| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
| 3 | * Copyright 2014 INRIA Rocquencourt |
| 4 | * |
| 5 | * Use of this software is governed by the MIT license |
| 6 | * |
| 7 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
| 8 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
| 9 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
| 10 | * B.P. 105 - 78153 Le Chesnay, France |
| 11 | */ |
| 12 | |
| 13 | #include <isl_ctx_private.h> |
| 14 | #include <isl_map_private.h> |
| 15 | #include <isl_lp_private.h> |
| 16 | #include <isl/map.h> |
| 17 | #include <isl_mat_private.h> |
| 18 | #include <isl_vec_private.h> |
| 19 | #include <isl/set.h> |
| 20 | #include <isl_seq.h> |
| 21 | #include <isl_options_private.h> |
| 22 | #include "isl_equalities.h" |
| 23 | #include "isl_tab.h" |
| 24 | #include <isl_sort.h> |
| 25 | |
| 26 | static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set); |
| 27 | |
| 28 | /* Return 1 if constraint c is redundant with respect to the constraints |
| 29 | * in bmap. If c is a lower [upper] bound in some variable and bmap |
| 30 | * does not have a lower [upper] bound in that variable, then c cannot |
| 31 | * be redundant and we do not need solve any lp. |
| 32 | */ |
| 33 | int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap, |
| 34 | isl_int *c, isl_int *opt_n, isl_int *opt_d) |
| 35 | { |
| 36 | enum isl_lp_result res; |
| 37 | unsigned total; |
| 38 | int i, j; |
| 39 | |
| 40 | if (!bmap) |
| 41 | return -1; |
| 42 | |
| 43 | total = isl_basic_map_total_dim(*bmap); |
| 44 | for (i = 0; i < total; ++i) { |
| 45 | int sign; |
| 46 | if (isl_int_is_zero(c[1+i])) |
| 47 | continue; |
| 48 | sign = isl_int_sgn(c[1+i]); |
| 49 | for (j = 0; j < (*bmap)->n_ineq; ++j) |
| 50 | if (sign == isl_int_sgn((*bmap)->ineq[j][1+i])) |
| 51 | break; |
| 52 | if (j == (*bmap)->n_ineq) |
| 53 | break; |
| 54 | } |
| 55 | if (i < total) |
| 56 | return 0; |
| 57 | |
| 58 | res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, |
| 59 | opt_n, opt_d, NULL); |
| 60 | if (res == isl_lp_unbounded) |
| 61 | return 0; |
| 62 | if (res == isl_lp_error) |
| 63 | return -1; |
| 64 | if (res == isl_lp_empty) { |
| 65 | *bmap = isl_basic_map_set_to_empty(*bmap); |
| 66 | return 0; |
| 67 | } |
| 68 | return !isl_int_is_neg(*opt_n); |
| 69 | } |
| 70 | |
| 71 | int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, |
| 72 | isl_int *c, isl_int *opt_n, isl_int *opt_d) |
| 73 | { |
| 74 | return isl_basic_map_constraint_is_redundant( |
| 75 | (struct isl_basic_map **)bset, c, opt_n, opt_d); |
| 76 | } |
| 77 | |
| 78 | /* Remove redundant |
| 79 | * constraints. If the minimal value along the normal of a constraint |
| 80 | * is the same if the constraint is removed, then the constraint is redundant. |
| 81 | * |
| Tobias Grosser | 8a12bd9 | 2016-06-23 18:59:30 +0000 | [diff] [blame^] | 82 | * Since some constraints may be mutually redundant, sort the constraints |
| 83 | * first such that constraints that involve existentially quantified |
| 84 | * variables are considered for removal before those that do not. |
| 85 | * The sorting is also need for the use in map_simple_hull. |
| 86 | * |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 87 | * Alternatively, we could have intersected the basic map with the |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 88 | * corresponding equality and then checked if the dimension was that |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 89 | * of a facet. |
| 90 | */ |
| 91 | __isl_give isl_basic_map *isl_basic_map_remove_redundancies( |
| 92 | __isl_take isl_basic_map *bmap) |
| 93 | { |
| 94 | struct isl_tab *tab; |
| 95 | |
| 96 | if (!bmap) |
| 97 | return NULL; |
| 98 | |
| 99 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 100 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
| 101 | return bmap; |
| 102 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT)) |
| 103 | return bmap; |
| 104 | if (bmap->n_ineq <= 1) |
| 105 | return bmap; |
| 106 | |
| Tobias Grosser | 8a12bd9 | 2016-06-23 18:59:30 +0000 | [diff] [blame^] | 107 | bmap = isl_basic_map_sort_constraints(bmap); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 108 | tab = isl_tab_from_basic_map(bmap, 0); |
| 109 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
| 110 | goto error; |
| 111 | if (isl_tab_detect_redundant(tab) < 0) |
| 112 | goto error; |
| 113 | bmap = isl_basic_map_update_from_tab(bmap, tab); |
| 114 | isl_tab_free(tab); |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 115 | if (!bmap) |
| 116 | return NULL; |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 117 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); |
| 118 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
| 119 | return bmap; |
| 120 | error: |
| 121 | isl_tab_free(tab); |
| 122 | isl_basic_map_free(bmap); |
| 123 | return NULL; |
| 124 | } |
| 125 | |
| 126 | __isl_give isl_basic_set *isl_basic_set_remove_redundancies( |
| 127 | __isl_take isl_basic_set *bset) |
| 128 | { |
| 129 | return (struct isl_basic_set *) |
| 130 | isl_basic_map_remove_redundancies((struct isl_basic_map *)bset); |
| 131 | } |
| 132 | |
| 133 | /* Remove redundant constraints in each of the basic maps. |
| 134 | */ |
| 135 | __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map) |
| 136 | { |
| 137 | return isl_map_inline_foreach_basic_map(map, |
| 138 | &isl_basic_map_remove_redundancies); |
| 139 | } |
| 140 | |
| 141 | __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set) |
| 142 | { |
| 143 | return isl_map_remove_redundancies(set); |
| 144 | } |
| 145 | |
| 146 | /* Check if the set set is bound in the direction of the affine |
| 147 | * constraint c and if so, set the constant term such that the |
| 148 | * resulting constraint is a bounding constraint for the set. |
| 149 | */ |
| 150 | static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len) |
| 151 | { |
| 152 | int first; |
| 153 | int j; |
| 154 | isl_int opt; |
| 155 | isl_int opt_denom; |
| 156 | |
| 157 | isl_int_init(opt); |
| 158 | isl_int_init(opt_denom); |
| 159 | first = 1; |
| 160 | for (j = 0; j < set->n; ++j) { |
| 161 | enum isl_lp_result res; |
| 162 | |
| 163 | if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY)) |
| 164 | continue; |
| 165 | |
| 166 | res = isl_basic_set_solve_lp(set->p[j], |
| 167 | 0, c, set->ctx->one, &opt, &opt_denom, NULL); |
| 168 | if (res == isl_lp_unbounded) |
| 169 | break; |
| 170 | if (res == isl_lp_error) |
| 171 | goto error; |
| 172 | if (res == isl_lp_empty) { |
| 173 | set->p[j] = isl_basic_set_set_to_empty(set->p[j]); |
| 174 | if (!set->p[j]) |
| 175 | goto error; |
| 176 | continue; |
| 177 | } |
| 178 | if (first || isl_int_is_neg(opt)) { |
| 179 | if (!isl_int_is_one(opt_denom)) |
| 180 | isl_seq_scale(c, c, opt_denom, len); |
| 181 | isl_int_sub(c[0], c[0], opt); |
| 182 | } |
| 183 | first = 0; |
| 184 | } |
| 185 | isl_int_clear(opt); |
| 186 | isl_int_clear(opt_denom); |
| 187 | return j >= set->n; |
| 188 | error: |
| 189 | isl_int_clear(opt); |
| 190 | isl_int_clear(opt_denom); |
| 191 | return -1; |
| 192 | } |
| 193 | |
| 194 | __isl_give isl_basic_map *isl_basic_map_set_rational( |
| 195 | __isl_take isl_basic_set *bmap) |
| 196 | { |
| 197 | if (!bmap) |
| 198 | return NULL; |
| 199 | |
| 200 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) |
| 201 | return bmap; |
| 202 | |
| 203 | bmap = isl_basic_map_cow(bmap); |
| 204 | if (!bmap) |
| 205 | return NULL; |
| 206 | |
| 207 | ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL); |
| 208 | |
| 209 | return isl_basic_map_finalize(bmap); |
| 210 | } |
| 211 | |
| 212 | __isl_give isl_basic_set *isl_basic_set_set_rational( |
| 213 | __isl_take isl_basic_set *bset) |
| 214 | { |
| 215 | return isl_basic_map_set_rational(bset); |
| 216 | } |
| 217 | |
| 218 | __isl_give isl_map *isl_map_set_rational(__isl_take isl_map *map) |
| 219 | { |
| 220 | int i; |
| 221 | |
| 222 | map = isl_map_cow(map); |
| 223 | if (!map) |
| 224 | return NULL; |
| 225 | for (i = 0; i < map->n; ++i) { |
| 226 | map->p[i] = isl_basic_map_set_rational(map->p[i]); |
| 227 | if (!map->p[i]) |
| 228 | goto error; |
| 229 | } |
| 230 | return map; |
| 231 | error: |
| 232 | isl_map_free(map); |
| 233 | return NULL; |
| 234 | } |
| 235 | |
| 236 | __isl_give isl_set *isl_set_set_rational(__isl_take isl_set *set) |
| 237 | { |
| 238 | return isl_map_set_rational(set); |
| 239 | } |
| 240 | |
| 241 | static struct isl_basic_set *isl_basic_set_add_equality( |
| 242 | struct isl_basic_set *bset, isl_int *c) |
| 243 | { |
| 244 | int i; |
| 245 | unsigned dim; |
| 246 | |
| 247 | if (!bset) |
| 248 | return NULL; |
| 249 | |
| 250 | if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) |
| 251 | return bset; |
| 252 | |
| 253 | isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); |
| 254 | isl_assert(bset->ctx, bset->n_div == 0, goto error); |
| 255 | dim = isl_basic_set_n_dim(bset); |
| 256 | bset = isl_basic_set_cow(bset); |
| 257 | bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0); |
| 258 | i = isl_basic_set_alloc_equality(bset); |
| 259 | if (i < 0) |
| 260 | goto error; |
| 261 | isl_seq_cpy(bset->eq[i], c, 1 + dim); |
| 262 | return bset; |
| 263 | error: |
| 264 | isl_basic_set_free(bset); |
| 265 | return NULL; |
| 266 | } |
| 267 | |
| 268 | static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c) |
| 269 | { |
| 270 | int i; |
| 271 | |
| 272 | set = isl_set_cow(set); |
| 273 | if (!set) |
| 274 | return NULL; |
| 275 | for (i = 0; i < set->n; ++i) { |
| 276 | set->p[i] = isl_basic_set_add_equality(set->p[i], c); |
| 277 | if (!set->p[i]) |
| 278 | goto error; |
| 279 | } |
| 280 | return set; |
| 281 | error: |
| 282 | isl_set_free(set); |
| 283 | return NULL; |
| 284 | } |
| 285 | |
| 286 | /* Given a union of basic sets, construct the constraints for wrapping |
| 287 | * a facet around one of its ridges. |
| 288 | * In particular, if each of n the d-dimensional basic sets i in "set" |
| 289 | * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0 |
| 290 | * and is defined by the constraints |
| 291 | * [ 1 ] |
| 292 | * A_i [ x ] >= 0 |
| 293 | * |
| 294 | * then the resulting set is of dimension n*(1+d) and has as constraints |
| 295 | * |
| 296 | * [ a_i ] |
| 297 | * A_i [ x_i ] >= 0 |
| 298 | * |
| 299 | * a_i >= 0 |
| 300 | * |
| 301 | * \sum_i x_{i,1} = 1 |
| 302 | */ |
| 303 | static struct isl_basic_set *wrap_constraints(struct isl_set *set) |
| 304 | { |
| 305 | struct isl_basic_set *lp; |
| 306 | unsigned n_eq; |
| 307 | unsigned n_ineq; |
| 308 | int i, j, k; |
| 309 | unsigned dim, lp_dim; |
| 310 | |
| 311 | if (!set) |
| 312 | return NULL; |
| 313 | |
| 314 | dim = 1 + isl_set_n_dim(set); |
| 315 | n_eq = 1; |
| 316 | n_ineq = set->n; |
| 317 | for (i = 0; i < set->n; ++i) { |
| 318 | n_eq += set->p[i]->n_eq; |
| 319 | n_ineq += set->p[i]->n_ineq; |
| 320 | } |
| 321 | lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq); |
| 322 | lp = isl_basic_set_set_rational(lp); |
| 323 | if (!lp) |
| 324 | return NULL; |
| 325 | lp_dim = isl_basic_set_n_dim(lp); |
| 326 | k = isl_basic_set_alloc_equality(lp); |
| 327 | isl_int_set_si(lp->eq[k][0], -1); |
| 328 | for (i = 0; i < set->n; ++i) { |
| 329 | isl_int_set_si(lp->eq[k][1+dim*i], 0); |
| 330 | isl_int_set_si(lp->eq[k][1+dim*i+1], 1); |
| 331 | isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2); |
| 332 | } |
| 333 | for (i = 0; i < set->n; ++i) { |
| 334 | k = isl_basic_set_alloc_inequality(lp); |
| 335 | isl_seq_clr(lp->ineq[k], 1+lp_dim); |
| 336 | isl_int_set_si(lp->ineq[k][1+dim*i], 1); |
| 337 | |
| 338 | for (j = 0; j < set->p[i]->n_eq; ++j) { |
| 339 | k = isl_basic_set_alloc_equality(lp); |
| 340 | isl_seq_clr(lp->eq[k], 1+dim*i); |
| 341 | isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim); |
| 342 | isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1)); |
| 343 | } |
| 344 | |
| 345 | for (j = 0; j < set->p[i]->n_ineq; ++j) { |
| 346 | k = isl_basic_set_alloc_inequality(lp); |
| 347 | isl_seq_clr(lp->ineq[k], 1+dim*i); |
| 348 | isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim); |
| 349 | isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1)); |
| 350 | } |
| 351 | } |
| 352 | return lp; |
| 353 | } |
| 354 | |
| 355 | /* Given a facet "facet" of the convex hull of "set" and a facet "ridge" |
| 356 | * of that facet, compute the other facet of the convex hull that contains |
| 357 | * the ridge. |
| 358 | * |
| 359 | * We first transform the set such that the facet constraint becomes |
| 360 | * |
| 361 | * x_1 >= 0 |
| 362 | * |
| 363 | * I.e., the facet lies in |
| 364 | * |
| 365 | * x_1 = 0 |
| 366 | * |
| 367 | * and on that facet, the constraint that defines the ridge is |
| 368 | * |
| 369 | * x_2 >= 0 |
| 370 | * |
| 371 | * (This transformation is not strictly needed, all that is needed is |
| 372 | * that the ridge contains the origin.) |
| 373 | * |
| 374 | * Since the ridge contains the origin, the cone of the convex hull |
| 375 | * will be of the form |
| 376 | * |
| 377 | * x_1 >= 0 |
| 378 | * x_2 >= a x_1 |
| 379 | * |
| 380 | * with this second constraint defining the new facet. |
| 381 | * The constant a is obtained by settting x_1 in the cone of the |
| 382 | * convex hull to 1 and minimizing x_2. |
| 383 | * Now, each element in the cone of the convex hull is the sum |
| 384 | * of elements in the cones of the basic sets. |
| 385 | * If a_i is the dilation factor of basic set i, then the problem |
| 386 | * we need to solve is |
| 387 | * |
| 388 | * min \sum_i x_{i,2} |
| 389 | * st |
| 390 | * \sum_i x_{i,1} = 1 |
| 391 | * a_i >= 0 |
| 392 | * [ a_i ] |
| 393 | * A [ x_i ] >= 0 |
| 394 | * |
| 395 | * with |
| 396 | * [ 1 ] |
| 397 | * A_i [ x_i ] >= 0 |
| 398 | * |
| 399 | * the constraints of each (transformed) basic set. |
| 400 | * If a = n/d, then the constraint defining the new facet (in the transformed |
| 401 | * space) is |
| 402 | * |
| 403 | * -n x_1 + d x_2 >= 0 |
| 404 | * |
| 405 | * In the original space, we need to take the same combination of the |
| 406 | * corresponding constraints "facet" and "ridge". |
| 407 | * |
| 408 | * If a = -infty = "-1/0", then we just return the original facet constraint. |
| 409 | * This means that the facet is unbounded, but has a bounded intersection |
| 410 | * with the union of sets. |
| 411 | */ |
| 412 | isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, |
| 413 | isl_int *facet, isl_int *ridge) |
| 414 | { |
| 415 | int i; |
| 416 | isl_ctx *ctx; |
| 417 | struct isl_mat *T = NULL; |
| 418 | struct isl_basic_set *lp = NULL; |
| 419 | struct isl_vec *obj; |
| 420 | enum isl_lp_result res; |
| 421 | isl_int num, den; |
| 422 | unsigned dim; |
| 423 | |
| 424 | if (!set) |
| 425 | return NULL; |
| 426 | ctx = set->ctx; |
| 427 | set = isl_set_copy(set); |
| 428 | set = isl_set_set_rational(set); |
| 429 | |
| 430 | dim = 1 + isl_set_n_dim(set); |
| 431 | T = isl_mat_alloc(ctx, 3, dim); |
| 432 | if (!T) |
| 433 | goto error; |
| 434 | isl_int_set_si(T->row[0][0], 1); |
| 435 | isl_seq_clr(T->row[0]+1, dim - 1); |
| 436 | isl_seq_cpy(T->row[1], facet, dim); |
| 437 | isl_seq_cpy(T->row[2], ridge, dim); |
| 438 | T = isl_mat_right_inverse(T); |
| 439 | set = isl_set_preimage(set, T); |
| 440 | T = NULL; |
| 441 | if (!set) |
| 442 | goto error; |
| 443 | lp = wrap_constraints(set); |
| 444 | obj = isl_vec_alloc(ctx, 1 + dim*set->n); |
| 445 | if (!obj) |
| 446 | goto error; |
| 447 | isl_int_set_si(obj->block.data[0], 0); |
| 448 | for (i = 0; i < set->n; ++i) { |
| 449 | isl_seq_clr(obj->block.data + 1 + dim*i, 2); |
| 450 | isl_int_set_si(obj->block.data[1 + dim*i+2], 1); |
| 451 | isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3); |
| 452 | } |
| 453 | isl_int_init(num); |
| 454 | isl_int_init(den); |
| 455 | res = isl_basic_set_solve_lp(lp, 0, |
| 456 | obj->block.data, ctx->one, &num, &den, NULL); |
| 457 | if (res == isl_lp_ok) { |
| 458 | isl_int_neg(num, num); |
| 459 | isl_seq_combine(facet, num, facet, den, ridge, dim); |
| 460 | isl_seq_normalize(ctx, facet, dim); |
| 461 | } |
| 462 | isl_int_clear(num); |
| 463 | isl_int_clear(den); |
| 464 | isl_vec_free(obj); |
| 465 | isl_basic_set_free(lp); |
| 466 | isl_set_free(set); |
| 467 | if (res == isl_lp_error) |
| 468 | return NULL; |
| 469 | isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, |
| 470 | return NULL); |
| 471 | return facet; |
| 472 | error: |
| 473 | isl_basic_set_free(lp); |
| 474 | isl_mat_free(T); |
| 475 | isl_set_free(set); |
| 476 | return NULL; |
| 477 | } |
| 478 | |
| 479 | /* Compute the constraint of a facet of "set". |
| 480 | * |
| 481 | * We first compute the intersection with a bounding constraint |
| 482 | * that is orthogonal to one of the coordinate axes. |
| 483 | * If the affine hull of this intersection has only one equality, |
| 484 | * we have found a facet. |
| 485 | * Otherwise, we wrap the current bounding constraint around |
| 486 | * one of the equalities of the face (one that is not equal to |
| 487 | * the current bounding constraint). |
| 488 | * This process continues until we have found a facet. |
| 489 | * The dimension of the intersection increases by at least |
| 490 | * one on each iteration, so termination is guaranteed. |
| 491 | */ |
| 492 | static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set) |
| 493 | { |
| 494 | struct isl_set *slice = NULL; |
| 495 | struct isl_basic_set *face = NULL; |
| 496 | int i; |
| 497 | unsigned dim = isl_set_n_dim(set); |
| 498 | int is_bound; |
| 499 | isl_mat *bounds = NULL; |
| 500 | |
| 501 | isl_assert(set->ctx, set->n > 0, goto error); |
| 502 | bounds = isl_mat_alloc(set->ctx, 1, 1 + dim); |
| 503 | if (!bounds) |
| 504 | return NULL; |
| 505 | |
| 506 | isl_seq_clr(bounds->row[0], dim); |
| 507 | isl_int_set_si(bounds->row[0][1 + dim - 1], 1); |
| 508 | is_bound = uset_is_bound(set, bounds->row[0], 1 + dim); |
| 509 | if (is_bound < 0) |
| 510 | goto error; |
| 511 | isl_assert(set->ctx, is_bound, goto error); |
| 512 | isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim); |
| 513 | bounds->n_row = 1; |
| 514 | |
| 515 | for (;;) { |
| 516 | slice = isl_set_copy(set); |
| 517 | slice = isl_set_add_basic_set_equality(slice, bounds->row[0]); |
| 518 | face = isl_set_affine_hull(slice); |
| 519 | if (!face) |
| 520 | goto error; |
| 521 | if (face->n_eq == 1) { |
| 522 | isl_basic_set_free(face); |
| 523 | break; |
| 524 | } |
| 525 | for (i = 0; i < face->n_eq; ++i) |
| 526 | if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) && |
| 527 | !isl_seq_is_neg(bounds->row[0], |
| 528 | face->eq[i], 1 + dim)) |
| 529 | break; |
| 530 | isl_assert(set->ctx, i < face->n_eq, goto error); |
| 531 | if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i])) |
| 532 | goto error; |
| 533 | isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col); |
| 534 | isl_basic_set_free(face); |
| 535 | } |
| 536 | |
| 537 | return bounds; |
| 538 | error: |
| 539 | isl_basic_set_free(face); |
| 540 | isl_mat_free(bounds); |
| 541 | return NULL; |
| 542 | } |
| 543 | |
| 544 | /* Given the bounding constraint "c" of a facet of the convex hull of "set", |
| 545 | * compute a hyperplane description of the facet, i.e., compute the facets |
| 546 | * of the facet. |
| 547 | * |
| 548 | * We compute an affine transformation that transforms the constraint |
| 549 | * |
| 550 | * [ 1 ] |
| 551 | * c [ x ] = 0 |
| 552 | * |
| 553 | * to the constraint |
| 554 | * |
| 555 | * z_1 = 0 |
| 556 | * |
| 557 | * by computing the right inverse U of a matrix that starts with the rows |
| 558 | * |
| 559 | * [ 1 0 ] |
| 560 | * [ c ] |
| 561 | * |
| 562 | * Then |
| 563 | * [ 1 ] [ 1 ] |
| 564 | * [ x ] = U [ z ] |
| 565 | * and |
| 566 | * [ 1 ] [ 1 ] |
| 567 | * [ z ] = Q [ x ] |
| 568 | * |
| 569 | * with Q = U^{-1} |
| 570 | * Since z_1 is zero, we can drop this variable as well as the corresponding |
| 571 | * column of U to obtain |
| 572 | * |
| 573 | * [ 1 ] [ 1 ] |
| 574 | * [ x ] = U' [ z' ] |
| 575 | * and |
| 576 | * [ 1 ] [ 1 ] |
| 577 | * [ z' ] = Q' [ x ] |
| 578 | * |
| 579 | * with Q' equal to Q, but without the corresponding row. |
| 580 | * After computing the facets of the facet in the z' space, |
| 581 | * we convert them back to the x space through Q. |
| 582 | */ |
| 583 | static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c) |
| 584 | { |
| 585 | struct isl_mat *m, *U, *Q; |
| 586 | struct isl_basic_set *facet = NULL; |
| 587 | struct isl_ctx *ctx; |
| 588 | unsigned dim; |
| 589 | |
| 590 | ctx = set->ctx; |
| 591 | set = isl_set_copy(set); |
| 592 | dim = isl_set_n_dim(set); |
| 593 | m = isl_mat_alloc(set->ctx, 2, 1 + dim); |
| 594 | if (!m) |
| 595 | goto error; |
| 596 | isl_int_set_si(m->row[0][0], 1); |
| 597 | isl_seq_clr(m->row[0]+1, dim); |
| 598 | isl_seq_cpy(m->row[1], c, 1+dim); |
| 599 | U = isl_mat_right_inverse(m); |
| 600 | Q = isl_mat_right_inverse(isl_mat_copy(U)); |
| 601 | U = isl_mat_drop_cols(U, 1, 1); |
| 602 | Q = isl_mat_drop_rows(Q, 1, 1); |
| 603 | set = isl_set_preimage(set, U); |
| 604 | facet = uset_convex_hull_wrap_bounded(set); |
| 605 | facet = isl_basic_set_preimage(facet, Q); |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 606 | if (facet && facet->n_eq != 0) |
| 607 | isl_die(ctx, isl_error_internal, "unexpected equality", |
| 608 | return isl_basic_set_free(facet)); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 609 | return facet; |
| 610 | error: |
| 611 | isl_basic_set_free(facet); |
| 612 | isl_set_free(set); |
| 613 | return NULL; |
| 614 | } |
| 615 | |
| 616 | /* Given an initial facet constraint, compute the remaining facets. |
| 617 | * We do this by running through all facets found so far and computing |
| 618 | * the adjacent facets through wrapping, adding those facets that we |
| 619 | * hadn't already found before. |
| 620 | * |
| 621 | * For each facet we have found so far, we first compute its facets |
| 622 | * in the resulting convex hull. That is, we compute the ridges |
| 623 | * of the resulting convex hull contained in the facet. |
| 624 | * We also compute the corresponding facet in the current approximation |
| 625 | * of the convex hull. There is no need to wrap around the ridges |
| 626 | * in this facet since that would result in a facet that is already |
| 627 | * present in the current approximation. |
| 628 | * |
| 629 | * This function can still be significantly optimized by checking which of |
| 630 | * the facets of the basic sets are also facets of the convex hull and |
| 631 | * using all the facets so far to help in constructing the facets of the |
| 632 | * facets |
| 633 | * and/or |
| 634 | * using the technique in section "3.1 Ridge Generation" of |
| 635 | * "Extended Convex Hull" by Fukuda et al. |
| 636 | */ |
| 637 | static struct isl_basic_set *extend(struct isl_basic_set *hull, |
| 638 | struct isl_set *set) |
| 639 | { |
| 640 | int i, j, f; |
| 641 | int k; |
| 642 | struct isl_basic_set *facet = NULL; |
| 643 | struct isl_basic_set *hull_facet = NULL; |
| 644 | unsigned dim; |
| 645 | |
| 646 | if (!hull) |
| 647 | return NULL; |
| 648 | |
| 649 | isl_assert(set->ctx, set->n > 0, goto error); |
| 650 | |
| 651 | dim = isl_set_n_dim(set); |
| 652 | |
| 653 | for (i = 0; i < hull->n_ineq; ++i) { |
| 654 | facet = compute_facet(set, hull->ineq[i]); |
| 655 | facet = isl_basic_set_add_equality(facet, hull->ineq[i]); |
| 656 | facet = isl_basic_set_gauss(facet, NULL); |
| 657 | facet = isl_basic_set_normalize_constraints(facet); |
| 658 | hull_facet = isl_basic_set_copy(hull); |
| 659 | hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]); |
| 660 | hull_facet = isl_basic_set_gauss(hull_facet, NULL); |
| 661 | hull_facet = isl_basic_set_normalize_constraints(hull_facet); |
| 662 | if (!facet || !hull_facet) |
| 663 | goto error; |
| 664 | hull = isl_basic_set_cow(hull); |
| 665 | hull = isl_basic_set_extend_space(hull, |
| 666 | isl_space_copy(hull->dim), 0, 0, facet->n_ineq); |
| 667 | if (!hull) |
| 668 | goto error; |
| 669 | for (j = 0; j < facet->n_ineq; ++j) { |
| 670 | for (f = 0; f < hull_facet->n_ineq; ++f) |
| 671 | if (isl_seq_eq(facet->ineq[j], |
| 672 | hull_facet->ineq[f], 1 + dim)) |
| 673 | break; |
| 674 | if (f < hull_facet->n_ineq) |
| 675 | continue; |
| 676 | k = isl_basic_set_alloc_inequality(hull); |
| 677 | if (k < 0) |
| 678 | goto error; |
| 679 | isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim); |
| 680 | if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j])) |
| 681 | goto error; |
| 682 | } |
| 683 | isl_basic_set_free(hull_facet); |
| 684 | isl_basic_set_free(facet); |
| 685 | } |
| 686 | hull = isl_basic_set_simplify(hull); |
| 687 | hull = isl_basic_set_finalize(hull); |
| 688 | return hull; |
| 689 | error: |
| 690 | isl_basic_set_free(hull_facet); |
| 691 | isl_basic_set_free(facet); |
| 692 | isl_basic_set_free(hull); |
| 693 | return NULL; |
| 694 | } |
| 695 | |
| 696 | /* Special case for computing the convex hull of a one dimensional set. |
| 697 | * We simply collect the lower and upper bounds of each basic set |
| 698 | * and the biggest of those. |
| 699 | */ |
| 700 | static struct isl_basic_set *convex_hull_1d(struct isl_set *set) |
| 701 | { |
| 702 | struct isl_mat *c = NULL; |
| 703 | isl_int *lower = NULL; |
| 704 | isl_int *upper = NULL; |
| 705 | int i, j, k; |
| 706 | isl_int a, b; |
| 707 | struct isl_basic_set *hull; |
| 708 | |
| 709 | for (i = 0; i < set->n; ++i) { |
| 710 | set->p[i] = isl_basic_set_simplify(set->p[i]); |
| 711 | if (!set->p[i]) |
| 712 | goto error; |
| 713 | } |
| 714 | set = isl_set_remove_empty_parts(set); |
| 715 | if (!set) |
| 716 | goto error; |
| 717 | isl_assert(set->ctx, set->n > 0, goto error); |
| 718 | c = isl_mat_alloc(set->ctx, 2, 2); |
| 719 | if (!c) |
| 720 | goto error; |
| 721 | |
| 722 | if (set->p[0]->n_eq > 0) { |
| 723 | isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error); |
| 724 | lower = c->row[0]; |
| 725 | upper = c->row[1]; |
| 726 | if (isl_int_is_pos(set->p[0]->eq[0][1])) { |
| 727 | isl_seq_cpy(lower, set->p[0]->eq[0], 2); |
| 728 | isl_seq_neg(upper, set->p[0]->eq[0], 2); |
| 729 | } else { |
| 730 | isl_seq_neg(lower, set->p[0]->eq[0], 2); |
| 731 | isl_seq_cpy(upper, set->p[0]->eq[0], 2); |
| 732 | } |
| 733 | } else { |
| 734 | for (j = 0; j < set->p[0]->n_ineq; ++j) { |
| 735 | if (isl_int_is_pos(set->p[0]->ineq[j][1])) { |
| 736 | lower = c->row[0]; |
| 737 | isl_seq_cpy(lower, set->p[0]->ineq[j], 2); |
| 738 | } else { |
| 739 | upper = c->row[1]; |
| 740 | isl_seq_cpy(upper, set->p[0]->ineq[j], 2); |
| 741 | } |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | isl_int_init(a); |
| 746 | isl_int_init(b); |
| 747 | for (i = 0; i < set->n; ++i) { |
| 748 | struct isl_basic_set *bset = set->p[i]; |
| 749 | int has_lower = 0; |
| 750 | int has_upper = 0; |
| 751 | |
| 752 | for (j = 0; j < bset->n_eq; ++j) { |
| 753 | has_lower = 1; |
| 754 | has_upper = 1; |
| 755 | if (lower) { |
| 756 | isl_int_mul(a, lower[0], bset->eq[j][1]); |
| 757 | isl_int_mul(b, lower[1], bset->eq[j][0]); |
| 758 | if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1])) |
| 759 | isl_seq_cpy(lower, bset->eq[j], 2); |
| 760 | if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1])) |
| 761 | isl_seq_neg(lower, bset->eq[j], 2); |
| 762 | } |
| 763 | if (upper) { |
| 764 | isl_int_mul(a, upper[0], bset->eq[j][1]); |
| 765 | isl_int_mul(b, upper[1], bset->eq[j][0]); |
| 766 | if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1])) |
| 767 | isl_seq_neg(upper, bset->eq[j], 2); |
| 768 | if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1])) |
| 769 | isl_seq_cpy(upper, bset->eq[j], 2); |
| 770 | } |
| 771 | } |
| 772 | for (j = 0; j < bset->n_ineq; ++j) { |
| 773 | if (isl_int_is_pos(bset->ineq[j][1])) |
| 774 | has_lower = 1; |
| 775 | if (isl_int_is_neg(bset->ineq[j][1])) |
| 776 | has_upper = 1; |
| 777 | if (lower && isl_int_is_pos(bset->ineq[j][1])) { |
| 778 | isl_int_mul(a, lower[0], bset->ineq[j][1]); |
| 779 | isl_int_mul(b, lower[1], bset->ineq[j][0]); |
| 780 | if (isl_int_lt(a, b)) |
| 781 | isl_seq_cpy(lower, bset->ineq[j], 2); |
| 782 | } |
| 783 | if (upper && isl_int_is_neg(bset->ineq[j][1])) { |
| 784 | isl_int_mul(a, upper[0], bset->ineq[j][1]); |
| 785 | isl_int_mul(b, upper[1], bset->ineq[j][0]); |
| 786 | if (isl_int_gt(a, b)) |
| 787 | isl_seq_cpy(upper, bset->ineq[j], 2); |
| 788 | } |
| 789 | } |
| 790 | if (!has_lower) |
| 791 | lower = NULL; |
| 792 | if (!has_upper) |
| 793 | upper = NULL; |
| 794 | } |
| 795 | isl_int_clear(a); |
| 796 | isl_int_clear(b); |
| 797 | |
| 798 | hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2); |
| 799 | hull = isl_basic_set_set_rational(hull); |
| 800 | if (!hull) |
| 801 | goto error; |
| 802 | if (lower) { |
| 803 | k = isl_basic_set_alloc_inequality(hull); |
| 804 | isl_seq_cpy(hull->ineq[k], lower, 2); |
| 805 | } |
| 806 | if (upper) { |
| 807 | k = isl_basic_set_alloc_inequality(hull); |
| 808 | isl_seq_cpy(hull->ineq[k], upper, 2); |
| 809 | } |
| 810 | hull = isl_basic_set_finalize(hull); |
| 811 | isl_set_free(set); |
| 812 | isl_mat_free(c); |
| 813 | return hull; |
| 814 | error: |
| 815 | isl_set_free(set); |
| 816 | isl_mat_free(c); |
| 817 | return NULL; |
| 818 | } |
| 819 | |
| 820 | static struct isl_basic_set *convex_hull_0d(struct isl_set *set) |
| 821 | { |
| 822 | struct isl_basic_set *convex_hull; |
| 823 | |
| 824 | if (!set) |
| 825 | return NULL; |
| 826 | |
| 827 | if (isl_set_is_empty(set)) |
| 828 | convex_hull = isl_basic_set_empty(isl_space_copy(set->dim)); |
| 829 | else |
| 830 | convex_hull = isl_basic_set_universe(isl_space_copy(set->dim)); |
| 831 | isl_set_free(set); |
| 832 | return convex_hull; |
| 833 | } |
| 834 | |
| 835 | /* Compute the convex hull of a pair of basic sets without any parameters or |
| 836 | * integer divisions using Fourier-Motzkin elimination. |
| 837 | * The convex hull is the set of all points that can be written as |
| 838 | * the sum of points from both basic sets (in homogeneous coordinates). |
| 839 | * We set up the constraints in a space with dimensions for each of |
| 840 | * the three sets and then project out the dimensions corresponding |
| 841 | * to the two original basic sets, retaining only those corresponding |
| 842 | * to the convex hull. |
| 843 | */ |
| 844 | static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1, |
| 845 | struct isl_basic_set *bset2) |
| 846 | { |
| 847 | int i, j, k; |
| 848 | struct isl_basic_set *bset[2]; |
| 849 | struct isl_basic_set *hull = NULL; |
| 850 | unsigned dim; |
| 851 | |
| 852 | if (!bset1 || !bset2) |
| 853 | goto error; |
| 854 | |
| 855 | dim = isl_basic_set_n_dim(bset1); |
| 856 | hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0, |
| 857 | 1 + dim + bset1->n_eq + bset2->n_eq, |
| 858 | 2 + bset1->n_ineq + bset2->n_ineq); |
| 859 | bset[0] = bset1; |
| 860 | bset[1] = bset2; |
| 861 | for (i = 0; i < 2; ++i) { |
| 862 | for (j = 0; j < bset[i]->n_eq; ++j) { |
| 863 | k = isl_basic_set_alloc_equality(hull); |
| 864 | if (k < 0) |
| 865 | goto error; |
| 866 | isl_seq_clr(hull->eq[k], (i+1) * (1+dim)); |
| 867 | isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim)); |
| 868 | isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j], |
| 869 | 1+dim); |
| 870 | } |
| 871 | for (j = 0; j < bset[i]->n_ineq; ++j) { |
| 872 | k = isl_basic_set_alloc_inequality(hull); |
| 873 | if (k < 0) |
| 874 | goto error; |
| 875 | isl_seq_clr(hull->ineq[k], (i+1) * (1+dim)); |
| 876 | isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim)); |
| 877 | isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim), |
| 878 | bset[i]->ineq[j], 1+dim); |
| 879 | } |
| 880 | k = isl_basic_set_alloc_inequality(hull); |
| 881 | if (k < 0) |
| 882 | goto error; |
| 883 | isl_seq_clr(hull->ineq[k], 1+2+3*dim); |
| 884 | isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1); |
| 885 | } |
| 886 | for (j = 0; j < 1+dim; ++j) { |
| 887 | k = isl_basic_set_alloc_equality(hull); |
| 888 | if (k < 0) |
| 889 | goto error; |
| 890 | isl_seq_clr(hull->eq[k], 1+2+3*dim); |
| 891 | isl_int_set_si(hull->eq[k][j], -1); |
| 892 | isl_int_set_si(hull->eq[k][1+dim+j], 1); |
| 893 | isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1); |
| 894 | } |
| 895 | hull = isl_basic_set_set_rational(hull); |
| 896 | hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim)); |
| 897 | hull = isl_basic_set_remove_redundancies(hull); |
| 898 | isl_basic_set_free(bset1); |
| 899 | isl_basic_set_free(bset2); |
| 900 | return hull; |
| 901 | error: |
| 902 | isl_basic_set_free(bset1); |
| 903 | isl_basic_set_free(bset2); |
| 904 | isl_basic_set_free(hull); |
| 905 | return NULL; |
| 906 | } |
| 907 | |
| 908 | /* Is the set bounded for each value of the parameters? |
| 909 | */ |
| 910 | int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset) |
| 911 | { |
| 912 | struct isl_tab *tab; |
| 913 | int bounded; |
| 914 | |
| 915 | if (!bset) |
| 916 | return -1; |
| 917 | if (isl_basic_set_plain_is_empty(bset)) |
| 918 | return 1; |
| 919 | |
| 920 | tab = isl_tab_from_recession_cone(bset, 1); |
| 921 | bounded = isl_tab_cone_is_bounded(tab); |
| 922 | isl_tab_free(tab); |
| 923 | return bounded; |
| 924 | } |
| 925 | |
| 926 | /* Is the image bounded for each value of the parameters and |
| 927 | * the domain variables? |
| 928 | */ |
| 929 | int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap) |
| 930 | { |
| 931 | unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param); |
| 932 | unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in); |
| 933 | int bounded; |
| 934 | |
| 935 | bmap = isl_basic_map_copy(bmap); |
| 936 | bmap = isl_basic_map_cow(bmap); |
| 937 | bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam, |
| 938 | isl_dim_in, 0, n_in); |
| 939 | bounded = isl_basic_set_is_bounded((isl_basic_set *)bmap); |
| 940 | isl_basic_map_free(bmap); |
| 941 | |
| 942 | return bounded; |
| 943 | } |
| 944 | |
| 945 | /* Is the set bounded for each value of the parameters? |
| 946 | */ |
| 947 | int isl_set_is_bounded(__isl_keep isl_set *set) |
| 948 | { |
| 949 | int i; |
| 950 | |
| 951 | if (!set) |
| 952 | return -1; |
| 953 | |
| 954 | for (i = 0; i < set->n; ++i) { |
| 955 | int bounded = isl_basic_set_is_bounded(set->p[i]); |
| 956 | if (!bounded || bounded < 0) |
| 957 | return bounded; |
| 958 | } |
| 959 | return 1; |
| 960 | } |
| 961 | |
| 962 | /* Compute the lineality space of the convex hull of bset1 and bset2. |
| 963 | * |
| 964 | * We first compute the intersection of the recession cone of bset1 |
| 965 | * with the negative of the recession cone of bset2 and then compute |
| 966 | * the linear hull of the resulting cone. |
| 967 | */ |
| 968 | static struct isl_basic_set *induced_lineality_space( |
| 969 | struct isl_basic_set *bset1, struct isl_basic_set *bset2) |
| 970 | { |
| 971 | int i, k; |
| 972 | struct isl_basic_set *lin = NULL; |
| 973 | unsigned dim; |
| 974 | |
| 975 | if (!bset1 || !bset2) |
| 976 | goto error; |
| 977 | |
| 978 | dim = isl_basic_set_total_dim(bset1); |
| 979 | lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset1), 0, |
| 980 | bset1->n_eq + bset2->n_eq, |
| 981 | bset1->n_ineq + bset2->n_ineq); |
| 982 | lin = isl_basic_set_set_rational(lin); |
| 983 | if (!lin) |
| 984 | goto error; |
| 985 | for (i = 0; i < bset1->n_eq; ++i) { |
| 986 | k = isl_basic_set_alloc_equality(lin); |
| 987 | if (k < 0) |
| 988 | goto error; |
| 989 | isl_int_set_si(lin->eq[k][0], 0); |
| 990 | isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim); |
| 991 | } |
| 992 | for (i = 0; i < bset1->n_ineq; ++i) { |
| 993 | k = isl_basic_set_alloc_inequality(lin); |
| 994 | if (k < 0) |
| 995 | goto error; |
| 996 | isl_int_set_si(lin->ineq[k][0], 0); |
| 997 | isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim); |
| 998 | } |
| 999 | for (i = 0; i < bset2->n_eq; ++i) { |
| 1000 | k = isl_basic_set_alloc_equality(lin); |
| 1001 | if (k < 0) |
| 1002 | goto error; |
| 1003 | isl_int_set_si(lin->eq[k][0], 0); |
| 1004 | isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim); |
| 1005 | } |
| 1006 | for (i = 0; i < bset2->n_ineq; ++i) { |
| 1007 | k = isl_basic_set_alloc_inequality(lin); |
| 1008 | if (k < 0) |
| 1009 | goto error; |
| 1010 | isl_int_set_si(lin->ineq[k][0], 0); |
| 1011 | isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim); |
| 1012 | } |
| 1013 | |
| 1014 | isl_basic_set_free(bset1); |
| 1015 | isl_basic_set_free(bset2); |
| 1016 | return isl_basic_set_affine_hull(lin); |
| 1017 | error: |
| 1018 | isl_basic_set_free(lin); |
| 1019 | isl_basic_set_free(bset1); |
| 1020 | isl_basic_set_free(bset2); |
| 1021 | return NULL; |
| 1022 | } |
| 1023 | |
| 1024 | static struct isl_basic_set *uset_convex_hull(struct isl_set *set); |
| 1025 | |
| 1026 | /* Given a set and a linear space "lin" of dimension n > 0, |
| 1027 | * project the linear space from the set, compute the convex hull |
| 1028 | * and then map the set back to the original space. |
| 1029 | * |
| 1030 | * Let |
| 1031 | * |
| 1032 | * M x = 0 |
| 1033 | * |
| 1034 | * describe the linear space. We first compute the Hermite normal |
| 1035 | * form H = M U of M = H Q, to obtain |
| 1036 | * |
| 1037 | * H Q x = 0 |
| 1038 | * |
| 1039 | * The last n rows of H will be zero, so the last n variables of x' = Q x |
| 1040 | * are the one we want to project out. We do this by transforming each |
| 1041 | * basic set A x >= b to A U x' >= b and then removing the last n dimensions. |
| 1042 | * After computing the convex hull in x'_1, i.e., A' x'_1 >= b', |
| 1043 | * we transform the hull back to the original space as A' Q_1 x >= b', |
| 1044 | * with Q_1 all but the last n rows of Q. |
| 1045 | */ |
| 1046 | static struct isl_basic_set *modulo_lineality(struct isl_set *set, |
| 1047 | struct isl_basic_set *lin) |
| 1048 | { |
| 1049 | unsigned total = isl_basic_set_total_dim(lin); |
| 1050 | unsigned lin_dim; |
| 1051 | struct isl_basic_set *hull; |
| 1052 | struct isl_mat *M, *U, *Q; |
| 1053 | |
| 1054 | if (!set || !lin) |
| 1055 | goto error; |
| 1056 | lin_dim = total - lin->n_eq; |
| 1057 | M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total); |
| 1058 | M = isl_mat_left_hermite(M, 0, &U, &Q); |
| 1059 | if (!M) |
| 1060 | goto error; |
| 1061 | isl_mat_free(M); |
| 1062 | isl_basic_set_free(lin); |
| 1063 | |
| 1064 | Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim); |
| 1065 | |
| 1066 | U = isl_mat_lin_to_aff(U); |
| 1067 | Q = isl_mat_lin_to_aff(Q); |
| 1068 | |
| 1069 | set = isl_set_preimage(set, U); |
| 1070 | set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim); |
| 1071 | hull = uset_convex_hull(set); |
| 1072 | hull = isl_basic_set_preimage(hull, Q); |
| 1073 | |
| 1074 | return hull; |
| 1075 | error: |
| 1076 | isl_basic_set_free(lin); |
| 1077 | isl_set_free(set); |
| 1078 | return NULL; |
| 1079 | } |
| 1080 | |
| 1081 | /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space, |
| 1082 | * set up an LP for solving |
| 1083 | * |
| 1084 | * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j} |
| 1085 | * |
| 1086 | * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0 |
| 1087 | * The next \alpha{ij} correspond to the equalities and come in pairs. |
| 1088 | * The final \alpha{ij} correspond to the inequalities. |
| 1089 | */ |
| 1090 | static struct isl_basic_set *valid_direction_lp( |
| 1091 | struct isl_basic_set *bset1, struct isl_basic_set *bset2) |
| 1092 | { |
| 1093 | isl_space *dim; |
| 1094 | struct isl_basic_set *lp; |
| 1095 | unsigned d; |
| 1096 | int n; |
| 1097 | int i, j, k; |
| 1098 | |
| 1099 | if (!bset1 || !bset2) |
| 1100 | goto error; |
| 1101 | d = 1 + isl_basic_set_total_dim(bset1); |
| 1102 | n = 2 + |
| 1103 | 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq; |
| 1104 | dim = isl_space_set_alloc(bset1->ctx, 0, n); |
| 1105 | lp = isl_basic_set_alloc_space(dim, 0, d, n); |
| 1106 | if (!lp) |
| 1107 | goto error; |
| 1108 | for (i = 0; i < n; ++i) { |
| 1109 | k = isl_basic_set_alloc_inequality(lp); |
| 1110 | if (k < 0) |
| 1111 | goto error; |
| 1112 | isl_seq_clr(lp->ineq[k] + 1, n); |
| 1113 | isl_int_set_si(lp->ineq[k][0], -1); |
| 1114 | isl_int_set_si(lp->ineq[k][1 + i], 1); |
| 1115 | } |
| 1116 | for (i = 0; i < d; ++i) { |
| 1117 | k = isl_basic_set_alloc_equality(lp); |
| 1118 | if (k < 0) |
| 1119 | goto error; |
| 1120 | n = 0; |
| 1121 | isl_int_set_si(lp->eq[k][n], 0); n++; |
| 1122 | /* positivity constraint 1 >= 0 */ |
| 1123 | isl_int_set_si(lp->eq[k][n], i == 0); n++; |
| 1124 | for (j = 0; j < bset1->n_eq; ++j) { |
| 1125 | isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++; |
| 1126 | isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++; |
| 1127 | } |
| 1128 | for (j = 0; j < bset1->n_ineq; ++j) { |
| 1129 | isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++; |
| 1130 | } |
| 1131 | /* positivity constraint 1 >= 0 */ |
| 1132 | isl_int_set_si(lp->eq[k][n], -(i == 0)); n++; |
| 1133 | for (j = 0; j < bset2->n_eq; ++j) { |
| 1134 | isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++; |
| 1135 | isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++; |
| 1136 | } |
| 1137 | for (j = 0; j < bset2->n_ineq; ++j) { |
| 1138 | isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++; |
| 1139 | } |
| 1140 | } |
| 1141 | lp = isl_basic_set_gauss(lp, NULL); |
| 1142 | isl_basic_set_free(bset1); |
| 1143 | isl_basic_set_free(bset2); |
| 1144 | return lp; |
| 1145 | error: |
| 1146 | isl_basic_set_free(bset1); |
| 1147 | isl_basic_set_free(bset2); |
| 1148 | return NULL; |
| 1149 | } |
| 1150 | |
| 1151 | /* Compute a vector s in the homogeneous space such that <s, r> > 0 |
| 1152 | * for all rays in the homogeneous space of the two cones that correspond |
| 1153 | * to the input polyhedra bset1 and bset2. |
| 1154 | * |
| 1155 | * We compute s as a vector that satisfies |
| 1156 | * |
| 1157 | * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*) |
| 1158 | * |
| 1159 | * with h_{ij} the normals of the facets of polyhedron i |
| 1160 | * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} |
| 1161 | * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. |
| 1162 | * We first set up an LP with as variables the \alpha{ij}. |
| 1163 | * In this formulation, for each polyhedron i, |
| 1164 | * the first constraint is the positivity constraint, followed by pairs |
| 1165 | * of variables for the equalities, followed by variables for the inequalities. |
| 1166 | * We then simply pick a feasible solution and compute s using (*). |
| 1167 | * |
| 1168 | * Note that we simply pick any valid direction and make no attempt |
| 1169 | * to pick a "good" or even the "best" valid direction. |
| 1170 | */ |
| 1171 | static struct isl_vec *valid_direction( |
| 1172 | struct isl_basic_set *bset1, struct isl_basic_set *bset2) |
| 1173 | { |
| 1174 | struct isl_basic_set *lp; |
| 1175 | struct isl_tab *tab; |
| 1176 | struct isl_vec *sample = NULL; |
| 1177 | struct isl_vec *dir; |
| 1178 | unsigned d; |
| 1179 | int i; |
| 1180 | int n; |
| 1181 | |
| 1182 | if (!bset1 || !bset2) |
| 1183 | goto error; |
| 1184 | lp = valid_direction_lp(isl_basic_set_copy(bset1), |
| 1185 | isl_basic_set_copy(bset2)); |
| 1186 | tab = isl_tab_from_basic_set(lp, 0); |
| 1187 | sample = isl_tab_get_sample_value(tab); |
| 1188 | isl_tab_free(tab); |
| 1189 | isl_basic_set_free(lp); |
| 1190 | if (!sample) |
| 1191 | goto error; |
| 1192 | d = isl_basic_set_total_dim(bset1); |
| 1193 | dir = isl_vec_alloc(bset1->ctx, 1 + d); |
| 1194 | if (!dir) |
| 1195 | goto error; |
| 1196 | isl_seq_clr(dir->block.data + 1, dir->size - 1); |
| 1197 | n = 1; |
| 1198 | /* positivity constraint 1 >= 0 */ |
| 1199 | isl_int_set(dir->block.data[0], sample->block.data[n]); n++; |
| 1200 | for (i = 0; i < bset1->n_eq; ++i) { |
| 1201 | isl_int_sub(sample->block.data[n], |
| 1202 | sample->block.data[n], sample->block.data[n+1]); |
| 1203 | isl_seq_combine(dir->block.data, |
| 1204 | bset1->ctx->one, dir->block.data, |
| 1205 | sample->block.data[n], bset1->eq[i], 1 + d); |
| 1206 | |
| 1207 | n += 2; |
| 1208 | } |
| 1209 | for (i = 0; i < bset1->n_ineq; ++i) |
| 1210 | isl_seq_combine(dir->block.data, |
| 1211 | bset1->ctx->one, dir->block.data, |
| 1212 | sample->block.data[n++], bset1->ineq[i], 1 + d); |
| 1213 | isl_vec_free(sample); |
| 1214 | isl_seq_normalize(bset1->ctx, dir->el, dir->size); |
| 1215 | isl_basic_set_free(bset1); |
| 1216 | isl_basic_set_free(bset2); |
| 1217 | return dir; |
| 1218 | error: |
| 1219 | isl_vec_free(sample); |
| 1220 | isl_basic_set_free(bset1); |
| 1221 | isl_basic_set_free(bset2); |
| 1222 | return NULL; |
| 1223 | } |
| 1224 | |
| 1225 | /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1}, |
| 1226 | * compute b_i' + A_i' x' >= 0, with |
| 1227 | * |
| 1228 | * [ b_i A_i ] [ y' ] [ y' ] |
| 1229 | * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 |
| 1230 | * |
| 1231 | * In particular, add the "positivity constraint" and then perform |
| 1232 | * the mapping. |
| 1233 | */ |
| 1234 | static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset, |
| 1235 | struct isl_mat *T) |
| 1236 | { |
| 1237 | int k; |
| 1238 | |
| 1239 | if (!bset) |
| 1240 | goto error; |
| 1241 | bset = isl_basic_set_extend_constraints(bset, 0, 1); |
| 1242 | k = isl_basic_set_alloc_inequality(bset); |
| 1243 | if (k < 0) |
| 1244 | goto error; |
| 1245 | isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset)); |
| 1246 | isl_int_set_si(bset->ineq[k][0], 1); |
| 1247 | bset = isl_basic_set_preimage(bset, T); |
| 1248 | return bset; |
| 1249 | error: |
| 1250 | isl_mat_free(T); |
| 1251 | isl_basic_set_free(bset); |
| 1252 | return NULL; |
| 1253 | } |
| 1254 | |
| 1255 | /* Compute the convex hull of a pair of basic sets without any parameters or |
| 1256 | * integer divisions, where the convex hull is known to be pointed, |
| 1257 | * but the basic sets may be unbounded. |
| 1258 | * |
| 1259 | * We turn this problem into the computation of a convex hull of a pair |
| 1260 | * _bounded_ polyhedra by "changing the direction of the homogeneous |
| 1261 | * dimension". This idea is due to Matthias Koeppe. |
| 1262 | * |
| 1263 | * Consider the cones in homogeneous space that correspond to the |
| 1264 | * input polyhedra. The rays of these cones are also rays of the |
| 1265 | * polyhedra if the coordinate that corresponds to the homogeneous |
| 1266 | * dimension is zero. That is, if the inner product of the rays |
| 1267 | * with the homogeneous direction is zero. |
| 1268 | * The cones in the homogeneous space can also be considered to |
| 1269 | * correspond to other pairs of polyhedra by chosing a different |
| 1270 | * homogeneous direction. To ensure that both of these polyhedra |
| 1271 | * are bounded, we need to make sure that all rays of the cones |
| 1272 | * correspond to vertices and not to rays. |
| 1273 | * Let s be a direction such that <s, r> > 0 for all rays r of both cones. |
| 1274 | * Then using s as a homogeneous direction, we obtain a pair of polytopes. |
| 1275 | * The vector s is computed in valid_direction. |
| 1276 | * |
| 1277 | * Note that we need to consider _all_ rays of the cones and not just |
| 1278 | * the rays that correspond to rays in the polyhedra. If we were to |
| 1279 | * only consider those rays and turn them into vertices, then we |
| 1280 | * may inadvertently turn some vertices into rays. |
| 1281 | * |
| 1282 | * The standard homogeneous direction is the unit vector in the 0th coordinate. |
| 1283 | * We therefore transform the two polyhedra such that the selected |
| 1284 | * direction is mapped onto this standard direction and then proceed |
| 1285 | * with the normal computation. |
| 1286 | * Let S be a non-singular square matrix with s as its first row, |
| 1287 | * then we want to map the polyhedra to the space |
| 1288 | * |
| 1289 | * [ y' ] [ y ] [ y ] [ y' ] |
| 1290 | * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ] |
| 1291 | * |
| 1292 | * We take S to be the unimodular completion of s to limit the growth |
| 1293 | * of the coefficients in the following computations. |
| 1294 | * |
| 1295 | * Let b_i + A_i x >= 0 be the constraints of polyhedron i. |
| 1296 | * We first move to the homogeneous dimension |
| 1297 | * |
| 1298 | * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ] |
| 1299 | * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ] |
| 1300 | * |
| 1301 | * Then we change directoin |
| 1302 | * |
| 1303 | * [ b_i A_i ] [ y' ] [ y' ] |
| 1304 | * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 |
| 1305 | * |
| 1306 | * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0 |
| 1307 | * resulting in b' + A' x' >= 0, which we then convert back |
| 1308 | * |
| 1309 | * [ y ] [ y ] |
| 1310 | * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0 |
| 1311 | * |
| 1312 | * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra. |
| 1313 | */ |
| 1314 | static struct isl_basic_set *convex_hull_pair_pointed( |
| 1315 | struct isl_basic_set *bset1, struct isl_basic_set *bset2) |
| 1316 | { |
| 1317 | struct isl_ctx *ctx = NULL; |
| 1318 | struct isl_vec *dir = NULL; |
| 1319 | struct isl_mat *T = NULL; |
| 1320 | struct isl_mat *T2 = NULL; |
| 1321 | struct isl_basic_set *hull; |
| 1322 | struct isl_set *set; |
| 1323 | |
| 1324 | if (!bset1 || !bset2) |
| 1325 | goto error; |
| Tobias Grosser | e395da7 | 2015-02-25 19:34:52 +0000 | [diff] [blame] | 1326 | ctx = isl_basic_set_get_ctx(bset1); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1327 | dir = valid_direction(isl_basic_set_copy(bset1), |
| 1328 | isl_basic_set_copy(bset2)); |
| 1329 | if (!dir) |
| 1330 | goto error; |
| Tobias Grosser | e395da7 | 2015-02-25 19:34:52 +0000 | [diff] [blame] | 1331 | T = isl_mat_alloc(ctx, dir->size, dir->size); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1332 | if (!T) |
| 1333 | goto error; |
| 1334 | isl_seq_cpy(T->row[0], dir->block.data, dir->size); |
| 1335 | T = isl_mat_unimodular_complete(T, 1); |
| 1336 | T2 = isl_mat_right_inverse(isl_mat_copy(T)); |
| 1337 | |
| 1338 | bset1 = homogeneous_map(bset1, isl_mat_copy(T2)); |
| 1339 | bset2 = homogeneous_map(bset2, T2); |
| 1340 | set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0); |
| 1341 | set = isl_set_add_basic_set(set, bset1); |
| 1342 | set = isl_set_add_basic_set(set, bset2); |
| 1343 | hull = uset_convex_hull(set); |
| 1344 | hull = isl_basic_set_preimage(hull, T); |
| 1345 | |
| 1346 | isl_vec_free(dir); |
| 1347 | |
| 1348 | return hull; |
| 1349 | error: |
| 1350 | isl_vec_free(dir); |
| 1351 | isl_basic_set_free(bset1); |
| 1352 | isl_basic_set_free(bset2); |
| 1353 | return NULL; |
| 1354 | } |
| 1355 | |
| 1356 | static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set); |
| 1357 | static struct isl_basic_set *modulo_affine_hull( |
| 1358 | struct isl_set *set, struct isl_basic_set *affine_hull); |
| 1359 | |
| 1360 | /* Compute the convex hull of a pair of basic sets without any parameters or |
| 1361 | * integer divisions. |
| 1362 | * |
| 1363 | * This function is called from uset_convex_hull_unbounded, which |
| 1364 | * means that the complete convex hull is unbounded. Some pairs |
| 1365 | * of basic sets may still be bounded, though. |
| 1366 | * They may even lie inside a lower dimensional space, in which |
| 1367 | * case they need to be handled inside their affine hull since |
| 1368 | * the main algorithm assumes that the result is full-dimensional. |
| 1369 | * |
| 1370 | * If the convex hull of the two basic sets would have a non-trivial |
| 1371 | * lineality space, we first project out this lineality space. |
| 1372 | */ |
| 1373 | static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, |
| 1374 | struct isl_basic_set *bset2) |
| 1375 | { |
| 1376 | isl_basic_set *lin, *aff; |
| 1377 | int bounded1, bounded2; |
| 1378 | |
| 1379 | if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM) |
| 1380 | return convex_hull_pair_elim(bset1, bset2); |
| 1381 | |
| 1382 | aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1), |
| 1383 | isl_basic_set_copy(bset2))); |
| 1384 | if (!aff) |
| 1385 | goto error; |
| 1386 | if (aff->n_eq != 0) |
| 1387 | return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff); |
| 1388 | isl_basic_set_free(aff); |
| 1389 | |
| 1390 | bounded1 = isl_basic_set_is_bounded(bset1); |
| 1391 | bounded2 = isl_basic_set_is_bounded(bset2); |
| 1392 | |
| 1393 | if (bounded1 < 0 || bounded2 < 0) |
| 1394 | goto error; |
| 1395 | |
| 1396 | if (bounded1 && bounded2) |
| 1397 | return uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2)); |
| 1398 | |
| 1399 | if (bounded1 || bounded2) |
| 1400 | return convex_hull_pair_pointed(bset1, bset2); |
| 1401 | |
| 1402 | lin = induced_lineality_space(isl_basic_set_copy(bset1), |
| 1403 | isl_basic_set_copy(bset2)); |
| 1404 | if (!lin) |
| 1405 | goto error; |
| Tobias Grosser | a67ac97 | 2016-02-26 11:35:12 +0000 | [diff] [blame] | 1406 | if (isl_basic_set_plain_is_universe(lin)) { |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1407 | isl_basic_set_free(bset1); |
| 1408 | isl_basic_set_free(bset2); |
| 1409 | return lin; |
| 1410 | } |
| 1411 | if (lin->n_eq < isl_basic_set_total_dim(lin)) { |
| 1412 | struct isl_set *set; |
| 1413 | set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0); |
| 1414 | set = isl_set_add_basic_set(set, bset1); |
| 1415 | set = isl_set_add_basic_set(set, bset2); |
| 1416 | return modulo_lineality(set, lin); |
| 1417 | } |
| 1418 | isl_basic_set_free(lin); |
| 1419 | |
| 1420 | return convex_hull_pair_pointed(bset1, bset2); |
| 1421 | error: |
| 1422 | isl_basic_set_free(bset1); |
| 1423 | isl_basic_set_free(bset2); |
| 1424 | return NULL; |
| 1425 | } |
| 1426 | |
| 1427 | /* Compute the lineality space of a basic set. |
| 1428 | * We currently do not allow the basic set to have any divs. |
| 1429 | * We basically just drop the constants and turn every inequality |
| 1430 | * into an equality. |
| 1431 | */ |
| 1432 | struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset) |
| 1433 | { |
| 1434 | int i, k; |
| 1435 | struct isl_basic_set *lin = NULL; |
| 1436 | unsigned dim; |
| 1437 | |
| 1438 | if (!bset) |
| 1439 | goto error; |
| 1440 | isl_assert(bset->ctx, bset->n_div == 0, goto error); |
| 1441 | dim = isl_basic_set_total_dim(bset); |
| 1442 | |
| 1443 | lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, dim, 0); |
| 1444 | if (!lin) |
| 1445 | goto error; |
| 1446 | for (i = 0; i < bset->n_eq; ++i) { |
| 1447 | k = isl_basic_set_alloc_equality(lin); |
| 1448 | if (k < 0) |
| 1449 | goto error; |
| 1450 | isl_int_set_si(lin->eq[k][0], 0); |
| 1451 | isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim); |
| 1452 | } |
| 1453 | lin = isl_basic_set_gauss(lin, NULL); |
| 1454 | if (!lin) |
| 1455 | goto error; |
| 1456 | for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) { |
| 1457 | k = isl_basic_set_alloc_equality(lin); |
| 1458 | if (k < 0) |
| 1459 | goto error; |
| 1460 | isl_int_set_si(lin->eq[k][0], 0); |
| 1461 | isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim); |
| 1462 | lin = isl_basic_set_gauss(lin, NULL); |
| 1463 | if (!lin) |
| 1464 | goto error; |
| 1465 | } |
| 1466 | isl_basic_set_free(bset); |
| 1467 | return lin; |
| 1468 | error: |
| 1469 | isl_basic_set_free(lin); |
| 1470 | isl_basic_set_free(bset); |
| 1471 | return NULL; |
| 1472 | } |
| 1473 | |
| 1474 | /* Compute the (linear) hull of the lineality spaces of the basic sets in the |
| 1475 | * "underlying" set "set". |
| 1476 | */ |
| 1477 | static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set) |
| 1478 | { |
| 1479 | int i; |
| 1480 | struct isl_set *lin = NULL; |
| 1481 | |
| 1482 | if (!set) |
| 1483 | return NULL; |
| 1484 | if (set->n == 0) { |
| 1485 | isl_space *dim = isl_set_get_space(set); |
| 1486 | isl_set_free(set); |
| 1487 | return isl_basic_set_empty(dim); |
| 1488 | } |
| 1489 | |
| 1490 | lin = isl_set_alloc_space(isl_set_get_space(set), set->n, 0); |
| 1491 | for (i = 0; i < set->n; ++i) |
| 1492 | lin = isl_set_add_basic_set(lin, |
| 1493 | isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i]))); |
| 1494 | isl_set_free(set); |
| 1495 | return isl_set_affine_hull(lin); |
| 1496 | } |
| 1497 | |
| 1498 | /* Compute the convex hull of a set without any parameters or |
| 1499 | * integer divisions. |
| 1500 | * In each step, we combined two basic sets until only one |
| 1501 | * basic set is left. |
| 1502 | * The input basic sets are assumed not to have a non-trivial |
| 1503 | * lineality space. If any of the intermediate results has |
| 1504 | * a non-trivial lineality space, it is projected out. |
| 1505 | */ |
| 1506 | static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set) |
| 1507 | { |
| 1508 | struct isl_basic_set *convex_hull = NULL; |
| 1509 | |
| 1510 | convex_hull = isl_set_copy_basic_set(set); |
| 1511 | set = isl_set_drop_basic_set(set, convex_hull); |
| 1512 | if (!set) |
| 1513 | goto error; |
| 1514 | while (set->n > 0) { |
| 1515 | struct isl_basic_set *t; |
| 1516 | t = isl_set_copy_basic_set(set); |
| 1517 | if (!t) |
| 1518 | goto error; |
| 1519 | set = isl_set_drop_basic_set(set, t); |
| 1520 | if (!set) |
| 1521 | goto error; |
| 1522 | convex_hull = convex_hull_pair(convex_hull, t); |
| 1523 | if (set->n == 0) |
| 1524 | break; |
| 1525 | t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull)); |
| 1526 | if (!t) |
| 1527 | goto error; |
| Tobias Grosser | a67ac97 | 2016-02-26 11:35:12 +0000 | [diff] [blame] | 1528 | if (isl_basic_set_plain_is_universe(t)) { |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1529 | isl_basic_set_free(convex_hull); |
| 1530 | convex_hull = t; |
| 1531 | break; |
| 1532 | } |
| 1533 | if (t->n_eq < isl_basic_set_total_dim(t)) { |
| 1534 | set = isl_set_add_basic_set(set, convex_hull); |
| 1535 | return modulo_lineality(set, t); |
| 1536 | } |
| 1537 | isl_basic_set_free(t); |
| 1538 | } |
| 1539 | isl_set_free(set); |
| 1540 | return convex_hull; |
| 1541 | error: |
| 1542 | isl_set_free(set); |
| 1543 | isl_basic_set_free(convex_hull); |
| 1544 | return NULL; |
| 1545 | } |
| 1546 | |
| 1547 | /* Compute an initial hull for wrapping containing a single initial |
| 1548 | * facet. |
| 1549 | * This function assumes that the given set is bounded. |
| 1550 | */ |
| 1551 | static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, |
| 1552 | struct isl_set *set) |
| 1553 | { |
| 1554 | struct isl_mat *bounds = NULL; |
| 1555 | unsigned dim; |
| 1556 | int k; |
| 1557 | |
| 1558 | if (!hull) |
| 1559 | goto error; |
| 1560 | bounds = initial_facet_constraint(set); |
| 1561 | if (!bounds) |
| 1562 | goto error; |
| 1563 | k = isl_basic_set_alloc_inequality(hull); |
| 1564 | if (k < 0) |
| 1565 | goto error; |
| 1566 | dim = isl_set_n_dim(set); |
| 1567 | isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error); |
| 1568 | isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col); |
| 1569 | isl_mat_free(bounds); |
| 1570 | |
| 1571 | return hull; |
| 1572 | error: |
| 1573 | isl_basic_set_free(hull); |
| 1574 | isl_mat_free(bounds); |
| 1575 | return NULL; |
| 1576 | } |
| 1577 | |
| 1578 | struct max_constraint { |
| 1579 | struct isl_mat *c; |
| 1580 | int count; |
| 1581 | int ineq; |
| 1582 | }; |
| 1583 | |
| 1584 | static int max_constraint_equal(const void *entry, const void *val) |
| 1585 | { |
| 1586 | struct max_constraint *a = (struct max_constraint *)entry; |
| 1587 | isl_int *b = (isl_int *)val; |
| 1588 | |
| 1589 | return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1); |
| 1590 | } |
| 1591 | |
| 1592 | static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, |
| 1593 | isl_int *con, unsigned len, int n, int ineq) |
| 1594 | { |
| 1595 | struct isl_hash_table_entry *entry; |
| 1596 | struct max_constraint *c; |
| 1597 | uint32_t c_hash; |
| 1598 | |
| 1599 | c_hash = isl_seq_get_hash(con + 1, len); |
| 1600 | entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, |
| 1601 | con + 1, 0); |
| 1602 | if (!entry) |
| 1603 | return; |
| 1604 | c = entry->data; |
| 1605 | if (c->count < n) { |
| 1606 | isl_hash_table_remove(ctx, table, entry); |
| 1607 | return; |
| 1608 | } |
| 1609 | c->count++; |
| 1610 | if (isl_int_gt(c->c->row[0][0], con[0])) |
| 1611 | return; |
| 1612 | if (isl_int_eq(c->c->row[0][0], con[0])) { |
| 1613 | if (ineq) |
| 1614 | c->ineq = ineq; |
| 1615 | return; |
| 1616 | } |
| 1617 | c->c = isl_mat_cow(c->c); |
| 1618 | isl_int_set(c->c->row[0][0], con[0]); |
| 1619 | c->ineq = ineq; |
| 1620 | } |
| 1621 | |
| 1622 | /* Check whether the constraint hash table "table" constains the constraint |
| 1623 | * "con". |
| 1624 | */ |
| 1625 | static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, |
| 1626 | isl_int *con, unsigned len, int n) |
| 1627 | { |
| 1628 | struct isl_hash_table_entry *entry; |
| 1629 | struct max_constraint *c; |
| 1630 | uint32_t c_hash; |
| 1631 | |
| 1632 | c_hash = isl_seq_get_hash(con + 1, len); |
| 1633 | entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, |
| 1634 | con + 1, 0); |
| 1635 | if (!entry) |
| 1636 | return 0; |
| 1637 | c = entry->data; |
| 1638 | if (c->count < n) |
| 1639 | return 0; |
| 1640 | return isl_int_eq(c->c->row[0][0], con[0]); |
| 1641 | } |
| 1642 | |
| 1643 | /* Check for inequality constraints of a basic set without equalities |
| 1644 | * such that the same or more stringent copies of the constraint appear |
| 1645 | * in all of the basic sets. Such constraints are necessarily facet |
| 1646 | * constraints of the convex hull. |
| 1647 | * |
| 1648 | * If the resulting basic set is by chance identical to one of |
| 1649 | * the basic sets in "set", then we know that this basic set contains |
| 1650 | * all other basic sets and is therefore the convex hull of set. |
| 1651 | * In this case we set *is_hull to 1. |
| 1652 | */ |
| 1653 | static struct isl_basic_set *common_constraints(struct isl_basic_set *hull, |
| 1654 | struct isl_set *set, int *is_hull) |
| 1655 | { |
| 1656 | int i, j, s, n; |
| 1657 | int min_constraints; |
| 1658 | int best; |
| 1659 | struct max_constraint *constraints = NULL; |
| 1660 | struct isl_hash_table *table = NULL; |
| 1661 | unsigned total; |
| 1662 | |
| 1663 | *is_hull = 0; |
| 1664 | |
| 1665 | for (i = 0; i < set->n; ++i) |
| 1666 | if (set->p[i]->n_eq == 0) |
| 1667 | break; |
| 1668 | if (i >= set->n) |
| 1669 | return hull; |
| 1670 | min_constraints = set->p[i]->n_ineq; |
| 1671 | best = i; |
| 1672 | for (i = best + 1; i < set->n; ++i) { |
| 1673 | if (set->p[i]->n_eq != 0) |
| 1674 | continue; |
| 1675 | if (set->p[i]->n_ineq >= min_constraints) |
| 1676 | continue; |
| 1677 | min_constraints = set->p[i]->n_ineq; |
| 1678 | best = i; |
| 1679 | } |
| 1680 | constraints = isl_calloc_array(hull->ctx, struct max_constraint, |
| 1681 | min_constraints); |
| 1682 | if (!constraints) |
| 1683 | return hull; |
| 1684 | table = isl_alloc_type(hull->ctx, struct isl_hash_table); |
| 1685 | if (isl_hash_table_init(hull->ctx, table, min_constraints)) |
| 1686 | goto error; |
| 1687 | |
| 1688 | total = isl_space_dim(set->dim, isl_dim_all); |
| 1689 | for (i = 0; i < set->p[best]->n_ineq; ++i) { |
| 1690 | constraints[i].c = isl_mat_sub_alloc6(hull->ctx, |
| 1691 | set->p[best]->ineq + i, 0, 1, 0, 1 + total); |
| 1692 | if (!constraints[i].c) |
| 1693 | goto error; |
| 1694 | constraints[i].ineq = 1; |
| 1695 | } |
| 1696 | for (i = 0; i < min_constraints; ++i) { |
| 1697 | struct isl_hash_table_entry *entry; |
| 1698 | uint32_t c_hash; |
| 1699 | c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total); |
| 1700 | entry = isl_hash_table_find(hull->ctx, table, c_hash, |
| 1701 | max_constraint_equal, constraints[i].c->row[0] + 1, 1); |
| 1702 | if (!entry) |
| 1703 | goto error; |
| 1704 | isl_assert(hull->ctx, !entry->data, goto error); |
| 1705 | entry->data = &constraints[i]; |
| 1706 | } |
| 1707 | |
| 1708 | n = 0; |
| 1709 | for (s = 0; s < set->n; ++s) { |
| 1710 | if (s == best) |
| 1711 | continue; |
| 1712 | |
| 1713 | for (i = 0; i < set->p[s]->n_eq; ++i) { |
| 1714 | isl_int *eq = set->p[s]->eq[i]; |
| 1715 | for (j = 0; j < 2; ++j) { |
| 1716 | isl_seq_neg(eq, eq, 1 + total); |
| 1717 | update_constraint(hull->ctx, table, |
| 1718 | eq, total, n, 0); |
| 1719 | } |
| 1720 | } |
| 1721 | for (i = 0; i < set->p[s]->n_ineq; ++i) { |
| 1722 | isl_int *ineq = set->p[s]->ineq[i]; |
| 1723 | update_constraint(hull->ctx, table, ineq, total, n, |
| 1724 | set->p[s]->n_eq == 0); |
| 1725 | } |
| 1726 | ++n; |
| 1727 | } |
| 1728 | |
| 1729 | for (i = 0; i < min_constraints; ++i) { |
| 1730 | if (constraints[i].count < n) |
| 1731 | continue; |
| 1732 | if (!constraints[i].ineq) |
| 1733 | continue; |
| 1734 | j = isl_basic_set_alloc_inequality(hull); |
| 1735 | if (j < 0) |
| 1736 | goto error; |
| 1737 | isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total); |
| 1738 | } |
| 1739 | |
| 1740 | for (s = 0; s < set->n; ++s) { |
| 1741 | if (set->p[s]->n_eq) |
| 1742 | continue; |
| 1743 | if (set->p[s]->n_ineq != hull->n_ineq) |
| 1744 | continue; |
| 1745 | for (i = 0; i < set->p[s]->n_ineq; ++i) { |
| 1746 | isl_int *ineq = set->p[s]->ineq[i]; |
| 1747 | if (!has_constraint(hull->ctx, table, ineq, total, n)) |
| 1748 | break; |
| 1749 | } |
| 1750 | if (i == set->p[s]->n_ineq) |
| 1751 | *is_hull = 1; |
| 1752 | } |
| 1753 | |
| 1754 | isl_hash_table_clear(table); |
| 1755 | for (i = 0; i < min_constraints; ++i) |
| 1756 | isl_mat_free(constraints[i].c); |
| 1757 | free(constraints); |
| 1758 | free(table); |
| 1759 | return hull; |
| 1760 | error: |
| 1761 | isl_hash_table_clear(table); |
| 1762 | free(table); |
| 1763 | if (constraints) |
| 1764 | for (i = 0; i < min_constraints; ++i) |
| 1765 | isl_mat_free(constraints[i].c); |
| 1766 | free(constraints); |
| 1767 | return hull; |
| 1768 | } |
| 1769 | |
| 1770 | /* Create a template for the convex hull of "set" and fill it up |
| 1771 | * obvious facet constraints, if any. If the result happens to |
| 1772 | * be the convex hull of "set" then *is_hull is set to 1. |
| 1773 | */ |
| 1774 | static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull) |
| 1775 | { |
| 1776 | struct isl_basic_set *hull; |
| 1777 | unsigned n_ineq; |
| 1778 | int i; |
| 1779 | |
| 1780 | n_ineq = 1; |
| 1781 | for (i = 0; i < set->n; ++i) { |
| 1782 | n_ineq += set->p[i]->n_eq; |
| 1783 | n_ineq += set->p[i]->n_ineq; |
| 1784 | } |
| 1785 | hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq); |
| 1786 | hull = isl_basic_set_set_rational(hull); |
| 1787 | if (!hull) |
| 1788 | return NULL; |
| 1789 | return common_constraints(hull, set, is_hull); |
| 1790 | } |
| 1791 | |
| 1792 | static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set) |
| 1793 | { |
| 1794 | struct isl_basic_set *hull; |
| 1795 | int is_hull; |
| 1796 | |
| 1797 | hull = proto_hull(set, &is_hull); |
| 1798 | if (hull && !is_hull) { |
| 1799 | if (hull->n_ineq == 0) |
| 1800 | hull = initial_hull(hull, set); |
| 1801 | hull = extend(hull, set); |
| 1802 | } |
| 1803 | isl_set_free(set); |
| 1804 | |
| 1805 | return hull; |
| 1806 | } |
| 1807 | |
| 1808 | /* Compute the convex hull of a set without any parameters or |
| 1809 | * integer divisions. Depending on whether the set is bounded, |
| 1810 | * we pass control to the wrapping based convex hull or |
| 1811 | * the Fourier-Motzkin elimination based convex hull. |
| 1812 | * We also handle a few special cases before checking the boundedness. |
| 1813 | */ |
| 1814 | static struct isl_basic_set *uset_convex_hull(struct isl_set *set) |
| 1815 | { |
| 1816 | struct isl_basic_set *convex_hull = NULL; |
| 1817 | struct isl_basic_set *lin; |
| 1818 | |
| 1819 | if (isl_set_n_dim(set) == 0) |
| 1820 | return convex_hull_0d(set); |
| 1821 | |
| 1822 | set = isl_set_coalesce(set); |
| 1823 | set = isl_set_set_rational(set); |
| 1824 | |
| 1825 | if (!set) |
| 1826 | goto error; |
| 1827 | if (!set) |
| 1828 | return NULL; |
| 1829 | if (set->n == 1) { |
| 1830 | convex_hull = isl_basic_set_copy(set->p[0]); |
| 1831 | isl_set_free(set); |
| 1832 | return convex_hull; |
| 1833 | } |
| 1834 | if (isl_set_n_dim(set) == 1) |
| 1835 | return convex_hull_1d(set); |
| 1836 | |
| 1837 | if (isl_set_is_bounded(set) && |
| 1838 | set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP) |
| 1839 | return uset_convex_hull_wrap(set); |
| 1840 | |
| 1841 | lin = uset_combined_lineality_space(isl_set_copy(set)); |
| 1842 | if (!lin) |
| 1843 | goto error; |
| Tobias Grosser | a67ac97 | 2016-02-26 11:35:12 +0000 | [diff] [blame] | 1844 | if (isl_basic_set_plain_is_universe(lin)) { |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1845 | isl_set_free(set); |
| 1846 | return lin; |
| 1847 | } |
| 1848 | if (lin->n_eq < isl_basic_set_total_dim(lin)) |
| 1849 | return modulo_lineality(set, lin); |
| 1850 | isl_basic_set_free(lin); |
| 1851 | |
| 1852 | return uset_convex_hull_unbounded(set); |
| 1853 | error: |
| 1854 | isl_set_free(set); |
| 1855 | isl_basic_set_free(convex_hull); |
| 1856 | return NULL; |
| 1857 | } |
| 1858 | |
| 1859 | /* This is the core procedure, where "set" is a "pure" set, i.e., |
| 1860 | * without parameters or divs and where the convex hull of set is |
| 1861 | * known to be full-dimensional. |
| 1862 | */ |
| 1863 | static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) |
| 1864 | { |
| 1865 | struct isl_basic_set *convex_hull = NULL; |
| 1866 | |
| 1867 | if (!set) |
| 1868 | goto error; |
| 1869 | |
| 1870 | if (isl_set_n_dim(set) == 0) { |
| 1871 | convex_hull = isl_basic_set_universe(isl_space_copy(set->dim)); |
| 1872 | isl_set_free(set); |
| 1873 | convex_hull = isl_basic_set_set_rational(convex_hull); |
| 1874 | return convex_hull; |
| 1875 | } |
| 1876 | |
| 1877 | set = isl_set_set_rational(set); |
| 1878 | set = isl_set_coalesce(set); |
| 1879 | if (!set) |
| 1880 | goto error; |
| 1881 | if (set->n == 1) { |
| 1882 | convex_hull = isl_basic_set_copy(set->p[0]); |
| 1883 | isl_set_free(set); |
| 1884 | convex_hull = isl_basic_map_remove_redundancies(convex_hull); |
| 1885 | return convex_hull; |
| 1886 | } |
| 1887 | if (isl_set_n_dim(set) == 1) |
| 1888 | return convex_hull_1d(set); |
| 1889 | |
| 1890 | return uset_convex_hull_wrap(set); |
| 1891 | error: |
| 1892 | isl_set_free(set); |
| 1893 | return NULL; |
| 1894 | } |
| 1895 | |
| 1896 | /* Compute the convex hull of set "set" with affine hull "affine_hull", |
| 1897 | * We first remove the equalities (transforming the set), compute the |
| 1898 | * convex hull of the transformed set and then add the equalities back |
| 1899 | * (after performing the inverse transformation. |
| 1900 | */ |
| 1901 | static struct isl_basic_set *modulo_affine_hull( |
| 1902 | struct isl_set *set, struct isl_basic_set *affine_hull) |
| 1903 | { |
| 1904 | struct isl_mat *T; |
| 1905 | struct isl_mat *T2; |
| 1906 | struct isl_basic_set *dummy; |
| 1907 | struct isl_basic_set *convex_hull; |
| 1908 | |
| 1909 | dummy = isl_basic_set_remove_equalities( |
| 1910 | isl_basic_set_copy(affine_hull), &T, &T2); |
| 1911 | if (!dummy) |
| 1912 | goto error; |
| 1913 | isl_basic_set_free(dummy); |
| 1914 | set = isl_set_preimage(set, T); |
| 1915 | convex_hull = uset_convex_hull(set); |
| 1916 | convex_hull = isl_basic_set_preimage(convex_hull, T2); |
| 1917 | convex_hull = isl_basic_set_intersect(convex_hull, affine_hull); |
| 1918 | return convex_hull; |
| 1919 | error: |
| 1920 | isl_basic_set_free(affine_hull); |
| 1921 | isl_set_free(set); |
| 1922 | return NULL; |
| 1923 | } |
| 1924 | |
| Tobias Grosser | 1638f98 | 2015-05-18 21:29:58 +0000 | [diff] [blame] | 1925 | /* Return an empty basic map living in the same space as "map". |
| 1926 | */ |
| 1927 | static __isl_give isl_basic_map *replace_map_by_empty_basic_map( |
| 1928 | __isl_take isl_map *map) |
| 1929 | { |
| 1930 | isl_space *space; |
| 1931 | |
| 1932 | space = isl_map_get_space(map); |
| 1933 | isl_map_free(map); |
| 1934 | return isl_basic_map_empty(space); |
| 1935 | } |
| 1936 | |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1937 | /* Compute the convex hull of a map. |
| 1938 | * |
| 1939 | * The implementation was inspired by "Extended Convex Hull" by Fukuda et al., |
| 1940 | * specifically, the wrapping of facets to obtain new facets. |
| 1941 | */ |
| 1942 | struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) |
| 1943 | { |
| 1944 | struct isl_basic_set *bset; |
| 1945 | struct isl_basic_map *model = NULL; |
| 1946 | struct isl_basic_set *affine_hull = NULL; |
| 1947 | struct isl_basic_map *convex_hull = NULL; |
| 1948 | struct isl_set *set = NULL; |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1949 | |
| 1950 | map = isl_map_detect_equalities(map); |
| 1951 | map = isl_map_align_divs(map); |
| 1952 | if (!map) |
| 1953 | goto error; |
| 1954 | |
| Tobias Grosser | 1638f98 | 2015-05-18 21:29:58 +0000 | [diff] [blame] | 1955 | if (map->n == 0) |
| 1956 | return replace_map_by_empty_basic_map(map); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 1957 | |
| 1958 | model = isl_basic_map_copy(map->p[0]); |
| 1959 | set = isl_map_underlying_set(map); |
| 1960 | if (!set) |
| 1961 | goto error; |
| 1962 | |
| 1963 | affine_hull = isl_set_affine_hull(isl_set_copy(set)); |
| 1964 | if (!affine_hull) |
| 1965 | goto error; |
| 1966 | if (affine_hull->n_eq != 0) |
| 1967 | bset = modulo_affine_hull(set, affine_hull); |
| 1968 | else { |
| 1969 | isl_basic_set_free(affine_hull); |
| 1970 | bset = uset_convex_hull(set); |
| 1971 | } |
| 1972 | |
| 1973 | convex_hull = isl_basic_map_overlying_set(bset, model); |
| 1974 | if (!convex_hull) |
| 1975 | return NULL; |
| 1976 | |
| 1977 | ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT); |
| 1978 | ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES); |
| 1979 | ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL); |
| 1980 | return convex_hull; |
| 1981 | error: |
| 1982 | isl_set_free(set); |
| 1983 | isl_basic_map_free(model); |
| 1984 | return NULL; |
| 1985 | } |
| 1986 | |
| 1987 | struct isl_basic_set *isl_set_convex_hull(struct isl_set *set) |
| 1988 | { |
| 1989 | return (struct isl_basic_set *) |
| 1990 | isl_map_convex_hull((struct isl_map *)set); |
| 1991 | } |
| 1992 | |
| 1993 | __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map) |
| 1994 | { |
| 1995 | isl_basic_map *hull; |
| 1996 | |
| 1997 | hull = isl_map_convex_hull(map); |
| 1998 | return isl_basic_map_remove_divs(hull); |
| 1999 | } |
| 2000 | |
| 2001 | __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set) |
| 2002 | { |
| 2003 | return (isl_basic_set *)isl_map_polyhedral_hull((isl_map *)set); |
| 2004 | } |
| 2005 | |
| 2006 | struct sh_data_entry { |
| 2007 | struct isl_hash_table *table; |
| 2008 | struct isl_tab *tab; |
| 2009 | }; |
| 2010 | |
| 2011 | /* Holds the data needed during the simple hull computation. |
| 2012 | * In particular, |
| 2013 | * n the number of basic sets in the original set |
| 2014 | * hull_table a hash table of already computed constraints |
| 2015 | * in the simple hull |
| 2016 | * p for each basic set, |
| 2017 | * table a hash table of the constraints |
| 2018 | * tab the tableau corresponding to the basic set |
| 2019 | */ |
| 2020 | struct sh_data { |
| 2021 | struct isl_ctx *ctx; |
| 2022 | unsigned n; |
| 2023 | struct isl_hash_table *hull_table; |
| 2024 | struct sh_data_entry p[1]; |
| 2025 | }; |
| 2026 | |
| 2027 | static void sh_data_free(struct sh_data *data) |
| 2028 | { |
| 2029 | int i; |
| 2030 | |
| 2031 | if (!data) |
| 2032 | return; |
| 2033 | isl_hash_table_free(data->ctx, data->hull_table); |
| 2034 | for (i = 0; i < data->n; ++i) { |
| 2035 | isl_hash_table_free(data->ctx, data->p[i].table); |
| 2036 | isl_tab_free(data->p[i].tab); |
| 2037 | } |
| 2038 | free(data); |
| 2039 | } |
| 2040 | |
| 2041 | struct ineq_cmp_data { |
| 2042 | unsigned len; |
| 2043 | isl_int *p; |
| 2044 | }; |
| 2045 | |
| 2046 | static int has_ineq(const void *entry, const void *val) |
| 2047 | { |
| 2048 | isl_int *row = (isl_int *)entry; |
| 2049 | struct ineq_cmp_data *v = (struct ineq_cmp_data *)val; |
| 2050 | |
| 2051 | return isl_seq_eq(row + 1, v->p + 1, v->len) || |
| 2052 | isl_seq_is_neg(row + 1, v->p + 1, v->len); |
| 2053 | } |
| 2054 | |
| 2055 | static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table, |
| 2056 | isl_int *ineq, unsigned len) |
| 2057 | { |
| 2058 | uint32_t c_hash; |
| 2059 | struct ineq_cmp_data v; |
| 2060 | struct isl_hash_table_entry *entry; |
| 2061 | |
| 2062 | v.len = len; |
| 2063 | v.p = ineq; |
| 2064 | c_hash = isl_seq_get_hash(ineq + 1, len); |
| 2065 | entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1); |
| 2066 | if (!entry) |
| 2067 | return - 1; |
| 2068 | entry->data = ineq; |
| 2069 | return 0; |
| 2070 | } |
| 2071 | |
| 2072 | /* Fill hash table "table" with the constraints of "bset". |
| 2073 | * Equalities are added as two inequalities. |
| 2074 | * The value in the hash table is a pointer to the (in)equality of "bset". |
| 2075 | */ |
| 2076 | static int hash_basic_set(struct isl_hash_table *table, |
| 2077 | struct isl_basic_set *bset) |
| 2078 | { |
| 2079 | int i, j; |
| 2080 | unsigned dim = isl_basic_set_total_dim(bset); |
| 2081 | |
| 2082 | for (i = 0; i < bset->n_eq; ++i) { |
| 2083 | for (j = 0; j < 2; ++j) { |
| 2084 | isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim); |
| 2085 | if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0) |
| 2086 | return -1; |
| 2087 | } |
| 2088 | } |
| 2089 | for (i = 0; i < bset->n_ineq; ++i) { |
| 2090 | if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0) |
| 2091 | return -1; |
| 2092 | } |
| 2093 | return 0; |
| 2094 | } |
| 2095 | |
| 2096 | static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq) |
| 2097 | { |
| 2098 | struct sh_data *data; |
| 2099 | int i; |
| 2100 | |
| 2101 | data = isl_calloc(set->ctx, struct sh_data, |
| 2102 | sizeof(struct sh_data) + |
| 2103 | (set->n - 1) * sizeof(struct sh_data_entry)); |
| 2104 | if (!data) |
| 2105 | return NULL; |
| 2106 | data->ctx = set->ctx; |
| 2107 | data->n = set->n; |
| 2108 | data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq); |
| 2109 | if (!data->hull_table) |
| 2110 | goto error; |
| 2111 | for (i = 0; i < set->n; ++i) { |
| 2112 | data->p[i].table = isl_hash_table_alloc(set->ctx, |
| 2113 | 2 * set->p[i]->n_eq + set->p[i]->n_ineq); |
| 2114 | if (!data->p[i].table) |
| 2115 | goto error; |
| 2116 | if (hash_basic_set(data->p[i].table, set->p[i]) < 0) |
| 2117 | goto error; |
| 2118 | } |
| 2119 | return data; |
| 2120 | error: |
| 2121 | sh_data_free(data); |
| 2122 | return NULL; |
| 2123 | } |
| 2124 | |
| 2125 | /* Check if inequality "ineq" is a bound for basic set "j" or if |
| 2126 | * it can be relaxed (by increasing the constant term) to become |
| 2127 | * a bound for that basic set. In the latter case, the constant |
| 2128 | * term is updated. |
| 2129 | * Relaxation of the constant term is only allowed if "shift" is set. |
| 2130 | * |
| 2131 | * Return 1 if "ineq" is a bound |
| 2132 | * 0 if "ineq" may attain arbitrarily small values on basic set "j" |
| 2133 | * -1 if some error occurred |
| 2134 | */ |
| 2135 | static int is_bound(struct sh_data *data, struct isl_set *set, int j, |
| 2136 | isl_int *ineq, int shift) |
| 2137 | { |
| 2138 | enum isl_lp_result res; |
| 2139 | isl_int opt; |
| 2140 | |
| 2141 | if (!data->p[j].tab) { |
| 2142 | data->p[j].tab = isl_tab_from_basic_set(set->p[j], 0); |
| 2143 | if (!data->p[j].tab) |
| 2144 | return -1; |
| 2145 | } |
| 2146 | |
| 2147 | isl_int_init(opt); |
| 2148 | |
| 2149 | res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one, |
| 2150 | &opt, NULL, 0); |
| 2151 | if (res == isl_lp_ok && isl_int_is_neg(opt)) { |
| 2152 | if (shift) |
| 2153 | isl_int_sub(ineq[0], ineq[0], opt); |
| 2154 | else |
| 2155 | res = isl_lp_unbounded; |
| 2156 | } |
| 2157 | |
| 2158 | isl_int_clear(opt); |
| 2159 | |
| 2160 | return (res == isl_lp_ok || res == isl_lp_empty) ? 1 : |
| 2161 | res == isl_lp_unbounded ? 0 : -1; |
| 2162 | } |
| 2163 | |
| Michael Kruse | e0b34f3 | 2016-05-04 14:41:36 +0000 | [diff] [blame] | 2164 | /* Set the constant term of "ineq" to the maximum of those of the constraints |
| 2165 | * in the basic sets of "set" following "i" that are parallel to "ineq". |
| 2166 | * That is, if any of the basic sets of "set" following "i" have a more |
| 2167 | * relaxed copy of "ineq", then replace "ineq" by the most relaxed copy. |
| 2168 | * "c_hash" is the hash value of the linear part of "ineq". |
| 2169 | * "v" has been set up for use by has_ineq. |
| 2170 | * |
| 2171 | * Note that the two inequality constraints corresponding to an equality are |
| 2172 | * represented by the same inequality constraint in data->p[j].table |
| 2173 | * (but with different hash values). This means the constraint (or at |
| 2174 | * least its constant term) may need to be temporarily negated to get |
| 2175 | * the actually hashed constraint. |
| 2176 | */ |
| 2177 | static void set_max_constant_term(struct sh_data *data, __isl_keep isl_set *set, |
| 2178 | int i, isl_int *ineq, uint32_t c_hash, struct ineq_cmp_data *v) |
| 2179 | { |
| 2180 | int j; |
| 2181 | isl_ctx *ctx; |
| 2182 | struct isl_hash_table_entry *entry; |
| 2183 | |
| 2184 | ctx = isl_set_get_ctx(set); |
| 2185 | for (j = i + 1; j < set->n; ++j) { |
| 2186 | int neg; |
| 2187 | isl_int *ineq_j; |
| 2188 | |
| 2189 | entry = isl_hash_table_find(ctx, data->p[j].table, |
| 2190 | c_hash, &has_ineq, v, 0); |
| 2191 | if (!entry) |
| 2192 | continue; |
| 2193 | |
| 2194 | ineq_j = entry->data; |
| 2195 | neg = isl_seq_is_neg(ineq_j + 1, ineq + 1, v->len); |
| 2196 | if (neg) |
| 2197 | isl_int_neg(ineq_j[0], ineq_j[0]); |
| 2198 | if (isl_int_gt(ineq_j[0], ineq[0])) |
| 2199 | isl_int_set(ineq[0], ineq_j[0]); |
| 2200 | if (neg) |
| 2201 | isl_int_neg(ineq_j[0], ineq_j[0]); |
| 2202 | } |
| 2203 | } |
| 2204 | |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2205 | /* Check if inequality "ineq" from basic set "i" is or can be relaxed to |
| 2206 | * become a bound on the whole set. If so, add the (relaxed) inequality |
| 2207 | * to "hull". Relaxation is only allowed if "shift" is set. |
| 2208 | * |
| 2209 | * We first check if "hull" already contains a translate of the inequality. |
| 2210 | * If so, we are done. |
| 2211 | * Then, we check if any of the previous basic sets contains a translate |
| 2212 | * of the inequality. If so, then we have already considered this |
| 2213 | * inequality and we are done. |
| 2214 | * Otherwise, for each basic set other than "i", we check if the inequality |
| Michael Kruse | e0b34f3 | 2016-05-04 14:41:36 +0000 | [diff] [blame] | 2215 | * is a bound on the basic set, but first replace the constant term |
| 2216 | * by the maximal value of any translate of the inequality in any |
| 2217 | * of the following basic sets. |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2218 | * For previous basic sets, we know that they do not contain a translate |
| 2219 | * of the inequality, so we directly call is_bound. |
| 2220 | * For following basic sets, we first check if a translate of the |
| Michael Kruse | e0b34f3 | 2016-05-04 14:41:36 +0000 | [diff] [blame] | 2221 | * inequality appears in its description. If so, the constant term |
| 2222 | * of the inequality has already been updated with respect to this |
| 2223 | * translate and the inequality is therefore known to be a bound |
| 2224 | * of this basic set. |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2225 | */ |
| 2226 | static struct isl_basic_set *add_bound(struct isl_basic_set *hull, |
| 2227 | struct sh_data *data, struct isl_set *set, int i, isl_int *ineq, |
| 2228 | int shift) |
| 2229 | { |
| 2230 | uint32_t c_hash; |
| 2231 | struct ineq_cmp_data v; |
| 2232 | struct isl_hash_table_entry *entry; |
| 2233 | int j, k; |
| 2234 | |
| 2235 | if (!hull) |
| 2236 | return NULL; |
| 2237 | |
| 2238 | v.len = isl_basic_set_total_dim(hull); |
| 2239 | v.p = ineq; |
| 2240 | c_hash = isl_seq_get_hash(ineq + 1, v.len); |
| 2241 | |
| 2242 | entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash, |
| 2243 | has_ineq, &v, 0); |
| 2244 | if (entry) |
| 2245 | return hull; |
| 2246 | |
| 2247 | for (j = 0; j < i; ++j) { |
| 2248 | entry = isl_hash_table_find(hull->ctx, data->p[j].table, |
| 2249 | c_hash, has_ineq, &v, 0); |
| 2250 | if (entry) |
| 2251 | break; |
| 2252 | } |
| 2253 | if (j < i) |
| 2254 | return hull; |
| 2255 | |
| 2256 | k = isl_basic_set_alloc_inequality(hull); |
| 2257 | if (k < 0) |
| 2258 | goto error; |
| 2259 | isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len); |
| 2260 | |
| Michael Kruse | e0b34f3 | 2016-05-04 14:41:36 +0000 | [diff] [blame] | 2261 | set_max_constant_term(data, set, i, hull->ineq[k], c_hash, &v); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2262 | for (j = 0; j < i; ++j) { |
| 2263 | int bound; |
| 2264 | bound = is_bound(data, set, j, hull->ineq[k], shift); |
| 2265 | if (bound < 0) |
| 2266 | goto error; |
| 2267 | if (!bound) |
| 2268 | break; |
| 2269 | } |
| 2270 | if (j < i) { |
| 2271 | isl_basic_set_free_inequality(hull, 1); |
| 2272 | return hull; |
| 2273 | } |
| 2274 | |
| 2275 | for (j = i + 1; j < set->n; ++j) { |
| Michael Kruse | e0b34f3 | 2016-05-04 14:41:36 +0000 | [diff] [blame] | 2276 | int bound; |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2277 | entry = isl_hash_table_find(hull->ctx, data->p[j].table, |
| 2278 | c_hash, has_ineq, &v, 0); |
| Michael Kruse | e0b34f3 | 2016-05-04 14:41:36 +0000 | [diff] [blame] | 2279 | if (entry) |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2280 | continue; |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2281 | bound = is_bound(data, set, j, hull->ineq[k], shift); |
| 2282 | if (bound < 0) |
| 2283 | goto error; |
| 2284 | if (!bound) |
| 2285 | break; |
| 2286 | } |
| 2287 | if (j < set->n) { |
| 2288 | isl_basic_set_free_inequality(hull, 1); |
| 2289 | return hull; |
| 2290 | } |
| 2291 | |
| 2292 | entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash, |
| 2293 | has_ineq, &v, 1); |
| 2294 | if (!entry) |
| 2295 | goto error; |
| 2296 | entry->data = hull->ineq[k]; |
| 2297 | |
| 2298 | return hull; |
| 2299 | error: |
| 2300 | isl_basic_set_free(hull); |
| 2301 | return NULL; |
| 2302 | } |
| 2303 | |
| 2304 | /* Check if any inequality from basic set "i" is or can be relaxed to |
| 2305 | * become a bound on the whole set. If so, add the (relaxed) inequality |
| 2306 | * to "hull". Relaxation is only allowed if "shift" is set. |
| 2307 | */ |
| 2308 | static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, |
| 2309 | struct sh_data *data, struct isl_set *set, int i, int shift) |
| 2310 | { |
| 2311 | int j, k; |
| 2312 | unsigned dim = isl_basic_set_total_dim(bset); |
| 2313 | |
| 2314 | for (j = 0; j < set->p[i]->n_eq; ++j) { |
| 2315 | for (k = 0; k < 2; ++k) { |
| 2316 | isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim); |
| 2317 | bset = add_bound(bset, data, set, i, set->p[i]->eq[j], |
| 2318 | shift); |
| 2319 | } |
| 2320 | } |
| 2321 | for (j = 0; j < set->p[i]->n_ineq; ++j) |
| 2322 | bset = add_bound(bset, data, set, i, set->p[i]->ineq[j], shift); |
| 2323 | return bset; |
| 2324 | } |
| 2325 | |
| 2326 | /* Compute a superset of the convex hull of set that is described |
| 2327 | * by only (translates of) the constraints in the constituents of set. |
| 2328 | * Translation is only allowed if "shift" is set. |
| 2329 | */ |
| 2330 | static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set, |
| 2331 | int shift) |
| 2332 | { |
| 2333 | struct sh_data *data = NULL; |
| 2334 | struct isl_basic_set *hull = NULL; |
| 2335 | unsigned n_ineq; |
| 2336 | int i; |
| 2337 | |
| 2338 | if (!set) |
| 2339 | return NULL; |
| 2340 | |
| 2341 | n_ineq = 0; |
| 2342 | for (i = 0; i < set->n; ++i) { |
| 2343 | if (!set->p[i]) |
| 2344 | goto error; |
| 2345 | n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq; |
| 2346 | } |
| 2347 | |
| 2348 | hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq); |
| 2349 | if (!hull) |
| 2350 | goto error; |
| 2351 | |
| 2352 | data = sh_data_alloc(set, n_ineq); |
| 2353 | if (!data) |
| 2354 | goto error; |
| 2355 | |
| 2356 | for (i = 0; i < set->n; ++i) |
| 2357 | hull = add_bounds(hull, data, set, i, shift); |
| 2358 | |
| 2359 | sh_data_free(data); |
| 2360 | isl_set_free(set); |
| 2361 | |
| 2362 | return hull; |
| 2363 | error: |
| 2364 | sh_data_free(data); |
| 2365 | isl_basic_set_free(hull); |
| 2366 | isl_set_free(set); |
| 2367 | return NULL; |
| 2368 | } |
| 2369 | |
| 2370 | /* Compute a superset of the convex hull of map that is described |
| 2371 | * by only (translates of) the constraints in the constituents of map. |
| Tobias Grosser | 566060d | 2015-07-24 13:12:17 +0000 | [diff] [blame] | 2372 | * Handle trivial cases where map is NULL or contains at most one disjunct. |
| 2373 | */ |
| 2374 | static __isl_give isl_basic_map *map_simple_hull_trivial( |
| 2375 | __isl_take isl_map *map) |
| 2376 | { |
| 2377 | isl_basic_map *hull; |
| 2378 | |
| 2379 | if (!map) |
| 2380 | return NULL; |
| 2381 | if (map->n == 0) |
| 2382 | return replace_map_by_empty_basic_map(map); |
| 2383 | |
| 2384 | hull = isl_basic_map_copy(map->p[0]); |
| 2385 | isl_map_free(map); |
| 2386 | return hull; |
| 2387 | } |
| 2388 | |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 2389 | /* Return a copy of the simple hull cached inside "map". |
| 2390 | * "shift" determines whether to return the cached unshifted or shifted |
| 2391 | * simple hull. |
| 2392 | */ |
| 2393 | static __isl_give isl_basic_map *cached_simple_hull(__isl_take isl_map *map, |
| 2394 | int shift) |
| 2395 | { |
| 2396 | isl_basic_map *hull; |
| 2397 | |
| 2398 | hull = isl_basic_map_copy(map->cached_simple_hull[shift]); |
| 2399 | isl_map_free(map); |
| 2400 | |
| 2401 | return hull; |
| 2402 | } |
| 2403 | |
| Tobias Grosser | 566060d | 2015-07-24 13:12:17 +0000 | [diff] [blame] | 2404 | /* Compute a superset of the convex hull of map that is described |
| 2405 | * by only (translates of) the constraints in the constituents of map. |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2406 | * Translation is only allowed if "shift" is set. |
| Michael Kruse | e0b34f3 | 2016-05-04 14:41:36 +0000 | [diff] [blame] | 2407 | * |
| Tobias Grosser | 8a12bd9 | 2016-06-23 18:59:30 +0000 | [diff] [blame^] | 2408 | * The constraints are sorted while removing redundant constraints |
| Michael Kruse | e0b34f3 | 2016-05-04 14:41:36 +0000 | [diff] [blame] | 2409 | * in order to indicate a preference of which constraints should |
| 2410 | * be preserved. In particular, pairs of constraints that are |
| 2411 | * sorted together are preferred to either both be preserved |
| Tobias Grosser | 8a12bd9 | 2016-06-23 18:59:30 +0000 | [diff] [blame^] | 2412 | * or both be removed. The sorting is performed inside |
| 2413 | * isl_basic_map_remove_redundancies. |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 2414 | * |
| 2415 | * The result of the computation is stored in map->cached_simple_hull[shift] |
| 2416 | * such that it can be reused in subsequent calls. The cache is cleared |
| 2417 | * whenever the map is modified (in isl_map_cow). |
| 2418 | * Note that the results need to be stored in the input map for there |
| 2419 | * to be any chance that they may get reused. In particular, they |
| 2420 | * are stored in a copy of the input map that is saved before |
| 2421 | * the integer division alignment. |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2422 | */ |
| 2423 | static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map, |
| 2424 | int shift) |
| 2425 | { |
| 2426 | struct isl_set *set = NULL; |
| 2427 | struct isl_basic_map *model = NULL; |
| 2428 | struct isl_basic_map *hull; |
| 2429 | struct isl_basic_map *affine_hull; |
| 2430 | struct isl_basic_set *bset = NULL; |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 2431 | isl_map *input; |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2432 | |
| Tobias Grosser | 566060d | 2015-07-24 13:12:17 +0000 | [diff] [blame] | 2433 | if (!map || map->n <= 1) |
| 2434 | return map_simple_hull_trivial(map); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2435 | |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 2436 | if (map->cached_simple_hull[shift]) |
| 2437 | return cached_simple_hull(map, shift); |
| 2438 | |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2439 | map = isl_map_detect_equalities(map); |
| Tobias Grosser | 566060d | 2015-07-24 13:12:17 +0000 | [diff] [blame] | 2440 | if (!map || map->n <= 1) |
| 2441 | return map_simple_hull_trivial(map); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2442 | affine_hull = isl_map_affine_hull(isl_map_copy(map)); |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 2443 | input = isl_map_copy(map); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2444 | map = isl_map_align_divs(map); |
| 2445 | model = map ? isl_basic_map_copy(map->p[0]) : NULL; |
| 2446 | |
| 2447 | set = isl_map_underlying_set(map); |
| 2448 | |
| 2449 | bset = uset_simple_hull(set, shift); |
| 2450 | |
| 2451 | hull = isl_basic_map_overlying_set(bset, model); |
| 2452 | |
| 2453 | hull = isl_basic_map_intersect(hull, affine_hull); |
| 2454 | hull = isl_basic_map_remove_redundancies(hull); |
| 2455 | |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 2456 | if (hull) { |
| 2457 | ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT); |
| 2458 | ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES); |
| 2459 | } |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2460 | |
| 2461 | hull = isl_basic_map_finalize(hull); |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 2462 | if (input) |
| 2463 | input->cached_simple_hull[shift] = isl_basic_map_copy(hull); |
| 2464 | isl_map_free(input); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2465 | |
| 2466 | return hull; |
| 2467 | } |
| 2468 | |
| 2469 | /* Compute a superset of the convex hull of map that is described |
| 2470 | * by only translates of the constraints in the constituents of map. |
| 2471 | */ |
| 2472 | __isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map) |
| 2473 | { |
| 2474 | return map_simple_hull(map, 1); |
| 2475 | } |
| 2476 | |
| 2477 | struct isl_basic_set *isl_set_simple_hull(struct isl_set *set) |
| 2478 | { |
| 2479 | return (struct isl_basic_set *) |
| 2480 | isl_map_simple_hull((struct isl_map *)set); |
| 2481 | } |
| 2482 | |
| 2483 | /* Compute a superset of the convex hull of map that is described |
| 2484 | * by only the constraints in the constituents of map. |
| 2485 | */ |
| 2486 | __isl_give isl_basic_map *isl_map_unshifted_simple_hull( |
| 2487 | __isl_take isl_map *map) |
| 2488 | { |
| 2489 | return map_simple_hull(map, 0); |
| 2490 | } |
| 2491 | |
| 2492 | __isl_give isl_basic_set *isl_set_unshifted_simple_hull( |
| 2493 | __isl_take isl_set *set) |
| 2494 | { |
| 2495 | return isl_map_unshifted_simple_hull(set); |
| 2496 | } |
| 2497 | |
| Michael Kruse | 959a8dc | 2016-01-15 15:54:45 +0000 | [diff] [blame] | 2498 | /* Drop all inequalities from "bmap1" that do not also appear in "bmap2". |
| 2499 | * A constraint that appears with different constant terms |
| 2500 | * in "bmap1" and "bmap2" is also kept, with the least restrictive |
| 2501 | * (i.e., greatest) constant term. |
| 2502 | * "bmap1" and "bmap2" are assumed to have the same (known) |
| 2503 | * integer divisions. |
| 2504 | * The constraints of both "bmap1" and "bmap2" are assumed |
| 2505 | * to have been sorted using isl_basic_map_sort_constraints. |
| 2506 | * |
| 2507 | * Run through the inequality constraints of "bmap1" and "bmap2" |
| 2508 | * in sorted order. |
| 2509 | * Each constraint of "bmap1" without a matching constraint in "bmap2" |
| 2510 | * is removed. |
| 2511 | * If a match is found, the constraint is kept. If needed, the constant |
| 2512 | * term of the constraint is adjusted. |
| 2513 | */ |
| 2514 | static __isl_give isl_basic_map *select_shared_inequalities( |
| 2515 | __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) |
| 2516 | { |
| 2517 | int i1, i2; |
| 2518 | |
| 2519 | bmap1 = isl_basic_map_cow(bmap1); |
| 2520 | if (!bmap1 || !bmap2) |
| 2521 | return isl_basic_map_free(bmap1); |
| 2522 | |
| 2523 | i1 = bmap1->n_ineq - 1; |
| 2524 | i2 = bmap2->n_ineq - 1; |
| 2525 | while (bmap1 && i1 >= 0 && i2 >= 0) { |
| 2526 | int cmp; |
| 2527 | |
| 2528 | cmp = isl_basic_map_constraint_cmp(bmap1, bmap1->ineq[i1], |
| 2529 | bmap2->ineq[i2]); |
| 2530 | if (cmp < 0) { |
| 2531 | --i2; |
| 2532 | continue; |
| 2533 | } |
| 2534 | if (cmp > 0) { |
| 2535 | if (isl_basic_map_drop_inequality(bmap1, i1) < 0) |
| 2536 | bmap1 = isl_basic_map_free(bmap1); |
| 2537 | --i1; |
| 2538 | continue; |
| 2539 | } |
| 2540 | if (isl_int_lt(bmap1->ineq[i1][0], bmap2->ineq[i2][0])) |
| 2541 | isl_int_set(bmap1->ineq[i1][0], bmap2->ineq[i2][0]); |
| 2542 | --i1; |
| 2543 | --i2; |
| 2544 | } |
| 2545 | for (; i1 >= 0; --i1) |
| 2546 | if (isl_basic_map_drop_inequality(bmap1, i1) < 0) |
| 2547 | bmap1 = isl_basic_map_free(bmap1); |
| 2548 | |
| 2549 | return bmap1; |
| 2550 | } |
| 2551 | |
| 2552 | /* Drop all equalities from "bmap1" that do not also appear in "bmap2". |
| 2553 | * "bmap1" and "bmap2" are assumed to have the same (known) |
| 2554 | * integer divisions. |
| 2555 | * |
| 2556 | * Run through the equality constraints of "bmap1" and "bmap2". |
| 2557 | * Each constraint of "bmap1" without a matching constraint in "bmap2" |
| 2558 | * is removed. |
| 2559 | */ |
| 2560 | static __isl_give isl_basic_map *select_shared_equalities( |
| 2561 | __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) |
| 2562 | { |
| 2563 | int i1, i2; |
| 2564 | unsigned total; |
| 2565 | |
| 2566 | bmap1 = isl_basic_map_cow(bmap1); |
| 2567 | if (!bmap1 || !bmap2) |
| 2568 | return isl_basic_map_free(bmap1); |
| 2569 | |
| 2570 | total = isl_basic_map_total_dim(bmap1); |
| 2571 | |
| 2572 | i1 = bmap1->n_eq - 1; |
| 2573 | i2 = bmap2->n_eq - 1; |
| 2574 | while (bmap1 && i1 >= 0 && i2 >= 0) { |
| 2575 | int last1, last2; |
| 2576 | |
| 2577 | last1 = isl_seq_last_non_zero(bmap1->eq[i1] + 1, total); |
| 2578 | last2 = isl_seq_last_non_zero(bmap2->eq[i2] + 1, total); |
| 2579 | if (last1 > last2) { |
| 2580 | --i2; |
| 2581 | continue; |
| 2582 | } |
| 2583 | if (last1 < last2) { |
| 2584 | if (isl_basic_map_drop_equality(bmap1, i1) < 0) |
| 2585 | bmap1 = isl_basic_map_free(bmap1); |
| 2586 | --i1; |
| 2587 | continue; |
| 2588 | } |
| 2589 | if (!isl_seq_eq(bmap1->eq[i1], bmap2->eq[i2], 1 + total)) { |
| 2590 | if (isl_basic_map_drop_equality(bmap1, i1) < 0) |
| 2591 | bmap1 = isl_basic_map_free(bmap1); |
| 2592 | } |
| 2593 | --i1; |
| 2594 | --i2; |
| 2595 | } |
| 2596 | for (; i1 >= 0; --i1) |
| 2597 | if (isl_basic_map_drop_equality(bmap1, i1) < 0) |
| 2598 | bmap1 = isl_basic_map_free(bmap1); |
| 2599 | |
| 2600 | return bmap1; |
| 2601 | } |
| 2602 | |
| 2603 | /* Compute a superset of "bmap1" and "bmap2" that is described |
| 2604 | * by only the constraints that appear in both "bmap1" and "bmap2". |
| 2605 | * |
| 2606 | * First drop constraints that involve unknown integer divisions |
| 2607 | * since it is not trivial to check whether two such integer divisions |
| 2608 | * in different basic maps are the same. |
| 2609 | * Then align the remaining (known) divs and sort the constraints. |
| 2610 | * Finally drop all inequalities and equalities from "bmap1" that |
| 2611 | * do not also appear in "bmap2". |
| 2612 | */ |
| 2613 | __isl_give isl_basic_map *isl_basic_map_plain_unshifted_simple_hull( |
| 2614 | __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) |
| 2615 | { |
| 2616 | bmap1 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap1); |
| 2617 | bmap2 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap2); |
| 2618 | bmap2 = isl_basic_map_align_divs(bmap2, bmap1); |
| 2619 | bmap1 = isl_basic_map_align_divs(bmap1, bmap2); |
| 2620 | bmap1 = isl_basic_map_gauss(bmap1, NULL); |
| 2621 | bmap2 = isl_basic_map_gauss(bmap2, NULL); |
| 2622 | bmap1 = isl_basic_map_sort_constraints(bmap1); |
| 2623 | bmap2 = isl_basic_map_sort_constraints(bmap2); |
| 2624 | |
| 2625 | bmap1 = select_shared_inequalities(bmap1, bmap2); |
| 2626 | bmap1 = select_shared_equalities(bmap1, bmap2); |
| 2627 | |
| 2628 | isl_basic_map_free(bmap2); |
| 2629 | bmap1 = isl_basic_map_finalize(bmap1); |
| 2630 | return bmap1; |
| 2631 | } |
| 2632 | |
| 2633 | /* Compute a superset of the convex hull of "map" that is described |
| 2634 | * by only the constraints in the constituents of "map". |
| 2635 | * In particular, the result is composed of constraints that appear |
| 2636 | * in each of the basic maps of "map" |
| 2637 | * |
| 2638 | * Constraints that involve unknown integer divisions are dropped |
| 2639 | * since it is not trivial to check whether two such integer divisions |
| 2640 | * in different basic maps are the same. |
| 2641 | * |
| 2642 | * The hull is initialized from the first basic map and then |
| 2643 | * updated with respect to the other basic maps in turn. |
| 2644 | */ |
| 2645 | __isl_give isl_basic_map *isl_map_plain_unshifted_simple_hull( |
| 2646 | __isl_take isl_map *map) |
| 2647 | { |
| 2648 | int i; |
| 2649 | isl_basic_map *hull; |
| 2650 | |
| 2651 | if (!map) |
| 2652 | return NULL; |
| 2653 | if (map->n <= 1) |
| 2654 | return map_simple_hull_trivial(map); |
| 2655 | map = isl_map_drop_constraint_involving_unknown_divs(map); |
| 2656 | hull = isl_basic_map_copy(map->p[0]); |
| 2657 | for (i = 1; i < map->n; ++i) { |
| 2658 | isl_basic_map *bmap_i; |
| 2659 | |
| 2660 | bmap_i = isl_basic_map_copy(map->p[i]); |
| 2661 | hull = isl_basic_map_plain_unshifted_simple_hull(hull, bmap_i); |
| 2662 | } |
| 2663 | |
| 2664 | isl_map_free(map); |
| 2665 | return hull; |
| 2666 | } |
| 2667 | |
| Tobias Grosser | 07b2095 | 2016-06-12 04:30:40 +0000 | [diff] [blame] | 2668 | /* Compute a superset of the convex hull of "set" that is described |
| 2669 | * by only the constraints in the constituents of "set". |
| 2670 | * In particular, the result is composed of constraints that appear |
| 2671 | * in each of the basic sets of "set" |
| 2672 | */ |
| 2673 | __isl_give isl_basic_set *isl_set_plain_unshifted_simple_hull( |
| 2674 | __isl_take isl_set *set) |
| 2675 | { |
| 2676 | return isl_map_plain_unshifted_simple_hull(set); |
| 2677 | } |
| 2678 | |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2679 | /* Check if "ineq" is a bound on "set" and, if so, add it to "hull". |
| 2680 | * |
| 2681 | * For each basic set in "set", we first check if the basic set |
| 2682 | * contains a translate of "ineq". If this translate is more relaxed, |
| 2683 | * then we assume that "ineq" is not a bound on this basic set. |
| 2684 | * Otherwise, we know that it is a bound. |
| 2685 | * If the basic set does not contain a translate of "ineq", then |
| 2686 | * we call is_bound to perform the test. |
| 2687 | */ |
| 2688 | static __isl_give isl_basic_set *add_bound_from_constraint( |
| 2689 | __isl_take isl_basic_set *hull, struct sh_data *data, |
| 2690 | __isl_keep isl_set *set, isl_int *ineq) |
| 2691 | { |
| 2692 | int i, k; |
| 2693 | isl_ctx *ctx; |
| 2694 | uint32_t c_hash; |
| 2695 | struct ineq_cmp_data v; |
| 2696 | |
| 2697 | if (!hull || !set) |
| 2698 | return isl_basic_set_free(hull); |
| 2699 | |
| 2700 | v.len = isl_basic_set_total_dim(hull); |
| 2701 | v.p = ineq; |
| 2702 | c_hash = isl_seq_get_hash(ineq + 1, v.len); |
| 2703 | |
| 2704 | ctx = isl_basic_set_get_ctx(hull); |
| 2705 | for (i = 0; i < set->n; ++i) { |
| 2706 | int bound; |
| 2707 | struct isl_hash_table_entry *entry; |
| 2708 | |
| 2709 | entry = isl_hash_table_find(ctx, data->p[i].table, |
| 2710 | c_hash, &has_ineq, &v, 0); |
| 2711 | if (entry) { |
| 2712 | isl_int *ineq_i = entry->data; |
| 2713 | int neg, more_relaxed; |
| 2714 | |
| 2715 | neg = isl_seq_is_neg(ineq_i + 1, ineq + 1, v.len); |
| 2716 | if (neg) |
| 2717 | isl_int_neg(ineq_i[0], ineq_i[0]); |
| 2718 | more_relaxed = isl_int_gt(ineq_i[0], ineq[0]); |
| 2719 | if (neg) |
| 2720 | isl_int_neg(ineq_i[0], ineq_i[0]); |
| 2721 | if (more_relaxed) |
| 2722 | break; |
| 2723 | else |
| 2724 | continue; |
| 2725 | } |
| 2726 | bound = is_bound(data, set, i, ineq, 0); |
| 2727 | if (bound < 0) |
| 2728 | return isl_basic_set_free(hull); |
| 2729 | if (!bound) |
| 2730 | break; |
| 2731 | } |
| 2732 | if (i < set->n) |
| 2733 | return hull; |
| 2734 | |
| 2735 | k = isl_basic_set_alloc_inequality(hull); |
| 2736 | if (k < 0) |
| 2737 | return isl_basic_set_free(hull); |
| 2738 | isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len); |
| 2739 | |
| 2740 | return hull; |
| 2741 | } |
| 2742 | |
| 2743 | /* Compute a superset of the convex hull of "set" that is described |
| 2744 | * by only some of the "n_ineq" constraints in the list "ineq", where "set" |
| 2745 | * has no parameters or integer divisions. |
| 2746 | * |
| 2747 | * The inequalities in "ineq" are assumed to have been sorted such |
| 2748 | * that constraints with the same linear part appear together and |
| 2749 | * that among constraints with the same linear part, those with |
| 2750 | * smaller constant term appear first. |
| 2751 | * |
| 2752 | * We reuse the same data structure that is used by uset_simple_hull, |
| 2753 | * but we do not need the hull table since we will not consider the |
| 2754 | * same constraint more than once. We therefore allocate it with zero size. |
| 2755 | * |
| 2756 | * We run through the constraints and try to add them one by one, |
| 2757 | * skipping identical constraints. If we have added a constraint and |
| 2758 | * the next constraint is a more relaxed translate, then we skip this |
| 2759 | * next constraint as well. |
| 2760 | */ |
| 2761 | static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_constraints( |
| 2762 | __isl_take isl_set *set, int n_ineq, isl_int **ineq) |
| 2763 | { |
| 2764 | int i; |
| 2765 | int last_added = 0; |
| 2766 | struct sh_data *data = NULL; |
| 2767 | isl_basic_set *hull = NULL; |
| 2768 | unsigned dim; |
| 2769 | |
| 2770 | hull = isl_basic_set_alloc_space(isl_set_get_space(set), 0, 0, n_ineq); |
| 2771 | if (!hull) |
| 2772 | goto error; |
| 2773 | |
| 2774 | data = sh_data_alloc(set, 0); |
| 2775 | if (!data) |
| 2776 | goto error; |
| 2777 | |
| 2778 | dim = isl_set_dim(set, isl_dim_set); |
| 2779 | for (i = 0; i < n_ineq; ++i) { |
| 2780 | int hull_n_ineq = hull->n_ineq; |
| 2781 | int parallel; |
| 2782 | |
| 2783 | parallel = i > 0 && isl_seq_eq(ineq[i - 1] + 1, ineq[i] + 1, |
| 2784 | dim); |
| 2785 | if (parallel && |
| 2786 | (last_added || isl_int_eq(ineq[i - 1][0], ineq[i][0]))) |
| 2787 | continue; |
| 2788 | hull = add_bound_from_constraint(hull, data, set, ineq[i]); |
| 2789 | if (!hull) |
| 2790 | goto error; |
| 2791 | last_added = hull->n_ineq > hull_n_ineq; |
| 2792 | } |
| 2793 | |
| 2794 | sh_data_free(data); |
| 2795 | isl_set_free(set); |
| 2796 | return hull; |
| 2797 | error: |
| 2798 | sh_data_free(data); |
| 2799 | isl_set_free(set); |
| 2800 | isl_basic_set_free(hull); |
| 2801 | return NULL; |
| 2802 | } |
| 2803 | |
| 2804 | /* Collect pointers to all the inequalities in the elements of "list" |
| 2805 | * in "ineq". For equalities, store both a pointer to the equality and |
| 2806 | * a pointer to its opposite, which is first copied to "mat". |
| 2807 | * "ineq" and "mat" are assumed to have been preallocated to the right size |
| 2808 | * (the number of inequalities + 2 times the number of equalites and |
| 2809 | * the number of equalities, respectively). |
| 2810 | */ |
| 2811 | static __isl_give isl_mat *collect_inequalities(__isl_take isl_mat *mat, |
| 2812 | __isl_keep isl_basic_set_list *list, isl_int **ineq) |
| 2813 | { |
| 2814 | int i, j, n, n_eq, n_ineq; |
| 2815 | |
| 2816 | if (!mat) |
| 2817 | return NULL; |
| 2818 | |
| 2819 | n_eq = 0; |
| 2820 | n_ineq = 0; |
| 2821 | n = isl_basic_set_list_n_basic_set(list); |
| 2822 | for (i = 0; i < n; ++i) { |
| 2823 | isl_basic_set *bset; |
| 2824 | bset = isl_basic_set_list_get_basic_set(list, i); |
| 2825 | if (!bset) |
| 2826 | return isl_mat_free(mat); |
| 2827 | for (j = 0; j < bset->n_eq; ++j) { |
| 2828 | ineq[n_ineq++] = mat->row[n_eq]; |
| 2829 | ineq[n_ineq++] = bset->eq[j]; |
| 2830 | isl_seq_neg(mat->row[n_eq++], bset->eq[j], mat->n_col); |
| 2831 | } |
| 2832 | for (j = 0; j < bset->n_ineq; ++j) |
| 2833 | ineq[n_ineq++] = bset->ineq[j]; |
| 2834 | isl_basic_set_free(bset); |
| 2835 | } |
| 2836 | |
| 2837 | return mat; |
| 2838 | } |
| 2839 | |
| 2840 | /* Comparison routine for use as an isl_sort callback. |
| 2841 | * |
| 2842 | * Constraints with the same linear part are sorted together and |
| 2843 | * among constraints with the same linear part, those with smaller |
| 2844 | * constant term are sorted first. |
| 2845 | */ |
| 2846 | static int cmp_ineq(const void *a, const void *b, void *arg) |
| 2847 | { |
| 2848 | unsigned dim = *(unsigned *) arg; |
| 2849 | isl_int * const *ineq1 = a; |
| 2850 | isl_int * const *ineq2 = b; |
| 2851 | int cmp; |
| 2852 | |
| 2853 | cmp = isl_seq_cmp((*ineq1) + 1, (*ineq2) + 1, dim); |
| 2854 | if (cmp != 0) |
| 2855 | return cmp; |
| 2856 | return isl_int_cmp((*ineq1)[0], (*ineq2)[0]); |
| 2857 | } |
| 2858 | |
| 2859 | /* Compute a superset of the convex hull of "set" that is described |
| 2860 | * by only constraints in the elements of "list", where "set" has |
| 2861 | * no parameters or integer divisions. |
| 2862 | * |
| 2863 | * We collect all the constraints in those elements and then |
| 2864 | * sort the constraints such that constraints with the same linear part |
| 2865 | * are sorted together and that those with smaller constant term are |
| 2866 | * sorted first. |
| 2867 | */ |
| 2868 | static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_basic_set_list( |
| 2869 | __isl_take isl_set *set, __isl_take isl_basic_set_list *list) |
| 2870 | { |
| 2871 | int i, n, n_eq, n_ineq; |
| 2872 | unsigned dim; |
| 2873 | isl_ctx *ctx; |
| 2874 | isl_mat *mat = NULL; |
| 2875 | isl_int **ineq = NULL; |
| 2876 | isl_basic_set *hull; |
| 2877 | |
| 2878 | if (!set) |
| 2879 | goto error; |
| 2880 | ctx = isl_set_get_ctx(set); |
| 2881 | |
| 2882 | n_eq = 0; |
| 2883 | n_ineq = 0; |
| 2884 | n = isl_basic_set_list_n_basic_set(list); |
| 2885 | for (i = 0; i < n; ++i) { |
| 2886 | isl_basic_set *bset; |
| 2887 | bset = isl_basic_set_list_get_basic_set(list, i); |
| 2888 | if (!bset) |
| 2889 | goto error; |
| 2890 | n_eq += bset->n_eq; |
| 2891 | n_ineq += 2 * bset->n_eq + bset->n_ineq; |
| 2892 | isl_basic_set_free(bset); |
| 2893 | } |
| 2894 | |
| 2895 | ineq = isl_alloc_array(ctx, isl_int *, n_ineq); |
| 2896 | if (n_ineq > 0 && !ineq) |
| 2897 | goto error; |
| 2898 | |
| 2899 | dim = isl_set_dim(set, isl_dim_set); |
| 2900 | mat = isl_mat_alloc(ctx, n_eq, 1 + dim); |
| 2901 | mat = collect_inequalities(mat, list, ineq); |
| 2902 | if (!mat) |
| 2903 | goto error; |
| 2904 | |
| 2905 | if (isl_sort(ineq, n_ineq, sizeof(ineq[0]), &cmp_ineq, &dim) < 0) |
| 2906 | goto error; |
| 2907 | |
| 2908 | hull = uset_unshifted_simple_hull_from_constraints(set, n_ineq, ineq); |
| 2909 | |
| 2910 | isl_mat_free(mat); |
| 2911 | free(ineq); |
| 2912 | isl_basic_set_list_free(list); |
| 2913 | return hull; |
| 2914 | error: |
| 2915 | isl_mat_free(mat); |
| 2916 | free(ineq); |
| 2917 | isl_set_free(set); |
| 2918 | isl_basic_set_list_free(list); |
| 2919 | return NULL; |
| 2920 | } |
| 2921 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2922 | /* Compute a superset of the convex hull of "map" that is described |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2923 | * by only constraints in the elements of "list". |
| 2924 | * |
| 2925 | * If the list is empty, then we can only describe the universe set. |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2926 | * If the input map is empty, then all constraints are valid, so |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2927 | * we return the intersection of the elements in "list". |
| 2928 | * |
| 2929 | * Otherwise, we align all divs and temporarily treat them |
| 2930 | * as regular variables, computing the unshifted simple hull in |
| 2931 | * uset_unshifted_simple_hull_from_basic_set_list. |
| 2932 | */ |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2933 | static __isl_give isl_basic_map *map_unshifted_simple_hull_from_basic_map_list( |
| 2934 | __isl_take isl_map *map, __isl_take isl_basic_map_list *list) |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2935 | { |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2936 | isl_basic_map *model; |
| 2937 | isl_basic_map *hull; |
| 2938 | isl_set *set; |
| 2939 | isl_basic_set_list *bset_list; |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2940 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2941 | if (!map || !list) |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2942 | goto error; |
| 2943 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2944 | if (isl_basic_map_list_n_basic_map(list) == 0) { |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2945 | isl_space *space; |
| 2946 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2947 | space = isl_map_get_space(map); |
| 2948 | isl_map_free(map); |
| 2949 | isl_basic_map_list_free(list); |
| 2950 | return isl_basic_map_universe(space); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2951 | } |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2952 | if (isl_map_plain_is_empty(map)) { |
| 2953 | isl_map_free(map); |
| 2954 | return isl_basic_map_list_intersect(list); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2955 | } |
| 2956 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2957 | map = isl_map_align_divs_to_basic_map_list(map, list); |
| 2958 | if (!map) |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2959 | goto error; |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2960 | list = isl_basic_map_list_align_divs_to_basic_map(list, map->p[0]); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2961 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2962 | model = isl_basic_map_list_get_basic_map(list, 0); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2963 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2964 | set = isl_map_underlying_set(map); |
| 2965 | bset_list = isl_basic_map_list_underlying_set(list); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2966 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2967 | hull = uset_unshifted_simple_hull_from_basic_set_list(set, bset_list); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2968 | hull = isl_basic_map_overlying_set(hull, model); |
| 2969 | |
| 2970 | return hull; |
| 2971 | error: |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2972 | isl_map_free(map); |
| 2973 | isl_basic_map_list_free(list); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2974 | return NULL; |
| 2975 | } |
| 2976 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2977 | /* Return a sequence of the basic maps that make up the maps in "list". |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2978 | */ |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2979 | static __isl_give isl_basic_set_list *collect_basic_maps( |
| 2980 | __isl_take isl_map_list *list) |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2981 | { |
| 2982 | int i, n; |
| 2983 | isl_ctx *ctx; |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2984 | isl_basic_map_list *bmap_list; |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2985 | |
| 2986 | if (!list) |
| 2987 | return NULL; |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2988 | n = isl_map_list_n_map(list); |
| 2989 | ctx = isl_map_list_get_ctx(list); |
| 2990 | bmap_list = isl_basic_map_list_alloc(ctx, 0); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2991 | |
| 2992 | for (i = 0; i < n; ++i) { |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2993 | isl_map *map; |
| 2994 | isl_basic_map_list *list_i; |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 2995 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 2996 | map = isl_map_list_get_map(list, i); |
| 2997 | map = isl_map_compute_divs(map); |
| 2998 | list_i = isl_map_get_basic_map_list(map); |
| 2999 | isl_map_free(map); |
| 3000 | bmap_list = isl_basic_map_list_concat(bmap_list, list_i); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 3001 | } |
| 3002 | |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 3003 | isl_map_list_free(list); |
| 3004 | return bmap_list; |
| 3005 | } |
| 3006 | |
| 3007 | /* Compute a superset of the convex hull of "map" that is described |
| 3008 | * by only constraints in the elements of "list". |
| 3009 | * |
| 3010 | * If "map" is the universe, then the convex hull (and therefore |
| 3011 | * any superset of the convexhull) is the universe as well. |
| 3012 | * |
| 3013 | * Otherwise, we collect all the basic maps in the map list and |
| 3014 | * continue with map_unshifted_simple_hull_from_basic_map_list. |
| 3015 | */ |
| 3016 | __isl_give isl_basic_map *isl_map_unshifted_simple_hull_from_map_list( |
| 3017 | __isl_take isl_map *map, __isl_take isl_map_list *list) |
| 3018 | { |
| 3019 | isl_basic_map_list *bmap_list; |
| 3020 | int is_universe; |
| 3021 | |
| 3022 | is_universe = isl_map_plain_is_universe(map); |
| 3023 | if (is_universe < 0) |
| 3024 | map = isl_map_free(map); |
| 3025 | if (is_universe < 0 || is_universe) { |
| 3026 | isl_map_list_free(list); |
| 3027 | return isl_map_unshifted_simple_hull(map); |
| 3028 | } |
| 3029 | |
| 3030 | bmap_list = collect_basic_maps(list); |
| 3031 | return map_unshifted_simple_hull_from_basic_map_list(map, bmap_list); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 3032 | } |
| 3033 | |
| 3034 | /* Compute a superset of the convex hull of "set" that is described |
| 3035 | * by only constraints in the elements of "list". |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 3036 | */ |
| 3037 | __isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list( |
| 3038 | __isl_take isl_set *set, __isl_take isl_set_list *list) |
| 3039 | { |
| Tobias Grosser | 1fa7b97 | 2015-02-16 19:33:40 +0000 | [diff] [blame] | 3040 | return isl_map_unshifted_simple_hull_from_map_list(set, list); |
| Tobias Grosser | 52a2523 | 2015-02-04 20:55:43 +0000 | [diff] [blame] | 3041 | } |
| 3042 | |
| 3043 | /* Given a set "set", return parametric bounds on the dimension "dim". |
| 3044 | */ |
| 3045 | static struct isl_basic_set *set_bounds(struct isl_set *set, int dim) |
| 3046 | { |
| 3047 | unsigned set_dim = isl_set_dim(set, isl_dim_set); |
| 3048 | set = isl_set_copy(set); |
| 3049 | set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1)); |
| 3050 | set = isl_set_eliminate_dims(set, 0, dim); |
| 3051 | return isl_set_convex_hull(set); |
| 3052 | } |
| 3053 | |
| 3054 | /* Computes a "simple hull" and then check if each dimension in the |
| 3055 | * resulting hull is bounded by a symbolic constant. If not, the |
| 3056 | * hull is intersected with the corresponding bounds on the whole set. |
| 3057 | */ |
| 3058 | struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set) |
| 3059 | { |
| 3060 | int i, j; |
| 3061 | struct isl_basic_set *hull; |
| 3062 | unsigned nparam, left; |
| 3063 | int removed_divs = 0; |
| 3064 | |
| 3065 | hull = isl_set_simple_hull(isl_set_copy(set)); |
| 3066 | if (!hull) |
| 3067 | goto error; |
| 3068 | |
| 3069 | nparam = isl_basic_set_dim(hull, isl_dim_param); |
| 3070 | for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) { |
| 3071 | int lower = 0, upper = 0; |
| 3072 | struct isl_basic_set *bounds; |
| 3073 | |
| 3074 | left = isl_basic_set_total_dim(hull) - nparam - i - 1; |
| 3075 | for (j = 0; j < hull->n_eq; ++j) { |
| 3076 | if (isl_int_is_zero(hull->eq[j][1 + nparam + i])) |
| 3077 | continue; |
| 3078 | if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1, |
| 3079 | left) == -1) |
| 3080 | break; |
| 3081 | } |
| 3082 | if (j < hull->n_eq) |
| 3083 | continue; |
| 3084 | |
| 3085 | for (j = 0; j < hull->n_ineq; ++j) { |
| 3086 | if (isl_int_is_zero(hull->ineq[j][1 + nparam + i])) |
| 3087 | continue; |
| 3088 | if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1, |
| 3089 | left) != -1 || |
| 3090 | isl_seq_first_non_zero(hull->ineq[j]+1+nparam, |
| 3091 | i) != -1) |
| 3092 | continue; |
| 3093 | if (isl_int_is_pos(hull->ineq[j][1 + nparam + i])) |
| 3094 | lower = 1; |
| 3095 | else |
| 3096 | upper = 1; |
| 3097 | if (lower && upper) |
| 3098 | break; |
| 3099 | } |
| 3100 | |
| 3101 | if (lower && upper) |
| 3102 | continue; |
| 3103 | |
| 3104 | if (!removed_divs) { |
| 3105 | set = isl_set_remove_divs(set); |
| 3106 | if (!set) |
| 3107 | goto error; |
| 3108 | removed_divs = 1; |
| 3109 | } |
| 3110 | bounds = set_bounds(set, i); |
| 3111 | hull = isl_basic_set_intersect(hull, bounds); |
| 3112 | if (!hull) |
| 3113 | goto error; |
| 3114 | } |
| 3115 | |
| 3116 | isl_set_free(set); |
| 3117 | return hull; |
| 3118 | error: |
| 3119 | isl_set_free(set); |
| 3120 | return NULL; |
| 3121 | } |