blob: 806bc0a9533c484cccdd5951ea047244c2cc0a3e [file] [log] [blame]
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the PowerPC-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// PPCGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "ppcfastisel"
17#include "PPC.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000018#include "MCTargetDesc/PPCPredicates.h"
Bill Schmidt0cf702f2013-07-30 00:50:39 +000019#include "PPCISelLowering.h"
20#include "PPCSubtarget.h"
21#include "PPCTargetMachine.h"
Bill Schmidt0cf702f2013-07-30 00:50:39 +000022#include "llvm/ADT/Optional.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39
Bill Schmidteb8d6f72013-08-31 02:33:40 +000040//===----------------------------------------------------------------------===//
41//
42// TBD:
43// FastLowerArguments: Handle simple cases.
44// PPCMaterializeGV: Handle TLS.
45// SelectCall: Handle function pointers.
46// SelectCall: Handle multi-register return values.
47// SelectCall: Optimize away nops for local calls.
48// processCallArgs: Handle bit-converted arguments.
49// finishCall: Handle multi-register return values.
50// PPCComputeAddress: Handle parameter references as FrameIndex's.
51// PPCEmitCmp: Handle immediate as operand 1.
52// SelectCall: Handle small byval arguments.
53// SelectIntrinsicCall: Implement.
54// SelectSelect: Implement.
55// Consider factoring isTypeLegal into the base class.
56// Implement switches and jump tables.
57//
58//===----------------------------------------------------------------------===//
Bill Schmidt0cf702f2013-07-30 00:50:39 +000059using namespace llvm;
60
61namespace {
62
63typedef struct Address {
64 enum {
65 RegBase,
66 FrameIndexBase
67 } BaseType;
68
69 union {
70 unsigned Reg;
71 int FI;
72 } Base;
73
Bill Schmidtccecf262013-08-30 02:29:45 +000074 long Offset;
Bill Schmidt0cf702f2013-07-30 00:50:39 +000075
76 // Innocuous defaults for our address.
77 Address()
78 : BaseType(RegBase), Offset(0) {
79 Base.Reg = 0;
80 }
81} Address;
82
83class PPCFastISel : public FastISel {
84
85 const TargetMachine &TM;
86 const TargetInstrInfo &TII;
87 const TargetLowering &TLI;
88 const PPCSubtarget &PPCSubTarget;
89 LLVMContext *Context;
90
91 public:
92 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
93 const TargetLibraryInfo *LibInfo)
94 : FastISel(FuncInfo, LibInfo),
95 TM(FuncInfo.MF->getTarget()),
96 TII(*TM.getInstrInfo()),
97 TLI(*TM.getTargetLowering()),
98 PPCSubTarget(
99 *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl())
100 ),
101 Context(&FuncInfo.Fn->getContext()) { }
102
103 // Backend specific FastISel code.
104 private:
105 virtual bool TargetSelectInstruction(const Instruction *I);
106 virtual unsigned TargetMaterializeConstant(const Constant *C);
107 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
108 virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
109 const LoadInst *LI);
110 virtual bool FastLowerArguments();
Bill Schmidt03008132013-08-25 22:33:42 +0000111 virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm);
Bill Schmidtccecf262013-08-30 02:29:45 +0000112 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
113 const TargetRegisterClass *RC,
114 unsigned Op0, bool Op0IsKill,
115 uint64_t Imm);
116 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
117 const TargetRegisterClass *RC,
118 unsigned Op0, bool Op0IsKill);
119 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
120 const TargetRegisterClass *RC,
121 unsigned Op0, bool Op0IsKill,
122 unsigned Op1, bool Op1IsKill);
Bill Schmidt03008132013-08-25 22:33:42 +0000123
124 // Instruction selection routines.
125 private:
Bill Schmidtccecf262013-08-30 02:29:45 +0000126 bool SelectLoad(const Instruction *I);
127 bool SelectStore(const Instruction *I);
Bill Schmidt03008132013-08-25 22:33:42 +0000128 bool SelectBranch(const Instruction *I);
129 bool SelectIndirectBr(const Instruction *I);
Bill Schmidt057b04f2013-08-30 03:16:48 +0000130 bool SelectCmp(const Instruction *I);
Bill Schmidt8d86fe72013-08-30 15:18:11 +0000131 bool SelectFPExt(const Instruction *I);
132 bool SelectFPTrunc(const Instruction *I);
133 bool SelectIToFP(const Instruction *I, bool IsSigned);
134 bool SelectFPToI(const Instruction *I, bool IsSigned);
Bill Schmidtccecf262013-08-30 02:29:45 +0000135 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
Bill Schmidt8470b0f2013-08-30 22:18:55 +0000136 bool SelectCall(const Instruction *I);
Bill Schmidtd89f6782013-08-26 19:42:51 +0000137 bool SelectRet(const Instruction *I);
Bill Schmidt9d9510d2013-08-30 23:31:33 +0000138 bool SelectTrunc(const Instruction *I);
Bill Schmidtd89f6782013-08-26 19:42:51 +0000139 bool SelectIntExt(const Instruction *I);
Bill Schmidt0cf702f2013-07-30 00:50:39 +0000140
141 // Utility routines.
142 private:
Bill Schmidtccecf262013-08-30 02:29:45 +0000143 bool isTypeLegal(Type *Ty, MVT &VT);
144 bool isLoadTypeLegal(Type *Ty, MVT &VT);
Bill Schmidt03008132013-08-25 22:33:42 +0000145 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
146 bool isZExt, unsigned DestReg);
Bill Schmidtccecf262013-08-30 02:29:45 +0000147 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
148 const TargetRegisterClass *RC, bool IsZExt = true,
149 unsigned FP64LoadOpc = PPC::LFD);
150 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
151 bool PPCComputeAddress(const Value *Obj, Address &Addr);
152 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
153 unsigned &IndexReg);
Bill Schmidt03008132013-08-25 22:33:42 +0000154 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
155 unsigned DestReg, bool IsZExt);
Bill Schmidt0cf702f2013-07-30 00:50:39 +0000156 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
Bill Schmidtccecf262013-08-30 02:29:45 +0000157 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
Bill Schmidt0cf702f2013-07-30 00:50:39 +0000158 unsigned PPCMaterializeInt(const Constant *C, MVT VT);
159 unsigned PPCMaterialize32BitInt(int64_t Imm,
160 const TargetRegisterClass *RC);
161 unsigned PPCMaterialize64BitInt(int64_t Imm,
162 const TargetRegisterClass *RC);
Bill Schmidt8d86fe72013-08-30 15:18:11 +0000163 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
164 unsigned SrcReg, bool IsSigned);
165 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
Bill Schmidt0cf702f2013-07-30 00:50:39 +0000166
Bill Schmidtd89f6782013-08-26 19:42:51 +0000167 // Call handling routines.
168 private:
Bill Schmidt8470b0f2013-08-30 22:18:55 +0000169 bool processCallArgs(SmallVectorImpl<Value*> &Args,
170 SmallVectorImpl<unsigned> &ArgRegs,
171 SmallVectorImpl<MVT> &ArgVTs,
172 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
173 SmallVectorImpl<unsigned> &RegArgs,
174 CallingConv::ID CC,
175 unsigned &NumBytes,
176 bool IsVarArg);
177 void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
178 const Instruction *I, CallingConv::ID CC,
179 unsigned &NumBytes, bool IsVarArg);
Bill Schmidtd89f6782013-08-26 19:42:51 +0000180 CCAssignFn *usePPC32CCs(unsigned Flag);
181
Bill Schmidt0cf702f2013-07-30 00:50:39 +0000182 private:
183 #include "PPCGenFastISel.inc"
184
185};
186
187} // end anonymous namespace
188
Bill Schmidtd89f6782013-08-26 19:42:51 +0000189#include "PPCGenCallingConv.inc"
190
191// Function whose sole purpose is to kill compiler warnings
192// stemming from unused functions included from PPCGenCallingConv.inc.
193CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
194 if (Flag == 1)
195 return CC_PPC32_SVR4;
196 else if (Flag == 2)
197 return CC_PPC32_SVR4_ByVal;
198 else if (Flag == 3)
199 return CC_PPC32_SVR4_VarArg;
200 else
201 return RetCC_PPC;
202}
203
Bill Schmidt03008132013-08-25 22:33:42 +0000204static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
205 switch (Pred) {
206 // These are not representable with any single compare.
207 case CmpInst::FCMP_FALSE:
208 case CmpInst::FCMP_UEQ:
209 case CmpInst::FCMP_UGT:
210 case CmpInst::FCMP_UGE:
211 case CmpInst::FCMP_ULT:
212 case CmpInst::FCMP_ULE:
213 case CmpInst::FCMP_UNE:
214 case CmpInst::FCMP_TRUE:
215 default:
216 return Optional<PPC::Predicate>();
217
218 case CmpInst::FCMP_OEQ:
219 case CmpInst::ICMP_EQ:
220 return PPC::PRED_EQ;
221
222 case CmpInst::FCMP_OGT:
223 case CmpInst::ICMP_UGT:
224 case CmpInst::ICMP_SGT:
225 return PPC::PRED_GT;
226
227 case CmpInst::FCMP_OGE:
228 case CmpInst::ICMP_UGE:
229 case CmpInst::ICMP_SGE:
230 return PPC::PRED_GE;
231
232 case CmpInst::FCMP_OLT:
233 case CmpInst::ICMP_ULT:
234 case CmpInst::ICMP_SLT:
235 return PPC::PRED_LT;
236
237 case CmpInst::FCMP_OLE:
238 case CmpInst::ICMP_ULE:
239 case CmpInst::ICMP_SLE:
240 return PPC::PRED_LE;
241
242 case CmpInst::FCMP_ONE:
243 case CmpInst::ICMP_NE:
244 return PPC::PRED_NE;
245
246 case CmpInst::FCMP_ORD:
247 return PPC::PRED_NU;
248
249 case CmpInst::FCMP_UNO:
250 return PPC::PRED_UN;
251 }
252}
253
Bill Schmidtccecf262013-08-30 02:29:45 +0000254// Determine whether the type Ty is simple enough to be handled by
255// fast-isel, and return its equivalent machine type in VT.
256// FIXME: Copied directly from ARM -- factor into base class?
257bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
258 EVT Evt = TLI.getValueType(Ty, true);
259
260 // Only handle simple types.
261 if (Evt == MVT::Other || !Evt.isSimple()) return false;
262 VT = Evt.getSimpleVT();
263
264 // Handle all legal types, i.e. a register that will directly hold this
265 // value.
266 return TLI.isTypeLegal(VT);
267}
268
269// Determine whether the type Ty is simple enough to be handled by
270// fast-isel as a load target, and return its equivalent machine type in VT.
271bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
272 if (isTypeLegal(Ty, VT)) return true;
273
274 // If this is a type than can be sign or zero-extended to a basic operation
275 // go ahead and accept it now.
276 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
277 return true;
278 }
279
280 return false;
281}
282
283// Given a value Obj, create an Address object Addr that represents its
284// address. Return false if we can't handle it.
285bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
286 const User *U = NULL;
287 unsigned Opcode = Instruction::UserOp1;
288 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
289 // Don't walk into other basic blocks unless the object is an alloca from
290 // another block, otherwise it may not have a virtual register assigned.
291 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
292 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
293 Opcode = I->getOpcode();
294 U = I;
295 }
296 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
297 Opcode = C->getOpcode();
298 U = C;
299 }
300
301 switch (Opcode) {
302 default:
303 break;
304 case Instruction::BitCast:
305 // Look through bitcasts.
306 return PPCComputeAddress(U->getOperand(0), Addr);
307 case Instruction::IntToPtr:
308 // Look past no-op inttoptrs.
309 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
310 return PPCComputeAddress(U->getOperand(0), Addr);
311 break;
312 case Instruction::PtrToInt:
313 // Look past no-op ptrtoints.
314 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
315 return PPCComputeAddress(U->getOperand(0), Addr);
316 break;
317 case Instruction::GetElementPtr: {
318 Address SavedAddr = Addr;
319 long TmpOffset = Addr.Offset;
320
321 // Iterate through the GEP folding the constants into offsets where
322 // we can.
323 gep_type_iterator GTI = gep_type_begin(U);
324 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
325 II != IE; ++II, ++GTI) {
326 const Value *Op = *II;
327 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
328 const StructLayout *SL = TD.getStructLayout(STy);
329 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
330 TmpOffset += SL->getElementOffset(Idx);
331 } else {
332 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
333 for (;;) {
334 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
335 // Constant-offset addressing.
336 TmpOffset += CI->getSExtValue() * S;
337 break;
338 }
Bob Wilson9f3e6b22013-11-15 19:09:27 +0000339 if (canFoldAddIntoGEP(U, Op)) {
340 // A compatible add with a constant operand. Fold the constant.
Bill Schmidtccecf262013-08-30 02:29:45 +0000341 ConstantInt *CI =
342 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
343 TmpOffset += CI->getSExtValue() * S;
344 // Iterate on the other operand.
345 Op = cast<AddOperator>(Op)->getOperand(0);
346 continue;
347 }
348 // Unsupported
349 goto unsupported_gep;
350 }
351 }
352 }
353
354 // Try to grab the base operand now.
355 Addr.Offset = TmpOffset;
356 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
357
358 // We failed, restore everything and try the other options.
359 Addr = SavedAddr;
360
361 unsupported_gep:
362 break;
363 }
364 case Instruction::Alloca: {
365 const AllocaInst *AI = cast<AllocaInst>(Obj);
366 DenseMap<const AllocaInst*, int>::iterator SI =
367 FuncInfo.StaticAllocaMap.find(AI);
368 if (SI != FuncInfo.StaticAllocaMap.end()) {
369 Addr.BaseType = Address::FrameIndexBase;
370 Addr.Base.FI = SI->second;
371 return true;
372 }
373 break;
374 }
375 }
376
377 // FIXME: References to parameters fall through to the behavior
378 // below. They should be able to reference a frame index since
379 // they are stored to the stack, so we can get "ld rx, offset(r1)"
380 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
381 // just contain the parameter. Try to handle this with a FI.
382
383 // Try to get this in a register if nothing else has worked.
384 if (Addr.Base.Reg == 0)
385 Addr.Base.Reg = getRegForValue(Obj);
386
387 // Prevent assignment of base register to X0, which is inappropriate
388 // for loads and stores alike.
389 if (Addr.Base.Reg != 0)
390 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
391
392 return Addr.Base.Reg != 0;
393}
394
395// Fix up some addresses that can't be used directly. For example, if
396// an offset won't fit in an instruction field, we may need to move it
397// into an index register.
398void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
399 unsigned &IndexReg) {
400
401 // Check whether the offset fits in the instruction field.
402 if (!isInt<16>(Addr.Offset))
403 UseOffset = false;
404
405 // If this is a stack pointer and the offset needs to be simplified then
406 // put the alloca address into a register, set the base type back to
407 // register and continue. This should almost never happen.
408 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
409 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
411 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
412 Addr.Base.Reg = ResultReg;
413 Addr.BaseType = Address::RegBase;
414 }
415
416 if (!UseOffset) {
417 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
418 : Type::getInt64Ty(*Context));
419 const ConstantInt *Offset =
420 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
421 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
422 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
423 }
424}
425
426// Emit a load instruction if possible, returning true if we succeeded,
427// otherwise false. See commentary below for how the register class of
428// the load is determined.
429bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
430 const TargetRegisterClass *RC,
431 bool IsZExt, unsigned FP64LoadOpc) {
432 unsigned Opc;
433 bool UseOffset = true;
434
435 // If ResultReg is given, it determines the register class of the load.
436 // Otherwise, RC is the register class to use. If the result of the
437 // load isn't anticipated in this block, both may be zero, in which
438 // case we must make a conservative guess. In particular, don't assign
439 // R0 or X0 to the result register, as the result may be used in a load,
440 // store, add-immediate, or isel that won't permit this. (Though
441 // perhaps the spill and reload of live-exit values would handle this?)
442 const TargetRegisterClass *UseRC =
443 (ResultReg ? MRI.getRegClass(ResultReg) :
444 (RC ? RC :
445 (VT == MVT::f64 ? &PPC::F8RCRegClass :
446 (VT == MVT::f32 ? &PPC::F4RCRegClass :
447 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
448 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
449
450 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
451
452 switch (VT.SimpleTy) {
453 default: // e.g., vector types not handled
454 return false;
455 case MVT::i8:
456 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
457 break;
458 case MVT::i16:
459 Opc = (IsZExt ?
460 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
461 (Is32BitInt ? PPC::LHA : PPC::LHA8));
462 break;
463 case MVT::i32:
464 Opc = (IsZExt ?
465 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
466 (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
467 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
468 UseOffset = false;
469 break;
470 case MVT::i64:
471 Opc = PPC::LD;
472 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
473 "64-bit load with 32-bit target??");
474 UseOffset = ((Addr.Offset & 3) == 0);
475 break;
476 case MVT::f32:
477 Opc = PPC::LFS;
478 break;
479 case MVT::f64:
480 Opc = FP64LoadOpc;
481 break;
482 }
483
484 // If necessary, materialize the offset into a register and use
485 // the indexed form. Also handle stack pointers with special needs.
486 unsigned IndexReg = 0;
487 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
488 if (ResultReg == 0)
489 ResultReg = createResultReg(UseRC);
490
491 // Note: If we still have a frame index here, we know the offset is
492 // in range, as otherwise PPCSimplifyAddress would have converted it
493 // into a RegBase.
494 if (Addr.BaseType == Address::FrameIndexBase) {
495
496 MachineMemOperand *MMO =
497 FuncInfo.MF->getMachineMemOperand(
498 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
499 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
500 MFI.getObjectAlignment(Addr.Base.FI));
501
502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
503 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
504
505 // Base reg with offset in range.
506 } else if (UseOffset) {
507
508 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
509 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
510
511 // Indexed form.
512 } else {
513 // Get the RR opcode corresponding to the RI one. FIXME: It would be
514 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
515 // is hard to get at.
516 switch (Opc) {
517 default: llvm_unreachable("Unexpected opcode!");
518 case PPC::LBZ: Opc = PPC::LBZX; break;
519 case PPC::LBZ8: Opc = PPC::LBZX8; break;
520 case PPC::LHZ: Opc = PPC::LHZX; break;
521 case PPC::LHZ8: Opc = PPC::LHZX8; break;
522 case PPC::LHA: Opc = PPC::LHAX; break;
523 case PPC::LHA8: Opc = PPC::LHAX8; break;
524 case PPC::LWZ: Opc = PPC::LWZX; break;
525 case PPC::LWZ8: Opc = PPC::LWZX8; break;
526 case PPC::LWA: Opc = PPC::LWAX; break;
527 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
528 case PPC::LD: Opc = PPC::LDX; break;
529 case PPC::LFS: Opc = PPC::LFSX; break;
530 case PPC::LFD: Opc = PPC::LFDX; break;
531 }
532 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
533 .addReg(Addr.Base.Reg).addReg(IndexReg);
534 }
535
536 return true;
537}
538
539// Attempt to fast-select a load instruction.
540bool PPCFastISel::SelectLoad(const Instruction *I) {
541 // FIXME: No atomic loads are supported.
542 if (cast<LoadInst>(I)->isAtomic())
543 return false;
544
545 // Verify we have a legal type before going any further.
546 MVT VT;
547 if (!isLoadTypeLegal(I->getType(), VT))
548 return false;
549
550 // See if we can handle this address.
551 Address Addr;
552 if (!PPCComputeAddress(I->getOperand(0), Addr))
553 return false;
554
555 // Look at the currently assigned register for this instruction
556 // to determine the required register class. This is necessary
557 // to constrain RA from using R0/X0 when this is not legal.
558 unsigned AssignedReg = FuncInfo.ValueMap[I];
559 const TargetRegisterClass *RC =
560 AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
561
562 unsigned ResultReg = 0;
563 if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
564 return false;
565 UpdateValueMap(I, ResultReg);
566 return true;
567}
568
569// Emit a store instruction to store SrcReg at Addr.
570bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
571 assert(SrcReg && "Nothing to store!");
572 unsigned Opc;
573 bool UseOffset = true;
574
575 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
576 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
577
578 switch (VT.SimpleTy) {
579 default: // e.g., vector types not handled
580 return false;
581 case MVT::i8:
582 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
583 break;
584 case MVT::i16:
585 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
586 break;
587 case MVT::i32:
588 assert(Is32BitInt && "Not GPRC for i32??");
589 Opc = PPC::STW;
590 break;
591 case MVT::i64:
592 Opc = PPC::STD;
593 UseOffset = ((Addr.Offset & 3) == 0);
594 break;
595 case MVT::f32:
596 Opc = PPC::STFS;
597 break;
598 case MVT::f64:
599 Opc = PPC::STFD;
600 break;
601 }
602
603 // If necessary, materialize the offset into a register and use
604 // the indexed form. Also handle stack pointers with special needs.
605 unsigned IndexReg = 0;
606 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
607
608 // Note: If we still have a frame index here, we know the offset is
609 // in range, as otherwise PPCSimplifyAddress would have converted it
610 // into a RegBase.
611 if (Addr.BaseType == Address::FrameIndexBase) {
612 MachineMemOperand *MMO =
613 FuncInfo.MF->getMachineMemOperand(
614 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
615 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
616 MFI.getObjectAlignment(Addr.Base.FI));
617
618 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)).addReg(SrcReg)
619 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
620
621 // Base reg with offset in range.
Bill Schmidt72e3d55a2013-08-30 03:07:11 +0000622 } else if (UseOffset)
Bill Schmidtccecf262013-08-30 02:29:45 +0000623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
624 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
625
626 // Indexed form.
Bill Schmidt72e3d55a2013-08-30 03:07:11 +0000627 else {
Bill Schmidtccecf262013-08-30 02:29:45 +0000628 // Get the RR opcode corresponding to the RI one. FIXME: It would be
629 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
630 // is hard to get at.
631 switch (Opc) {
632 default: llvm_unreachable("Unexpected opcode!");
633 case PPC::STB: Opc = PPC::STBX; break;
634 case PPC::STH : Opc = PPC::STHX; break;
635 case PPC::STW : Opc = PPC::STWX; break;
636 case PPC::STB8: Opc = PPC::STBX8; break;
637 case PPC::STH8: Opc = PPC::STHX8; break;
638 case PPC::STW8: Opc = PPC::STWX8; break;
639 case PPC::STD: Opc = PPC::STDX; break;
640 case PPC::STFS: Opc = PPC::STFSX; break;
641 case PPC::STFD: Opc = PPC::STFDX; break;
642 }
643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
644 .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
645 }
646
647 return true;
648}
649
650// Attempt to fast-select a store instruction.
651bool PPCFastISel::SelectStore(const Instruction *I) {
652 Value *Op0 = I->getOperand(0);
653 unsigned SrcReg = 0;
654
655 // FIXME: No atomics loads are supported.
656 if (cast<StoreInst>(I)->isAtomic())
657 return false;
658
659 // Verify we have a legal type before going any further.
660 MVT VT;
661 if (!isLoadTypeLegal(Op0->getType(), VT))
662 return false;
663
664 // Get the value to be stored into a register.
665 SrcReg = getRegForValue(Op0);
666 if (SrcReg == 0)
667 return false;
668
669 // See if we can handle this address.
670 Address Addr;
671 if (!PPCComputeAddress(I->getOperand(1), Addr))
672 return false;
673
674 if (!PPCEmitStore(VT, SrcReg, Addr))
675 return false;
676
677 return true;
678}
679
Bill Schmidt03008132013-08-25 22:33:42 +0000680// Attempt to fast-select a branch instruction.
681bool PPCFastISel::SelectBranch(const Instruction *I) {
682 const BranchInst *BI = cast<BranchInst>(I);
683 MachineBasicBlock *BrBB = FuncInfo.MBB;
684 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
685 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
686
687 // For now, just try the simplest case where it's fed by a compare.
688 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
689 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
690 if (!OptPPCPred)
691 return false;
692
693 PPC::Predicate PPCPred = OptPPCPred.getValue();
694
695 // Take advantage of fall-through opportunities.
696 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
697 std::swap(TBB, FBB);
698 PPCPred = PPC::InvertPredicate(PPCPred);
699 }
700
701 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
702
703 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
704 CondReg))
705 return false;
706
707 BuildMI(*BrBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCC))
708 .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
709 FastEmitBranch(FBB, DL);
710 FuncInfo.MBB->addSuccessor(TBB);
711 return true;
712
713 } else if (const ConstantInt *CI =
714 dyn_cast<ConstantInt>(BI->getCondition())) {
715 uint64_t Imm = CI->getZExtValue();
716 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
717 FastEmitBranch(Target, DL);
718 return true;
719 }
720
721 // FIXME: ARM looks for a case where the block containing the compare
722 // has been split from the block containing the branch. If this happens,
723 // there is a vreg available containing the result of the compare. I'm
724 // not sure we can do much, as we've lost the predicate information with
725 // the compare instruction -- we have a 4-bit CR but don't know which bit
726 // to test here.
727 return false;
728}
729
730// Attempt to emit a compare of the two source values. Signed and unsigned
731// comparisons are supported. Return false if we can't handle it.
732bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
733 bool IsZExt, unsigned DestReg) {
734 Type *Ty = SrcValue1->getType();
735 EVT SrcEVT = TLI.getValueType(Ty, true);
736 if (!SrcEVT.isSimple())
737 return false;
738 MVT SrcVT = SrcEVT.getSimpleVT();
739
740 // See if operand 2 is an immediate encodeable in the compare.
741 // FIXME: Operands are not in canonical order at -O0, so an immediate
742 // operand in position 1 is a lost opportunity for now. We are
743 // similar to ARM in this regard.
744 long Imm = 0;
745 bool UseImm = false;
746
747 // Only 16-bit integer constants can be represented in compares for
748 // PowerPC. Others will be materialized into a register.
749 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
750 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
751 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
752 const APInt &CIVal = ConstInt->getValue();
753 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
754 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
755 UseImm = true;
756 }
757 }
758
759 unsigned CmpOpc;
760 bool NeedsExt = false;
761 switch (SrcVT.SimpleTy) {
762 default: return false;
763 case MVT::f32:
764 CmpOpc = PPC::FCMPUS;
765 break;
766 case MVT::f64:
767 CmpOpc = PPC::FCMPUD;
768 break;
769 case MVT::i1:
770 case MVT::i8:
771 case MVT::i16:
772 NeedsExt = true;
773 // Intentional fall-through.
774 case MVT::i32:
775 if (!UseImm)
776 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
777 else
778 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
779 break;
780 case MVT::i64:
781 if (!UseImm)
782 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
783 else
784 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
785 break;
786 }
787
788 unsigned SrcReg1 = getRegForValue(SrcValue1);
789 if (SrcReg1 == 0)
790 return false;
791
792 unsigned SrcReg2 = 0;
793 if (!UseImm) {
794 SrcReg2 = getRegForValue(SrcValue2);
795 if (SrcReg2 == 0)
796 return false;
797 }
798
799 if (NeedsExt) {
800 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
801 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
802 return false;
803 SrcReg1 = ExtReg;
804
805 if (!UseImm) {
806 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
807 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
808 return false;
809 SrcReg2 = ExtReg;
810 }
811 }
812
813 if (!UseImm)
814 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
815 .addReg(SrcReg1).addReg(SrcReg2);
816 else
817 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
818 .addReg(SrcReg1).addImm(Imm);
819
820 return true;
821}
822
Bill Schmidt8d86fe72013-08-30 15:18:11 +0000823// Attempt to fast-select a floating-point extend instruction.
824bool PPCFastISel::SelectFPExt(const Instruction *I) {
825 Value *Src = I->getOperand(0);
826 EVT SrcVT = TLI.getValueType(Src->getType(), true);
827 EVT DestVT = TLI.getValueType(I->getType(), true);
828
829 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
830 return false;
831
832 unsigned SrcReg = getRegForValue(Src);
833 if (!SrcReg)
834 return false;
835
836 // No code is generated for a FP extend.
837 UpdateValueMap(I, SrcReg);
838 return true;
839}
840
841// Attempt to fast-select a floating-point truncate instruction.
842bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
843 Value *Src = I->getOperand(0);
844 EVT SrcVT = TLI.getValueType(Src->getType(), true);
845 EVT DestVT = TLI.getValueType(I->getType(), true);
846
847 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
848 return false;
849
850 unsigned SrcReg = getRegForValue(Src);
851 if (!SrcReg)
852 return false;
853
854 // Round the result to single precision.
855 unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
856 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP), DestReg)
857 .addReg(SrcReg);
858
859 UpdateValueMap(I, DestReg);
860 return true;
861}
862
863// Move an i32 or i64 value in a GPR to an f64 value in an FPR.
864// FIXME: When direct register moves are implemented (see PowerISA 2.08),
865// those should be used instead of moving via a stack slot when the
866// subtarget permits.
867// FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
868// stack slot and 4-byte store/load sequence. Or just sext the 4-byte
869// case to 8 bytes which produces tighter code but wastes stack space.
870unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
871 bool IsSigned) {
872
873 // If necessary, extend 32-bit int to 64-bit.
874 if (SrcVT == MVT::i32) {
875 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
876 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
877 return 0;
878 SrcReg = TmpReg;
879 }
880
881 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
882 Address Addr;
883 Addr.BaseType = Address::FrameIndexBase;
884 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
885
886 // Store the value from the GPR.
887 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
888 return 0;
889
890 // Load the integer value into an FPR. The kind of load used depends
891 // on a number of conditions.
892 unsigned LoadOpc = PPC::LFD;
893
894 if (SrcVT == MVT::i32) {
895 Addr.Offset = 4;
896 if (!IsSigned)
897 LoadOpc = PPC::LFIWZX;
898 else if (PPCSubTarget.hasLFIWAX())
899 LoadOpc = PPC::LFIWAX;
900 }
901
902 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
903 unsigned ResultReg = 0;
904 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
905 return 0;
906
907 return ResultReg;
908}
909
910// Attempt to fast-select an integer-to-floating-point conversion.
911bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
912 MVT DstVT;
913 Type *DstTy = I->getType();
914 if (!isTypeLegal(DstTy, DstVT))
915 return false;
916
917 if (DstVT != MVT::f32 && DstVT != MVT::f64)
918 return false;
919
920 Value *Src = I->getOperand(0);
921 EVT SrcEVT = TLI.getValueType(Src->getType(), true);
922 if (!SrcEVT.isSimple())
923 return false;
924
925 MVT SrcVT = SrcEVT.getSimpleVT();
926
927 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
928 SrcVT != MVT::i32 && SrcVT != MVT::i64)
929 return false;
930
931 unsigned SrcReg = getRegForValue(Src);
932 if (SrcReg == 0)
933 return false;
934
935 // We can only lower an unsigned convert if we have the newer
936 // floating-point conversion operations.
937 if (!IsSigned && !PPCSubTarget.hasFPCVT())
938 return false;
939
940 // FIXME: For now we require the newer floating-point conversion operations
941 // (which are present only on P7 and A2 server models) when converting
942 // to single-precision float. Otherwise we have to generate a lot of
943 // fiddly code to avoid double rounding. If necessary, the fiddly code
944 // can be found in PPCTargetLowering::LowerINT_TO_FP().
945 if (DstVT == MVT::f32 && !PPCSubTarget.hasFPCVT())
946 return false;
947
948 // Extend the input if necessary.
949 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
950 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
951 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
952 return false;
953 SrcVT = MVT::i64;
954 SrcReg = TmpReg;
955 }
956
957 // Move the integer value to an FPR.
958 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
959 if (FPReg == 0)
960 return false;
961
962 // Determine the opcode for the conversion.
963 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
964 unsigned DestReg = createResultReg(RC);
965 unsigned Opc;
966
967 if (DstVT == MVT::f32)
968 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
969 else
970 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
971
972 // Generate the convert.
973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
974 .addReg(FPReg);
975
976 UpdateValueMap(I, DestReg);
977 return true;
978}
979
980// Move the floating-point value in SrcReg into an integer destination
981// register, and return the register (or zero if we can't handle it).
982// FIXME: When direct register moves are implemented (see PowerISA 2.08),
983// those should be used instead of moving via a stack slot when the
984// subtarget permits.
985unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
986 unsigned SrcReg, bool IsSigned) {
987 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
988 // Note that if have STFIWX available, we could use a 4-byte stack
989 // slot for i32, but this being fast-isel we'll just go with the
990 // easiest code gen possible.
991 Address Addr;
992 Addr.BaseType = Address::FrameIndexBase;
993 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
994
995 // Store the value from the FPR.
996 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
997 return 0;
998
999 // Reload it into a GPR. If we want an i32, modify the address
1000 // to have a 4-byte offset so we load from the right place.
1001 if (VT == MVT::i32)
1002 Addr.Offset = 4;
1003
1004 // Look at the currently assigned register for this instruction
1005 // to determine the required register class.
1006 unsigned AssignedReg = FuncInfo.ValueMap[I];
1007 const TargetRegisterClass *RC =
1008 AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
1009
1010 unsigned ResultReg = 0;
1011 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1012 return 0;
1013
1014 return ResultReg;
1015}
1016
1017// Attempt to fast-select a floating-point-to-integer conversion.
1018bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1019 MVT DstVT, SrcVT;
1020 Type *DstTy = I->getType();
1021 if (!isTypeLegal(DstTy, DstVT))
1022 return false;
1023
1024 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1025 return false;
1026
1027 Value *Src = I->getOperand(0);
1028 Type *SrcTy = Src->getType();
1029 if (!isTypeLegal(SrcTy, SrcVT))
1030 return false;
1031
1032 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1033 return false;
1034
1035 unsigned SrcReg = getRegForValue(Src);
1036 if (SrcReg == 0)
1037 return false;
1038
1039 // Convert f32 to f64 if necessary. This is just a meaningless copy
1040 // to get the register class right. COPY_TO_REGCLASS is needed since
1041 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
1042 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1043 if (InRC == &PPC::F4RCRegClass) {
1044 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1045 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1046 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
1047 .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
1048 SrcReg = TmpReg;
1049 }
1050
1051 // Determine the opcode for the conversion, which takes place
1052 // entirely within FPRs.
1053 unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1054 unsigned Opc;
1055
1056 if (DstVT == MVT::i32)
1057 if (IsSigned)
1058 Opc = PPC::FCTIWZ;
1059 else
1060 Opc = PPCSubTarget.hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1061 else
1062 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1063
1064 // Generate the convert.
1065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1066 .addReg(SrcReg);
1067
1068 // Now move the integer value from a float register to an integer register.
1069 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1070 if (IntReg == 0)
1071 return false;
1072
1073 UpdateValueMap(I, IntReg);
1074 return true;
1075}
1076
Bill Schmidtccecf262013-08-30 02:29:45 +00001077// Attempt to fast-select a binary integer operation that isn't already
1078// handled automatically.
1079bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1080 EVT DestVT = TLI.getValueType(I->getType(), true);
1081
1082 // We can get here in the case when we have a binary operation on a non-legal
1083 // type and the target independent selector doesn't know how to handle it.
1084 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1085 return false;
1086
1087 // Look at the currently assigned register for this instruction
1088 // to determine the required register class. If there is no register,
1089 // make a conservative choice (don't assign R0).
1090 unsigned AssignedReg = FuncInfo.ValueMap[I];
1091 const TargetRegisterClass *RC =
1092 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1093 &PPC::GPRC_and_GPRC_NOR0RegClass);
1094 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1095
1096 unsigned Opc;
1097 switch (ISDOpcode) {
1098 default: return false;
1099 case ISD::ADD:
1100 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1101 break;
1102 case ISD::OR:
1103 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1104 break;
1105 case ISD::SUB:
1106 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1107 break;
1108 }
1109
1110 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1111 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1112 if (SrcReg1 == 0) return false;
1113
1114 // Handle case of small immediate operand.
1115 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1116 const APInt &CIVal = ConstInt->getValue();
1117 int Imm = (int)CIVal.getSExtValue();
1118 bool UseImm = true;
1119 if (isInt<16>(Imm)) {
1120 switch (Opc) {
1121 default:
1122 llvm_unreachable("Missing case!");
1123 case PPC::ADD4:
1124 Opc = PPC::ADDI;
1125 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1126 break;
1127 case PPC::ADD8:
1128 Opc = PPC::ADDI8;
1129 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1130 break;
1131 case PPC::OR:
1132 Opc = PPC::ORI;
1133 break;
1134 case PPC::OR8:
1135 Opc = PPC::ORI8;
1136 break;
1137 case PPC::SUBF:
1138 if (Imm == -32768)
1139 UseImm = false;
1140 else {
1141 Opc = PPC::ADDI;
1142 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1143 Imm = -Imm;
1144 }
1145 break;
1146 case PPC::SUBF8:
1147 if (Imm == -32768)
1148 UseImm = false;
1149 else {
1150 Opc = PPC::ADDI8;
1151 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1152 Imm = -Imm;
1153 }
1154 break;
1155 }
1156
1157 if (UseImm) {
1158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1159 .addReg(SrcReg1).addImm(Imm);
1160 UpdateValueMap(I, ResultReg);
1161 return true;
1162 }
1163 }
1164 }
1165
1166 // Reg-reg case.
1167 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1168 if (SrcReg2 == 0) return false;
1169
1170 // Reverse operands for subtract-from.
1171 if (ISDOpcode == ISD::SUB)
1172 std::swap(SrcReg1, SrcReg2);
1173
1174 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1175 .addReg(SrcReg1).addReg(SrcReg2);
1176 UpdateValueMap(I, ResultReg);
1177 return true;
1178}
1179
Bill Schmidt8470b0f2013-08-30 22:18:55 +00001180// Handle arguments to a call that we're attempting to fast-select.
1181// Return false if the arguments are too complex for us at the moment.
1182bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1183 SmallVectorImpl<unsigned> &ArgRegs,
1184 SmallVectorImpl<MVT> &ArgVTs,
1185 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1186 SmallVectorImpl<unsigned> &RegArgs,
1187 CallingConv::ID CC,
1188 unsigned &NumBytes,
1189 bool IsVarArg) {
1190 SmallVector<CCValAssign, 16> ArgLocs;
1191 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1192 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1193
1194 // Bail out if we can't handle any of the arguments.
1195 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1196 CCValAssign &VA = ArgLocs[I];
1197 MVT ArgVT = ArgVTs[VA.getValNo()];
1198
1199 // Skip vector arguments for now, as well as long double and
1200 // uint128_t, and anything that isn't passed in a register.
1201 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 ||
1202 !VA.isRegLoc() || VA.needsCustom())
1203 return false;
1204
1205 // Skip bit-converted arguments for now.
1206 if (VA.getLocInfo() == CCValAssign::BCvt)
1207 return false;
1208 }
1209
1210 // Get a count of how many bytes are to be pushed onto the stack.
1211 NumBytes = CCInfo.getNextStackOffset();
1212
1213 // Issue CALLSEQ_START.
1214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1215 TII.get(TII.getCallFrameSetupOpcode()))
1216 .addImm(NumBytes);
1217
1218 // Prepare to assign register arguments. Every argument uses up a
1219 // GPR protocol register even if it's passed in a floating-point
1220 // register.
1221 unsigned NextGPR = PPC::X3;
1222 unsigned NextFPR = PPC::F1;
1223
1224 // Process arguments.
1225 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1226 CCValAssign &VA = ArgLocs[I];
1227 unsigned Arg = ArgRegs[VA.getValNo()];
1228 MVT ArgVT = ArgVTs[VA.getValNo()];
1229
1230 // Handle argument promotion and bitcasts.
1231 switch (VA.getLocInfo()) {
1232 default:
1233 llvm_unreachable("Unknown loc info!");
1234 case CCValAssign::Full:
1235 break;
1236 case CCValAssign::SExt: {
1237 MVT DestVT = VA.getLocVT();
1238 const TargetRegisterClass *RC =
1239 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1240 unsigned TmpReg = createResultReg(RC);
1241 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1242 llvm_unreachable("Failed to emit a sext!");
1243 ArgVT = DestVT;
1244 Arg = TmpReg;
1245 break;
1246 }
1247 case CCValAssign::AExt:
1248 case CCValAssign::ZExt: {
1249 MVT DestVT = VA.getLocVT();
1250 const TargetRegisterClass *RC =
1251 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1252 unsigned TmpReg = createResultReg(RC);
1253 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1254 llvm_unreachable("Failed to emit a zext!");
1255 ArgVT = DestVT;
1256 Arg = TmpReg;
1257 break;
1258 }
1259 case CCValAssign::BCvt: {
1260 // FIXME: Not yet handled.
1261 llvm_unreachable("Should have bailed before getting here!");
1262 break;
1263 }
1264 }
1265
1266 // Copy this argument to the appropriate register.
1267 unsigned ArgReg;
1268 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1269 ArgReg = NextFPR++;
1270 ++NextGPR;
1271 } else
1272 ArgReg = NextGPR++;
1273
1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1275 ArgReg).addReg(Arg);
1276 RegArgs.push_back(ArgReg);
1277 }
1278
1279 return true;
1280}
1281
1282// For a call that we've determined we can fast-select, finish the
1283// call sequence and generate a copy to obtain the return value (if any).
1284void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1285 const Instruction *I, CallingConv::ID CC,
1286 unsigned &NumBytes, bool IsVarArg) {
1287 // Issue CallSEQ_END.
1288 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1289 TII.get(TII.getCallFrameDestroyOpcode()))
1290 .addImm(NumBytes).addImm(0);
1291
1292 // Next, generate a copy to obtain the return value.
1293 // FIXME: No multi-register return values yet, though I don't foresee
1294 // any real difficulties there.
1295 if (RetVT != MVT::isVoid) {
1296 SmallVector<CCValAssign, 16> RVLocs;
1297 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
1298 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1299 CCValAssign &VA = RVLocs[0];
1300 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1301 assert(VA.isRegLoc() && "Can only return in registers!");
1302
1303 MVT DestVT = VA.getValVT();
1304 MVT CopyVT = DestVT;
1305
1306 // Ints smaller than a register still arrive in a full 64-bit
1307 // register, so make sure we recognize this.
1308 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1309 CopyVT = MVT::i64;
1310
1311 unsigned SourcePhysReg = VA.getLocReg();
Bill Schmidt0954ea12013-08-30 23:25:30 +00001312 unsigned ResultReg = 0;
Bill Schmidt8470b0f2013-08-30 22:18:55 +00001313
1314 if (RetVT == CopyVT) {
1315 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1316 ResultReg = createResultReg(CpyRC);
1317
1318 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1319 TII.get(TargetOpcode::COPY), ResultReg)
1320 .addReg(SourcePhysReg);
1321
1322 // If necessary, round the floating result to single precision.
1323 } else if (CopyVT == MVT::f64) {
1324 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1325 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP),
1326 ResultReg).addReg(SourcePhysReg);
1327
1328 // If only the low half of a general register is needed, generate
1329 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1330 // used along the fast-isel path (not lowered), and downstream logic
1331 // also doesn't like a direct subreg copy on a physical reg.)
1332 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1333 ResultReg = createResultReg(&PPC::GPRCRegClass);
1334 // Convert physical register from G8RC to GPRC.
1335 SourcePhysReg -= PPC::X0 - PPC::R0;
1336 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1337 TII.get(TargetOpcode::COPY), ResultReg)
1338 .addReg(SourcePhysReg);
1339 }
1340
Bill Schmidt0954ea12013-08-30 23:25:30 +00001341 assert(ResultReg && "ResultReg unset!");
Bill Schmidt8470b0f2013-08-30 22:18:55 +00001342 UsedRegs.push_back(SourcePhysReg);
1343 UpdateValueMap(I, ResultReg);
1344 }
1345}
1346
1347// Attempt to fast-select a call instruction.
1348bool PPCFastISel::SelectCall(const Instruction *I) {
1349 const CallInst *CI = cast<CallInst>(I);
1350 const Value *Callee = CI->getCalledValue();
1351
1352 // Can't handle inline asm.
1353 if (isa<InlineAsm>(Callee))
1354 return false;
1355
1356 // Allow SelectionDAG isel to handle tail calls.
1357 if (CI->isTailCall())
1358 return false;
1359
1360 // Obtain calling convention.
1361 ImmutableCallSite CS(CI);
1362 CallingConv::ID CC = CS.getCallingConv();
1363
1364 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1365 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1366 bool IsVarArg = FTy->isVarArg();
1367
1368 // Not ready for varargs yet.
1369 if (IsVarArg)
1370 return false;
1371
1372 // Handle simple calls for now, with legal return types and
1373 // those that can be extended.
1374 Type *RetTy = I->getType();
1375 MVT RetVT;
1376 if (RetTy->isVoidTy())
1377 RetVT = MVT::isVoid;
1378 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1379 RetVT != MVT::i8)
1380 return false;
1381
1382 // FIXME: No multi-register return values yet.
1383 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1384 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1385 RetVT != MVT::f64) {
1386 SmallVector<CCValAssign, 16> RVLocs;
1387 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
1388 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1389 if (RVLocs.size() > 1)
1390 return false;
1391 }
1392
1393 // Bail early if more than 8 arguments, as we only currently
1394 // handle arguments passed in registers.
1395 unsigned NumArgs = CS.arg_size();
1396 if (NumArgs > 8)
1397 return false;
1398
1399 // Set up the argument vectors.
1400 SmallVector<Value*, 8> Args;
1401 SmallVector<unsigned, 8> ArgRegs;
1402 SmallVector<MVT, 8> ArgVTs;
1403 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1404
1405 Args.reserve(NumArgs);
1406 ArgRegs.reserve(NumArgs);
1407 ArgVTs.reserve(NumArgs);
1408 ArgFlags.reserve(NumArgs);
1409
1410 for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end();
1411 II != IE; ++II) {
1412 // FIXME: ARM does something for intrinsic calls here, check into that.
1413
1414 unsigned AttrIdx = II - CS.arg_begin() + 1;
1415
1416 // Only handle easy calls for now. It would be reasonably easy
1417 // to handle <= 8-byte structures passed ByVal in registers, but we
1418 // have to ensure they are right-justified in the register.
1419 if (CS.paramHasAttr(AttrIdx, Attribute::InReg) ||
1420 CS.paramHasAttr(AttrIdx, Attribute::StructRet) ||
1421 CS.paramHasAttr(AttrIdx, Attribute::Nest) ||
1422 CS.paramHasAttr(AttrIdx, Attribute::ByVal))
1423 return false;
1424
1425 ISD::ArgFlagsTy Flags;
1426 if (CS.paramHasAttr(AttrIdx, Attribute::SExt))
1427 Flags.setSExt();
1428 if (CS.paramHasAttr(AttrIdx, Attribute::ZExt))
1429 Flags.setZExt();
1430
1431 Type *ArgTy = (*II)->getType();
1432 MVT ArgVT;
1433 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1434 return false;
1435
1436 if (ArgVT.isVector())
1437 return false;
1438
1439 unsigned Arg = getRegForValue(*II);
1440 if (Arg == 0)
1441 return false;
1442
1443 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1444 Flags.setOrigAlign(OriginalAlignment);
1445
1446 Args.push_back(*II);
1447 ArgRegs.push_back(Arg);
1448 ArgVTs.push_back(ArgVT);
1449 ArgFlags.push_back(Flags);
1450 }
1451
1452 // Process the arguments.
1453 SmallVector<unsigned, 8> RegArgs;
1454 unsigned NumBytes;
1455
1456 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1457 RegArgs, CC, NumBytes, IsVarArg))
1458 return false;
1459
1460 // FIXME: No handling for function pointers yet. This requires
1461 // implementing the function descriptor (OPD) setup.
1462 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1463 if (!GV)
1464 return false;
1465
1466 // Build direct call with NOP for TOC restore.
1467 // FIXME: We can and should optimize away the NOP for local calls.
1468 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1469 TII.get(PPC::BL8_NOP));
1470 // Add callee.
1471 MIB.addGlobalAddress(GV);
1472
1473 // Add implicit physical register uses to the call.
1474 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1475 MIB.addReg(RegArgs[II], RegState::Implicit);
1476
1477 // Add a register mask with the call-preserved registers. Proper
1478 // defs for return values will be added by setPhysRegsDeadExcept().
1479 MIB.addRegMask(TRI.getCallPreservedMask(CC));
1480
1481 // Finish off the call including any return values.
1482 SmallVector<unsigned, 4> UsedRegs;
1483 finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg);
1484
1485 // Set all unused physregs defs as dead.
1486 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1487
1488 return true;
1489}
1490
Bill Schmidtd89f6782013-08-26 19:42:51 +00001491// Attempt to fast-select a return instruction.
1492bool PPCFastISel::SelectRet(const Instruction *I) {
1493
1494 if (!FuncInfo.CanLowerReturn)
1495 return false;
1496
1497 const ReturnInst *Ret = cast<ReturnInst>(I);
1498 const Function &F = *I->getParent()->getParent();
1499
1500 // Build a list of return value registers.
1501 SmallVector<unsigned, 4> RetRegs;
1502 CallingConv::ID CC = F.getCallingConv();
1503
1504 if (Ret->getNumOperands() > 0) {
1505 SmallVector<ISD::OutputArg, 4> Outs;
1506 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1507
1508 // Analyze operands of the call, assigning locations to each operand.
1509 SmallVector<CCValAssign, 16> ValLocs;
1510 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context);
1511 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1512 const Value *RV = Ret->getOperand(0);
1513
1514 // FIXME: Only one output register for now.
1515 if (ValLocs.size() > 1)
1516 return false;
1517
1518 // Special case for returning a constant integer of any size.
1519 // Materialize the constant as an i64 and copy it to the return
1520 // register. This avoids an unnecessary extend or truncate.
1521 if (isa<ConstantInt>(*RV)) {
1522 const Constant *C = cast<Constant>(RV);
1523 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64);
1524 unsigned RetReg = ValLocs[0].getLocReg();
1525 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1526 RetReg).addReg(SrcReg);
1527 RetRegs.push_back(RetReg);
1528
1529 } else {
1530 unsigned Reg = getRegForValue(RV);
1531
1532 if (Reg == 0)
1533 return false;
1534
1535 // Copy the result values into the output registers.
1536 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1537
1538 CCValAssign &VA = ValLocs[i];
1539 assert(VA.isRegLoc() && "Can only return in registers!");
1540 RetRegs.push_back(VA.getLocReg());
1541 unsigned SrcReg = Reg + VA.getValNo();
1542
1543 EVT RVEVT = TLI.getValueType(RV->getType());
1544 if (!RVEVT.isSimple())
1545 return false;
1546 MVT RVVT = RVEVT.getSimpleVT();
1547 MVT DestVT = VA.getLocVT();
1548
1549 if (RVVT != DestVT && RVVT != MVT::i8 &&
1550 RVVT != MVT::i16 && RVVT != MVT::i32)
1551 return false;
1552
1553 if (RVVT != DestVT) {
1554 switch (VA.getLocInfo()) {
1555 default:
1556 llvm_unreachable("Unknown loc info!");
1557 case CCValAssign::Full:
1558 llvm_unreachable("Full value assign but types don't match?");
1559 case CCValAssign::AExt:
1560 case CCValAssign::ZExt: {
1561 const TargetRegisterClass *RC =
1562 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1563 unsigned TmpReg = createResultReg(RC);
1564 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1565 return false;
1566 SrcReg = TmpReg;
1567 break;
1568 }
1569 case CCValAssign::SExt: {
1570 const TargetRegisterClass *RC =
1571 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1572 unsigned TmpReg = createResultReg(RC);
1573 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1574 return false;
1575 SrcReg = TmpReg;
1576 break;
1577 }
1578 }
1579 }
1580
1581 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1582 TII.get(TargetOpcode::COPY), RetRegs[i])
1583 .addReg(SrcReg);
1584 }
1585 }
1586 }
1587
1588 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1589 TII.get(PPC::BLR));
1590
1591 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1592 MIB.addReg(RetRegs[i], RegState::Implicit);
1593
1594 return true;
1595}
1596
Bill Schmidt03008132013-08-25 22:33:42 +00001597// Attempt to emit an integer extend of SrcReg into DestReg. Both
1598// signed and zero extensions are supported. Return false if we
Bill Schmidtd89f6782013-08-26 19:42:51 +00001599// can't handle it.
Bill Schmidt03008132013-08-25 22:33:42 +00001600bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1601 unsigned DestReg, bool IsZExt) {
Bill Schmidtd89f6782013-08-26 19:42:51 +00001602 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1603 return false;
1604 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1605 return false;
1606
1607 // Signed extensions use EXTSB, EXTSH, EXTSW.
1608 if (!IsZExt) {
1609 unsigned Opc;
1610 if (SrcVT == MVT::i8)
1611 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1612 else if (SrcVT == MVT::i16)
1613 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1614 else {
1615 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1616 Opc = PPC::EXTSW_32_64;
1617 }
1618 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1619 .addReg(SrcReg);
1620
1621 // Unsigned 32-bit extensions use RLWINM.
1622 } else if (DestVT == MVT::i32) {
1623 unsigned MB;
1624 if (SrcVT == MVT::i8)
1625 MB = 24;
1626 else {
1627 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1628 MB = 16;
1629 }
1630 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLWINM),
1631 DestReg)
1632 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1633
1634 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1635 } else {
1636 unsigned MB;
1637 if (SrcVT == MVT::i8)
1638 MB = 56;
1639 else if (SrcVT == MVT::i16)
1640 MB = 48;
1641 else
1642 MB = 32;
1643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1644 TII.get(PPC::RLDICL_32_64), DestReg)
1645 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1646 }
1647
1648 return true;
Bill Schmidt03008132013-08-25 22:33:42 +00001649}
1650
1651// Attempt to fast-select an indirect branch instruction.
1652bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1653 unsigned AddrReg = getRegForValue(I->getOperand(0));
1654 if (AddrReg == 0)
1655 return false;
1656
1657 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::MTCTR8))
1658 .addReg(AddrReg);
1659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCTR8));
1660
1661 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1662 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1663 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1664
1665 return true;
1666}
1667
Bill Schmidt9d9510d2013-08-30 23:31:33 +00001668// Attempt to fast-select an integer truncate instruction.
1669bool PPCFastISel::SelectTrunc(const Instruction *I) {
1670 Value *Src = I->getOperand(0);
1671 EVT SrcVT = TLI.getValueType(Src->getType(), true);
1672 EVT DestVT = TLI.getValueType(I->getType(), true);
1673
1674 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1675 return false;
1676
1677 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1678 return false;
1679
1680 unsigned SrcReg = getRegForValue(Src);
1681 if (!SrcReg)
1682 return false;
1683
1684 // The only interesting case is when we need to switch register classes.
1685 if (SrcVT == MVT::i64) {
1686 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1687 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1688 ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1689 SrcReg = ResultReg;
1690 }
1691
1692 UpdateValueMap(I, SrcReg);
1693 return true;
1694}
1695
Bill Schmidtd89f6782013-08-26 19:42:51 +00001696// Attempt to fast-select an integer extend instruction.
1697bool PPCFastISel::SelectIntExt(const Instruction *I) {
1698 Type *DestTy = I->getType();
1699 Value *Src = I->getOperand(0);
1700 Type *SrcTy = Src->getType();
1701
1702 bool IsZExt = isa<ZExtInst>(I);
1703 unsigned SrcReg = getRegForValue(Src);
1704 if (!SrcReg) return false;
1705
1706 EVT SrcEVT, DestEVT;
1707 SrcEVT = TLI.getValueType(SrcTy, true);
1708 DestEVT = TLI.getValueType(DestTy, true);
1709 if (!SrcEVT.isSimple())
1710 return false;
1711 if (!DestEVT.isSimple())
1712 return false;
1713
1714 MVT SrcVT = SrcEVT.getSimpleVT();
1715 MVT DestVT = DestEVT.getSimpleVT();
1716
1717 // If we know the register class needed for the result of this
1718 // instruction, use it. Otherwise pick the register class of the
1719 // correct size that does not contain X0/R0, since we don't know
1720 // whether downstream uses permit that assignment.
1721 unsigned AssignedReg = FuncInfo.ValueMap[I];
1722 const TargetRegisterClass *RC =
1723 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1724 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1725 &PPC::GPRC_and_GPRC_NOR0RegClass));
1726 unsigned ResultReg = createResultReg(RC);
1727
1728 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1729 return false;
1730
1731 UpdateValueMap(I, ResultReg);
1732 return true;
1733}
1734
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001735// Attempt to fast-select an instruction that wasn't handled by
Bill Schmidt03008132013-08-25 22:33:42 +00001736// the table-generated machinery.
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001737bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
Bill Schmidt03008132013-08-25 22:33:42 +00001738
1739 switch (I->getOpcode()) {
Bill Schmidtccecf262013-08-30 02:29:45 +00001740 case Instruction::Load:
1741 return SelectLoad(I);
1742 case Instruction::Store:
1743 return SelectStore(I);
Bill Schmidt03008132013-08-25 22:33:42 +00001744 case Instruction::Br:
1745 return SelectBranch(I);
1746 case Instruction::IndirectBr:
1747 return SelectIndirectBr(I);
Bill Schmidt8d86fe72013-08-30 15:18:11 +00001748 case Instruction::FPExt:
1749 return SelectFPExt(I);
1750 case Instruction::FPTrunc:
1751 return SelectFPTrunc(I);
1752 case Instruction::SIToFP:
1753 return SelectIToFP(I, /*IsSigned*/ true);
1754 case Instruction::UIToFP:
1755 return SelectIToFP(I, /*IsSigned*/ false);
1756 case Instruction::FPToSI:
1757 return SelectFPToI(I, /*IsSigned*/ true);
1758 case Instruction::FPToUI:
1759 return SelectFPToI(I, /*IsSigned*/ false);
Bill Schmidtccecf262013-08-30 02:29:45 +00001760 case Instruction::Add:
1761 return SelectBinaryIntOp(I, ISD::ADD);
1762 case Instruction::Or:
1763 return SelectBinaryIntOp(I, ISD::OR);
1764 case Instruction::Sub:
1765 return SelectBinaryIntOp(I, ISD::SUB);
Bill Schmidt8470b0f2013-08-30 22:18:55 +00001766 case Instruction::Call:
1767 if (dyn_cast<IntrinsicInst>(I))
1768 return false;
1769 return SelectCall(I);
Bill Schmidtd89f6782013-08-26 19:42:51 +00001770 case Instruction::Ret:
1771 return SelectRet(I);
Bill Schmidt9d9510d2013-08-30 23:31:33 +00001772 case Instruction::Trunc:
1773 return SelectTrunc(I);
Bill Schmidtd89f6782013-08-26 19:42:51 +00001774 case Instruction::ZExt:
1775 case Instruction::SExt:
1776 return SelectIntExt(I);
Bill Schmidt03008132013-08-25 22:33:42 +00001777 // Here add other flavors of Instruction::XXX that automated
1778 // cases don't catch. For example, switches are terminators
1779 // that aren't yet handled.
1780 default:
1781 break;
1782 }
1783 return false;
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001784}
1785
1786// Materialize a floating-point constant into a register, and return
1787// the register number (or zero if we failed to handle it).
1788unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1789 // No plans to handle long double here.
1790 if (VT != MVT::f32 && VT != MVT::f64)
1791 return 0;
1792
1793 // All FP constants are loaded from the constant pool.
1794 unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
1795 assert(Align > 0 && "Unexpectedly missing alignment information!");
1796 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1797 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1798 CodeModel::Model CModel = TM.getCodeModel();
1799
1800 MachineMemOperand *MMO =
1801 FuncInfo.MF->getMachineMemOperand(
1802 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
1803 (VT == MVT::f32) ? 4 : 8, Align);
1804
Bill Schmidt03008132013-08-25 22:33:42 +00001805 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1806 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1807
1808 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1809 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001810 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT),
Bill Schmidt03008132013-08-25 22:33:42 +00001811 TmpReg)
1812 .addConstantPoolIndex(Idx).addReg(PPC::X2);
1813 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1814 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1815 } else {
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001816 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001817 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1818 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
Bill Schmidtbb381d72013-09-17 20:03:25 +00001819 // But for large code model, we must generate a LDtocL followed
1820 // by the LF[SD].
1821 if (CModel == CodeModel::Large) {
1822 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1823 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1824 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1826 .addImm(0).addReg(TmpReg2);
1827 } else
1828 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1829 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1830 .addReg(TmpReg)
1831 .addMemOperand(MMO);
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001832 }
1833
1834 return DestReg;
1835}
1836
Bill Schmidtccecf262013-08-30 02:29:45 +00001837// Materialize the address of a global value into a register, and return
1838// the register number (or zero if we failed to handle it).
1839unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1840 assert(VT == MVT::i64 && "Non-address!");
1841 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1842 unsigned DestReg = createResultReg(RC);
1843
1844 // Global values may be plain old object addresses, TLS object
1845 // addresses, constant pool entries, or jump tables. How we generate
1846 // code for these may depend on small, medium, or large code model.
1847 CodeModel::Model CModel = TM.getCodeModel();
1848
1849 // FIXME: Jump tables are not yet required because fast-isel doesn't
1850 // handle switches; if that changes, we need them as well. For now,
1851 // what follows assumes everything's a generic (or TLS) global address.
1852 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1853 if (!GVar) {
1854 // If GV is an alias, use the aliasee for determining thread-locality.
1855 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1856 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
Bill Schmidtccecf262013-08-30 02:29:45 +00001857 }
1858
1859 // FIXME: We don't yet handle the complexity of TLS.
1860 bool IsTLS = GVar && GVar->isThreadLocal();
1861 if (IsTLS)
1862 return 0;
1863
1864 // For small code model, generate a simple TOC load.
1865 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1866 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtoc), DestReg)
1867 .addGlobalAddress(GV).addReg(PPC::X2);
1868 else {
1869 // If the address is an externally defined symbol, a symbol with
1870 // common or externally available linkage, a function address, or a
1871 // jump table address (not yet needed), or if we are generating code
1872 // for large code model, we generate:
1873 // LDtocL(GV, ADDIStocHA(%X2, GV))
1874 // Otherwise we generate:
1875 // ADDItocL(ADDIStocHA(%X2, GV), GV)
1876 // Either way, start with the ADDIStocHA:
1877 unsigned HighPartReg = createResultReg(RC);
1878 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1879 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1880
1881 // !GVar implies a function address. An external variable is one
1882 // without an initializer.
1883 // If/when switches are implemented, jump tables should be handled
1884 // on the "if" path here.
1885 if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() ||
1886 GVar->hasCommonLinkage() || GVar->hasAvailableExternallyLinkage())
1887 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1888 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1889 else
1890 // Otherwise generate the ADDItocL.
1891 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDItocL),
1892 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1893 }
1894
1895 return DestReg;
1896}
1897
Bill Schmidt0cf702f2013-07-30 00:50:39 +00001898// Materialize a 32-bit integer constant into a register, and return
1899// the register number (or zero if we failed to handle it).
1900unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
1901 const TargetRegisterClass *RC) {
1902 unsigned Lo = Imm & 0xFFFF;
1903 unsigned Hi = (Imm >> 16) & 0xFFFF;
1904
1905 unsigned ResultReg = createResultReg(RC);
1906 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1907
1908 if (isInt<16>(Imm))
1909 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1910 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
1911 .addImm(Imm);
1912 else if (Lo) {
1913 // Both Lo and Hi have nonzero bits.
1914 unsigned TmpReg = createResultReg(RC);
1915 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1916 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
1917 .addImm(Hi);
1918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1919 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
1920 .addReg(TmpReg).addImm(Lo);
1921 } else
1922 // Just Hi bits.
1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1924 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
1925 .addImm(Hi);
1926
1927 return ResultReg;
1928}
1929
1930// Materialize a 64-bit integer constant into a register, and return
1931// the register number (or zero if we failed to handle it).
1932unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
1933 const TargetRegisterClass *RC) {
1934 unsigned Remainder = 0;
1935 unsigned Shift = 0;
1936
1937 // If the value doesn't fit in 32 bits, see if we can shift it
1938 // so that it fits in 32 bits.
1939 if (!isInt<32>(Imm)) {
1940 Shift = countTrailingZeros<uint64_t>(Imm);
1941 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
1942
1943 if (isInt<32>(ImmSh))
1944 Imm = ImmSh;
1945 else {
1946 Remainder = Imm;
1947 Shift = 32;
1948 Imm >>= 32;
1949 }
1950 }
1951
1952 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
1953 // (if not shifted).
1954 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
1955 if (!Shift)
1956 return TmpReg1;
1957
1958 // If upper 32 bits were not zero, we've built them and need to shift
1959 // them into place.
1960 unsigned TmpReg2;
1961 if (Imm) {
1962 TmpReg2 = createResultReg(RC);
1963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR),
1964 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
1965 } else
1966 TmpReg2 = TmpReg1;
1967
1968 unsigned TmpReg3, Hi, Lo;
1969 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
1970 TmpReg3 = createResultReg(RC);
1971 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8),
1972 TmpReg3).addReg(TmpReg2).addImm(Hi);
1973 } else
1974 TmpReg3 = TmpReg2;
1975
1976 if ((Lo = Remainder & 0xFFFF)) {
1977 unsigned ResultReg = createResultReg(RC);
1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8),
1979 ResultReg).addReg(TmpReg3).addImm(Lo);
1980 return ResultReg;
1981 }
1982
1983 return TmpReg3;
1984}
1985
1986
1987// Materialize an integer constant into a register, and return
1988// the register number (or zero if we failed to handle it).
1989unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) {
1990
1991 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
1992 VT != MVT::i8 && VT != MVT::i1)
1993 return 0;
1994
1995 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
1996 &PPC::GPRCRegClass);
1997
1998 // If the constant is in range, use a load-immediate.
1999 const ConstantInt *CI = cast<ConstantInt>(C);
2000 if (isInt<16>(CI->getSExtValue())) {
2001 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2002 unsigned ImmReg = createResultReg(RC);
2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg)
2004 .addImm(CI->getSExtValue());
2005 return ImmReg;
2006 }
2007
2008 // Construct the constant piecewise.
2009 int64_t Imm = CI->getZExtValue();
2010
2011 if (VT == MVT::i64)
2012 return PPCMaterialize64BitInt(Imm, RC);
2013 else if (VT == MVT::i32)
2014 return PPCMaterialize32BitInt(Imm, RC);
2015
2016 return 0;
2017}
2018
2019// Materialize a constant into a register, and return the register
2020// number (or zero if we failed to handle it).
2021unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
2022 EVT CEVT = TLI.getValueType(C->getType(), true);
2023
2024 // Only handle simple types.
2025 if (!CEVT.isSimple()) return 0;
2026 MVT VT = CEVT.getSimpleVT();
2027
2028 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2029 return PPCMaterializeFP(CFP, VT);
Bill Schmidtccecf262013-08-30 02:29:45 +00002030 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2031 return PPCMaterializeGV(GV, VT);
Bill Schmidt0cf702f2013-07-30 00:50:39 +00002032 else if (isa<ConstantInt>(C))
2033 return PPCMaterializeInt(C, VT);
Bill Schmidt0cf702f2013-07-30 00:50:39 +00002034
2035 return 0;
2036}
2037
2038// Materialize the address created by an alloca into a register, and
Bill Schmidteb8d6f72013-08-31 02:33:40 +00002039// return the register number (or zero if we failed to handle it).
Bill Schmidt0cf702f2013-07-30 00:50:39 +00002040unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
Bill Schmidteb8d6f72013-08-31 02:33:40 +00002041 // Don't handle dynamic allocas.
2042 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2043
2044 MVT VT;
2045 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2046
2047 DenseMap<const AllocaInst*, int>::iterator SI =
2048 FuncInfo.StaticAllocaMap.find(AI);
2049
2050 if (SI != FuncInfo.StaticAllocaMap.end()) {
2051 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
2053 ResultReg).addFrameIndex(SI->second).addImm(0);
2054 return ResultReg;
2055 }
2056
2057 return 0;
Bill Schmidt0cf702f2013-07-30 00:50:39 +00002058}
2059
Bill Schmidtccecf262013-08-30 02:29:45 +00002060// Fold loads into extends when possible.
2061// FIXME: We can have multiple redundant extend/trunc instructions
2062// following a load. The folding only picks up one. Extend this
2063// to check subsequent instructions for the same pattern and remove
2064// them. Thus ResultReg should be the def reg for the last redundant
2065// instruction in a chain, and all intervening instructions can be
2066// removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2067// to add ELF64-NOT: rldicl to the appropriate tests when this works.
Bill Schmidt0cf702f2013-07-30 00:50:39 +00002068bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2069 const LoadInst *LI) {
Bill Schmidtccecf262013-08-30 02:29:45 +00002070 // Verify we have a legal type before going any further.
2071 MVT VT;
2072 if (!isLoadTypeLegal(LI->getType(), VT))
2073 return false;
2074
2075 // Combine load followed by zero- or sign-extend.
2076 bool IsZExt = false;
2077 switch(MI->getOpcode()) {
2078 default:
2079 return false;
2080
2081 case PPC::RLDICL:
2082 case PPC::RLDICL_32_64: {
2083 IsZExt = true;
2084 unsigned MB = MI->getOperand(3).getImm();
2085 if ((VT == MVT::i8 && MB <= 56) ||
2086 (VT == MVT::i16 && MB <= 48) ||
2087 (VT == MVT::i32 && MB <= 32))
2088 break;
2089 return false;
2090 }
2091
2092 case PPC::RLWINM:
2093 case PPC::RLWINM8: {
2094 IsZExt = true;
2095 unsigned MB = MI->getOperand(3).getImm();
2096 if ((VT == MVT::i8 && MB <= 24) ||
2097 (VT == MVT::i16 && MB <= 16))
2098 break;
2099 return false;
2100 }
2101
2102 case PPC::EXTSB:
2103 case PPC::EXTSB8:
2104 case PPC::EXTSB8_32_64:
2105 /* There is no sign-extending load-byte instruction. */
2106 return false;
2107
2108 case PPC::EXTSH:
2109 case PPC::EXTSH8:
2110 case PPC::EXTSH8_32_64: {
2111 if (VT != MVT::i16 && VT != MVT::i8)
2112 return false;
2113 break;
2114 }
2115
2116 case PPC::EXTSW:
2117 case PPC::EXTSW_32_64: {
2118 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2119 return false;
2120 break;
2121 }
2122 }
2123
2124 // See if we can handle this address.
2125 Address Addr;
2126 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2127 return false;
2128
2129 unsigned ResultReg = MI->getOperand(0).getReg();
2130
2131 if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt))
2132 return false;
2133
2134 MI->eraseFromParent();
2135 return true;
Bill Schmidt0cf702f2013-07-30 00:50:39 +00002136}
2137
2138// Attempt to lower call arguments in a faster way than done by
2139// the selection DAG code.
2140bool PPCFastISel::FastLowerArguments() {
2141 // Defer to normal argument lowering for now. It's reasonably
2142 // efficient. Consider doing something like ARM to handle the
2143 // case where all args fit in registers, no varargs, no float
2144 // or vector args.
2145 return false;
2146}
2147
Bill Schmidt03008132013-08-25 22:33:42 +00002148// Handle materializing integer constants into a register. This is not
2149// automatically generated for PowerPC, so must be explicitly created here.
2150unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2151
2152 if (Opc != ISD::Constant)
2153 return 0;
2154
2155 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2156 VT != MVT::i8 && VT != MVT::i1)
2157 return 0;
2158
2159 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2160 &PPC::GPRCRegClass);
2161 if (VT == MVT::i64)
2162 return PPCMaterialize64BitInt(Imm, RC);
2163 else
2164 return PPCMaterialize32BitInt(Imm, RC);
2165}
2166
Bill Schmidtccecf262013-08-30 02:29:45 +00002167// Override for ADDI and ADDI8 to set the correct register class
2168// on RHS operand 0. The automatic infrastructure naively assumes
2169// GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2170// for these cases. At the moment, none of the other automatically
2171// generated RI instructions require special treatment. However, once
2172// SelectSelect is implemented, "isel" requires similar handling.
2173//
2174// Also be conservative about the output register class. Avoid
2175// assigning R0 or X0 to the output register for GPRC and G8RC
2176// register classes, as any such result could be used in ADDI, etc.,
2177// where those regs have another meaning.
2178unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
2179 const TargetRegisterClass *RC,
2180 unsigned Op0, bool Op0IsKill,
2181 uint64_t Imm) {
2182 if (MachineInstOpcode == PPC::ADDI)
2183 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2184 else if (MachineInstOpcode == PPC::ADDI8)
2185 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2186
2187 const TargetRegisterClass *UseRC =
2188 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2189 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2190
2191 return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC,
2192 Op0, Op0IsKill, Imm);
2193}
2194
2195// Override for instructions with one register operand to avoid use of
2196// R0/X0. The automatic infrastructure isn't aware of the context so
2197// we must be conservative.
2198unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
2199 const TargetRegisterClass* RC,
2200 unsigned Op0, bool Op0IsKill) {
2201 const TargetRegisterClass *UseRC =
2202 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2203 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2204
2205 return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2206}
2207
2208// Override for instructions with two register operands to avoid use
2209// of R0/X0. The automatic infrastructure isn't aware of the context
2210// so we must be conservative.
2211unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
2212 const TargetRegisterClass* RC,
2213 unsigned Op0, bool Op0IsKill,
2214 unsigned Op1, bool Op1IsKill) {
2215 const TargetRegisterClass *UseRC =
2216 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2217 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2218
2219 return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2220 Op1, Op1IsKill);
2221}
2222
Bill Schmidt0cf702f2013-07-30 00:50:39 +00002223namespace llvm {
2224 // Create the fast instruction selector for PowerPC64 ELF.
2225 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2226 const TargetLibraryInfo *LibInfo) {
2227 const TargetMachine &TM = FuncInfo.MF->getTarget();
2228
2229 // Only available on 64-bit ELF for now.
2230 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
2231 if (Subtarget->isPPC64() && Subtarget->isSVR4ABI())
2232 return new PPCFastISel(FuncInfo, LibInfo);
2233
2234 return 0;
2235 }
2236}