 Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
2926
2927 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
2928 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
2929 }
2930
2931 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
2932 }
2933 }
2934
2935 SDValue CCVal;
2936 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2937 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
2938 Cmp);
2939 }
2940
2941 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2942
2943 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
2944 // clean. Some of them require two branches to implement.
2945 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
2946 AArch64CC::CondCode CC1, CC2;
2947 changeFPCCToAArch64CC(CC, CC1, CC2);
2948 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
2949 SDValue BR1 =
2950 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
2951 if (CC2 != AArch64CC::AL) {
2952 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
2953 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
2954 Cmp);
2955 }
2956
2957 return BR1;
2958}
2959
2960SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
2961 SelectionDAG &DAG) const {
2962 EVT VT = Op.getValueType();
2963 SDLoc DL(Op);
2964
2965 SDValue In1 = Op.getOperand(0);
2966 SDValue In2 = Op.getOperand(1);
2967 EVT SrcVT = In2.getValueType();
2968 if (SrcVT != VT) {
2969 if (SrcVT == MVT::f32 && VT == MVT::f64)
2970 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
2971 else if (SrcVT == MVT::f64 && VT == MVT::f32)
2972 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
2973 else
2974 // FIXME: Src type is different, bail out for now. Can VT really be a
2975 // vector type?
2976 return SDValue();
2977 }
2978
2979 EVT VecVT;
2980 EVT EltVT;
2981 SDValue EltMask, VecVal1, VecVal2;
2982 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
2983 EltVT = MVT::i32;
2984 VecVT = MVT::v4i32;
2985 EltMask = DAG.getConstant(0x80000000ULL, EltVT);
2986
2987 if (!VT.isVector()) {
2988 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
2989 DAG.getUNDEF(VecVT), In1);
2990 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
2991 DAG.getUNDEF(VecVT), In2);
2992 } else {
2993 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
2994 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
2995 }
2996 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
2997 EltVT = MVT::i64;
2998 VecVT = MVT::v2i64;
2999
3000 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3001 // immediate moves cannot materialize that in a single instruction for
3002 // 64-bit elements. Instead, materialize zero and then negate it.
3003 EltMask = DAG.getConstant(0, EltVT);
3004
3005 if (!VT.isVector()) {
3006 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3007 DAG.getUNDEF(VecVT), In1);
3008 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3009 DAG.getUNDEF(VecVT), In2);
3010 } else {
3011 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3012 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3013 }
3014 } else {
3015 llvm_unreachable("Invalid type for copysign!");
3016 }
3017
3018 std::vector<SDValue> BuildVectorOps;
3019 for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
3020 BuildVectorOps.push_back(EltMask);
3021
3022 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
3023
3024 // If we couldn't materialize the mask above, then the mask vector will be
3025 // the zero vector, and we need to negate it here.
3026 if (VT == MVT::f64 || VT == MVT::v2f64) {
3027 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3028 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3029 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3030 }
3031
3032 SDValue Sel =
3033 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3034
3035 if (VT == MVT::f32)
3036 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3037 else if (VT == MVT::f64)
3038 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3039 else
3040 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3041}
3042
3043SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3044 if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
3045 AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
3046 return SDValue();
3047
3048 // While there is no integer popcount instruction, it can
3049 // be more efficiently lowered to the following sequence that uses
3050 // AdvSIMD registers/instructions as long as the copies to/from
3051 // the AdvSIMD registers are cheap.
3052 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3053 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3054 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3055 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3056 SDValue Val = Op.getOperand(0);
3057 SDLoc DL(Op);
3058 EVT VT = Op.getValueType();
3059 SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
3060
3061 SDValue VecVal;
3062 if (VT == MVT::i32) {
3063 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
3064 VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
3065 VecVal);
3066 } else {
3067 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3068 }
3069
3070 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
3071 SDValue UaddLV = DAG.getNode(
3072 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3073 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3074
3075 if (VT == MVT::i64)
3076 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3077 return UaddLV;
3078}
3079
3080SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3081
3082 if (Op.getValueType().isVector())
3083 return LowerVSETCC(Op, DAG);
3084
3085 SDValue LHS = Op.getOperand(0);
3086 SDValue RHS = Op.getOperand(1);
3087 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3088 SDLoc dl(Op);
3089
3090 // We chose ZeroOrOneBooleanContents, so use zero and one.
3091 EVT VT = Op.getValueType();
3092 SDValue TVal = DAG.getConstant(1, VT);
3093 SDValue FVal = DAG.getConstant(0, VT);
3094
3095 // Handle f128 first, since one possible outcome is a normal integer
3096 // comparison which gets picked up by the next if statement.
3097 if (LHS.getValueType() == MVT::f128) {
3098 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3099
3100 // If softenSetCCOperands returned a scalar, use it.
3101 if (!RHS.getNode()) {
3102 assert(LHS.getValueType() == Op.getValueType() &&
3103 "Unexpected setcc expansion!");
3104 return LHS;
3105 }
3106 }
3107
3108 if (LHS.getValueType().isInteger()) {
3109 SDValue CCVal;
3110 SDValue Cmp =
3111 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3112
3113 // Note that we inverted the condition above, so we reverse the order of
3114 // the true and false operands here. This will allow the setcc to be
3115 // matched to a single CSINC instruction.
3116 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3117 }
3118
3119 // Now we know we're dealing with FP values.
3120 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3121
3122 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3123 // and do the comparison.
3124 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3125
3126 AArch64CC::CondCode CC1, CC2;
3127 changeFPCCToAArch64CC(CC, CC1, CC2);
3128 if (CC2 == AArch64CC::AL) {
3129 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3130 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3131
3132 // Note that we inverted the condition above, so we reverse the order of
3133 // the true and false operands here. This will allow the setcc to be
3134 // matched to a single CSINC instruction.
3135 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3136 } else {
3137 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3138 // totally clean. Some of them require two CSELs to implement. As is in
3139 // this case, we emit the first CSEL and then emit a second using the output
3140 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3141
3142 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3143 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3144 SDValue CS1 =
3145 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3146
3147 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3148 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3149 }
3150}
3151
3152/// A SELECT_CC operation is really some kind of max or min if both values being
3153/// compared are, in some sense, equal to the results in either case. However,
3154/// it is permissible to compare f32 values and produce directly extended f64
3155/// values.
3156///
3157/// Extending the comparison operands would also be allowed, but is less likely
3158/// to happen in practice since their use is right here. Note that truncate
3159/// operations would *not* be semantically equivalent.
3160static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3161 if (Cmp == Result)
3162 return true;
3163
3164 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3165 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3166 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3167 Result.getValueType() == MVT::f64) {
3168 bool Lossy;
3169 APFloat CmpVal = CCmp->getValueAPF();
3170 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3171 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3172 }
3173
3174 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3175}
3176
3177SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3178 SelectionDAG &DAG) const {
3179 SDValue CC = Op->getOperand(0);
3180 SDValue TVal = Op->getOperand(1);
3181 SDValue FVal = Op->getOperand(2);
3182 SDLoc DL(Op);
3183
3184 unsigned Opc = CC.getOpcode();
3185 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3186 // instruction.
3187 if (CC.getResNo() == 1 &&
3188 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3189 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3190 // Only lower legal XALUO ops.
3191 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3192 return SDValue();
3193
3194 AArch64CC::CondCode OFCC;
3195 SDValue Value, Overflow;
3196 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3197 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3198
3199 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3200 CCVal, Overflow);
3201 }
3202
3203 if (CC.getOpcode() == ISD::SETCC)
3204 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3205 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3206 else
3207 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3208 FVal, ISD::SETNE);
3209}
3210
3211SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3212 SelectionDAG &DAG) const {
3213 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3214 SDValue LHS = Op.getOperand(0);
3215 SDValue RHS = Op.getOperand(1);
3216 SDValue TVal = Op.getOperand(2);
3217 SDValue FVal = Op.getOperand(3);
3218 SDLoc dl(Op);
3219
3220 // Handle f128 first, because it will result in a comparison of some RTLIB
3221 // call result against zero.
3222 if (LHS.getValueType() == MVT::f128) {
3223 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3224
3225 // If softenSetCCOperands returned a scalar, we need to compare the result
3226 // against zero to select between true and false values.
3227 if (!RHS.getNode()) {
3228 RHS = DAG.getConstant(0, LHS.getValueType());
3229 CC = ISD::SETNE;
3230 }
3231 }
3232
3233 // Handle integers first.
3234 if (LHS.getValueType().isInteger()) {
3235 assert((LHS.getValueType() == RHS.getValueType()) &&
3236 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3237
3238 unsigned Opcode = AArch64ISD::CSEL;
3239
3240 // If both the TVal and the FVal are constants, see if we can swap them in
3241 // order to for a CSINV or CSINC out of them.
3242 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3243 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3244
3245 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3246 std::swap(TVal, FVal);
3247 std::swap(CTVal, CFVal);
3248 CC = ISD::getSetCCInverse(CC, true);
3249 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3250 std::swap(TVal, FVal);
3251 std::swap(CTVal, CFVal);
3252 CC = ISD::getSetCCInverse(CC, true);
3253 } else if (TVal.getOpcode() == ISD::XOR) {
3254 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3255 // with a CSINV rather than a CSEL.
3256 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3257
3258 if (CVal && CVal->isAllOnesValue()) {
3259 std::swap(TVal, FVal);
3260 std::swap(CTVal, CFVal);
3261 CC = ISD::getSetCCInverse(CC, true);
3262 }
3263 } else if (TVal.getOpcode() == ISD::SUB) {
3264 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3265 // that we can match with a CSNEG rather than a CSEL.
3266 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3267
3268 if (CVal && CVal->isNullValue()) {
3269 std::swap(TVal, FVal);
3270 std::swap(CTVal, CFVal);
3271 CC = ISD::getSetCCInverse(CC, true);
3272 }
3273 } else if (CTVal && CFVal) {
3274 const int64_t TrueVal = CTVal->getSExtValue();
3275 const int64_t FalseVal = CFVal->getSExtValue();
3276 bool Swap = false;
3277
3278 // If both TVal and FVal are constants, see if FVal is the
3279 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3280 // instead of a CSEL in that case.
3281 if (TrueVal == ~FalseVal) {
3282 Opcode = AArch64ISD::CSINV;
3283 } else if (TrueVal == -FalseVal) {
3284 Opcode = AArch64ISD::CSNEG;
3285 } else if (TVal.getValueType() == MVT::i32) {
3286 // If our operands are only 32-bit wide, make sure we use 32-bit
3287 // arithmetic for the check whether we can use CSINC. This ensures that
3288 // the addition in the check will wrap around properly in case there is
3289 // an overflow (which would not be the case if we do the check with
3290 // 64-bit arithmetic).
3291 const uint32_t TrueVal32 = CTVal->getZExtValue();
3292 const uint32_t FalseVal32 = CFVal->getZExtValue();
3293
3294 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3295 Opcode = AArch64ISD::CSINC;
3296
3297 if (TrueVal32 > FalseVal32) {
3298 Swap = true;
3299 }
3300 }
3301 // 64-bit check whether we can use CSINC.
3302 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3303 Opcode = AArch64ISD::CSINC;
3304
3305 if (TrueVal > FalseVal) {
3306 Swap = true;
3307 }
3308 }
3309
3310 // Swap TVal and FVal if necessary.
3311 if (Swap) {
3312 std::swap(TVal, FVal);
3313 std::swap(CTVal, CFVal);
3314 CC = ISD::getSetCCInverse(CC, true);
3315 }
3316
3317 if (Opcode != AArch64ISD::CSEL) {
3318 // Drop FVal since we can get its value by simply inverting/negating
3319 // TVal.
3320 FVal = TVal;
3321 }
3322 }
3323
3324 SDValue CCVal;
3325 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3326
3327 EVT VT = Op.getValueType();
3328 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3329 }
3330
3331 // Now we know we're dealing with FP values.
3332 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3333 assert(LHS.getValueType() == RHS.getValueType());
3334 EVT VT = Op.getValueType();
3335
3336 // Try to match this select into a max/min operation, which have dedicated
3337 // opcode in the instruction set.
3338 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3339 // in no-NaNs mode.
3340 if (getTargetMachine().Options.NoNaNsFPMath) {
3341 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3342 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3343 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3344 CC = ISD::getSetCCSwappedOperands(CC);
3345 std::swap(MinMaxLHS, MinMaxRHS);
3346 }
3347
3348 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3349 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3350 switch (CC) {
3351 default:
3352 break;
3353 case ISD::SETGT:
3354 case ISD::SETGE:
3355 case ISD::SETUGT:
3356 case ISD::SETUGE:
3357 case ISD::SETOGT:
3358 case ISD::SETOGE:
3359 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3360 break;
3361 case ISD::SETLT:
3362 case ISD::SETLE:
3363 case ISD::SETULT:
3364 case ISD::SETULE:
3365 case ISD::SETOLT:
3366 case ISD::SETOLE:
3367 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3368 break;
3369 }
3370 }
3371 }
3372
3373 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3374 // and do the comparison.
3375 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3376
3377 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3378 // clean. Some of them require two CSELs to implement.
3379 AArch64CC::CondCode CC1, CC2;
3380 changeFPCCToAArch64CC(CC, CC1, CC2);
3381 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3382 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3383
3384 // If we need a second CSEL, emit it, using the output of the first as the
3385 // RHS. We're effectively OR'ing the two CC's together.
3386 if (CC2 != AArch64CC::AL) {
3387 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3388 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3389 }
3390
3391 // Otherwise, return the output of the first CSEL.
3392 return CS1;
3393}
3394
3395SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3396 SelectionDAG &DAG) const {
3397 // Jump table entries as PC relative offsets. No additional tweaking
3398 // is necessary here. Just get the address of the jump table.
3399 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3400 EVT PtrVT = getPointerTy();
3401 SDLoc DL(Op);
3402
3403 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3404 !Subtarget->isTargetMachO()) {
3405 const unsigned char MO_NC = AArch64II::MO_NC;
3406 return DAG.getNode(
3407 AArch64ISD::WrapperLarge, DL, PtrVT,
3408 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3409 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3410 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3411 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3412 AArch64II::MO_G0 | MO_NC));
3413 }
3414
3415 SDValue Hi =
3416 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3417 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3418 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3419 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3420 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3421}
3422
3423SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3424 SelectionDAG &DAG) const {
3425 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3426 EVT PtrVT = getPointerTy();
3427 SDLoc DL(Op);
3428
3429 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3430 // Use the GOT for the large code model on iOS.
3431 if (Subtarget->isTargetMachO()) {
3432 SDValue GotAddr = DAG.getTargetConstantPool(
3433 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3434 AArch64II::MO_GOT);
3435 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3436 }
3437
3438 const unsigned char MO_NC = AArch64II::MO_NC;
3439 return DAG.getNode(
3440 AArch64ISD::WrapperLarge, DL, PtrVT,
3441 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3442 CP->getOffset(), AArch64II::MO_G3),
3443 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3444 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3445 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3446 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3447 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3448 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3449 } else {
3450 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3451 // ELF, the only valid one on Darwin.
3452 SDValue Hi =
3453 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3454 CP->getOffset(), AArch64II::MO_PAGE);
3455 SDValue Lo = DAG.getTargetConstantPool(
3456 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3457 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3458
3459 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3460 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3461 }
3462}
3463
3464SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3465 SelectionDAG &DAG) const {
3466 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3467 EVT PtrVT = getPointerTy();
3468 SDLoc DL(Op);
3469 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3470 !Subtarget->isTargetMachO()) {
3471 const unsigned char MO_NC = AArch64II::MO_NC;
3472 return DAG.getNode(
3473 AArch64ISD::WrapperLarge, DL, PtrVT,
3474 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3475 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3476 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3477 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3478 } else {
3479 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3480 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3481 AArch64II::MO_NC);
3482 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3483 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3484 }
3485}
3486
3487SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3488 SelectionDAG &DAG) const {
3489 AArch64FunctionInfo *FuncInfo =
3490 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3491
3492 SDLoc DL(Op);
3493 SDValue FR =
3494 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3495 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3496 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3497 MachinePointerInfo(SV), false, false, 0);
3498}
3499
3500SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3501 SelectionDAG &DAG) const {
3502 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3503 // Standard, section B.3.
3504 MachineFunction &MF = DAG.getMachineFunction();
3505 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3506 SDLoc DL(Op);
3507
3508 SDValue Chain = Op.getOperand(0);
3509 SDValue VAList = Op.getOperand(1);
3510 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3511 SmallVector<SDValue, 4> MemOps;
3512
3513 // void *__stack at offset 0
3514 SDValue Stack =
3515 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3516 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3517 MachinePointerInfo(SV), false, false, 8));
3518
3519 // void *__gr_top at offset 8
3520 int GPRSize = FuncInfo->getVarArgsGPRSize();
3521 if (GPRSize > 0) {
3522 SDValue GRTop, GRTopAddr;
3523
3524 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3525 DAG.getConstant(8, getPointerTy()));
3526
3527 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3528 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3529 DAG.getConstant(GPRSize, getPointerTy()));
3530
3531 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3532 MachinePointerInfo(SV, 8), false, false, 8));
3533 }
3534
3535 // void *__vr_top at offset 16
3536 int FPRSize = FuncInfo->getVarArgsFPRSize();
3537 if (FPRSize > 0) {
3538 SDValue VRTop, VRTopAddr;
3539 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3540 DAG.getConstant(16, getPointerTy()));
3541
3542 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3543 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3544 DAG.getConstant(FPRSize, getPointerTy()));
3545
3546 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3547 MachinePointerInfo(SV, 16), false, false, 8));
3548 }
3549
3550 // int __gr_offs at offset 24
3551 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3552 DAG.getConstant(24, getPointerTy()));
3553 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3554 GROffsAddr, MachinePointerInfo(SV, 24), false,
3555 false, 4));
3556
3557 // int __vr_offs at offset 28
3558 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3559 DAG.getConstant(28, getPointerTy()));
3560 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3561 VROffsAddr, MachinePointerInfo(SV, 28), false,
3562 false, 4));
3563
3564 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3565}
3566
3567SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3568 SelectionDAG &DAG) const {
3569 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3570 : LowerAAPCS_VASTART(Op, DAG);
3571}
3572
3573SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3574 SelectionDAG &DAG) const {
3575 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3576 // pointer.
3577 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3578 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3579 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3580
3581 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3582 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3583 8, false, false, MachinePointerInfo(DestSV),
3584 MachinePointerInfo(SrcSV));
3585}
3586
3587SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3588 assert(Subtarget->isTargetDarwin() &&
3589 "automatic va_arg instruction only works on Darwin");
3590
3591 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3592 EVT VT = Op.getValueType();
3593 SDLoc DL(Op);
3594 SDValue Chain = Op.getOperand(0);
3595 SDValue Addr = Op.getOperand(1);
3596 unsigned Align = Op.getConstantOperandVal(3);
3597
3598 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3599 MachinePointerInfo(V), false, false, false, 0);
3600 Chain = VAList.getValue(1);
3601
3602 if (Align > 8) {
3603 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3604 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3605 DAG.getConstant(Align - 1, getPointerTy()));
3606 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3607 DAG.getConstant(-(int64_t)Align, getPointerTy()));
3608 }
3609
3610 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3611 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3612
3613 // Scalar integer and FP values smaller than 64 bits are implicitly extended
3614 // up to 64 bits. At the very least, we have to increase the striding of the
3615 // vaargs list to match this, and for FP values we need to introduce
3616 // FP_ROUND nodes as well.
3617 if (VT.isInteger() && !VT.isVector())
3618 ArgSize = 8;
3619 bool NeedFPTrunc = false;
3620 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
3621 ArgSize = 8;
3622 NeedFPTrunc = true;
3623 }
3624
3625 // Increment the pointer, VAList, to the next vaarg
3626 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3627 DAG.getConstant(ArgSize, getPointerTy()));
3628 // Store the incremented VAList to the legalized pointer
3629 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
3630 false, false, 0);
3631
3632 // Load the actual argument out of the pointer VAList
3633 if (NeedFPTrunc) {
3634 // Load the value as an f64.
3635 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
3636 MachinePointerInfo(), false, false, false, 0);
3637 // Round the value down to an f32.
3638 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
3639 DAG.getIntPtrConstant(1));
3640 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
3641 // Merge the rounded value with the chain output of the load.
3642 return DAG.getMergeValues(Ops, DL);
3643 }
3644
3645 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
3646 false, false, 0);
3647}
3648
3649SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
3650 SelectionDAG &DAG) const {
3651 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3652 MFI->setFrameAddressIsTaken(true);
3653
3654 EVT VT = Op.getValueType();
3655 SDLoc DL(Op);
3656 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3657 SDValue FrameAddr =
3658 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
3659 while (Depth--)
3660 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
3661 MachinePointerInfo(), false, false, false, 0);
3662 return FrameAddr;
3663}
3664
3665// FIXME? Maybe this could be a TableGen attribute on some registers and
3666// this table could be generated automatically from RegInfo.
3667unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
3668 EVT VT) const {
3669 unsigned Reg = StringSwitch<unsigned>(RegName)
3670 .Case("sp", AArch64::SP)
3671 .Default(0);
3672 if (Reg)
3673 return Reg;
3674 report_fatal_error("Invalid register name global variable");
3675}
3676
3677SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
3678 SelectionDAG &DAG) const {
3679 MachineFunction &MF = DAG.getMachineFunction();
3680 MachineFrameInfo *MFI = MF.getFrameInfo();
3681 MFI->setReturnAddressIsTaken(true);
3682
3683 EVT VT = Op.getValueType();
3684 SDLoc DL(Op);
3685 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3686 if (Depth) {
3687 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3688 SDValue Offset = DAG.getConstant(8, getPointerTy());
3689 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3690 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3691 MachinePointerInfo(), false, false, false, 0);
3692 }
3693
3694 // Return LR, which contains the return address. Mark it an implicit live-in.
3695 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
3696 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
3697}
3698
3699/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3700/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3701SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
3702 SelectionDAG &DAG) const {
3703 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3704 EVT VT = Op.getValueType();
3705 unsigned VTBits = VT.getSizeInBits();
3706 SDLoc dl(Op);
3707 SDValue ShOpLo = Op.getOperand(0);
3708 SDValue ShOpHi = Op.getOperand(1);
3709 SDValue ShAmt = Op.getOperand(2);
3710 SDValue ARMcc;
3711 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3712
3713 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3714
3715 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3716 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3717 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3718 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3719 DAG.getConstant(VTBits, MVT::i64));
3720 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3721
3722 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3723 ISD::SETGE, dl, DAG);
3724 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3725
3726 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3727 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3728 SDValue Lo =
3729 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3730
3731 // AArch64 shifts larger than the register width are wrapped rather than
3732 // clamped, so we can't just emit "hi >> x".
3733 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3734 SDValue TrueValHi = Opc == ISD::SRA
3735 ? DAG.getNode(Opc, dl, VT, ShOpHi,
3736 DAG.getConstant(VTBits - 1, MVT::i64))
3737 : DAG.getConstant(0, VT);
3738 SDValue Hi =
3739 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
3740
3741 SDValue Ops[2] = { Lo, Hi };
3742 return DAG.getMergeValues(Ops, dl);
3743}
3744
3745/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3746/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3747SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
3748 SelectionDAG &DAG) const {
3749 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3750 EVT VT = Op.getValueType();
3751 unsigned VTBits = VT.getSizeInBits();
3752 SDLoc dl(Op);
3753 SDValue ShOpLo = Op.getOperand(0);
3754 SDValue ShOpHi = Op.getOperand(1);
3755 SDValue ShAmt = Op.getOperand(2);
3756 SDValue ARMcc;
3757
3758 assert(Op.getOpcode() == ISD::SHL_PARTS);
3759 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3760 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3761 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3762 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3763 DAG.getConstant(VTBits, MVT::i64));
3764 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3765 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3766
3767 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3768
3769 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3770 ISD::SETGE, dl, DAG);
3771 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3772 SDValue Hi =
3773 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
3774
3775 // AArch64 shifts of larger than register sizes are wrapped rather than
3776 // clamped, so we can't just emit "lo << a" if a is too big.
3777 SDValue TrueValLo = DAG.getConstant(0, VT);
3778 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3779 SDValue Lo =
3780 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3781
3782 SDValue Ops[2] = { Lo, Hi };
3783 return DAG.getMergeValues(Ops, dl);
3784}
3785
3786bool AArch64TargetLowering::isOffsetFoldingLegal(
3787 const GlobalAddressSDNode *GA) const {
3788 // The AArch64 target doesn't support folding offsets into global addresses.
3789 return false;
3790}
3791
3792bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3793 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
3794 // FIXME: We should be able to handle f128 as well with a clever lowering.
3795 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
3796 return true;
3797
3798 if (VT == MVT::f64)
3799 return AArch64_AM::getFP64Imm(Imm) != -1;
3800 else if (VT == MVT::f32)
3801 return AArch64_AM::getFP32Imm(Imm) != -1;
3802 return false;
3803}
3804
3805//===----------------------------------------------------------------------===//
3806// AArch64 Optimization Hooks
3807//===----------------------------------------------------------------------===//
3808
3809//===----------------------------------------------------------------------===//
3810// AArch64 Inline Assembly Support
3811//===----------------------------------------------------------------------===//
3812
3813// Table of Constraints
3814// TODO: This is the current set of constraints supported by ARM for the
3815// compiler, not all of them may make sense, e.g. S may be difficult to support.
3816//
3817// r - A general register
3818// w - An FP/SIMD register of some size in the range v0-v31
3819// x - An FP/SIMD register of some size in the range v0-v15
3820// I - Constant that can be used with an ADD instruction
3821// J - Constant that can be used with a SUB instruction
3822// K - Constant that can be used with a 32-bit logical instruction
3823// L - Constant that can be used with a 64-bit logical instruction
3824// M - Constant that can be used as a 32-bit MOV immediate
3825// N - Constant that can be used as a 64-bit MOV immediate
3826// Q - A memory reference with base register and no offset
3827// S - A symbolic address
3828// Y - Floating point constant zero
3829// Z - Integer constant zero
3830//
3831// Note that general register operands will be output using their 64-bit x
3832// register name, whatever the size of the variable, unless the asm operand
3833// is prefixed by the %w modifier. Floating-point and SIMD register operands
3834// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
3835// %q modifier.
3836
3837/// getConstraintType - Given a constraint letter, return the type of
3838/// constraint it is for this target.
3839AArch64TargetLowering::ConstraintType
3840AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
3841 if (Constraint.size() == 1) {
3842 switch (Constraint[0]) {
3843 default:
3844 break;
3845 case 'z':
3846 return C_Other;
3847 case 'x':
3848 case 'w':
3849 return C_RegisterClass;
3850 // An address with a single base register. Due to the way we
3851 // currently handle addresses it is the same as 'r'.
3852 case 'Q':
3853 return C_Memory;
3854 }
3855 }
3856 return TargetLowering::getConstraintType(Constraint);
3857}
3858
3859/// Examine constraint type and operand type and determine a weight value.
3860/// This object must already have been set up with the operand type
3861/// and the current alternative constraint selected.
3862TargetLowering::ConstraintWeight
3863AArch64TargetLowering::getSingleConstraintMatchWeight(
3864 AsmOperandInfo &info, const char *constraint) const {
3865 ConstraintWeight weight = CW_Invalid;
3866 Value *CallOperandVal = info.CallOperandVal;
3867 // If we don't have a value, we can't do a match,
3868 // but allow it at the lowest weight.
3869 if (!CallOperandVal)
3870 return CW_Default;
3871 Type *type = CallOperandVal->getType();
3872 // Look at the constraint type.
3873 switch (*constraint) {
3874 default:
3875 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3876 break;
3877 case 'x':
3878 case 'w':
3879 if (type->isFloatingPointTy() || type->isVectorTy())
3880 weight = CW_Register;
3881 break;
3882 case 'z':
3883 weight = CW_Constant;
3884 break;
3885 }
3886 return weight;
3887}
3888
3889std::pair<unsigned, const TargetRegisterClass *>
3890AArch64TargetLowering::getRegForInlineAsmConstraint(
3891 const std::string &Constraint, MVT VT) const {
3892 if (Constraint.size() == 1) {
3893 switch (Constraint[0]) {
3894 case 'r':
3895 if (VT.getSizeInBits() == 64)
3896 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
3897 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
3898 case 'w':
3899 if (VT == MVT::f32)
3900 return std::make_pair(0U, &AArch64::FPR32RegClass);
3901 if (VT.getSizeInBits() == 64)
3902 return std::make_pair(0U, &AArch64::FPR64RegClass);
3903 if (VT.getSizeInBits() == 128)
3904 return std::make_pair(0U, &AArch64::FPR128RegClass);
3905 break;
3906 // The instructions that this constraint is designed for can
3907 // only take 128-bit registers so just use that regclass.
3908 case 'x':
3909 if (VT.getSizeInBits() == 128)
3910 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
3911 break;
3912 }
3913 }
3914 if (StringRef("{cc}").equals_lower(Constraint))
3915 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
3916
3917 // Use the default implementation in TargetLowering to convert the register
3918 // constraint into a member of a register class.
3919 std::pair<unsigned, const TargetRegisterClass *> Res;
3920 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3921
3922 // Not found as a standard register?
3923 if (!Res.second) {
3924 unsigned Size = Constraint.size();
3925 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
3926 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
3927 const std::string Reg =
3928 std::string(&Constraint[2], &Constraint[Size - 1]);
3929 int RegNo = atoi(Reg.c_str());
3930 if (RegNo >= 0 && RegNo <= 31) {
3931 // v0 - v31 are aliases of q0 - q31.
3932 // By default we'll emit v0-v31 for this unless there's a modifier where
3933 // we'll emit the correct register as well.
3934 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
3935 Res.second = &AArch64::FPR128RegClass;
3936 }
3937 }
3938 }
3939
3940 return Res;
3941}
3942
3943/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3944/// vector. If it is invalid, don't add anything to Ops.
3945void AArch64TargetLowering::LowerAsmOperandForConstraint(
3946 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
3947 SelectionDAG &DAG) const {
3948 SDValue Result;
3949
3950 // Currently only support length 1 constraints.
3951 if (Constraint.length() != 1)
3952 return;
3953
3954 char ConstraintLetter = Constraint[0];
3955 switch (ConstraintLetter) {
3956 default:
3957 break;
3958
3959 // This set of constraints deal with valid constants for various instructions.
3960 // Validate and return a target constant for them if we can.
3961 case 'z': {
3962 // 'z' maps to xzr or wzr so it needs an input of 0.
3963 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3964 if (!C || C->getZExtValue() != 0)
3965 return;
3966
3967 if (Op.getValueType() == MVT::i64)
3968 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
3969 else
3970 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
3971 break;
3972 }
3973
3974 case 'I':
3975 case 'J':
3976 case 'K':
3977 case 'L':
3978 case 'M':
3979 case 'N':
3980 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3981 if (!C)
3982 return;
3983
3984 // Grab the value and do some validation.
3985 uint64_t CVal = C->getZExtValue();
3986 switch (ConstraintLetter) {
3987 // The I constraint applies only to simple ADD or SUB immediate operands:
3988 // i.e. 0 to 4095 with optional shift by 12
3989 // The J constraint applies only to ADD or SUB immediates that would be
3990 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
3991 // instruction [or vice versa], in other words -1 to -4095 with optional
3992 // left shift by 12.
3993 case 'I':
3994 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
3995 break;
3996 return;
3997 case 'J': {
3998 uint64_t NVal = -C->getSExtValue();
3999 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal))
4000 break;
4001 return;
4002 }
4003 // The K and L constraints apply *only* to logical immediates, including
4004 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4005 // been removed and MOV should be used). So these constraints have to
4006 // distinguish between bit patterns that are valid 32-bit or 64-bit
4007 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4008 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4009 // versa.
4010 case 'K':
4011 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4012 break;
4013 return;
4014 case 'L':
4015 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4016 break;
4017 return;
4018 // The M and N constraints are a superset of K and L respectively, for use
4019 // with the MOV (immediate) alias. As well as the logical immediates they
4020 // also match 32 or 64-bit immediates that can be loaded either using a
4021 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4022 // (M) or 64-bit 0x1234000000000000 (N) etc.
4023 // As a note some of this code is liberally stolen from the asm parser.
4024 case 'M': {
4025 if (!isUInt<32>(CVal))
4026 return;
4027 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4028 break;
4029 if ((CVal & 0xFFFF) == CVal)
4030 break;
4031 if ((CVal & 0xFFFF0000ULL) == CVal)
4032 break;
4033 uint64_t NCVal = ~(uint32_t)CVal;
4034 if ((NCVal & 0xFFFFULL) == NCVal)
4035 break;
4036 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4037 break;
4038 return;
4039 }
4040 case 'N': {
4041 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4042 break;
4043 if ((CVal & 0xFFFFULL) == CVal)
4044 break;
4045 if ((CVal & 0xFFFF0000ULL) == CVal)
4046 break;
4047 if ((CVal & 0xFFFF00000000ULL) == CVal)
4048 break;
4049 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4050 break;
4051 uint64_t NCVal = ~CVal;
4052 if ((NCVal & 0xFFFFULL) == NCVal)
4053 break;
4054 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4055 break;
4056 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4057 break;
4058 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4059 break;
4060 return;
4061 }
4062 default:
4063 return;
4064 }
4065
4066 // All assembler immediates are 64-bit integers.
4067 Result = DAG.getTargetConstant(CVal, MVT::i64);
4068 break;
4069 }
4070
4071 if (Result.getNode()) {
4072 Ops.push_back(Result);
4073 return;
4074 }
4075
4076 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4077}
4078
4079//===----------------------------------------------------------------------===//
4080// AArch64 Advanced SIMD Support
4081//===----------------------------------------------------------------------===//
4082
4083/// WidenVector - Given a value in the V64 register class, produce the
4084/// equivalent value in the V128 register class.
4085static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4086 EVT VT = V64Reg.getValueType();
4087 unsigned NarrowSize = VT.getVectorNumElements();
4088 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4089 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4090 SDLoc DL(V64Reg);
4091
4092 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4093 V64Reg, DAG.getConstant(0, MVT::i32));
4094}
4095
4096/// getExtFactor - Determine the adjustment factor for the position when
4097/// generating an "extract from vector registers" instruction.
4098static unsigned getExtFactor(SDValue &V) {
4099 EVT EltType = V.getValueType().getVectorElementType();
4100 return EltType.getSizeInBits() / 8;
4101}
4102
4103/// NarrowVector - Given a value in the V128 register class, produce the
4104/// equivalent value in the V64 register class.
4105static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4106 EVT VT = V128Reg.getValueType();
4107 unsigned WideSize = VT.getVectorNumElements();
4108 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4109 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4110 SDLoc DL(V128Reg);
4111
4112 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4113}
4114
4115// Gather data to see if the operation can be modelled as a
4116// shuffle in combination with VEXTs.
4117SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4118 SelectionDAG &DAG) const {
4119 SDLoc dl(Op);
4120 EVT VT = Op.getValueType();
4121 unsigned NumElts = VT.getVectorNumElements();
4122
4123 SmallVector<SDValue, 2> SourceVecs;
4124 SmallVector<unsigned, 2> MinElts;
4125 SmallVector<unsigned, 2> MaxElts;
4126
4127 for (unsigned i = 0; i < NumElts; ++i) {
4128 SDValue V = Op.getOperand(i);
4129 if (V.getOpcode() == ISD::UNDEF)
4130 continue;
4131 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4132 // A shuffle can only come from building a vector from various
4133 // elements of other vectors.
4134 return SDValue();
4135 }
4136
4137 // Record this extraction against the appropriate vector if possible...
4138 SDValue SourceVec = V.getOperand(0);
4139 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4140 bool FoundSource = false;
4141 for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4142 if (SourceVecs[j] == SourceVec) {
4143 if (MinElts[j] > EltNo)
4144 MinElts[j] = EltNo;
4145 if (MaxElts[j] < EltNo)
4146 MaxElts[j] = EltNo;
4147 FoundSource = true;
4148 break;
4149 }
4150 }
4151
4152 // Or record a new source if not...
4153 if (!FoundSource) {
4154 SourceVecs.push_back(SourceVec);
4155 MinElts.push_back(EltNo);
4156 MaxElts.push_back(EltNo);
4157 }
4158 }
4159
4160 // Currently only do something sane when at most two source vectors
4161 // involved.
4162 if (SourceVecs.size() > 2)
4163 return SDValue();
4164
4165 SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4166 int VEXTOffsets[2] = { 0, 0 };
4167
4168 // This loop extracts the usage patterns of the source vectors
4169 // and prepares appropriate SDValues for a shuffle if possible.
4170 for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4171 if (SourceVecs[i].getValueType() == VT) {
4172 // No VEXT necessary
4173 ShuffleSrcs[i] = SourceVecs[i];
4174 VEXTOffsets[i] = 0;
4175 continue;
4176 } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4177 // We can pad out the smaller vector for free, so if it's part of a
4178 // shuffle...
4179 ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, SourceVecs[i],
4180 DAG.getUNDEF(SourceVecs[i].getValueType()));
4181 continue;
4182 }
4183
4184 // Don't attempt to extract subvectors from BUILD_VECTOR sources
4185 // that expand or trunc the original value.
4186 // TODO: We can try to bitcast and ANY_EXTEND the result but
4187 // we need to consider the cost of vector ANY_EXTEND, and the
4188 // legality of all the types.
4189 if (SourceVecs[i].getValueType().getVectorElementType() !=
4190 VT.getVectorElementType())
4191 return SDValue();
4192
4193 // Since only 64-bit and 128-bit vectors are legal on ARM and
4194 // we've eliminated the other cases...
4195 assert(SourceVecs[i].getValueType().getVectorNumElements() == 2 * NumElts &&
4196 "unexpected vector sizes in ReconstructShuffle");
4197
4198 if (MaxElts[i] - MinElts[i] >= NumElts) {
4199 // Span too large for a VEXT to cope
4200 return SDValue();
4201 }
4202
4203 if (MinElts[i] >= NumElts) {
4204 // The extraction can just take the second half
4205 VEXTOffsets[i] = NumElts;
4206 ShuffleSrcs[i] =
4207 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
4208 DAG.getIntPtrConstant(NumElts));
4209 } else if (MaxElts[i] < NumElts) {
4210 // The extraction can just take the first half
4211 VEXTOffsets[i] = 0;
4212 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4213 SourceVecs[i], DAG.getIntPtrConstant(0));
4214 } else {
4215 // An actual VEXT is needed
4216 VEXTOffsets[i] = MinElts[i];
4217 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4218 SourceVecs[i], DAG.getIntPtrConstant(0));
4219 SDValue VEXTSrc2 =
4220 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
4221 DAG.getIntPtrConstant(NumElts));
4222 unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1);
4223 ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2,
4224 DAG.getConstant(Imm, MVT::i32));
4225 }
4226 }
4227
4228 SmallVector<int, 8> Mask;
4229
4230 for (unsigned i = 0; i < NumElts; ++i) {
4231 SDValue Entry = Op.getOperand(i);
4232 if (Entry.getOpcode() == ISD::UNDEF) {
4233 Mask.push_back(-1);
4234 continue;
4235 }
4236
4237 SDValue ExtractVec = Entry.getOperand(0);
4238 int ExtractElt =
4239 cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue();
4240 if (ExtractVec == SourceVecs[0]) {
4241 Mask.push_back(ExtractElt - VEXTOffsets[0]);
4242 } else {
4243 Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4244 }
4245 }
4246
4247 // Final check before we try to produce nonsense...
4248 if (isShuffleMaskLegal(Mask, VT))
4249 return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4250 &Mask[0]);
4251
4252 return SDValue();
4253}
4254
4255// check if an EXT instruction can handle the shuffle mask when the
4256// vector sources of the shuffle are the same.
4257static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4258 unsigned NumElts = VT.getVectorNumElements();
4259
4260 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4261 if (M[0] < 0)
4262 return false;
4263
4264 Imm = M[0];
4265
4266 // If this is a VEXT shuffle, the immediate value is the index of the first
4267 // element. The other shuffle indices must be the successive elements after
4268 // the first one.
4269 unsigned ExpectedElt = Imm;
4270 for (unsigned i = 1; i < NumElts; ++i) {
4271 // Increment the expected index. If it wraps around, just follow it
4272 // back to index zero and keep going.
4273 ++ExpectedElt;
4274 if (ExpectedElt == NumElts)
4275 ExpectedElt = 0;
4276
4277 if (M[i] < 0)
4278 continue; // ignore UNDEF indices
4279 if (ExpectedElt != static_cast<unsigned>(M[i]))
4280 return false;
4281 }
4282
4283 return true;
4284}
4285
4286// check if an EXT instruction can handle the shuffle mask when the
4287// vector sources of the shuffle are different.
4288static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4289 unsigned &Imm) {
4290 // Look for the first non-undef element.
4291 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4292 [](int Elt) {return Elt >= 0;});
4293
4294 // Benefit form APInt to handle overflow when calculating expected element.
4295 unsigned NumElts = VT.getVectorNumElements();
4296 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4297 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4298 // The following shuffle indices must be the successive elements after the
4299 // first real element.
4300 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4301 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4302 if (FirstWrongElt != M.end())
4303 return false;
4304
4305 // The index of an EXT is the first element if it is not UNDEF.
4306 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4307 // value of the first element. E.g.
4308 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4309 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4310 // ExpectedElt is the last mask index plus 1.
4311 Imm = ExpectedElt.getZExtValue();
4312
4313 // There are two difference cases requiring to reverse input vectors.
4314 // For example, for vector <4 x i32> we have the following cases,
4315 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4316 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4317 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4318 // to reverse two input vectors.
4319 if (Imm < NumElts)
4320 ReverseEXT = true;
4321 else
4322 Imm -= NumElts;
4323
4324 return true;
4325}
4326
4327/// isREVMask - Check if a vector shuffle corresponds to a REV
4328/// instruction with the specified blocksize. (The order of the elements
4329/// within each block of the vector is reversed.)
4330static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4331 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4332 "Only possible block sizes for REV are: 16, 32, 64");
4333
4334 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4335 if (EltSz == 64)
4336 return false;
4337
4338 unsigned NumElts = VT.getVectorNumElements();
4339 unsigned BlockElts = M[0] + 1;
4340 // If the first shuffle index is UNDEF, be optimistic.
4341 if (M[0] < 0)
4342 BlockElts = BlockSize / EltSz;
4343
4344 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4345 return false;
4346
4347 for (unsigned i = 0; i < NumElts; ++i) {
4348 if (M[i] < 0)
4349 continue; // ignore UNDEF indices
4350 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4351 return false;
4352 }
4353
4354 return true;
4355}
4356
4357static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4358 unsigned NumElts = VT.getVectorNumElements();
4359 WhichResult = (M[0] == 0 ? 0 : 1);
4360 unsigned Idx = WhichResult * NumElts / 2;
4361 for (unsigned i = 0; i != NumElts; i += 2) {
4362 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4363 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4364 return false;
4365 Idx += 1;
4366 }
4367
4368 return true;
4369}
4370
4371static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4372 unsigned NumElts = VT.getVectorNumElements();
4373 WhichResult = (M[0] == 0 ? 0 : 1);
4374 for (unsigned i = 0; i != NumElts; ++i) {
4375 if (M[i] < 0)
4376 continue; // ignore UNDEF indices
4377 if ((unsigned)M[i] != 2 * i + WhichResult)
4378 return false;
4379 }
4380
4381 return true;
4382}
4383
4384static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4385 unsigned NumElts = VT.getVectorNumElements();
4386 WhichResult = (M[0] == 0 ? 0 : 1);
4387 for (unsigned i = 0; i < NumElts; i += 2) {
4388 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4389 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4390 return false;
4391 }
4392 return true;
4393}
4394
4395/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4396/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4397/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4398static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4399 unsigned NumElts = VT.getVectorNumElements();
4400 WhichResult = (M[0] == 0 ? 0 : 1);
4401 unsigned Idx = WhichResult * NumElts / 2;
4402 for (unsigned i = 0; i != NumElts; i += 2) {
4403 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4404 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4405 return false;
4406 Idx += 1;
4407 }
4408
4409 return true;
4410}
4411
4412/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4413/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4414/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4415static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4416 unsigned Half = VT.getVectorNumElements() / 2;
4417 WhichResult = (M[0] == 0 ? 0 : 1);
4418 for (unsigned j = 0; j != 2; ++j) {
4419 unsigned Idx = WhichResult;
4420 for (unsigned i = 0; i != Half; ++i) {
4421 int MIdx = M[i + j * Half];
4422 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4423 return false;
4424 Idx += 2;
4425 }
4426 }
4427
4428 return true;
4429}
4430
4431/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4432/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4433/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4434static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4435 unsigned NumElts = VT.getVectorNumElements();
4436 WhichResult = (M[0] == 0 ? 0 : 1);
4437 for (unsigned i = 0; i < NumElts; i += 2) {
4438 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4439 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4440 return false;
4441 }
4442 return true;
4443}
4444
4445static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4446 bool &DstIsLeft, int &Anomaly) {
4447 if (M.size() != static_cast<size_t>(NumInputElements))
4448 return false;
4449
4450 int NumLHSMatch = 0, NumRHSMatch = 0;
4451 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4452
4453 for (int i = 0; i < NumInputElements; ++i) {
4454 if (M[i] == -1) {
4455 ++NumLHSMatch;
4456 ++NumRHSMatch;
4457 continue;
4458 }
4459
4460 if (M[i] == i)
4461 ++NumLHSMatch;
4462 else
4463 LastLHSMismatch = i;
4464
4465 if (M[i] == i + NumInputElements)
4466 ++NumRHSMatch;
4467 else
4468 LastRHSMismatch = i;
4469 }
4470
4471 if (NumLHSMatch == NumInputElements - 1) {
4472 DstIsLeft = true;
4473 Anomaly = LastLHSMismatch;
4474 return true;
4475 } else if (NumRHSMatch == NumInputElements - 1) {
4476 DstIsLeft = false;
4477 Anomaly = LastRHSMismatch;
4478 return true;
4479 }
4480
4481 return false;
4482}
4483
4484static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4485 if (VT.getSizeInBits() != 128)
4486 return false;
4487
4488 unsigned NumElts = VT.getVectorNumElements();
4489
4490 for (int I = 0, E = NumElts / 2; I != E; I++) {
4491 if (Mask[I] != I)
4492 return false;
4493 }
4494
4495 int Offset = NumElts / 2;
4496 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4497 if (Mask[I] != I + SplitLHS * Offset)
4498 return false;
4499 }
4500
4501 return true;
4502}
4503
4504static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4505 SDLoc DL(Op);
4506 EVT VT = Op.getValueType();
4507 SDValue V0 = Op.getOperand(0);
4508 SDValue V1 = Op.getOperand(1);
4509 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4510
4511 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4512 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4513 return SDValue();
4514
4515 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4516
4517 if (!isConcatMask(Mask, VT, SplitV0))
4518 return SDValue();
4519
4520 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4521 VT.getVectorNumElements() / 2);
4522 if (SplitV0) {
4523 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4524 DAG.getConstant(0, MVT::i64));
4525 }
4526 if (V1.getValueType().getSizeInBits() == 128) {
4527 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4528 DAG.getConstant(0, MVT::i64));
4529 }
4530 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4531}
4532
4533/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4534/// the specified operations to build the shuffle.
4535static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4536 SDValue RHS, SelectionDAG &DAG,
4537 SDLoc dl) {
4538 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4539 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4540 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4541
4542 enum {
4543 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4544 OP_VREV,
4545 OP_VDUP0,
4546 OP_VDUP1,
4547 OP_VDUP2,
4548 OP_VDUP3,
4549 OP_VEXT1,
4550 OP_VEXT2,
4551 OP_VEXT3,
4552 OP_VUZPL, // VUZP, left result
4553 OP_VUZPR, // VUZP, right result
4554 OP_VZIPL, // VZIP, left result
4555 OP_VZIPR, // VZIP, right result
4556 OP_VTRNL, // VTRN, left result
4557 OP_VTRNR // VTRN, right result
4558 };
4559
4560 if (OpNum == OP_COPY) {
4561 if (LHSID == (1 * 9 + 2) * 9 + 3)
4562 return LHS;
4563 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
4564 return RHS;
4565 }
4566
4567 SDValue OpLHS, OpRHS;
4568 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4569 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4570 EVT VT = OpLHS.getValueType();
4571
4572 switch (OpNum) {
4573 default:
4574 llvm_unreachable("Unknown shuffle opcode!");
4575 case OP_VREV:
4576 // VREV divides the vector in half and swaps within the half.
4577 if (VT.getVectorElementType() == MVT::i32 ||
4578 VT.getVectorElementType() == MVT::f32)
4579 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
4580 // vrev <4 x i16> -> REV32
4581 if (VT.getVectorElementType() == MVT::i16)
4582 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
4583 // vrev <4 x i8> -> REV16
4584 assert(VT.getVectorElementType() == MVT::i8);
4585 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
4586 case OP_VDUP0:
4587 case OP_VDUP1:
4588 case OP_VDUP2:
4589 case OP_VDUP3: {
4590 EVT EltTy = VT.getVectorElementType();
4591 unsigned Opcode;
4592 if (EltTy == MVT::i8)
4593 Opcode = AArch64ISD::DUPLANE8;
4594 else if (EltTy == MVT::i16)
4595 Opcode = AArch64ISD::DUPLANE16;
4596 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
4597 Opcode = AArch64ISD::DUPLANE32;
4598 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
4599 Opcode = AArch64ISD::DUPLANE64;
4600 else
4601 llvm_unreachable("Invalid vector element type?");
4602
4603 if (VT.getSizeInBits() == 64)
4604 OpLHS = WidenVector(OpLHS, DAG);
4605 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
4606 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
4607 }
4608 case OP_VEXT1:
4609 case OP_VEXT2:
4610 case OP_VEXT3: {
4611 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
4612 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
4613 DAG.getConstant(Imm, MVT::i32));
4614 }
4615 case OP_VUZPL:
4616 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
4617 OpRHS);
4618 case OP_VUZPR:
4619 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
4620 OpRHS);
4621 case OP_VZIPL:
4622 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
4623 OpRHS);
4624 case OP_VZIPR:
4625 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
4626 OpRHS);
4627 case OP_VTRNL:
4628 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
4629 OpRHS);
4630 case OP_VTRNR:
4631 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
4632 OpRHS);
4633 }
4634}
4635
4636static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
4637 SelectionDAG &DAG) {
4638 // Check to see if we can use the TBL instruction.
4639 SDValue V1 = Op.getOperand(0);
4640 SDValue V2 = Op.getOperand(1);
4641 SDLoc DL(Op);
4642
4643 EVT EltVT = Op.getValueType().getVectorElementType();
4644 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
4645
4646 SmallVector<SDValue, 8> TBLMask;
4647 for (int Val : ShuffleMask) {
4648 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
4649 unsigned Offset = Byte + Val * BytesPerElt;
4650 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
4651 }
4652 }
4653
4654 MVT IndexVT = MVT::v8i8;
4655 unsigned IndexLen = 8;
4656 if (Op.getValueType().getSizeInBits() == 128) {
4657 IndexVT = MVT::v16i8;
4658 IndexLen = 16;
4659 }
4660
4661 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
4662 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
4663
4664 SDValue Shuffle;
4665 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
4666 if (IndexLen == 8)
4667 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
4668 Shuffle = DAG.getNode(
4669 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4670 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4671 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4672 makeArrayRef(TBLMask.data(), IndexLen)));
4673 } else {
4674 if (IndexLen == 8) {
4675 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
4676 Shuffle = DAG.getNode(
4677 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4678 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4679 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4680 makeArrayRef(TBLMask.data(), IndexLen)));
4681 } else {
4682 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
4683 // cannot currently represent the register constraints on the input
4684 // table registers.
4685 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
4686 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4687 // &TBLMask[0], IndexLen));
4688 Shuffle = DAG.getNode(
4689 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4690 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
4691 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4692 makeArrayRef(TBLMask.data(), IndexLen)));
4693 }
4694 }
4695 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
4696}
4697
4698static unsigned getDUPLANEOp(EVT EltType) {
4699 if (EltType == MVT::i8)
4700 return AArch64ISD::DUPLANE8;
4701 if (EltType == MVT::i16)
4702 return AArch64ISD::DUPLANE16;
4703 if (EltType == MVT::i32 || EltType == MVT::f32)
4704 return AArch64ISD::DUPLANE32;
4705 if (EltType == MVT::i64 || EltType == MVT::f64)
4706 return AArch64ISD::DUPLANE64;
4707
4708 llvm_unreachable("Invalid vector element type?");
4709}
4710
4711SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4712 SelectionDAG &DAG) const {
4713 SDLoc dl(Op);
4714 EVT VT = Op.getValueType();
4715
4716 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4717
4718 // Convert shuffles that are directly supported on NEON to target-specific
4719 // DAG nodes, instead of keeping them as shuffles and matching them again
4720 // during code selection. This is more efficient and avoids the possibility
4721 // of inconsistencies between legalization and selection.
4722 ArrayRef<int> ShuffleMask = SVN->getMask();
4723
4724 SDValue V1 = Op.getOperand(0);
4725 SDValue V2 = Op.getOperand(1);
4726
4727 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
4728 V1.getValueType().getSimpleVT())) {
4729 int Lane = SVN->getSplatIndex();
4730 // If this is undef splat, generate it via "just" vdup, if possible.
4731 if (Lane == -1)
4732 Lane = 0;
4733
4734 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
4735 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
4736 V1.getOperand(0));
4737 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
4738 // constant. If so, we can just reference the lane's definition directly.
4739 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
4740 !isa<ConstantSDNode>(V1.getOperand(Lane)))
4741 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
4742
4743 // Otherwise, duplicate from the lane of the input vector.
4744 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
4745
4746 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
4747 // to make a vector of the same size as this SHUFFLE. We can ignore the
4748 // extract entirely, and canonicalise the concat using WidenVector.
4749 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
4750 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
4751 V1 = V1.getOperand(0);
4752 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
4753 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
4754 Lane -= Idx * VT.getVectorNumElements() / 2;
4755 V1 = WidenVector(V1.getOperand(Idx), DAG);
4756 } else if (VT.getSizeInBits() == 64)
4757 V1 = WidenVector(V1, DAG);
4758
4759 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
4760 }
4761
4762 if (isREVMask(ShuffleMask, VT, 64))
4763 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
4764 if (isREVMask(ShuffleMask, VT, 32))
4765 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
4766 if (isREVMask(ShuffleMask, VT, 16))
4767 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
4768
4769 bool ReverseEXT = false;
4770 unsigned Imm;
4771 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
4772 if (ReverseEXT)
4773 std::swap(V1, V2);
4774 Imm *= getExtFactor(V1);
4775 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
4776 DAG.getConstant(Imm, MVT::i32));
4777 } else if (V2->getOpcode() == ISD::UNDEF &&
4778 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
4779 Imm *= getExtFactor(V1);
4780 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
4781 DAG.getConstant(Imm, MVT::i32));
4782 }
4783
4784 unsigned WhichResult;
4785 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
4786 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
4787 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4788 }
4789 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
4790 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
4791 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4792 }
4793 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
4794 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
4795 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4796 }
4797
4798 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4799 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
4800 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4801 }
4802 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4803 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
4804 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4805 }
4806 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4807 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
4808 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4809 }
4810
4811 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
4812 if (Concat.getNode())
4813 return Concat;
4814
4815 bool DstIsLeft;
4816 int Anomaly;
4817 int NumInputElements = V1.getValueType().getVectorNumElements();
4818 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
4819 SDValue DstVec = DstIsLeft ? V1 : V2;
4820 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
4821
4822 SDValue SrcVec = V1;
4823 int SrcLane = ShuffleMask[Anomaly];
4824 if (SrcLane >= NumInputElements) {
4825 SrcVec = V2;
4826 SrcLane -= VT.getVectorNumElements();
4827 }
4828 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
4829
4830 EVT ScalarVT = VT.getVectorElementType();
4831 if (ScalarVT.getSizeInBits() < 32)
4832 ScalarVT = MVT::i32;
4833
4834 return DAG.getNode(
4835 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
4836 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
4837 DstLaneV);
4838 }
4839
4840 // If the shuffle is not directly supported and it has 4 elements, use
4841 // the PerfectShuffle-generated table to synthesize it from other shuffles.
4842 unsigned NumElts = VT.getVectorNumElements();
4843 if (NumElts == 4) {
4844 unsigned PFIndexes[4];
4845 for (unsigned i = 0; i != 4; ++i) {
4846 if (ShuffleMask[i] < 0)
4847 PFIndexes[i] = 8;
4848 else
4849 PFIndexes[i] = ShuffleMask[i];
4850 }
4851
4852 // Compute the index in the perfect shuffle table.
4853 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
4854 PFIndexes[2] * 9 + PFIndexes[3];
4855 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4856 unsigned Cost = (PFEntry >> 30);
4857
4858 if (Cost <= 4)
4859 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4860 }
4861
4862 return GenerateTBL(Op, ShuffleMask, DAG);
4863}
4864
4865static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
4866 APInt &UndefBits) {
4867 EVT VT = BVN->getValueType(0);
4868 APInt SplatBits, SplatUndef;
4869 unsigned SplatBitSize;
4870 bool HasAnyUndefs;
4871 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4872 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
4873
4874 for (unsigned i = 0; i < NumSplats; ++i) {
4875 CnstBits <<= SplatBitSize;
4876 UndefBits <<= SplatBitSize;
4877 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
4878 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
4879 }
4880
4881 return true;
4882 }
4883
4884 return false;
4885}
4886
4887SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
4888 SelectionDAG &DAG) const {
4889 BuildVectorSDNode *BVN =
4890 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
4891 SDValue LHS = Op.getOperand(0);
4892 SDLoc dl(Op);
4893 EVT VT = Op.getValueType();
4894
4895 if (!BVN)
4896 return Op;
4897
4898 APInt CnstBits(VT.getSizeInBits(), 0);
4899 APInt UndefBits(VT.getSizeInBits(), 0);
4900 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
4901 // We only have BIC vector immediate instruction, which is and-not.
4902 CnstBits = ~CnstBits;
4903
4904 // We make use of a little bit of goto ickiness in order to avoid having to
4905 // duplicate the immediate matching logic for the undef toggled case.
4906 bool SecondTry = false;
4907 AttemptModImm:
4908
4909 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
4910 CnstBits = CnstBits.zextOrTrunc(64);
4911 uint64_t CnstVal = CnstBits.getZExtValue();
4912
4913 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
4914 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
4915 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4916 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4917 DAG.getConstant(CnstVal, MVT::i32),
4918 DAG.getConstant(0, MVT::i32));
4919 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4920 }
4921
4922 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
4923 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
4924 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4925 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4926 DAG.getConstant(CnstVal, MVT::i32),
4927 DAG.getConstant(8, MVT::i32));
4928 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4929 }
4930
4931 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
4932 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
4933 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4934 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4935 DAG.getConstant(CnstVal, MVT::i32),
4936 DAG.getConstant(16, MVT::i32));
4937 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4938 }
4939
4940 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
4941 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
4942 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4943 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4944 DAG.getConstant(CnstVal, MVT::i32),
4945 DAG.getConstant(24, MVT::i32));
4946 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4947 }
4948
4949 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
4950 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
4951 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
4952 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4953 DAG.getConstant(CnstVal, MVT::i32),
4954 DAG.getConstant(0, MVT::i32));
4955 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4956 }
4957
4958 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
4959 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
4960 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
4961 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4962 DAG.getConstant(CnstVal, MVT::i32),
4963 DAG.getConstant(8, MVT::i32));
4964 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4965 }
4966 }
4967
4968 if (SecondTry)
4969 goto FailedModImm;
4970 SecondTry = true;
4971 CnstBits = ~UndefBits;
4972 goto AttemptModImm;
4973 }
4974
4975// We can always fall back to a non-immediate AND.
4976FailedModImm:
4977 return Op;
4978}
4979
4980// Specialized code to quickly find if PotentialBVec is a BuildVector that
4981// consists of only the same constant int value, returned in reference arg
4982// ConstVal
4983static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
4984 uint64_t &ConstVal) {
4985 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
4986 if (!Bvec)
4987 return false;
4988 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
4989 if (!FirstElt)
4990 return false;
4991 EVT VT = Bvec->getValueType(0);
4992 unsigned NumElts = VT.getVectorNumElements();
4993 for (unsigned i = 1; i < NumElts; ++i)
4994 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
4995 return false;
4996 ConstVal = FirstElt->getZExtValue();
4997 return true;
4998}
4999
5000static unsigned getIntrinsicID(const SDNode *N) {
5001 unsigned Opcode = N->getOpcode();
5002 switch (Opcode) {
5003 default:
5004 return Intrinsic::not_intrinsic;
5005 case ISD::INTRINSIC_WO_CHAIN: {
5006 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5007 if (IID < Intrinsic::num_intrinsics)
5008 return IID;
5009 return Intrinsic::not_intrinsic;
5010 }
5011 }
5012}
5013
5014// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5015// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5016// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5017// Also, logical shift right -> sri, with the same structure.
5018static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5019 EVT VT = N->getValueType(0);
5020
5021 if (!VT.isVector())
5022 return SDValue();
5023
5024 SDLoc DL(N);
5025
5026 // Is the first op an AND?
5027 const SDValue And = N->getOperand(0);
5028 if (And.getOpcode() != ISD::AND)
5029 return SDValue();
5030
5031 // Is the second op an shl or lshr?
5032 SDValue Shift = N->getOperand(1);
5033 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5034 // or AArch64ISD::VLSHR vector, #shift
5035 unsigned ShiftOpc = Shift.getOpcode();
5036 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5037 return SDValue();
5038 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5039
5040 // Is the shift amount constant?
5041 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5042 if (!C2node)
5043 return SDValue();
5044
5045 // Is the and mask vector all constant?
5046 uint64_t C1;
5047 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5048 return SDValue();
5049
5050 // Is C1 == ~C2, taking into account how much one can shift elements of a
5051 // particular size?
5052 uint64_t C2 = C2node->getZExtValue();
5053 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5054 if (C2 > ElemSizeInBits)
5055 return SDValue();
5056 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5057 if ((C1 & ElemMask) != (~C2 & ElemMask))
5058 return SDValue();
5059
5060 SDValue X = And.getOperand(0);
5061 SDValue Y = Shift.getOperand(0);
5062
5063 unsigned Intrin =
5064 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5065 SDValue ResultSLI =
5066 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5067 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5068
5069 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5070 DEBUG(N->dump(&DAG));
5071 DEBUG(dbgs() << "into: \n");
5072 DEBUG(ResultSLI->dump(&DAG));
5073
5074 ++NumShiftInserts;
5075 return ResultSLI;
5076}
5077
5078SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5079 SelectionDAG &DAG) const {
5080 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5081 if (EnableAArch64SlrGeneration) {
5082 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5083 if (Res.getNode())
5084 return Res;
5085 }
5086
5087 BuildVectorSDNode *BVN =
5088 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5089 SDValue LHS = Op.getOperand(1);
5090 SDLoc dl(Op);
5091 EVT VT = Op.getValueType();
5092
5093 // OR commutes, so try swapping the operands.
5094 if (!BVN) {
5095 LHS = Op.getOperand(0);
5096 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5097 }
5098 if (!BVN)
5099 return Op;
5100
5101 APInt CnstBits(VT.getSizeInBits(), 0);
5102 APInt UndefBits(VT.getSizeInBits(), 0);
5103 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5104 // We make use of a little bit of goto ickiness in order to avoid having to
5105 // duplicate the immediate matching logic for the undef toggled case.
5106 bool SecondTry = false;
5107 AttemptModImm:
5108
5109 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5110 CnstBits = CnstBits.zextOrTrunc(64);
5111 uint64_t CnstVal = CnstBits.getZExtValue();
5112
5113 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5114 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5115 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5116 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5117 DAG.getConstant(CnstVal, MVT::i32),
5118 DAG.getConstant(0, MVT::i32));
5119 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5120 }
5121
5122 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5123 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5124 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5125 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5126 DAG.getConstant(CnstVal, MVT::i32),
5127 DAG.getConstant(8, MVT::i32));
5128 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5129 }
5130
5131 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5132 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5133 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5134 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5135 DAG.getConstant(CnstVal, MVT::i32),
5136 DAG.getConstant(16, MVT::i32));
5137 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5138 }
5139
5140 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5141 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5142 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5143 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5144 DAG.getConstant(CnstVal, MVT::i32),
5145 DAG.getConstant(24, MVT::i32));
5146 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5147 }
5148
5149 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5150 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5151 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5152 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5153 DAG.getConstant(CnstVal, MVT::i32),
5154 DAG.getConstant(0, MVT::i32));
5155 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5156 }
5157
5158 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5159 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5160 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5161 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5162 DAG.getConstant(CnstVal, MVT::i32),
5163 DAG.getConstant(8, MVT::i32));
5164 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5165 }
5166 }
5167
5168 if (SecondTry)
5169 goto FailedModImm;
5170 SecondTry = true;
5171 CnstBits = UndefBits;
5172 goto AttemptModImm;
5173 }
5174
5175// We can always fall back to a non-immediate OR.
5176FailedModImm:
5177 return Op;
5178}
5179
5180SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5181 SelectionDAG &DAG) const {
5182 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5183 SDLoc dl(Op);
5184 EVT VT = Op.getValueType();
5185
5186 APInt CnstBits(VT.getSizeInBits(), 0);
5187 APInt UndefBits(VT.getSizeInBits(), 0);
5188 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5189 // We make use of a little bit of goto ickiness in order to avoid having to
5190 // duplicate the immediate matching logic for the undef toggled case.
5191 bool SecondTry = false;
5192 AttemptModImm:
5193
5194 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5195 CnstBits = CnstBits.zextOrTrunc(64);
5196 uint64_t CnstVal = CnstBits.getZExtValue();
5197
5198 // Certain magic vector constants (used to express things like NOT
5199 // and NEG) are passed through unmodified. This allows codegen patterns
5200 // for these operations to match. Special-purpose patterns will lower
5201 // these immediates to MOVIs if it proves necessary.
5202 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5203 return Op;
5204
5205 // The many faces of MOVI...
5206 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5207 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5208 if (VT.getSizeInBits() == 128) {
5209 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5210 DAG.getConstant(CnstVal, MVT::i32));
5211 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5212 }
5213
5214 // Support the V64 version via subregister insertion.
5215 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5216 DAG.getConstant(CnstVal, MVT::i32));
5217 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5218 }
5219
5220 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5221 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5222 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5223 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5224 DAG.getConstant(CnstVal, MVT::i32),
5225 DAG.getConstant(0, MVT::i32));
5226 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5227 }
5228
5229 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5230 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5231 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5232 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5233 DAG.getConstant(CnstVal, MVT::i32),
5234 DAG.getConstant(8, MVT::i32));
5235 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5236 }
5237
5238 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5239 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5240 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5241 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5242 DAG.getConstant(CnstVal, MVT::i32),
5243 DAG.getConstant(16, MVT::i32));
5244 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5245 }
5246
5247 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5248 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5249 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5250 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5251 DAG.getConstant(CnstVal, MVT::i32),
5252 DAG.getConstant(24, MVT::i32));
5253 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5254 }
5255
5256 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5257 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5258 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5259 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5260 DAG.getConstant(CnstVal, MVT::i32),
5261 DAG.getConstant(0, MVT::i32));
5262 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5263 }
5264
5265 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5266 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5267 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5268 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5269 DAG.getConstant(CnstVal, MVT::i32),
5270 DAG.getConstant(8, MVT::i32));
5271 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5272 }
5273
5274 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5275 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5276 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5277 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5278 DAG.getConstant(CnstVal, MVT::i32),
5279 DAG.getConstant(264, MVT::i32));
5280 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5281 }
5282
5283 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5284 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5285 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5286 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5287 DAG.getConstant(CnstVal, MVT::i32),
5288 DAG.getConstant(272, MVT::i32));
5289 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5290 }
5291
5292 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5293 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5294 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5295 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5296 DAG.getConstant(CnstVal, MVT::i32));
5297 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5298 }
5299
5300 // The few faces of FMOV...
5301 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5302 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5303 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5304 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5305 DAG.getConstant(CnstVal, MVT::i32));
5306 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5307 }
5308
5309 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5310 VT.getSizeInBits() == 128) {
5311 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5312 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5313 DAG.getConstant(CnstVal, MVT::i32));
5314 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5315 }
5316
5317 // The many faces of MVNI...
5318 CnstVal = ~CnstVal;
5319 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5320 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5321 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5322 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5323 DAG.getConstant(CnstVal, MVT::i32),
5324 DAG.getConstant(0, MVT::i32));
5325 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5326 }
5327
5328 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5329 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5330 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5331 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5332 DAG.getConstant(CnstVal, MVT::i32),
5333 DAG.getConstant(8, MVT::i32));
5334 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5335 }
5336
5337 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5338 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5339 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5340 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5341 DAG.getConstant(CnstVal, MVT::i32),
5342 DAG.getConstant(16, MVT::i32));
5343 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5344 }
5345
5346 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5347 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5348 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5349 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5350 DAG.getConstant(CnstVal, MVT::i32),
5351 DAG.getConstant(24, MVT::i32));
5352 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5353 }
5354
5355 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5356 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5357 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5358 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5359 DAG.getConstant(CnstVal, MVT::i32),
5360 DAG.getConstant(0, MVT::i32));
5361 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5362 }
5363
5364 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5365 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5366 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5367 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5368 DAG.getConstant(CnstVal, MVT::i32),
5369 DAG.getConstant(8, MVT::i32));
5370 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5371 }
5372
5373 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5374 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5375 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5376 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5377 DAG.getConstant(CnstVal, MVT::i32),
5378 DAG.getConstant(264, MVT::i32));
5379 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5380 }
5381
5382 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5383 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5384 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5385 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5386 DAG.getConstant(CnstVal, MVT::i32),
5387 DAG.getConstant(272, MVT::i32));
5388 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5389 }
5390 }
5391
5392 if (SecondTry)
5393 goto FailedModImm;
5394 SecondTry = true;
5395 CnstBits = UndefBits;
5396 goto AttemptModImm;
5397 }
5398FailedModImm:
5399
5400 // Scan through the operands to find some interesting properties we can
5401 // exploit:
5402 // 1) If only one value is used, we can use a DUP, or
5403 // 2) if only the low element is not undef, we can just insert that, or
5404 // 3) if only one constant value is used (w/ some non-constant lanes),
5405 // we can splat the constant value into the whole vector then fill
5406 // in the non-constant lanes.
5407 // 4) FIXME: If different constant values are used, but we can intelligently
5408 // select the values we'll be overwriting for the non-constant
5409 // lanes such that we can directly materialize the vector
5410 // some other way (MOVI, e.g.), we can be sneaky.
5411 unsigned NumElts = VT.getVectorNumElements();
5412 bool isOnlyLowElement = true;
5413 bool usesOnlyOneValue = true;
5414 bool usesOnlyOneConstantValue = true;
5415 bool isConstant = true;
5416 unsigned NumConstantLanes = 0;
5417 SDValue Value;
5418 SDValue ConstantValue;
5419 for (unsigned i = 0; i < NumElts; ++i) {
5420 SDValue V = Op.getOperand(i);
5421 if (V.getOpcode() == ISD::UNDEF)
5422 continue;
5423 if (i > 0)
5424 isOnlyLowElement = false;
5425 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5426 isConstant = false;
5427
5428 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5429 ++NumConstantLanes;
5430 if (!ConstantValue.getNode())
5431 ConstantValue = V;
5432 else if (ConstantValue != V)
5433 usesOnlyOneConstantValue = false;
5434 }
5435
5436 if (!Value.getNode())
5437 Value = V;
5438 else if (V != Value)
5439 usesOnlyOneValue = false;
5440 }
5441
5442 if (!Value.getNode())
5443 return DAG.getUNDEF(VT);
5444
5445 if (isOnlyLowElement)
5446 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5447
5448 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5449 // i32 and try again.
5450 if (usesOnlyOneValue) {
5451 if (!isConstant) {
5452 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5453 Value.getValueType() != VT)
5454 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5455
5456 // This is actually a DUPLANExx operation, which keeps everything vectory.
5457
5458 // DUPLANE works on 128-bit vectors, widen it if necessary.
5459 SDValue Lane = Value.getOperand(1);
5460 Value = Value.getOperand(0);
5461 if (Value.getValueType().getSizeInBits() == 64)
5462 Value = WidenVector(Value, DAG);
5463
5464 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5465 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5466 }
5467
5468 if (VT.getVectorElementType().isFloatingPoint()) {
5469 SmallVector<SDValue, 8> Ops;
5470 MVT NewType =
5471 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5472 for (unsigned i = 0; i < NumElts; ++i)
5473 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5474 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5475 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5476 Val = LowerBUILD_VECTOR(Val, DAG);
5477 if (Val.getNode())
5478 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5479 }
5480 }
5481
5482 // If there was only one constant value used and for more than one lane,
5483 // start by splatting that value, then replace the non-constant lanes. This
5484 // is better than the default, which will perform a separate initialization
5485 // for each lane.
5486 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5487 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5488 // Now insert the non-constant lanes.
5489 for (unsigned i = 0; i < NumElts; ++i) {
5490 SDValue V = Op.getOperand(i);
5491 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5492 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5493 // Note that type legalization likely mucked about with the VT of the
5494 // source operand, so we may have to convert it here before inserting.
5495 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5496 }
5497 }
5498 return Val;
5499 }
5500
5501 // If all elements are constants and the case above didn't get hit, fall back
5502 // to the default expansion, which will generate a load from the constant
5503 // pool.
5504 if (isConstant)
5505 return SDValue();
5506
5507 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5508 if (NumElts >= 4) {
5509 SDValue shuffle = ReconstructShuffle(Op, DAG);
5510 if (shuffle != SDValue())
5511 return shuffle;
5512 }
5513
5514 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5515 // know the default expansion would otherwise fall back on something even
5516 // worse. For a vector with one or two non-undef values, that's
5517 // scalar_to_vector for the elements followed by a shuffle (provided the
5518 // shuffle is valid for the target) and materialization element by element
5519 // on the stack followed by a load for everything else.
5520 if (!isConstant && !usesOnlyOneValue) {
5521 SDValue Vec = DAG.getUNDEF(VT);
5522 SDValue Op0 = Op.getOperand(0);
5523 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5524 unsigned i = 0;
5525 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5526 // a) Avoid a RMW dependency on the full vector register, and
5527 // b) Allow the register coalescer to fold away the copy if the
5528 // value is already in an S or D register.
5529 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
5530 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
5531 MachineSDNode *N =
5532 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
5533 DAG.getTargetConstant(SubIdx, MVT::i32));
5534 Vec = SDValue(N, 0);
5535 ++i;
5536 }
5537 for (; i < NumElts; ++i) {
5538 SDValue V = Op.getOperand(i);
5539 if (V.getOpcode() == ISD::UNDEF)
5540 continue;
5541 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5542 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5543 }
5544 return Vec;
5545 }
5546
5547 // Just use the default expansion. We failed to find a better alternative.
5548 return SDValue();
5549}
5550
5551SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
5552 SelectionDAG &DAG) const {
5553 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
5554
5555 // Check for non-constant lane.
5556 if (!isa<ConstantSDNode>(Op.getOperand(2)))
5557 return SDValue();
5558
5559 EVT VT = Op.getOperand(0).getValueType();
5560
5561 // Insertion/extraction are legal for V128 types.
5562 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
5563 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
5564 return Op;
5565
5566 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
5567 VT != MVT::v1i64 && VT != MVT::v2f32)
5568 return SDValue();
5569
5570 // For V64 types, we perform insertion by expanding the value
5571 // to a V128 type and perform the insertion on that.
5572 SDLoc DL(Op);
5573 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5574 EVT WideTy = WideVec.getValueType();
5575
5576 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
5577 Op.getOperand(1), Op.getOperand(2));
5578 // Re-narrow the resultant vector.
5579 return NarrowVector(Node, DAG);
5580}
5581
5582SDValue
5583AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5584 SelectionDAG &DAG) const {
5585 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
5586
5587 // Check for non-constant lane.
5588 if (!isa<ConstantSDNode>(Op.getOperand(1)))
5589 return SDValue();
5590
5591 EVT VT = Op.getOperand(0).getValueType();
5592
5593 // Insertion/extraction are legal for V128 types.
5594 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
5595 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
5596 return Op;
5597
5598 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
5599 VT != MVT::v1i64 && VT != MVT::v2f32)
5600 return SDValue();
5601
5602 // For V64 types, we perform extraction by expanding the value
5603 // to a V128 type and perform the extraction on that.
5604 SDLoc DL(Op);
5605 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5606 EVT WideTy = WideVec.getValueType();
5607
5608 EVT ExtrTy = WideTy.getVectorElementType();
5609 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
5610 ExtrTy = MVT::i32;
5611
5612 // For extractions, we just return the result directly.
5613 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
5614 Op.getOperand(1));
5615}
5616
5617SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
5618 SelectionDAG &DAG) const {
5619 EVT VT = Op.getOperand(0).getValueType();
5620 SDLoc dl(Op);
5621 // Just in case...
5622 if (!VT.isVector())
5623 return SDValue();
5624
5625 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5626 if (!Cst)
5627 return SDValue();
5628 unsigned Val = Cst->getZExtValue();
5629
5630 unsigned Size = Op.getValueType().getSizeInBits();
5631 if (Val == 0) {
5632 switch (Size) {
5633 case 8:
5634 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
5635 Op.getOperand(0));
5636 case 16:
5637 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
5638 Op.getOperand(0));
5639 case 32:
5640 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
5641 Op.getOperand(0));
5642 case 64:
5643 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
5644 Op.getOperand(0));
5645 default:
5646 llvm_unreachable("Unexpected vector type in extract_subvector!");
5647 }
5648 }
5649 // If this is extracting the upper 64-bits of a 128-bit vector, we match
5650 // that directly.
5651 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
5652 return Op;
5653
5654 return SDValue();
5655}
5656
5657bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5658 EVT VT) const {
5659 if (VT.getVectorNumElements() == 4 &&
5660 (VT.is128BitVector() || VT.is64BitVector())) {
5661 unsigned PFIndexes[4];
5662 for (unsigned i = 0; i != 4; ++i) {
5663 if (M[i] < 0)
5664 PFIndexes[i] = 8;
5665 else
5666 PFIndexes[i] = M[i];
5667 }
5668
5669 // Compute the index in the perfect shuffle table.
5670 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5671 PFIndexes[2] * 9 + PFIndexes[3];
5672 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5673 unsigned Cost = (PFEntry >> 30);
5674
5675 if (Cost <= 4)
5676 return true;
5677 }
5678
5679 bool DummyBool;
5680 int DummyInt;
5681 unsigned DummyUnsigned;
5682
5683 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
5684 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
5685 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
5686 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
5687 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
5688 isZIPMask(M, VT, DummyUnsigned) ||
5689 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
5690 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
5691 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
5692 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
5693 isConcatMask(M, VT, VT.getSizeInBits() == 128));
5694}
5695
5696/// getVShiftImm - Check if this is a valid build_vector for the immediate
5697/// operand of a vector shift operation, where all the elements of the
5698/// build_vector must have the same constant integer value.
5699static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5700 // Ignore bit_converts.
5701 while (Op.getOpcode() == ISD::BITCAST)
5702 Op = Op.getOperand(0);
5703 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5704 APInt SplatBits, SplatUndef;
5705 unsigned SplatBitSize;
5706 bool HasAnyUndefs;
5707 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5708 HasAnyUndefs, ElementBits) ||
5709 SplatBitSize > ElementBits)
5710 return false;
5711 Cnt = SplatBits.getSExtValue();
5712 return true;
5713}
5714
5715/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5716/// operand of a vector shift left operation. That value must be in the range:
5717/// 0 <= Value < ElementBits for a left shift; or
5718/// 0 <= Value <= ElementBits for a long left shift.
5719static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5720 assert(VT.isVector() && "vector shift count is not a vector type");
5721 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5722 if (!getVShiftImm(Op, ElementBits, Cnt))
5723 return false;
5724 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
5725}
5726
5727/// isVShiftRImm - Check if this is a valid build_vector for the immediate
5728/// operand of a vector shift right operation. For a shift opcode, the value
5729/// is positive, but for an intrinsic the value count must be negative. The
5730/// absolute value must be in the range:
5731/// 1 <= |Value| <= ElementBits for a right shift; or
5732/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5733static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5734 int64_t &Cnt) {
5735 assert(VT.isVector() && "vector shift count is not a vector type");
5736 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5737 if (!getVShiftImm(Op, ElementBits, Cnt))
5738 return false;
5739 if (isIntrinsic)
5740 Cnt = -Cnt;
5741 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
5742}
5743
5744SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
5745 SelectionDAG &DAG) const {
5746 EVT VT = Op.getValueType();
5747 SDLoc DL(Op);
5748 int64_t Cnt;
5749
5750 if (!Op.getOperand(1).getValueType().isVector())
5751 return Op;
5752 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5753
5754 switch (Op.getOpcode()) {
5755 default:
5756 llvm_unreachable("unexpected shift opcode");
5757
5758 case ISD::SHL:
5759 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
5760 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
5761 DAG.getConstant(Cnt, MVT::i32));
5762 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5763 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
5764 Op.getOperand(0), Op.getOperand(1));
5765 case ISD::SRA:
5766 case ISD::SRL:
5767 // Right shift immediate
5768 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
5769 Cnt < EltSize) {
5770 unsigned Opc =
5771 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
5772 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
5773 DAG.getConstant(Cnt, MVT::i32));
5774 }
5775
5776 // Right shift register. Note, there is not a shift right register
5777 // instruction, but the shift left register instruction takes a signed
5778 // value, where negative numbers specify a right shift.
5779 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
5780 : Intrinsic::aarch64_neon_ushl;
5781 // negate the shift amount
5782 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
5783 SDValue NegShiftLeft =
5784 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5785 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
5786 return NegShiftLeft;
5787 }
5788
5789 return SDValue();
5790}
5791
5792static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
5793 AArch64CC::CondCode CC, bool NoNans, EVT VT,
5794 SDLoc dl, SelectionDAG &DAG) {
5795 EVT SrcVT = LHS.getValueType();
5796
5797 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
5798 APInt CnstBits(VT.getSizeInBits(), 0);
5799 APInt UndefBits(VT.getSizeInBits(), 0);
5800 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
5801 bool IsZero = IsCnst && (CnstBits == 0);
5802
5803 if (SrcVT.getVectorElementType().isFloatingPoint()) {
5804 switch (CC) {
5805 default:
5806 return SDValue();
5807 case AArch64CC::NE: {
5808 SDValue Fcmeq;
5809 if (IsZero)
5810 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
5811 else
5812 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
5813 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
5814 }
5815 case AArch64CC::EQ:
5816 if (IsZero)
5817 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
5818 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
5819 case AArch64CC::GE:
5820 if (IsZero)
5821 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
5822 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
5823 case AArch64CC::GT:
5824 if (IsZero)
5825 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
5826 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
5827 case AArch64CC::LS:
5828 if (IsZero)
5829 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
5830 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
5831 case AArch64CC::LT:
5832 if (!NoNans)
5833 return SDValue();
5834 // If we ignore NaNs then we can use to the MI implementation.
5835 // Fallthrough.
5836 case AArch64CC::MI:
5837 if (IsZero)
5838 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
5839 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
5840 }
5841 }
5842
5843 switch (CC) {
5844 default:
5845 return SDValue();
5846 case AArch64CC::NE: {
5847 SDValue Cmeq;
5848 if (IsZero)
5849 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
5850 else
5851 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
5852 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
5853 }
5854 case AArch64CC::EQ:
5855 if (IsZero)
5856 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
5857 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
5858 case AArch64CC::GE:
5859 if (IsZero)
5860 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
5861 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
5862 case AArch64CC::GT:
5863 if (IsZero)
5864 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
5865 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
5866 case AArch64CC::LE:
5867 if (IsZero)
5868 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
5869 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
5870 case AArch64CC::LS:
5871 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
5872 case AArch64CC::LO:
5873 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
5874 case AArch64CC::LT:
5875 if (IsZero)
5876 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
5877 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
5878 case AArch64CC::HI:
5879 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
5880 case AArch64CC::HS:
5881 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
5882 }
5883}
5884
5885SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
5886 SelectionDAG &DAG) const {
5887 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5888 SDValue LHS = Op.getOperand(0);
5889 SDValue RHS = Op.getOperand(1);
5890 SDLoc dl(Op);
5891
5892 if (LHS.getValueType().getVectorElementType().isInteger()) {
5893 assert(LHS.getValueType() == RHS.getValueType());
5894 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
5895 return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
5896 dl, DAG);
5897 }
5898
5899 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
5900 LHS.getValueType().getVectorElementType() == MVT::f64);
5901
5902 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5903 // clean. Some of them require two branches to implement.
5904 AArch64CC::CondCode CC1, CC2;
5905 bool ShouldInvert;
5906 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
5907
5908 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
5909 SDValue Cmp =
5910 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
5911 if (!Cmp.getNode())
5912 return SDValue();
5913
5914 if (CC2 != AArch64CC::AL) {
5915 SDValue Cmp2 =
5916 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
5917 if (!Cmp2.getNode())
5918 return SDValue();
5919
5920 Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
5921 }
5922
5923 if (ShouldInvert)
5924 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
5925
5926 return Cmp;
5927}
5928
5929/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
5930/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
5931/// specified in the intrinsic calls.
5932bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5933 const CallInst &I,
5934 unsigned Intrinsic) const {
5935 switch (Intrinsic) {
5936 case Intrinsic::aarch64_neon_ld2:
5937 case Intrinsic::aarch64_neon_ld3:
5938 case Intrinsic::aarch64_neon_ld4:
5939 case Intrinsic::aarch64_neon_ld1x2:
5940 case Intrinsic::aarch64_neon_ld1x3:
5941 case Intrinsic::aarch64_neon_ld1x4:
5942 case Intrinsic::aarch64_neon_ld2lane:
5943 case Intrinsic::aarch64_neon_ld3lane:
5944 case Intrinsic::aarch64_neon_ld4lane:
5945 case Intrinsic::aarch64_neon_ld2r:
5946 case Intrinsic::aarch64_neon_ld3r:
5947 case Intrinsic::aarch64_neon_ld4r: {
5948 Info.opc = ISD::INTRINSIC_W_CHAIN;
5949 // Conservatively set memVT to the entire set of vectors loaded.
5950 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
5951 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5952 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
5953 Info.offset = 0;
5954 Info.align = 0;
5955 Info.vol = false; // volatile loads with NEON intrinsics not supported
5956 Info.readMem = true;
5957 Info.writeMem = false;
5958 return true;
5959 }
5960 case Intrinsic::aarch64_neon_st2:
5961 case Intrinsic::aarch64_neon_st3:
5962 case Intrinsic::aarch64_neon_st4:
5963 case Intrinsic::aarch64_neon_st1x2:
5964 case Intrinsic::aarch64_neon_st1x3:
5965 case Intrinsic::aarch64_neon_st1x4:
5966 case Intrinsic::aarch64_neon_st2lane:
5967 case Intrinsic::aarch64_neon_st3lane:
5968 case Intrinsic::aarch64_neon_st4lane: {
5969 Info.opc = ISD::INTRINSIC_VOID;
5970 // Conservatively set memVT to the entire set of vectors stored.
5971 unsigned NumElts = 0;
5972 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
5973 Type *ArgTy = I.getArgOperand(ArgI)->getType();
5974 if (!ArgTy->isVectorTy())
5975 break;
5976 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
5977 }
5978 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5979 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
5980 Info.offset = 0;
5981 Info.align = 0;
5982 Info.vol = false; // volatile stores with NEON intrinsics not supported
5983 Info.readMem = false;
5984 Info.writeMem = true;
5985 return true;
5986 }
5987 case Intrinsic::aarch64_ldaxr:
5988 case Intrinsic::aarch64_ldxr: {
5989 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
5990 Info.opc = ISD::INTRINSIC_W_CHAIN;
5991 Info.memVT = MVT::getVT(PtrTy->getElementType());
5992 Info.ptrVal = I.getArgOperand(0);
5993 Info.offset = 0;
5994 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
5995 Info.vol = true;
5996 Info.readMem = true;
5997 Info.writeMem = false;
5998 return true;
5999 }
6000 case Intrinsic::aarch64_stlxr:
6001 case Intrinsic::aarch64_stxr: {
6002 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6003 Info.opc = ISD::INTRINSIC_W_CHAIN;
6004 Info.memVT = MVT::getVT(PtrTy->getElementType());
6005 Info.ptrVal = I.getArgOperand(1);
6006 Info.offset = 0;
6007 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6008 Info.vol = true;
6009 Info.readMem = false;
6010 Info.writeMem = true;
6011 return true;
6012 }
6013 case Intrinsic::aarch64_ldaxp:
6014 case Intrinsic::aarch64_ldxp: {
6015 Info.opc = ISD::INTRINSIC_W_CHAIN;
6016 Info.memVT = MVT::i128;
6017 Info.ptrVal = I.getArgOperand(0);
6018 Info.offset = 0;
6019 Info.align = 16;
6020 Info.vol = true;
6021 Info.readMem = true;
6022 Info.writeMem = false;
6023 return true;
6024 }
6025 case Intrinsic::aarch64_stlxp:
6026 case Intrinsic::aarch64_stxp: {
6027 Info.opc = ISD::INTRINSIC_W_CHAIN;
6028 Info.memVT = MVT::i128;
6029 Info.ptrVal = I.getArgOperand(2);
6030 Info.offset = 0;
6031 Info.align = 16;
6032 Info.vol = true;
6033 Info.readMem = false;
6034 Info.writeMem = true;
6035 return true;
6036 }
6037 default:
6038 break;
6039 }
6040
6041 return false;
6042}
6043
6044// Truncations from 64-bit GPR to 32-bit GPR is free.
6045bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6046 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6047 return false;
6048 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6049 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006050 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006051}
6052bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006053 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006054 return false;
6055 unsigned NumBits1 = VT1.getSizeInBits();
6056 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006057 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006058}
6059
6060// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6061// 64-bit GPR.
6062bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6063 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6064 return false;
6065 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6066 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006067 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006068}
6069bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006070 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006071 return false;
6072 unsigned NumBits1 = VT1.getSizeInBits();
6073 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006074 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006075}
6076
6077bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6078 EVT VT1 = Val.getValueType();
6079 if (isZExtFree(VT1, VT2)) {
6080 return true;
6081 }
6082
6083 if (Val.getOpcode() != ISD::LOAD)
6084 return false;
6085
6086 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006087 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6088 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6089 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006090}
6091
6092bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6093 unsigned &RequiredAligment) const {
6094 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6095 return false;
6096 // Cyclone supports unaligned accesses.
6097 RequiredAligment = 0;
6098 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6099 return NumBits == 32 || NumBits == 64;
6100}
6101
6102bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6103 unsigned &RequiredAligment) const {
6104 if (!LoadedType.isSimple() ||
6105 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6106 return false;
6107 // Cyclone supports unaligned accesses.
6108 RequiredAligment = 0;
6109 unsigned NumBits = LoadedType.getSizeInBits();
6110 return NumBits == 32 || NumBits == 64;
6111}
6112
6113static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6114 unsigned AlignCheck) {
6115 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6116 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6117}
6118
6119EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6120 unsigned SrcAlign, bool IsMemset,
6121 bool ZeroMemset,
6122 bool MemcpyStrSrc,
6123 MachineFunction &MF) const {
6124 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6125 // instruction to materialize the v2i64 zero and one store (with restrictive
6126 // addressing mode). Just do two i64 store of zero-registers.
6127 bool Fast;
6128 const Function *F = MF.getFunction();
6129 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6130 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
6131 Attribute::NoImplicitFloat) &&
6132 (memOpAlign(SrcAlign, DstAlign, 16) ||
6133 (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast)))
6134 return MVT::f128;
6135
6136 return Size >= 8 ? MVT::i64 : MVT::i32;
6137}
6138
6139// 12-bit optionally shifted immediates are legal for adds.
6140bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6141 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6142 return true;
6143 return false;
6144}
6145
6146// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6147// immediates is the same as for an add or a sub.
6148bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6149 if (Immed < 0)
6150 Immed *= -1;
6151 return isLegalAddImmediate(Immed);
6152}
6153
6154/// isLegalAddressingMode - Return true if the addressing mode represented
6155/// by AM is legal for this target, for a load/store of the specified type.
6156bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6157 Type *Ty) const {
6158 // AArch64 has five basic addressing modes:
6159 // reg
6160 // reg + 9-bit signed offset
6161 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6162 // reg1 + reg2
6163 // reg + SIZE_IN_BYTES * reg
6164
6165 // No global is ever allowed as a base.
6166 if (AM.BaseGV)
6167 return false;
6168
6169 // No reg+reg+imm addressing.
6170 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6171 return false;
6172
6173 // check reg + imm case:
6174 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6175 uint64_t NumBytes = 0;
6176 if (Ty->isSized()) {
6177 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6178 NumBytes = NumBits / 8;
6179 if (!isPowerOf2_64(NumBits))
6180 NumBytes = 0;
6181 }
6182
6183 if (!AM.Scale) {
6184 int64_t Offset = AM.BaseOffs;
6185
6186 // 9-bit signed offset
6187 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6188 return true;
6189
6190 // 12-bit unsigned offset
6191 unsigned shift = Log2_64(NumBytes);
6192 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6193 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6194 (Offset >> shift) << shift == Offset)
6195 return true;
6196 return false;
6197 }
6198
6199 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6200
6201 if (!AM.Scale || AM.Scale == 1 ||
6202 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6203 return true;
6204 return false;
6205}
6206
6207int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6208 Type *Ty) const {
6209 // Scaling factors are not free at all.
6210 // Operands | Rt Latency
6211 // -------------------------------------------
6212 // Rt, [Xn, Xm] | 4
6213 // -------------------------------------------
6214 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6215 // Rt, [Xn, Wm, <extend> #imm] |
6216 if (isLegalAddressingMode(AM, Ty))
6217 // Scale represents reg2 * scale, thus account for 1 if
6218 // it is not equal to 0 or 1.
6219 return AM.Scale != 0 && AM.Scale != 1;
6220 return -1;
6221}
6222
6223bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6224 VT = VT.getScalarType();
6225
6226 if (!VT.isSimple())
6227 return false;
6228
6229 switch (VT.getSimpleVT().SimpleTy) {
6230 case MVT::f32:
6231 case MVT::f64:
6232 return true;
6233 default:
6234 break;
6235 }
6236
6237 return false;
6238}
6239
6240const MCPhysReg *
6241AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6242 // LR is a callee-save register, but we must treat it as clobbered by any call
6243 // site. Hence we include LR in the scratch registers, which are in turn added
6244 // as implicit-defs for stackmaps and patchpoints.
6245 static const MCPhysReg ScratchRegs[] = {
6246 AArch64::X16, AArch64::X17, AArch64::LR, 0
6247 };
6248 return ScratchRegs;
6249}
6250
6251bool
6252AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6253 EVT VT = N->getValueType(0);
6254 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6255 // it with shift to let it be lowered to UBFX.
6256 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6257 isa<ConstantSDNode>(N->getOperand(1))) {
6258 uint64_t TruncMask = N->getConstantOperandVal(1);
6259 if (isMask_64(TruncMask) &&
6260 N->getOperand(0).getOpcode() == ISD::SRL &&
6261 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6262 return false;
6263 }
6264 return true;
6265}
6266
6267bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6268 Type *Ty) const {
6269 assert(Ty->isIntegerTy());
6270
6271 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6272 if (BitSize == 0)
6273 return false;
6274
6275 int64_t Val = Imm.getSExtValue();
6276 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6277 return true;
6278
6279 if ((int64_t)Val < 0)
6280 Val = ~Val;
6281 if (BitSize == 32)
6282 Val &= (1LL << 32) - 1;
6283
6284 unsigned LZ = countLeadingZeros((uint64_t)Val);
6285 unsigned Shift = (63 - LZ) / 16;
6286 // MOVZ is free so return true for one or fewer MOVK.
6287 return (Shift < 3) ? true : false;
6288}
6289
6290// Generate SUBS and CSEL for integer abs.
6291static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6292 EVT VT = N->getValueType(0);
6293
6294 SDValue N0 = N->getOperand(0);
6295 SDValue N1 = N->getOperand(1);
6296 SDLoc DL(N);
6297
6298 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6299 // and change it to SUB and CSEL.
6300 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6301 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6302 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6303 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6304 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6305 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6306 N0.getOperand(0));
6307 // Generate SUBS & CSEL.
6308 SDValue Cmp =
6309 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6310 N0.getOperand(0), DAG.getConstant(0, VT));
6311 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6312 DAG.getConstant(AArch64CC::PL, MVT::i32),
6313 SDValue(Cmp.getNode(), 1));
6314 }
6315 return SDValue();
6316}
6317
6318// performXorCombine - Attempts to handle integer ABS.
6319static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6320 TargetLowering::DAGCombinerInfo &DCI,
6321 const AArch64Subtarget *Subtarget) {
6322 if (DCI.isBeforeLegalizeOps())
6323 return SDValue();
6324
6325 return performIntegerAbsCombine(N, DAG);
6326}
6327
6328static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6329 TargetLowering::DAGCombinerInfo &DCI,
6330 const AArch64Subtarget *Subtarget) {
6331 if (DCI.isBeforeLegalizeOps())
6332 return SDValue();
6333
6334 // Multiplication of a power of two plus/minus one can be done more
6335 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6336 // future CPUs have a cheaper MADD instruction, this may need to be
6337 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6338 // 64-bit is 5 cycles, so this is always a win.
6339 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6340 APInt Value = C->getAPIntValue();
6341 EVT VT = N->getValueType(0);
6342 APInt VP1 = Value + 1;
6343 if (VP1.isPowerOf2()) {
6344 // Multiplying by one less than a power of two, replace with a shift
6345 // and a subtract.
6346 SDValue ShiftedVal =
6347 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6348 DAG.getConstant(VP1.logBase2(), MVT::i64));
6349 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6350 }
6351 APInt VM1 = Value - 1;
6352 if (VM1.isPowerOf2()) {
6353 // Multiplying by one more than a power of two, replace with a shift
6354 // and an add.
6355 SDValue ShiftedVal =
6356 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6357 DAG.getConstant(VM1.logBase2(), MVT::i64));
6358 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6359 }
6360 }
6361 return SDValue();
6362}
6363
6364static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
6365 EVT VT = N->getValueType(0);
6366 if (VT != MVT::f32 && VT != MVT::f64)
6367 return SDValue();
6368 // Only optimize when the source and destination types have the same width.
6369 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6370 return SDValue();
6371
6372 // If the result of an integer load is only used by an integer-to-float
6373 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6374 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6375 SDValue N0 = N->getOperand(0);
6376 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6377 // Do not change the width of a volatile load.
6378 !cast<LoadSDNode>(N0)->isVolatile()) {
6379 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6380 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6381 LN0->getPointerInfo(), LN0->isVolatile(),
6382 LN0->isNonTemporal(), LN0->isInvariant(),
6383 LN0->getAlignment());
6384
6385 // Make sure successors of the original load stay after it by updating them
6386 // to use the new Chain.
6387 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6388
6389 unsigned Opcode =
6390 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6391 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6392 }
6393
6394 return SDValue();
6395}
6396
6397/// An EXTR instruction is made up of two shifts, ORed together. This helper
6398/// searches for and classifies those shifts.
6399static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
6400 bool &FromHi) {
6401 if (N.getOpcode() == ISD::SHL)
6402 FromHi = false;
6403 else if (N.getOpcode() == ISD::SRL)
6404 FromHi = true;
6405 else
6406 return false;
6407
6408 if (!isa<ConstantSDNode>(N.getOperand(1)))
6409 return false;
6410
6411 ShiftAmount = N->getConstantOperandVal(1);
6412 Src = N->getOperand(0);
6413 return true;
6414}
6415
6416/// EXTR instruction extracts a contiguous chunk of bits from two existing
6417/// registers viewed as a high/low pair. This function looks for the pattern:
6418/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
6419/// EXTR. Can't quite be done in TableGen because the two immediates aren't
6420/// independent.
6421static SDValue tryCombineToEXTR(SDNode *N,
6422 TargetLowering::DAGCombinerInfo &DCI) {
6423 SelectionDAG &DAG = DCI.DAG;
6424 SDLoc DL(N);
6425 EVT VT = N->getValueType(0);
6426
6427 assert(N->getOpcode() == ISD::OR && "Unexpected root");
6428
6429 if (VT != MVT::i32 && VT != MVT::i64)
6430 return SDValue();
6431
6432 SDValue LHS;
6433 uint32_t ShiftLHS = 0;
6434 bool LHSFromHi = 0;
6435 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
6436 return SDValue();
6437
6438 SDValue RHS;
6439 uint32_t ShiftRHS = 0;
6440 bool RHSFromHi = 0;
6441 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
6442 return SDValue();
6443
6444 // If they're both trying to come from the high part of the register, they're
6445 // not really an EXTR.
6446 if (LHSFromHi == RHSFromHi)
6447 return SDValue();
6448
6449 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
6450 return SDValue();
6451
6452 if (LHSFromHi) {
6453 std::swap(LHS, RHS);
6454 std::swap(ShiftLHS, ShiftRHS);
6455 }
6456
6457 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
6458 DAG.getConstant(ShiftRHS, MVT::i64));
6459}
6460
6461static SDValue tryCombineToBSL(SDNode *N,
6462 TargetLowering::DAGCombinerInfo &DCI) {
6463 EVT VT = N->getValueType(0);
6464 SelectionDAG &DAG = DCI.DAG;
6465 SDLoc DL(N);
6466
6467 if (!VT.isVector())
6468 return SDValue();
6469
6470 SDValue N0 = N->getOperand(0);
6471 if (N0.getOpcode() != ISD::AND)
6472 return SDValue();
6473
6474 SDValue N1 = N->getOperand(1);
6475 if (N1.getOpcode() != ISD::AND)
6476 return SDValue();
6477
6478 // We only have to look for constant vectors here since the general, variable
6479 // case can be handled in TableGen.
6480 unsigned Bits = VT.getVectorElementType().getSizeInBits();
6481 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
6482 for (int i = 1; i >= 0; --i)
6483 for (int j = 1; j >= 0; --j) {
6484 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
6485 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
6486 if (!BVN0 || !BVN1)
6487 continue;
6488
6489 bool FoundMatch = true;
6490 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
6491 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
6492 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
6493 if (!CN0 || !CN1 ||
6494 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
6495 FoundMatch = false;
6496 break;
6497 }
6498 }
6499
6500 if (FoundMatch)
6501 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
6502 N0->getOperand(1 - i), N1->getOperand(1 - j));
6503 }
6504
6505 return SDValue();
6506}
6507
6508static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
6509 const AArch64Subtarget *Subtarget) {
6510 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
6511 if (!EnableAArch64ExtrGeneration)
6512 return SDValue();
6513 SelectionDAG &DAG = DCI.DAG;
6514 EVT VT = N->getValueType(0);
6515
6516 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6517 return SDValue();
6518
6519 SDValue Res = tryCombineToEXTR(N, DCI);
6520 if (Res.getNode())
6521 return Res;
6522
6523 Res = tryCombineToBSL(N, DCI);
6524 if (Res.getNode())
6525 return Res;
6526
6527 return SDValue();
6528}
6529
6530static SDValue performBitcastCombine(SDNode *N,
6531 TargetLowering::DAGCombinerInfo &DCI,
6532 SelectionDAG &DAG) {
6533 // Wait 'til after everything is legalized to try this. That way we have
6534 // legal vector types and such.
6535 if (DCI.isBeforeLegalizeOps())
6536 return SDValue();
6537
6538 // Remove extraneous bitcasts around an extract_subvector.
6539 // For example,
6540 // (v4i16 (bitconvert
6541 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
6542 // becomes
6543 // (extract_subvector ((v8i16 ...), (i64 4)))
6544
6545 // Only interested in 64-bit vectors as the ultimate result.
6546 EVT VT = N->getValueType(0);
6547 if (!VT.isVector())
6548 return SDValue();
6549 if (VT.getSimpleVT().getSizeInBits() != 64)
6550 return SDValue();
6551 // Is the operand an extract_subvector starting at the beginning or halfway
6552 // point of the vector? A low half may also come through as an
6553 // EXTRACT_SUBREG, so look for that, too.
6554 SDValue Op0 = N->getOperand(0);
6555 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
6556 !(Op0->isMachineOpcode() &&
6557 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
6558 return SDValue();
6559 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
6560 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6561 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
6562 return SDValue();
6563 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
6564 if (idx != AArch64::dsub)
6565 return SDValue();
6566 // The dsub reference is equivalent to a lane zero subvector reference.
6567 idx = 0;
6568 }
6569 // Look through the bitcast of the input to the extract.
6570 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
6571 return SDValue();
6572 SDValue Source = Op0->getOperand(0)->getOperand(0);
6573 // If the source type has twice the number of elements as our destination
6574 // type, we know this is an extract of the high or low half of the vector.
6575 EVT SVT = Source->getValueType(0);
6576 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
6577 return SDValue();
6578
6579 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
6580
6581 // Create the simplified form to just extract the low or high half of the
6582 // vector directly rather than bothering with the bitcasts.
6583 SDLoc dl(N);
6584 unsigned NumElements = VT.getVectorNumElements();
6585 if (idx) {
6586 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
6587 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
6588 } else {
6589 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
6590 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
6591 Source, SubReg),
6592 0);
6593 }
6594}
6595
6596static SDValue performConcatVectorsCombine(SDNode *N,
6597 TargetLowering::DAGCombinerInfo &DCI,
6598 SelectionDAG &DAG) {
6599 // Wait 'til after everything is legalized to try this. That way we have
6600 // legal vector types and such.
6601 if (DCI.isBeforeLegalizeOps())
6602 return SDValue();
6603
6604 SDLoc dl(N);
6605 EVT VT = N->getValueType(0);
6606
6607 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
6608 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
6609 // canonicalise to that.
6610 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
6611 assert(VT.getVectorElementType().getSizeInBits() == 64);
6612 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
6613 WidenVector(N->getOperand(0), DAG),
6614 DAG.getConstant(0, MVT::i64));
6615 }
6616
6617 // Canonicalise concat_vectors so that the right-hand vector has as few
6618 // bit-casts as possible before its real operation. The primary matching
6619 // destination for these operations will be the narrowing "2" instructions,
6620 // which depend on the operation being performed on this right-hand vector.
6621 // For example,
6622 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
6623 // becomes
6624 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
6625
6626 SDValue Op1 = N->getOperand(1);
6627 if (Op1->getOpcode() != ISD::BITCAST)
6628 return SDValue();
6629 SDValue RHS = Op1->getOperand(0);
6630 MVT RHSTy = RHS.getValueType().getSimpleVT();
6631 // If the RHS is not a vector, this is not the pattern we're looking for.
6632 if (!RHSTy.isVector())
6633 return SDValue();
6634
6635 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
6636
6637 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
6638 RHSTy.getVectorNumElements() * 2);
6639 return DAG.getNode(
6640 ISD::BITCAST, dl, VT,
6641 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
6642 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
6643}
6644
6645static SDValue tryCombineFixedPointConvert(SDNode *N,
6646 TargetLowering::DAGCombinerInfo &DCI,
6647 SelectionDAG &DAG) {
6648 // Wait 'til after everything is legalized to try this. That way we have
6649 // legal vector types and such.
6650 if (DCI.isBeforeLegalizeOps())
6651 return SDValue();
6652 // Transform a scalar conversion of a value from a lane extract into a
6653 // lane extract of a vector conversion. E.g., from foo1 to foo2:
6654 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
6655 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
6656 //
6657 // The second form interacts better with instruction selection and the
6658 // register allocator to avoid cross-class register copies that aren't
6659 // coalescable due to a lane reference.
6660
6661 // Check the operand and see if it originates from a lane extract.
6662 SDValue Op1 = N->getOperand(1);
6663 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6664 // Yep, no additional predication needed. Perform the transform.
6665 SDValue IID = N->getOperand(0);
6666 SDValue Shift = N->getOperand(2);
6667 SDValue Vec = Op1.getOperand(0);
6668 SDValue Lane = Op1.getOperand(1);
6669 EVT ResTy = N->getValueType(0);
6670 EVT VecResTy;
6671 SDLoc DL(N);
6672
6673 // The vector width should be 128 bits by the time we get here, even
6674 // if it started as 64 bits (the extract_vector handling will have
6675 // done so).
6676 assert(Vec.getValueType().getSizeInBits() == 128 &&
6677 "unexpected vector size on extract_vector_elt!");
6678 if (Vec.getValueType() == MVT::v4i32)
6679 VecResTy = MVT::v4f32;
6680 else if (Vec.getValueType() == MVT::v2i64)
6681 VecResTy = MVT::v2f64;
6682 else
6683 assert(0 && "unexpected vector type!");
6684
6685 SDValue Convert =
6686 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
6687 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
6688 }
6689 return SDValue();
6690}
6691
6692// AArch64 high-vector "long" operations are formed by performing the non-high
6693// version on an extract_subvector of each operand which gets the high half:
6694//
6695// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
6696//
6697// However, there are cases which don't have an extract_high explicitly, but
6698// have another operation that can be made compatible with one for free. For
6699// example:
6700//
6701// (dupv64 scalar) --> (extract_high (dup128 scalar))
6702//
6703// This routine does the actual conversion of such DUPs, once outer routines
6704// have determined that everything else is in order.
6705static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
6706 // We can handle most types of duplicate, but the lane ones have an extra
6707 // operand saying *which* lane, so we need to know.
6708 bool IsDUPLANE;
6709 switch (N.getOpcode()) {
6710 case AArch64ISD::DUP:
6711 IsDUPLANE = false;
6712 break;
6713 case AArch64ISD::DUPLANE8:
6714 case AArch64ISD::DUPLANE16:
6715 case AArch64ISD::DUPLANE32:
6716 case AArch64ISD::DUPLANE64:
6717 IsDUPLANE = true;
6718 break;
6719 default:
6720 return SDValue();
6721 }
6722
6723 MVT NarrowTy = N.getSimpleValueType();
6724 if (!NarrowTy.is64BitVector())
6725 return SDValue();
6726
6727 MVT ElementTy = NarrowTy.getVectorElementType();
6728 unsigned NumElems = NarrowTy.getVectorNumElements();
6729 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
6730
6731 SDValue NewDUP;
6732 if (IsDUPLANE)
6733 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
6734 N.getOperand(1));
6735 else
6736 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
6737
6738 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
6739 NewDUP, DAG.getConstant(NumElems, MVT::i64));
6740}
6741
6742static bool isEssentiallyExtractSubvector(SDValue N) {
6743 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
6744 return true;
6745
6746 return N.getOpcode() == ISD::BITCAST &&
6747 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
6748}
6749
6750/// \brief Helper structure to keep track of ISD::SET_CC operands.
6751struct GenericSetCCInfo {
6752 const SDValue *Opnd0;
6753 const SDValue *Opnd1;
6754 ISD::CondCode CC;
6755};
6756
6757/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
6758struct AArch64SetCCInfo {
6759 const SDValue *Cmp;
6760 AArch64CC::CondCode CC;
6761};
6762
6763/// \brief Helper structure to keep track of SetCC information.
6764union SetCCInfo {
6765 GenericSetCCInfo Generic;
6766 AArch64SetCCInfo AArch64;
6767};
6768
6769/// \brief Helper structure to be able to read SetCC information. If set to
6770/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
6771/// GenericSetCCInfo.
6772struct SetCCInfoAndKind {
6773 SetCCInfo Info;
6774 bool IsAArch64;
6775};
6776
6777/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
6778/// an
6779/// AArch64 lowered one.
6780/// \p SetCCInfo is filled accordingly.
6781/// \post SetCCInfo is meanginfull only when this function returns true.
6782/// \return True when Op is a kind of SET_CC operation.
6783static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
6784 // If this is a setcc, this is straight forward.
6785 if (Op.getOpcode() == ISD::SETCC) {
6786 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
6787 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
6788 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6789 SetCCInfo.IsAArch64 = false;
6790 return true;
6791 }
6792 // Otherwise, check if this is a matching csel instruction.
6793 // In other words:
6794 // - csel 1, 0, cc
6795 // - csel 0, 1, !cc
6796 if (Op.getOpcode() != AArch64ISD::CSEL)
6797 return false;
6798 // Set the information about the operands.
6799 // TODO: we want the operands of the Cmp not the csel
6800 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
6801 SetCCInfo.IsAArch64 = true;
6802 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
6803 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
6804
6805 // Check that the operands matches the constraints:
6806 // (1) Both operands must be constants.
6807 // (2) One must be 1 and the other must be 0.
6808 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
6809 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6810
6811 // Check (1).
6812 if (!TValue || !FValue)
6813 return false;
6814
6815 // Check (2).
6816 if (!TValue->isOne()) {
6817 // Update the comparison when we are interested in !cc.
6818 std::swap(TValue, FValue);
6819 SetCCInfo.Info.AArch64.CC =
6820 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
6821 }
6822 return TValue->isOne() && FValue->isNullValue();
6823}
6824
6825// Returns true if Op is setcc or zext of setcc.
6826static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
6827 if (isSetCC(Op, Info))
6828 return true;
6829 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
6830 isSetCC(Op->getOperand(0), Info));
6831}
6832
6833// The folding we want to perform is:
6834// (add x, [zext] (setcc cc ...) )
6835// -->
6836// (csel x, (add x, 1), !cc ...)
6837//
6838// The latter will get matched to a CSINC instruction.
6839static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
6840 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
6841 SDValue LHS = Op->getOperand(0);
6842 SDValue RHS = Op->getOperand(1);
6843 SetCCInfoAndKind InfoAndKind;
6844
6845 // If neither operand is a SET_CC, give up.
6846 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
6847 std::swap(LHS, RHS);
6848 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
6849 return SDValue();
6850 }
6851
6852 // FIXME: This could be generatized to work for FP comparisons.
6853 EVT CmpVT = InfoAndKind.IsAArch64
6854 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
6855 : InfoAndKind.Info.Generic.Opnd0->getValueType();
6856 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
6857 return SDValue();
6858
6859 SDValue CCVal;
6860 SDValue Cmp;
6861 SDLoc dl(Op);
6862 if (InfoAndKind.IsAArch64) {
6863 CCVal = DAG.getConstant(
6864 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
6865 Cmp = *InfoAndKind.Info.AArch64.Cmp;
6866 } else
6867 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
6868 *InfoAndKind.Info.Generic.Opnd1,
6869 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
6870 CCVal, DAG, dl);
6871
6872 EVT VT = Op->getValueType(0);
6873 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
6874 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
6875}
6876
6877// The basic add/sub long vector instructions have variants with "2" on the end
6878// which act on the high-half of their inputs. They are normally matched by
6879// patterns like:
6880//
6881// (add (zeroext (extract_high LHS)),
6882// (zeroext (extract_high RHS)))
6883// -> uaddl2 vD, vN, vM
6884//
6885// However, if one of the extracts is something like a duplicate, this
6886// instruction can still be used profitably. This function puts the DAG into a
6887// more appropriate form for those patterns to trigger.
6888static SDValue performAddSubLongCombine(SDNode *N,
6889 TargetLowering::DAGCombinerInfo &DCI,
6890 SelectionDAG &DAG) {
6891 if (DCI.isBeforeLegalizeOps())
6892 return SDValue();
6893
6894 MVT VT = N->getSimpleValueType(0);
6895 if (!VT.is128BitVector()) {
6896 if (N->getOpcode() == ISD::ADD)
6897 return performSetccAddFolding(N, DAG);
6898 return SDValue();
6899 }
6900
6901 // Make sure both branches are extended in the same way.
6902 SDValue LHS = N->getOperand(0);
6903 SDValue RHS = N->getOperand(1);
6904 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
6905 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
6906 LHS.getOpcode() != RHS.getOpcode())
6907 return SDValue();
6908
6909 unsigned ExtType = LHS.getOpcode();
6910
6911 // It's not worth doing if at least one of the inputs isn't already an
6912 // extract, but we don't know which it'll be so we have to try both.
6913 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
6914 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
6915 if (!RHS.getNode())
6916 return SDValue();
6917
6918 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
6919 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
6920 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
6921 if (!LHS.getNode())
6922 return SDValue();
6923
6924 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
6925 }
6926
6927 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
6928}
6929
6930// Massage DAGs which we can use the high-half "long" operations on into
6931// something isel will recognize better. E.g.
6932//
6933// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
6934// (aarch64_neon_umull (extract_high (v2i64 vec)))
6935// (extract_high (v2i64 (dup128 scalar)))))
6936//
6937static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
6938 TargetLowering::DAGCombinerInfo &DCI,
6939 SelectionDAG &DAG) {
6940 if (DCI.isBeforeLegalizeOps())
6941 return SDValue();
6942
6943 SDValue LHS = N->getOperand(1);
6944 SDValue RHS = N->getOperand(2);
6945 assert(LHS.getValueType().is64BitVector() &&
6946 RHS.getValueType().is64BitVector() &&
6947 "unexpected shape for long operation");
6948
6949 // Either node could be a DUP, but it's not worth doing both of them (you'd
6950 // just as well use the non-high version) so look for a corresponding extract
6951 // operation on the other "wing".
6952 if (isEssentiallyExtractSubvector(LHS)) {
6953 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
6954 if (!RHS.getNode())
6955 return SDValue();
6956 } else if (isEssentiallyExtractSubvector(RHS)) {
6957 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
6958 if (!LHS.getNode())
6959 return SDValue();
6960 }
6961
6962 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
6963 N->getOperand(0), LHS, RHS);
6964}
6965
6966static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
6967 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
6968 unsigned ElemBits = ElemTy.getSizeInBits();
6969
6970 int64_t ShiftAmount;
6971 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
6972 APInt SplatValue, SplatUndef;
6973 unsigned SplatBitSize;
6974 bool HasAnyUndefs;
6975 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
6976 HasAnyUndefs, ElemBits) ||
6977 SplatBitSize != ElemBits)
6978 return SDValue();
6979
6980 ShiftAmount = SplatValue.getSExtValue();
6981 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
6982 ShiftAmount = CVN->getSExtValue();
6983 } else
6984 return SDValue();
6985
6986 unsigned Opcode;
6987 bool IsRightShift;
6988 switch (IID) {
6989 default:
6990 llvm_unreachable("Unknown shift intrinsic");
6991 case Intrinsic::aarch64_neon_sqshl:
6992 Opcode = AArch64ISD::SQSHL_I;
6993 IsRightShift = false;
6994 break;
6995 case Intrinsic::aarch64_neon_uqshl:
6996 Opcode = AArch64ISD::UQSHL_I;
6997 IsRightShift = false;
6998 break;
6999 case Intrinsic::aarch64_neon_srshl:
7000 Opcode = AArch64ISD::SRSHR_I;
7001 IsRightShift = true;
7002 break;
7003 case Intrinsic::aarch64_neon_urshl:
7004 Opcode = AArch64ISD::URSHR_I;
7005 IsRightShift = true;
7006 break;
7007 case Intrinsic::aarch64_neon_sqshlu:
7008 Opcode = AArch64ISD::SQSHLU_I;
7009 IsRightShift = false;
7010 break;
7011 }
7012
7013 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7014 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7015 DAG.getConstant(-ShiftAmount, MVT::i32));
7016 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount <= ElemBits)
7017 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7018 DAG.getConstant(ShiftAmount, MVT::i32));
7019
7020 return SDValue();
7021}
7022
7023// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7024// the intrinsics must be legal and take an i32, this means there's almost
7025// certainly going to be a zext in the DAG which we can eliminate.
7026static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7027 SDValue AndN = N->getOperand(2);
7028 if (AndN.getOpcode() != ISD::AND)
7029 return SDValue();
7030
7031 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7032 if (!CMask || CMask->getZExtValue() != Mask)
7033 return SDValue();
7034
7035 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7036 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7037}
7038
7039static SDValue performIntrinsicCombine(SDNode *N,
7040 TargetLowering::DAGCombinerInfo &DCI,
7041 const AArch64Subtarget *Subtarget) {
7042 SelectionDAG &DAG = DCI.DAG;
7043 unsigned IID = getIntrinsicID(N);
7044 switch (IID) {
7045 default:
7046 break;
7047 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7048 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7049 return tryCombineFixedPointConvert(N, DCI, DAG);
7050 break;
7051 case Intrinsic::aarch64_neon_fmax:
7052 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7053 N->getOperand(1), N->getOperand(2));
7054 case Intrinsic::aarch64_neon_fmin:
7055 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7056 N->getOperand(1), N->getOperand(2));
7057 case Intrinsic::aarch64_neon_smull:
7058 case Intrinsic::aarch64_neon_umull:
7059 case Intrinsic::aarch64_neon_pmull:
7060 case Intrinsic::aarch64_neon_sqdmull:
7061 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7062 case Intrinsic::aarch64_neon_sqshl:
7063 case Intrinsic::aarch64_neon_uqshl:
7064 case Intrinsic::aarch64_neon_sqshlu:
7065 case Intrinsic::aarch64_neon_srshl:
7066 case Intrinsic::aarch64_neon_urshl:
7067 return tryCombineShiftImm(IID, N, DAG);
7068 case Intrinsic::aarch64_crc32b:
7069 case Intrinsic::aarch64_crc32cb:
7070 return tryCombineCRC32(0xff, N, DAG);
7071 case Intrinsic::aarch64_crc32h:
7072 case Intrinsic::aarch64_crc32ch:
7073 return tryCombineCRC32(0xffff, N, DAG);
7074 }
7075 return SDValue();
7076}
7077
7078static SDValue performExtendCombine(SDNode *N,
7079 TargetLowering::DAGCombinerInfo &DCI,
7080 SelectionDAG &DAG) {
7081 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7082 // we can convert that DUP into another extract_high (of a bigger DUP), which
7083 // helps the backend to decide that an sabdl2 would be useful, saving a real
7084 // extract_high operation.
7085 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7086 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7087 SDNode *ABDNode = N->getOperand(0).getNode();
7088 unsigned IID = getIntrinsicID(ABDNode);
7089 if (IID == Intrinsic::aarch64_neon_sabd ||
7090 IID == Intrinsic::aarch64_neon_uabd) {
7091 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7092 if (!NewABD.getNode())
7093 return SDValue();
7094
7095 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7096 NewABD);
7097 }
7098 }
7099
7100 // This is effectively a custom type legalization for AArch64.
7101 //
7102 // Type legalization will split an extend of a small, legal, type to a larger
7103 // illegal type by first splitting the destination type, often creating
7104 // illegal source types, which then get legalized in isel-confusing ways,
7105 // leading to really terrible codegen. E.g.,
7106 // %result = v8i32 sext v8i8 %value
7107 // becomes
7108 // %losrc = extract_subreg %value, ...
7109 // %hisrc = extract_subreg %value, ...
7110 // %lo = v4i32 sext v4i8 %losrc
7111 // %hi = v4i32 sext v4i8 %hisrc
7112 // Things go rapidly downhill from there.
7113 //
7114 // For AArch64, the [sz]ext vector instructions can only go up one element
7115 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7116 // take two instructions.
7117 //
7118 // This implies that the most efficient way to do the extend from v8i8
7119 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7120 // the normal splitting to happen for the v8i16->v8i32.
7121
7122 // This is pre-legalization to catch some cases where the default
7123 // type legalization will create ill-tempered code.
7124 if (!DCI.isBeforeLegalizeOps())
7125 return SDValue();
7126
7127 // We're only interested in cleaning things up for non-legal vector types
7128 // here. If both the source and destination are legal, things will just
7129 // work naturally without any fiddling.
7130 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7131 EVT ResVT = N->getValueType(0);
7132 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7133 return SDValue();
7134 // If the vector type isn't a simple VT, it's beyond the scope of what
7135 // we're worried about here. Let legalization do its thing and hope for
7136 // the best.
7137 if (!ResVT.isSimple())
7138 return SDValue();
7139
7140 SDValue Src = N->getOperand(0);
7141 MVT SrcVT = Src->getValueType(0).getSimpleVT();
7142 // If the source VT is a 64-bit vector, we can play games and get the
7143 // better results we want.
7144 if (SrcVT.getSizeInBits() != 64)
7145 return SDValue();
7146
7147 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7148 unsigned ElementCount = SrcVT.getVectorNumElements();
7149 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7150 SDLoc DL(N);
7151 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7152
7153 // Now split the rest of the operation into two halves, each with a 64
7154 // bit source.
7155 EVT LoVT, HiVT;
7156 SDValue Lo, Hi;
7157 unsigned NumElements = ResVT.getVectorNumElements();
7158 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7159 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7160 ResVT.getVectorElementType(), NumElements / 2);
7161
7162 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7163 LoVT.getVectorNumElements());
7164 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7165 DAG.getIntPtrConstant(0));
7166 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7167 DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
7168 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7169 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7170
7171 // Now combine the parts back together so we still have a single result
7172 // like the combiner expects.
7173 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7174}
7175
7176/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7177/// value. The load store optimizer pass will merge them to store pair stores.
7178/// This has better performance than a splat of the scalar followed by a split
7179/// vector store. Even if the stores are not merged it is four stores vs a dup,
7180/// followed by an ext.b and two stores.
7181static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7182 SDValue StVal = St->getValue();
7183 EVT VT = StVal.getValueType();
7184
7185 // Don't replace floating point stores, they possibly won't be transformed to
7186 // stp because of the store pair suppress pass.
7187 if (VT.isFloatingPoint())
7188 return SDValue();
7189
7190 // Check for insert vector elements.
7191 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7192 return SDValue();
7193
7194 // We can express a splat as store pair(s) for 2 or 4 elements.
7195 unsigned NumVecElts = VT.getVectorNumElements();
7196 if (NumVecElts != 4 && NumVecElts != 2)
7197 return SDValue();
7198 SDValue SplatVal = StVal.getOperand(1);
7199 unsigned RemainInsertElts = NumVecElts - 1;
7200
7201 // Check that this is a splat.
7202 while (--RemainInsertElts) {
7203 SDValue NextInsertElt = StVal.getOperand(0);
7204 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7205 return SDValue();
7206 if (NextInsertElt.getOperand(1) != SplatVal)
7207 return SDValue();
7208 StVal = NextInsertElt;
7209 }
7210 unsigned OrigAlignment = St->getAlignment();
7211 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7212 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7213
7214 // Create scalar stores. This is at least as good as the code sequence for a
7215 // split unaligned store wich is a dup.s, ext.b, and two stores.
7216 // Most of the time the three stores should be replaced by store pair
7217 // instructions (stp).
7218 SDLoc DL(St);
7219 SDValue BasePtr = St->getBasePtr();
7220 SDValue NewST1 =
7221 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7222 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7223
7224 unsigned Offset = EltOffset;
7225 while (--NumVecElts) {
7226 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7227 DAG.getConstant(Offset, MVT::i64));
7228 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7229 St->getPointerInfo(), St->isVolatile(),
7230 St->isNonTemporal(), Alignment);
7231 Offset += EltOffset;
7232 }
7233 return NewST1;
7234}
7235
7236static SDValue performSTORECombine(SDNode *N,
7237 TargetLowering::DAGCombinerInfo &DCI,
7238 SelectionDAG &DAG,
7239 const AArch64Subtarget *Subtarget) {
7240 if (!DCI.isBeforeLegalize())
7241 return SDValue();
7242
7243 StoreSDNode *S = cast<StoreSDNode>(N);
7244 if (S->isVolatile())
7245 return SDValue();
7246
7247 // Cyclone has bad performance on unaligned 16B stores when crossing line and
7248 // page boundries. We want to split such stores.
7249 if (!Subtarget->isCyclone())
7250 return SDValue();
7251
7252 // Don't split at Oz.
7253 MachineFunction &MF = DAG.getMachineFunction();
7254 bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
7255 AttributeSet::FunctionIndex, Attribute::MinSize);
7256 if (IsMinSize)
7257 return SDValue();
7258
7259 SDValue StVal = S->getValue();
7260 EVT VT = StVal.getValueType();
7261
7262 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7263 // those up regresses performance on micro-benchmarks and olden/bh.
7264 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7265 return SDValue();
7266
7267 // Split unaligned 16B stores. They are terrible for performance.
7268 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7269 // extensions can use this to mark that it does not want splitting to happen
7270 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7271 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7272 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7273 S->getAlignment() <= 2)
7274 return SDValue();
7275
7276 // If we get a splat of a scalar convert this vector store to a store of
7277 // scalars. They will be merged into store pairs thereby removing two
7278 // instructions.
7279 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7280 if (ReplacedSplat != SDValue())
7281 return ReplacedSplat;
7282
7283 SDLoc DL(S);
7284 unsigned NumElts = VT.getVectorNumElements() / 2;
7285 // Split VT into two.
7286 EVT HalfVT =
7287 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7288 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7289 DAG.getIntPtrConstant(0));
7290 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7291 DAG.getIntPtrConstant(NumElts));
7292 SDValue BasePtr = S->getBasePtr();
7293 SDValue NewST1 =
7294 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7295 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7296 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7297 DAG.getConstant(8, MVT::i64));
7298 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7299 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7300 S->getAlignment());
7301}
7302
7303/// Target-specific DAG combine function for post-increment LD1 (lane) and
7304/// post-increment LD1R.
7305static SDValue performPostLD1Combine(SDNode *N,
7306 TargetLowering::DAGCombinerInfo &DCI,
7307 bool IsLaneOp) {
7308 if (DCI.isBeforeLegalizeOps())
7309 return SDValue();
7310
7311 SelectionDAG &DAG = DCI.DAG;
7312 EVT VT = N->getValueType(0);
7313
7314 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7315 SDNode *LD = N->getOperand(LoadIdx).getNode();
7316 // If it is not LOAD, can not do such combine.
7317 if (LD->getOpcode() != ISD::LOAD)
7318 return SDValue();
7319
7320 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7321 EVT MemVT = LoadSDN->getMemoryVT();
7322 // Check if memory operand is the same type as the vector element.
7323 if (MemVT != VT.getVectorElementType())
7324 return SDValue();
7325
7326 // Check if there are other uses. If so, do not combine as it will introduce
7327 // an extra load.
7328 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7329 ++UI) {
7330 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7331 continue;
7332 if (*UI != N)
7333 return SDValue();
7334 }
7335
7336 SDValue Addr = LD->getOperand(1);
7337 SDValue Vector = N->getOperand(0);
7338 // Search for a use of the address operand that is an increment.
7339 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7340 Addr.getNode()->use_end(); UI != UE; ++UI) {
7341 SDNode *User = *UI;
7342 if (User->getOpcode() != ISD::ADD
7343 || UI.getUse().getResNo() != Addr.getResNo())
7344 continue;
7345
7346 // Check that the add is independent of the load. Otherwise, folding it
7347 // would create a cycle.
7348 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7349 continue;
7350 // Also check that add is not used in the vector operand. This would also
7351 // create a cycle.
7352 if (User->isPredecessorOf(Vector.getNode()))
7353 continue;
7354
7355 // If the increment is a constant, it must match the memory ref size.
7356 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7357 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7358 uint32_t IncVal = CInc->getZExtValue();
7359 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7360 if (IncVal != NumBytes)
7361 continue;
7362 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7363 }
7364
7365 SmallVector<SDValue, 8> Ops;
7366 Ops.push_back(LD->getOperand(0)); // Chain
7367 if (IsLaneOp) {
7368 Ops.push_back(Vector); // The vector to be inserted
7369 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7370 }
7371 Ops.push_back(Addr);
7372 Ops.push_back(Inc);
7373
7374 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
7375 SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3));
7376 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7377 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7378 MemVT,
7379 LoadSDN->getMemOperand());
7380
7381 // Update the uses.
7382 std::vector<SDValue> NewResults;
7383 NewResults.push_back(SDValue(LD, 0)); // The result of load
7384 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7385 DCI.CombineTo(LD, NewResults);
7386 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
7387 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
7388
7389 break;
7390 }
7391 return SDValue();
7392}
7393
7394/// Target-specific DAG combine function for NEON load/store intrinsics
7395/// to merge base address updates.
7396static SDValue performNEONPostLDSTCombine(SDNode *N,
7397 TargetLowering::DAGCombinerInfo &DCI,
7398 SelectionDAG &DAG) {
7399 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7400 return SDValue();
7401
7402 unsigned AddrOpIdx = N->getNumOperands() - 1;
7403 SDValue Addr = N->getOperand(AddrOpIdx);
7404
7405 // Search for a use of the address operand that is an increment.
7406 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7407 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7408 SDNode *User = *UI;
7409 if (User->getOpcode() != ISD::ADD ||
7410 UI.getUse().getResNo() != Addr.getResNo())
7411 continue;
7412
7413 // Check that the add is independent of the load/store. Otherwise, folding
7414 // it would create a cycle.
7415 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7416 continue;
7417
7418 // Find the new opcode for the updating load/store.
7419 bool IsStore = false;
7420 bool IsLaneOp = false;
7421 bool IsDupOp = false;
7422 unsigned NewOpc = 0;
7423 unsigned NumVecs = 0;
7424 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7425 switch (IntNo) {
7426 default: llvm_unreachable("unexpected intrinsic for Neon base update");
7427 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
7428 NumVecs = 2; break;
7429 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
7430 NumVecs = 3; break;
7431 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
7432 NumVecs = 4; break;
7433 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
7434 NumVecs = 2; IsStore = true; break;
7435 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
7436 NumVecs = 3; IsStore = true; break;
7437 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
7438 NumVecs = 4; IsStore = true; break;
7439 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
7440 NumVecs = 2; break;
7441 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
7442 NumVecs = 3; break;
7443 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
7444 NumVecs = 4; break;
7445 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
7446 NumVecs = 2; IsStore = true; break;
7447 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
7448 NumVecs = 3; IsStore = true; break;
7449 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
7450 NumVecs = 4; IsStore = true; break;
7451 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
7452 NumVecs = 2; IsDupOp = true; break;
7453 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
7454 NumVecs = 3; IsDupOp = true; break;
7455 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
7456 NumVecs = 4; IsDupOp = true; break;
7457 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
7458 NumVecs = 2; IsLaneOp = true; break;
7459 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
7460 NumVecs = 3; IsLaneOp = true; break;
7461 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
7462 NumVecs = 4; IsLaneOp = true; break;
7463 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
7464 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
7465 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
7466 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
7467 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
7468 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
7469 }
7470
7471 EVT VecTy;
7472 if (IsStore)
7473 VecTy = N->getOperand(2).getValueType();
7474 else
7475 VecTy = N->getValueType(0);
7476
7477 // If the increment is a constant, it must match the memory ref size.
7478 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7479 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7480 uint32_t IncVal = CInc->getZExtValue();
7481 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7482 if (IsLaneOp || IsDupOp)
7483 NumBytes /= VecTy.getVectorNumElements();
7484 if (IncVal != NumBytes)
7485 continue;
7486 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7487 }
7488 SmallVector<SDValue, 8> Ops;
7489 Ops.push_back(N->getOperand(0)); // Incoming chain
7490 // Load lane and store have vector list as input.
7491 if (IsLaneOp || IsStore)
7492 for (unsigned i = 2; i < AddrOpIdx; ++i)
7493 Ops.push_back(N->getOperand(i));
7494 Ops.push_back(Addr); // Base register
7495 Ops.push_back(Inc);
7496
7497 // Return Types.
7498 EVT Tys[6];
7499 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
7500 unsigned n;
7501 for (n = 0; n < NumResultVecs; ++n)
7502 Tys[n] = VecTy;
7503 Tys[n++] = MVT::i64; // Type of write back register
7504 Tys[n] = MVT::Other; // Type of the chain
7505 SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
7506
7507 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7508 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
7509 MemInt->getMemoryVT(),
7510 MemInt->getMemOperand());
7511
7512 // Update the uses.
7513 std::vector<SDValue> NewResults;
7514 for (unsigned i = 0; i < NumResultVecs; ++i) {
7515 NewResults.push_back(SDValue(UpdN.getNode(), i));
7516 }
7517 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
7518 DCI.CombineTo(N, NewResults);
7519 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7520
7521 break;
7522 }
7523 return SDValue();
7524}
7525
7526// Optimize compare with zero and branch.
7527static SDValue performBRCONDCombine(SDNode *N,
7528 TargetLowering::DAGCombinerInfo &DCI,
7529 SelectionDAG &DAG) {
7530 SDValue Chain = N->getOperand(0);
7531 SDValue Dest = N->getOperand(1);
7532 SDValue CCVal = N->getOperand(2);
7533 SDValue Cmp = N->getOperand(3);
7534
7535 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
7536 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
7537 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
7538 return SDValue();
7539
7540 unsigned CmpOpc = Cmp.getOpcode();
7541 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
7542 return SDValue();
7543
7544 // Only attempt folding if there is only one use of the flag and no use of the
7545 // value.
7546 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
7547 return SDValue();
7548
7549 SDValue LHS = Cmp.getOperand(0);
7550 SDValue RHS = Cmp.getOperand(1);
7551
7552 assert(LHS.getValueType() == RHS.getValueType() &&
7553 "Expected the value type to be the same for both operands!");
7554 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
7555 return SDValue();
7556
7557 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
7558 std::swap(LHS, RHS);
7559
7560 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
7561 return SDValue();
7562
7563 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
7564 LHS.getOpcode() == ISD::SRL)
7565 return SDValue();
7566
7567 // Fold the compare into the branch instruction.
7568 SDValue BR;
7569 if (CC == AArch64CC::EQ)
7570 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
7571 else
7572 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
7573
7574 // Do not add new nodes to DAG combiner worklist.
7575 DCI.CombineTo(N, BR, false);
7576
7577 return SDValue();
7578}
7579
7580// vselect (v1i1 setcc) ->
7581// vselect (v1iXX setcc) (XX is the size of the compared operand type)
7582// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
7583// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
7584// such VSELECT.
7585static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
7586 SDValue N0 = N->getOperand(0);
7587 EVT CCVT = N0.getValueType();
7588
7589 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
7590 CCVT.getVectorElementType() != MVT::i1)
7591 return SDValue();
7592
7593 EVT ResVT = N->getValueType(0);
7594 EVT CmpVT = N0.getOperand(0).getValueType();
7595 // Only combine when the result type is of the same size as the compared
7596 // operands.
7597 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
7598 return SDValue();
7599
7600 SDValue IfTrue = N->getOperand(1);
7601 SDValue IfFalse = N->getOperand(2);
7602 SDValue SetCC =
7603 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
7604 N0.getOperand(0), N0.getOperand(1),
7605 cast<CondCodeSDNode>(N0.getOperand(2))->get());
7606 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
7607 IfTrue, IfFalse);
7608}
7609
7610/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
7611/// the compare-mask instructions rather than going via NZCV, even if LHS and
7612/// RHS are really scalar. This replaces any scalar setcc in the above pattern
7613/// with a vector one followed by a DUP shuffle on the result.
7614static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
7615 SDValue N0 = N->getOperand(0);
7616 EVT ResVT = N->getValueType(0);
7617
7618 if (!N->getOperand(1).getValueType().isVector())
7619 return SDValue();
7620
7621 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
7622 return SDValue();
7623
7624 SDLoc DL(N0);
7625
7626 EVT SrcVT = N0.getOperand(0).getValueType();
7627 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT,
7628 ResVT.getSizeInBits() / SrcVT.getSizeInBits());
7629 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
7630
7631 // First perform a vector comparison, where lane 0 is the one we're interested
7632 // in.
7633 SDValue LHS =
7634 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
7635 SDValue RHS =
7636 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
7637 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
7638
7639 // Now duplicate the comparison mask we want across all other lanes.
7640 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
7641 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
7642 Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(),
7643 Mask);
7644
7645 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
7646}
7647
7648SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
7649 DAGCombinerInfo &DCI) const {
7650 SelectionDAG &DAG = DCI.DAG;
7651 switch (N->getOpcode()) {
7652 default:
7653 break;
7654 case ISD::ADD:
7655 case ISD::SUB:
7656 return performAddSubLongCombine(N, DCI, DAG);
7657 case ISD::XOR:
7658 return performXorCombine(N, DAG, DCI, Subtarget);
7659 case ISD::MUL:
7660 return performMulCombine(N, DAG, DCI, Subtarget);
7661 case ISD::SINT_TO_FP:
7662 case ISD::UINT_TO_FP:
7663 return performIntToFpCombine(N, DAG);
7664 case ISD::OR:
7665 return performORCombine(N, DCI, Subtarget);
7666 case ISD::INTRINSIC_WO_CHAIN:
7667 return performIntrinsicCombine(N, DCI, Subtarget);
7668 case ISD::ANY_EXTEND:
7669 case ISD::ZERO_EXTEND:
7670 case ISD::SIGN_EXTEND:
7671 return performExtendCombine(N, DCI, DAG);
7672 case ISD::BITCAST:
7673 return performBitcastCombine(N, DCI, DAG);
7674 case ISD::CONCAT_VECTORS:
7675 return performConcatVectorsCombine(N, DCI, DAG);
7676 case ISD::SELECT:
7677 return performSelectCombine(N, DAG);
7678 case ISD::VSELECT:
7679 return performVSelectCombine(N, DCI.DAG);
7680 case ISD::STORE:
7681 return performSTORECombine(N, DCI, DAG, Subtarget);
7682 case AArch64ISD::BRCOND:
7683 return performBRCONDCombine(N, DCI, DAG);
7684 case AArch64ISD::DUP:
7685 return performPostLD1Combine(N, DCI, false);
7686 case ISD::INSERT_VECTOR_ELT:
7687 return performPostLD1Combine(N, DCI, true);
7688 case ISD::INTRINSIC_VOID:
7689 case ISD::INTRINSIC_W_CHAIN:
7690 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
7691 case Intrinsic::aarch64_neon_ld2:
7692 case Intrinsic::aarch64_neon_ld3:
7693 case Intrinsic::aarch64_neon_ld4:
7694 case Intrinsic::aarch64_neon_ld1x2:
7695 case Intrinsic::aarch64_neon_ld1x3:
7696 case Intrinsic::aarch64_neon_ld1x4:
7697 case Intrinsic::aarch64_neon_ld2lane:
7698 case Intrinsic::aarch64_neon_ld3lane:
7699 case Intrinsic::aarch64_neon_ld4lane:
7700 case Intrinsic::aarch64_neon_ld2r:
7701 case Intrinsic::aarch64_neon_ld3r:
7702 case Intrinsic::aarch64_neon_ld4r:
7703 case Intrinsic::aarch64_neon_st2:
7704 case Intrinsic::aarch64_neon_st3:
7705 case Intrinsic::aarch64_neon_st4:
7706 case Intrinsic::aarch64_neon_st1x2:
7707 case Intrinsic::aarch64_neon_st1x3:
7708 case Intrinsic::aarch64_neon_st1x4:
7709 case Intrinsic::aarch64_neon_st2lane:
7710 case Intrinsic::aarch64_neon_st3lane:
7711 case Intrinsic::aarch64_neon_st4lane:
7712 return performNEONPostLDSTCombine(N, DCI, DAG);
7713 default:
7714 break;
7715 }
7716 }
7717 return SDValue();
7718}
7719
7720// Check if the return value is used as only a return value, as otherwise
7721// we can't perform a tail-call. In particular, we need to check for
7722// target ISD nodes that are returns and any other "odd" constructs
7723// that the generic analysis code won't necessarily catch.
7724bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
7725 SDValue &Chain) const {
7726 if (N->getNumValues() != 1)
7727 return false;
7728 if (!N->hasNUsesOfValue(1, 0))
7729 return false;
7730
7731 SDValue TCChain = Chain;
7732 SDNode *Copy = *N->use_begin();
7733 if (Copy->getOpcode() == ISD::CopyToReg) {
7734 // If the copy has a glue operand, we conservatively assume it isn't safe to
7735 // perform a tail call.
7736 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
7737 MVT::Glue)
7738 return false;
7739 TCChain = Copy->getOperand(0);
7740 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
7741 return false;
7742
7743 bool HasRet = false;
7744 for (SDNode *Node : Copy->uses()) {
7745 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
7746 return false;
7747 HasRet = true;
7748 }
7749
7750 if (!HasRet)
7751 return false;
7752
7753 Chain = TCChain;
7754 return true;
7755}
7756
7757// Return whether the an instruction can potentially be optimized to a tail
7758// call. This will cause the optimizers to attempt to move, or duplicate,
7759// return instructions to help enable tail call optimizations for this
7760// instruction.
7761bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
7762 if (!CI->isTailCall())
7763 return false;
7764
7765 return true;
7766}
7767
7768bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
7769 SDValue &Offset,
7770 ISD::MemIndexedMode &AM,
7771 bool &IsInc,
7772 SelectionDAG &DAG) const {
7773 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
7774 return false;
7775
7776 Base = Op->getOperand(0);
7777 // All of the indexed addressing mode instructions take a signed
7778 // 9 bit immediate offset.
7779 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
7780 int64_t RHSC = (int64_t)RHS->getZExtValue();
7781 if (RHSC >= 256 || RHSC <= -256)
7782 return false;
7783 IsInc = (Op->getOpcode() == ISD::ADD);
7784 Offset = Op->getOperand(1);
7785 return true;
7786 }
7787 return false;
7788}
7789
7790bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
7791 SDValue &Offset,
7792 ISD::MemIndexedMode &AM,
7793 SelectionDAG &DAG) const {
7794 EVT VT;
7795 SDValue Ptr;
7796 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7797 VT = LD->getMemoryVT();
7798 Ptr = LD->getBasePtr();
7799 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7800 VT = ST->getMemoryVT();
7801 Ptr = ST->getBasePtr();
7802 } else
7803 return false;
7804
7805 bool IsInc;
7806 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
7807 return false;
7808 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
7809 return true;
7810}
7811
7812bool AArch64TargetLowering::getPostIndexedAddressParts(
7813 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
7814 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
7815 EVT VT;
7816 SDValue Ptr;
7817 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7818 VT = LD->getMemoryVT();
7819 Ptr = LD->getBasePtr();
7820 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7821 VT = ST->getMemoryVT();
7822 Ptr = ST->getBasePtr();
7823 } else
7824 return false;
7825
7826 bool IsInc;
7827 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
7828 return false;
7829 // Post-indexing updates the base, so it's not a valid transform
7830 // if that's not the same as the load's pointer.
7831 if (Ptr != Base)
7832 return false;
7833 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
7834 return true;
7835}
7836
7837void AArch64TargetLowering::ReplaceNodeResults(
7838 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
7839 switch (N->getOpcode()) {
7840 default:
7841 llvm_unreachable("Don't know how to custom expand this");
7842 case ISD::FP_TO_UINT:
7843 case ISD::FP_TO_SINT:
7844 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
7845 // Let normal code take care of it by not adding anything to Results.
7846 return;
7847 }
7848}
7849
7850bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
7851 // Loads and stores less than 128-bits are already atomic; ones above that
7852 // are doomed anyway, so defer to the default libcall and blame the OS when
7853 // things go wrong:
7854 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
7855 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
7856 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
7857 return LI->getType()->getPrimitiveSizeInBits() == 128;
7858
7859 // For the real atomic operations, we have ldxr/stxr up to 128 bits.
7860 return Inst->getType()->getPrimitiveSizeInBits() <= 128;
7861}
7862
7863Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
7864 AtomicOrdering Ord) const {
7865 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
7866 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
7867 bool IsAcquire =
7868 Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
7869
7870 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
7871 // intrinsic must return {i64, i64} and we have to recombine them into a
7872 // single i128 here.
7873 if (ValTy->getPrimitiveSizeInBits() == 128) {
7874 Intrinsic::ID Int =
7875 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
7876 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
7877
7878 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
7879 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
7880
7881 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
7882 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
7883 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
7884 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
7885 return Builder.CreateOr(
7886 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
7887 }
7888
7889 Type *Tys[] = { Addr->getType() };
7890 Intrinsic::ID Int =
7891 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
7892 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
7893
7894 return Builder.CreateTruncOrBitCast(
7895 Builder.CreateCall(Ldxr, Addr),
7896 cast<PointerType>(Addr->getType())->getElementType());
7897}
7898
7899Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
7900 Value *Val, Value *Addr,
7901 AtomicOrdering Ord) const {
7902 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
7903 bool IsRelease =
7904 Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
7905
7906 // Since the intrinsics must have legal type, the i128 intrinsics take two
7907 // parameters: "i64, i64". We must marshal Val into the appropriate form
7908 // before the call.
7909 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
7910 Intrinsic::ID Int =
7911 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
7912 Function *Stxr = Intrinsic::getDeclaration(M, Int);
7913 Type *Int64Ty = Type::getInt64Ty(M->getContext());
7914
7915 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
7916 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
7917 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
7918 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
7919 }
7920
7921 Intrinsic::ID Int =
7922 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
7923 Type *Tys[] = { Addr->getType() };
7924 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
7925
7926 return Builder.CreateCall2(
7927 Stxr, Builder.CreateZExtOrBitCast(
7928 Val, Stxr->getFunctionType()->getParamType(0)),
7929 Addr);
7930}