Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 1 | //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains the implementation of custom routines for the X86 |
| 11 | // Calling Convention that aren't done by tablegen. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "MCTargetDesc/X86MCTargetDesc.h" |
| 16 | #include "X86Subtarget.h" |
| 17 | #include "llvm/CodeGen/CallingConvLower.h" |
| 18 | #include "llvm/IR/CallingConv.h" |
| 19 | |
| 20 | namespace llvm { |
| 21 | |
| 22 | bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 23 | CCValAssign::LocInfo &LocInfo, |
| 24 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| 25 | // List of GPR registers that are available to store values in regcall |
| 26 | // calling convention. |
| 27 | static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI, |
| 28 | X86::ESI}; |
| 29 | |
| 30 | // The vector will save all the available registers for allocation. |
| 31 | SmallVector<unsigned, 5> AvailableRegs; |
| 32 | |
| 33 | // searching for the available registers. |
| 34 | for (auto Reg : RegList) { |
| 35 | if (!State.isAllocated(Reg)) |
| 36 | AvailableRegs.push_back(Reg); |
| 37 | } |
| 38 | |
| 39 | const size_t RequiredGprsUponSplit = 2; |
| 40 | if (AvailableRegs.size() < RequiredGprsUponSplit) |
| 41 | return false; // Not enough free registers - continue the search. |
| 42 | |
| 43 | // Allocating the available registers. |
| 44 | for (unsigned I = 0; I < RequiredGprsUponSplit; I++) { |
| 45 | |
| 46 | // Marking the register as located. |
| 47 | unsigned Reg = State.AllocateReg(AvailableRegs[I]); |
| 48 | |
| 49 | // Since we previously made sure that 2 registers are available |
| 50 | // we expect that a real register number will be returned. |
| 51 | assert(Reg && "Expecting a register will be available"); |
| 52 | |
| 53 | // Assign the value to the allocated register |
| 54 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 55 | } |
| 56 | |
| 57 | // Successful in allocating regsiters - stop scanning next rules. |
| 58 | return true; |
| 59 | } |
| 60 | |
| 61 | static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) { |
| 62 | if (ValVT.is512BitVector()) { |
| 63 | static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2, |
| 64 | X86::ZMM3, X86::ZMM4, X86::ZMM5}; |
| 65 | return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM)); |
| 66 | } |
| 67 | |
| 68 | if (ValVT.is256BitVector()) { |
| 69 | static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2, |
| 70 | X86::YMM3, X86::YMM4, X86::YMM5}; |
| 71 | return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM)); |
| 72 | } |
| 73 | |
| 74 | static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2, |
| 75 | X86::XMM3, X86::XMM4, X86::XMM5}; |
| 76 | return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM)); |
| 77 | } |
| 78 | |
| 79 | static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() { |
| 80 | static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9}; |
| 81 | return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR)); |
| 82 | } |
| 83 | |
| 84 | static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT, |
| 85 | MVT &LocVT, |
| 86 | CCValAssign::LocInfo &LocInfo, |
| 87 | ISD::ArgFlagsTy &ArgFlags, |
| 88 | CCState &State) { |
| 89 | |
| 90 | ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT); |
| 91 | bool Is64bit = static_cast<const X86Subtarget &>( |
| 92 | State.getMachineFunction().getSubtarget()) |
| 93 | .is64Bit(); |
| 94 | |
| 95 | for (auto Reg : RegList) { |
| 96 | // If the register is not marked as allocated - assign to it. |
| 97 | if (!State.isAllocated(Reg)) { |
| 98 | unsigned AssigedReg = State.AllocateReg(Reg); |
| 99 | assert(AssigedReg == Reg && "Expecting a valid register allocation"); |
| 100 | State.addLoc( |
| 101 | CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo)); |
| 102 | return true; |
| 103 | } |
| 104 | // If the register is marked as shadow allocated - assign to it. |
| 105 | if (Is64bit && State.IsShadowAllocatedReg(Reg)) { |
| 106 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 107 | return true; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | llvm_unreachable("Clang should ensure that hva marked vectors will have " |
| 112 | "an available register."); |
| 113 | return false; |
| 114 | } |
| 115 | |
| 116 | bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 117 | CCValAssign::LocInfo &LocInfo, |
| 118 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| 119 | // On the second pass, go through the HVAs only. |
| 120 | if (ArgFlags.isSecArgPass()) { |
| 121 | if (ArgFlags.isHva()) |
| 122 | return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, |
| 123 | ArgFlags, State); |
| 124 | return true; |
| 125 | } |
| 126 | |
| 127 | // Process only vector types as defined by vectorcall spec: |
| 128 | // "A vector type is either a floating-point type, for example, |
| 129 | // a float or double, or an SIMD vector type, for example, __m128 or __m256". |
| 130 | if (!(ValVT.isFloatingPoint() || |
| 131 | (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { |
| 132 | // If R9 was already assigned it means that we are after the fourth element |
| 133 | // and because this is not an HVA / Vector type, we need to allocate |
| 134 | // shadow XMM register. |
| 135 | if (State.isAllocated(X86::R9)) { |
| 136 | // Assign shadow XMM register. |
| 137 | (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT)); |
| 138 | } |
| 139 | |
| 140 | return false; |
| 141 | } |
| 142 | |
| 143 | if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) { |
| 144 | // Assign shadow GPR register. |
| 145 | (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs()); |
| 146 | |
| 147 | // Assign XMM register - (shadow for HVA and non-shadow for non HVA). |
| 148 | if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { |
| 149 | // In Vectorcall Calling convention, additional shadow stack can be |
| 150 | // created on top of the basic 32 bytes of win64. |
| 151 | // It can happen if the fifth or sixth argument is vector type or HVA. |
| 152 | // At that case for each argument a shadow stack of 8 bytes is allocated. |
| 153 | if (Reg == X86::XMM4 || Reg == X86::XMM5) |
| 154 | State.AllocateStack(8, 8); |
| 155 | |
| 156 | if (!ArgFlags.isHva()) { |
| 157 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 158 | return true; // Allocated a register - Stop the search. |
| 159 | } |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | // If this is an HVA - Stop the search, |
| 164 | // otherwise continue the search. |
| 165 | return ArgFlags.isHva(); |
| 166 | } |
| 167 | |
| 168 | bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 169 | CCValAssign::LocInfo &LocInfo, |
| 170 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| 171 | // On the second pass, go through the HVAs only. |
| 172 | if (ArgFlags.isSecArgPass()) { |
| 173 | if (ArgFlags.isHva()) |
| 174 | return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, |
| 175 | ArgFlags, State); |
| 176 | return true; |
| 177 | } |
| 178 | |
| 179 | // Process only vector types as defined by vectorcall spec: |
| 180 | // "A vector type is either a floating point type, for example, |
| 181 | // a float or double, or an SIMD vector type, for example, __m128 or __m256". |
| 182 | if (!(ValVT.isFloatingPoint() || |
| 183 | (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { |
| 184 | return false; |
| 185 | } |
| 186 | |
| 187 | if (ArgFlags.isHva()) |
| 188 | return true; // If this is an HVA - Stop the search. |
| 189 | |
| 190 | // Assign XMM register. |
| 191 | if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { |
| 192 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 193 | return true; |
| 194 | } |
| 195 | |
| 196 | // In case we did not find an available XMM register for a vector - |
| 197 | // pass it indirectly. |
| 198 | // It is similar to CCPassIndirect, with the addition of inreg. |
| 199 | if (!ValVT.isFloatingPoint()) { |
| 200 | LocVT = MVT::i32; |
| 201 | LocInfo = CCValAssign::Indirect; |
| 202 | ArgFlags.setInReg(); |
| 203 | } |
| 204 | |
| 205 | return false; // No register was assigned - Continue the search. |
| 206 | } |
| 207 | |
| 208 | } // End llvm namespace |