blob: 342751296b499326ef003dd4448d55a45c910d5a [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
46//===----------------------------------------------------------------------===//
47
48#define DEBUG_TYPE "msan"
49
Chandler Carruthed0881b2012-12-03 16:50:05 +000050#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000051#include "BlackList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000052#include "llvm/ADT/DepthFirstIterator.h"
53#include "llvm/ADT/SmallString.h"
54#include "llvm/ADT/SmallVector.h"
55#include "llvm/ADT/ValueMap.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000056#include "llvm/DataLayout.h"
57#include "llvm/Function.h"
58#include "llvm/IRBuilder.h"
59#include "llvm/InlineAsm.h"
60#include "llvm/InstVisitor.h"
61#include "llvm/IntrinsicInst.h"
62#include "llvm/LLVMContext.h"
63#include "llvm/MDBuilder.h"
64#include "llvm/Module.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000065#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Compiler.h"
67#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000068#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000069#include "llvm/Transforms/Utils/BasicBlockUtils.h"
70#include "llvm/Transforms/Utils/ModuleUtils.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000071#include "llvm/Type.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000072
73using namespace llvm;
74
75static const uint64_t kShadowMask32 = 1ULL << 31;
76static const uint64_t kShadowMask64 = 1ULL << 46;
77static const uint64_t kOriginOffset32 = 1ULL << 30;
78static const uint64_t kOriginOffset64 = 1ULL << 45;
79
80// This is an important flag that makes the reports much more
81// informative at the cost of greater slowdown. Not fully implemented
82// yet.
83// FIXME: this should be a top-level clang flag, e.g.
84// -fmemory-sanitizer-full.
85static cl::opt<bool> ClTrackOrigins("msan-track-origins",
86 cl::desc("Track origins (allocation sites) of poisoned memory"),
87 cl::Hidden, cl::init(false));
88static cl::opt<bool> ClKeepGoing("msan-keep-going",
89 cl::desc("keep going after reporting a UMR"),
90 cl::Hidden, cl::init(false));
91static cl::opt<bool> ClPoisonStack("msan-poison-stack",
92 cl::desc("poison uninitialized stack variables"),
93 cl::Hidden, cl::init(true));
94static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
95 cl::desc("poison uninitialized stack variables with a call"),
96 cl::Hidden, cl::init(false));
97static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
98 cl::desc("poison uninitialized stack variables with the given patter"),
99 cl::Hidden, cl::init(0xff));
100
101static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
102 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
103 cl::Hidden, cl::init(true));
104
105// This flag controls whether we check the shadow of the address
106// operand of load or store. Such bugs are very rare, since load from
107// a garbage address typically results in SEGV, but still happen
108// (e.g. only lower bits of address are garbage, or the access happens
109// early at program startup where malloc-ed memory is more likely to
110// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
111static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
112 cl::desc("report accesses through a pointer which has poisoned shadow"),
113 cl::Hidden, cl::init(true));
114
115static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
116 cl::desc("print out instructions with default strict semantics"),
117 cl::Hidden, cl::init(false));
118
119static cl::opt<std::string> ClBlackListFile("msan-blacklist",
120 cl::desc("File containing the list of functions where MemorySanitizer "
121 "should not report bugs"), cl::Hidden);
122
123namespace {
124
125/// \brief An instrumentation pass implementing detection of uninitialized
126/// reads.
127///
128/// MemorySanitizer: instrument the code in module to find
129/// uninitialized reads.
130class MemorySanitizer : public FunctionPass {
131public:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000132 MemorySanitizer() : FunctionPass(ID), TD(0), WarningFn(0) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000133 const char *getPassName() const { return "MemorySanitizer"; }
134 bool runOnFunction(Function &F);
135 bool doInitialization(Module &M);
136 static char ID; // Pass identification, replacement for typeid.
137
138private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000139 void initializeCallbacks(Module &M);
140
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000141 DataLayout *TD;
142 LLVMContext *C;
143 Type *IntptrTy;
144 Type *OriginTy;
145 /// \brief Thread-local shadow storage for function parameters.
146 GlobalVariable *ParamTLS;
147 /// \brief Thread-local origin storage for function parameters.
148 GlobalVariable *ParamOriginTLS;
149 /// \brief Thread-local shadow storage for function return value.
150 GlobalVariable *RetvalTLS;
151 /// \brief Thread-local origin storage for function return value.
152 GlobalVariable *RetvalOriginTLS;
153 /// \brief Thread-local shadow storage for in-register va_arg function
154 /// parameters (x86_64-specific).
155 GlobalVariable *VAArgTLS;
156 /// \brief Thread-local shadow storage for va_arg overflow area
157 /// (x86_64-specific).
158 GlobalVariable *VAArgOverflowSizeTLS;
159 /// \brief Thread-local space used to pass origin value to the UMR reporting
160 /// function.
161 GlobalVariable *OriginTLS;
162
163 /// \brief The run-time callback to print a warning.
164 Value *WarningFn;
165 /// \brief Run-time helper that copies origin info for a memory range.
166 Value *MsanCopyOriginFn;
167 /// \brief Run-time helper that generates a new origin value for a stack
168 /// allocation.
169 Value *MsanSetAllocaOriginFn;
170 /// \brief Run-time helper that poisons stack on function entry.
171 Value *MsanPoisonStackFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000172 /// \brief MSan runtime replacements for memmove, memcpy and memset.
173 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000174
175 /// \brief Address mask used in application-to-shadow address calculation.
176 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
177 uint64_t ShadowMask;
178 /// \brief Offset of the origin shadow from the "normal" shadow.
179 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
180 uint64_t OriginOffset;
181 /// \brief Branch weights for error reporting.
182 MDNode *ColdCallWeights;
183 /// \brief The blacklist.
184 OwningPtr<BlackList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000185 /// \brief An empty volatile inline asm that prevents callback merge.
186 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000187
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000188 friend struct MemorySanitizerVisitor;
189 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000190};
191} // namespace
192
193char MemorySanitizer::ID = 0;
194INITIALIZE_PASS(MemorySanitizer, "msan",
195 "MemorySanitizer: detects uninitialized reads.",
196 false, false)
197
198FunctionPass *llvm::createMemorySanitizerPass() {
199 return new MemorySanitizer();
200}
201
202/// \brief Create a non-const global initialized with the given string.
203///
204/// Creates a writable global for Str so that we can pass it to the
205/// run-time lib. Runtime uses first 4 bytes of the string to store the
206/// frame ID, so the string needs to be mutable.
207static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
208 StringRef Str) {
209 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
210 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
211 GlobalValue::PrivateLinkage, StrConst, "");
212}
213
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000214
215/// \brief Insert extern declaration of runtime-provided functions and globals.
216void MemorySanitizer::initializeCallbacks(Module &M) {
217 // Only do this once.
218 if (WarningFn)
219 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000220
221 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000222 // Create the callback.
223 // FIXME: this function should have "Cold" calling conv,
224 // which is not yet implemented.
225 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
226 : "__msan_warning_noreturn";
227 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
228
229 MsanCopyOriginFn = M.getOrInsertFunction(
230 "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
231 IRB.getInt8PtrTy(), IntptrTy, NULL);
232 MsanSetAllocaOriginFn = M.getOrInsertFunction(
233 "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
234 IRB.getInt8PtrTy(), NULL);
235 MsanPoisonStackFn = M.getOrInsertFunction(
236 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
237 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000238 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
239 IntptrTy, NULL);
240 MemcpyFn = M.getOrInsertFunction(
241 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
242 IntptrTy, NULL);
243 MemsetFn = M.getOrInsertFunction(
244 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000245 IntptrTy, NULL);
246
247 // Create globals.
248 RetvalTLS = new GlobalVariable(
249 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
250 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
251 GlobalVariable::GeneralDynamicTLSModel);
252 RetvalOriginTLS = new GlobalVariable(
253 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
254 "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
255
256 ParamTLS = new GlobalVariable(
257 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
258 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
259 GlobalVariable::GeneralDynamicTLSModel);
260 ParamOriginTLS = new GlobalVariable(
261 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
262 0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
263
264 VAArgTLS = new GlobalVariable(
265 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
266 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
267 GlobalVariable::GeneralDynamicTLSModel);
268 VAArgOverflowSizeTLS = new GlobalVariable(
269 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
270 "__msan_va_arg_overflow_size_tls", 0,
271 GlobalVariable::GeneralDynamicTLSModel);
272 OriginTLS = new GlobalVariable(
273 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
274 "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000275
276 // We insert an empty inline asm after __msan_report* to avoid callback merge.
277 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
278 StringRef(""), StringRef(""),
279 /*hasSideEffects=*/true);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000280}
281
282/// \brief Module-level initialization.
283///
284/// inserts a call to __msan_init to the module's constructor list.
285bool MemorySanitizer::doInitialization(Module &M) {
286 TD = getAnalysisIfAvailable<DataLayout>();
287 if (!TD)
288 return false;
289 BL.reset(new BlackList(ClBlackListFile));
290 C = &(M.getContext());
291 unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
292 switch (PtrSize) {
293 case 64:
294 ShadowMask = kShadowMask64;
295 OriginOffset = kOriginOffset64;
296 break;
297 case 32:
298 ShadowMask = kShadowMask32;
299 OriginOffset = kOriginOffset32;
300 break;
301 default:
302 report_fatal_error("unsupported pointer size");
303 break;
304 }
305
306 IRBuilder<> IRB(*C);
307 IntptrTy = IRB.getIntPtrTy(TD);
308 OriginTy = IRB.getInt32Ty();
309
310 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
311
312 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
313 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
314 "__msan_init", IRB.getVoidTy(), NULL)), 0);
315
316 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
317 IRB.getInt32(ClTrackOrigins), "__msan_track_origins");
318
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000319 return true;
320}
321
322namespace {
323
324/// \brief A helper class that handles instrumentation of VarArg
325/// functions on a particular platform.
326///
327/// Implementations are expected to insert the instrumentation
328/// necessary to propagate argument shadow through VarArg function
329/// calls. Visit* methods are called during an InstVisitor pass over
330/// the function, and should avoid creating new basic blocks. A new
331/// instance of this class is created for each instrumented function.
332struct VarArgHelper {
333 /// \brief Visit a CallSite.
334 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
335
336 /// \brief Visit a va_start call.
337 virtual void visitVAStartInst(VAStartInst &I) = 0;
338
339 /// \brief Visit a va_copy call.
340 virtual void visitVACopyInst(VACopyInst &I) = 0;
341
342 /// \brief Finalize function instrumentation.
343 ///
344 /// This method is called after visiting all interesting (see above)
345 /// instructions in a function.
346 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000347
348 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000349};
350
351struct MemorySanitizerVisitor;
352
353VarArgHelper*
354CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
355 MemorySanitizerVisitor &Visitor);
356
357/// This class does all the work for a given function. Store and Load
358/// instructions store and load corresponding shadow and origin
359/// values. Most instructions propagate shadow from arguments to their
360/// return values. Certain instructions (most importantly, BranchInst)
361/// test their argument shadow and print reports (with a runtime call) if it's
362/// non-zero.
363struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
364 Function &F;
365 MemorySanitizer &MS;
366 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
367 ValueMap<Value*, Value*> ShadowMap, OriginMap;
368 bool InsertChecks;
369 OwningPtr<VarArgHelper> VAHelper;
370
371 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
372 // See a comment in visitCallSite for more details.
373 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
374 static const unsigned AMD64FpEndOffset = 176;
375
376 struct ShadowOriginAndInsertPoint {
377 Instruction *Shadow;
378 Instruction *Origin;
379 Instruction *OrigIns;
380 ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
381 : Shadow(S), Origin(O), OrigIns(I) { }
382 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
383 };
384 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
385
386 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
387 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
388 InsertChecks = !MS.BL->isIn(F);
389 DEBUG(if (!InsertChecks)
390 dbgs() << "MemorySanitizer is not inserting checks into '"
391 << F.getName() << "'\n");
392 }
393
394 void materializeChecks() {
395 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
396 Instruction *Shadow = InstrumentationList[i].Shadow;
397 Instruction *OrigIns = InstrumentationList[i].OrigIns;
398 IRBuilder<> IRB(OrigIns);
399 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
400 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
401 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
402 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
403 getCleanShadow(ConvertedShadow), "_mscmp");
404 Instruction *CheckTerm =
405 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
406 /* Unreachable */ !ClKeepGoing,
407 MS.ColdCallWeights);
408
409 IRB.SetInsertPoint(CheckTerm);
410 if (ClTrackOrigins) {
411 Instruction *Origin = InstrumentationList[i].Origin;
412 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
413 MS.OriginTLS);
414 }
415 CallInst *Call = IRB.CreateCall(MS.WarningFn);
416 Call->setDebugLoc(OrigIns->getDebugLoc());
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000417 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000418 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
419 }
420 DEBUG(dbgs() << "DONE:\n" << F);
421 }
422
423 /// \brief Add MemorySanitizer instrumentation to a function.
424 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000425 MS.initializeCallbacks(*F.getParent());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000426 if (!MS.TD) return false;
427 // Iterate all BBs in depth-first order and create shadow instructions
428 // for all instructions (where applicable).
429 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
430 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
431 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
432 BasicBlock *BB = *DI;
433 visit(*BB);
434 }
435
436 // Finalize PHI nodes.
437 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
438 PHINode *PN = ShadowPHINodes[i];
439 PHINode *PNS = cast<PHINode>(getShadow(PN));
440 PHINode *PNO = ClTrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
441 size_t NumValues = PN->getNumIncomingValues();
442 for (size_t v = 0; v < NumValues; v++) {
443 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
444 if (PNO)
445 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
446 }
447 }
448
449 VAHelper->finalizeInstrumentation();
450
451 materializeChecks();
452
453 return true;
454 }
455
456 /// \brief Compute the shadow type that corresponds to a given Value.
457 Type *getShadowTy(Value *V) {
458 return getShadowTy(V->getType());
459 }
460
461 /// \brief Compute the shadow type that corresponds to a given Type.
462 Type *getShadowTy(Type *OrigTy) {
463 if (!OrigTy->isSized()) {
464 return 0;
465 }
466 // For integer type, shadow is the same as the original type.
467 // This may return weird-sized types like i1.
468 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
469 return IT;
470 if (VectorType *VT = dyn_cast<VectorType>(OrigTy))
471 return VectorType::getInteger(VT);
472 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
473 SmallVector<Type*, 4> Elements;
474 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
475 Elements.push_back(getShadowTy(ST->getElementType(i)));
476 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
477 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
478 return Res;
479 }
480 uint32_t TypeSize = MS.TD->getTypeStoreSizeInBits(OrigTy);
481 return IntegerType::get(*MS.C, TypeSize);
482 }
483
484 /// \brief Flatten a vector type.
485 Type *getShadowTyNoVec(Type *ty) {
486 if (VectorType *vt = dyn_cast<VectorType>(ty))
487 return IntegerType::get(*MS.C, vt->getBitWidth());
488 return ty;
489 }
490
491 /// \brief Convert a shadow value to it's flattened variant.
492 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
493 Type *Ty = V->getType();
494 Type *NoVecTy = getShadowTyNoVec(Ty);
495 if (Ty == NoVecTy) return V;
496 return IRB.CreateBitCast(V, NoVecTy);
497 }
498
499 /// \brief Compute the shadow address that corresponds to a given application
500 /// address.
501 ///
502 /// Shadow = Addr & ~ShadowMask.
503 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
504 IRBuilder<> &IRB) {
505 Value *ShadowLong =
506 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
507 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
508 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
509 }
510
511 /// \brief Compute the origin address that corresponds to a given application
512 /// address.
513 ///
514 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000515 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
516 Value *ShadowLong =
517 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000518 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000519 Value *Add =
520 IRB.CreateAdd(ShadowLong,
521 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000522 Value *SecondAnd =
523 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
524 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000525 }
526
527 /// \brief Compute the shadow address for a given function argument.
528 ///
529 /// Shadow = ParamTLS+ArgOffset.
530 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
531 int ArgOffset) {
532 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
533 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
534 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
535 "_msarg");
536 }
537
538 /// \brief Compute the origin address for a given function argument.
539 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
540 int ArgOffset) {
541 if (!ClTrackOrigins) return 0;
542 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
543 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
544 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
545 "_msarg_o");
546 }
547
548 /// \brief Compute the shadow address for a retval.
549 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
550 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
551 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
552 "_msret");
553 }
554
555 /// \brief Compute the origin address for a retval.
556 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
557 // We keep a single origin for the entire retval. Might be too optimistic.
558 return MS.RetvalOriginTLS;
559 }
560
561 /// \brief Set SV to be the shadow value for V.
562 void setShadow(Value *V, Value *SV) {
563 assert(!ShadowMap.count(V) && "Values may only have one shadow");
564 ShadowMap[V] = SV;
565 }
566
567 /// \brief Set Origin to be the origin value for V.
568 void setOrigin(Value *V, Value *Origin) {
569 if (!ClTrackOrigins) return;
570 assert(!OriginMap.count(V) && "Values may only have one origin");
571 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
572 OriginMap[V] = Origin;
573 }
574
575 /// \brief Create a clean shadow value for a given value.
576 ///
577 /// Clean shadow (all zeroes) means all bits of the value are defined
578 /// (initialized).
579 Value *getCleanShadow(Value *V) {
580 Type *ShadowTy = getShadowTy(V);
581 if (!ShadowTy)
582 return 0;
583 return Constant::getNullValue(ShadowTy);
584 }
585
586 /// \brief Create a dirty shadow of a given shadow type.
587 Constant *getPoisonedShadow(Type *ShadowTy) {
588 assert(ShadowTy);
589 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
590 return Constant::getAllOnesValue(ShadowTy);
591 StructType *ST = cast<StructType>(ShadowTy);
592 SmallVector<Constant *, 4> Vals;
593 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
594 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
595 return ConstantStruct::get(ST, Vals);
596 }
597
598 /// \brief Create a clean (zero) origin.
599 Value *getCleanOrigin() {
600 return Constant::getNullValue(MS.OriginTy);
601 }
602
603 /// \brief Get the shadow value for a given Value.
604 ///
605 /// This function either returns the value set earlier with setShadow,
606 /// or extracts if from ParamTLS (for function arguments).
607 Value *getShadow(Value *V) {
608 if (Instruction *I = dyn_cast<Instruction>(V)) {
609 // For instructions the shadow is already stored in the map.
610 Value *Shadow = ShadowMap[V];
611 if (!Shadow) {
612 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000613 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000614 assert(Shadow && "No shadow for a value");
615 }
616 return Shadow;
617 }
618 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
619 Value *AllOnes = getPoisonedShadow(getShadowTy(V));
620 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000621 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000622 return AllOnes;
623 }
624 if (Argument *A = dyn_cast<Argument>(V)) {
625 // For arguments we compute the shadow on demand and store it in the map.
626 Value **ShadowPtr = &ShadowMap[V];
627 if (*ShadowPtr)
628 return *ShadowPtr;
629 Function *F = A->getParent();
630 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
631 unsigned ArgOffset = 0;
632 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
633 AI != AE; ++AI) {
634 if (!AI->getType()->isSized()) {
635 DEBUG(dbgs() << "Arg is not sized\n");
636 continue;
637 }
638 unsigned Size = AI->hasByValAttr()
639 ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
640 : MS.TD->getTypeAllocSize(AI->getType());
641 if (A == AI) {
642 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
643 if (AI->hasByValAttr()) {
644 // ByVal pointer itself has clean shadow. We copy the actual
645 // argument shadow to the underlying memory.
646 Value *Cpy = EntryIRB.CreateMemCpy(
647 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
648 Base, Size, AI->getParamAlignment());
649 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000650 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000651 *ShadowPtr = getCleanShadow(V);
652 } else {
653 *ShadowPtr = EntryIRB.CreateLoad(Base);
654 }
655 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
656 **ShadowPtr << "\n");
657 if (ClTrackOrigins) {
658 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
659 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
660 }
661 }
662 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
663 }
664 assert(*ShadowPtr && "Could not find shadow for an argument");
665 return *ShadowPtr;
666 }
667 // For everything else the shadow is zero.
668 return getCleanShadow(V);
669 }
670
671 /// \brief Get the shadow for i-th argument of the instruction I.
672 Value *getShadow(Instruction *I, int i) {
673 return getShadow(I->getOperand(i));
674 }
675
676 /// \brief Get the origin for a value.
677 Value *getOrigin(Value *V) {
678 if (!ClTrackOrigins) return 0;
679 if (isa<Instruction>(V) || isa<Argument>(V)) {
680 Value *Origin = OriginMap[V];
681 if (!Origin) {
682 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
683 Origin = getCleanOrigin();
684 }
685 return Origin;
686 }
687 return getCleanOrigin();
688 }
689
690 /// \brief Get the origin for i-th argument of the instruction I.
691 Value *getOrigin(Instruction *I, int i) {
692 return getOrigin(I->getOperand(i));
693 }
694
695 /// \brief Remember the place where a shadow check should be inserted.
696 ///
697 /// This location will be later instrumented with a check that will print a
698 /// UMR warning in runtime if the value is not fully defined.
699 void insertCheck(Value *Val, Instruction *OrigIns) {
700 assert(Val);
701 if (!InsertChecks) return;
702 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
703 if (!Shadow) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000704#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000705 Type *ShadowTy = Shadow->getType();
706 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
707 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000708#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000709 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
710 InstrumentationList.push_back(
711 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
712 }
713
714 //------------------- Visitors.
715
716 /// \brief Instrument LoadInst
717 ///
718 /// Loads the corresponding shadow and (optionally) origin.
719 /// Optionally, checks that the load address is fully defined.
720 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000721 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000722 IRBuilder<> IRB(&I);
723 Type *ShadowTy = getShadowTy(&I);
724 Value *Addr = I.getPointerOperand();
725 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
Evgeniy Stepanoveeb8b7c2012-11-29 14:05:53 +0000726 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000727
728 if (ClCheckAccessAddress)
729 insertCheck(I.getPointerOperand(), &I);
730
731 if (ClTrackOrigins)
Evgeniy Stepanoveeb8b7c2012-11-29 14:05:53 +0000732 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), I.getAlignment()));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000733 }
734
735 /// \brief Instrument StoreInst
736 ///
737 /// Stores the corresponding shadow and (optionally) origin.
738 /// Optionally, checks that the store address is fully defined.
739 /// Volatile stores check that the value being stored is fully defined.
740 void visitStoreInst(StoreInst &I) {
741 IRBuilder<> IRB(&I);
742 Value *Val = I.getValueOperand();
743 Value *Addr = I.getPointerOperand();
744 Value *Shadow = getShadow(Val);
745 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
746
Evgeniy Stepanoveeb8b7c2012-11-29 14:05:53 +0000747 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000748 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000749 (void)NewSI;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000750 // If the store is volatile, add a check.
751 if (I.isVolatile())
752 insertCheck(Val, &I);
753 if (ClCheckAccessAddress)
754 insertCheck(Addr, &I);
755
756 if (ClTrackOrigins)
Evgeniy Stepanoveeb8b7c2012-11-29 14:05:53 +0000757 IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB), I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000758 }
759
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +0000760 // Vector manipulation.
761 void visitExtractElementInst(ExtractElementInst &I) {
762 insertCheck(I.getOperand(1), &I);
763 IRBuilder<> IRB(&I);
764 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
765 "_msprop"));
766 setOrigin(&I, getOrigin(&I, 0));
767 }
768
769 void visitInsertElementInst(InsertElementInst &I) {
770 insertCheck(I.getOperand(2), &I);
771 IRBuilder<> IRB(&I);
772 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
773 I.getOperand(2), "_msprop"));
774 setOriginForNaryOp(I);
775 }
776
777 void visitShuffleVectorInst(ShuffleVectorInst &I) {
778 insertCheck(I.getOperand(2), &I);
779 IRBuilder<> IRB(&I);
780 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
781 I.getOperand(2), "_msprop"));
782 setOriginForNaryOp(I);
783 }
784
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000785 // Casts.
786 void visitSExtInst(SExtInst &I) {
787 IRBuilder<> IRB(&I);
788 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
789 setOrigin(&I, getOrigin(&I, 0));
790 }
791
792 void visitZExtInst(ZExtInst &I) {
793 IRBuilder<> IRB(&I);
794 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
795 setOrigin(&I, getOrigin(&I, 0));
796 }
797
798 void visitTruncInst(TruncInst &I) {
799 IRBuilder<> IRB(&I);
800 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
801 setOrigin(&I, getOrigin(&I, 0));
802 }
803
804 void visitBitCastInst(BitCastInst &I) {
805 IRBuilder<> IRB(&I);
806 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
807 setOrigin(&I, getOrigin(&I, 0));
808 }
809
810 void visitPtrToIntInst(PtrToIntInst &I) {
811 IRBuilder<> IRB(&I);
812 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
813 "_msprop_ptrtoint"));
814 setOrigin(&I, getOrigin(&I, 0));
815 }
816
817 void visitIntToPtrInst(IntToPtrInst &I) {
818 IRBuilder<> IRB(&I);
819 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
820 "_msprop_inttoptr"));
821 setOrigin(&I, getOrigin(&I, 0));
822 }
823
824 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
825 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
826 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
827 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
828 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
829 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
830
831 /// \brief Propagate shadow for bitwise AND.
832 ///
833 /// This code is exact, i.e. if, for example, a bit in the left argument
834 /// is defined and 0, then neither the value not definedness of the
835 /// corresponding bit in B don't affect the resulting shadow.
836 void visitAnd(BinaryOperator &I) {
837 IRBuilder<> IRB(&I);
838 // "And" of 0 and a poisoned value results in unpoisoned value.
839 // 1&1 => 1; 0&1 => 0; p&1 => p;
840 // 1&0 => 0; 0&0 => 0; p&0 => 0;
841 // 1&p => p; 0&p => 0; p&p => p;
842 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
843 Value *S1 = getShadow(&I, 0);
844 Value *S2 = getShadow(&I, 1);
845 Value *V1 = I.getOperand(0);
846 Value *V2 = I.getOperand(1);
847 if (V1->getType() != S1->getType()) {
848 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
849 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
850 }
851 Value *S1S2 = IRB.CreateAnd(S1, S2);
852 Value *V1S2 = IRB.CreateAnd(V1, S2);
853 Value *S1V2 = IRB.CreateAnd(S1, V2);
854 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
855 setOriginForNaryOp(I);
856 }
857
858 void visitOr(BinaryOperator &I) {
859 IRBuilder<> IRB(&I);
860 // "Or" of 1 and a poisoned value results in unpoisoned value.
861 // 1|1 => 1; 0|1 => 1; p|1 => 1;
862 // 1|0 => 1; 0|0 => 0; p|0 => p;
863 // 1|p => 1; 0|p => p; p|p => p;
864 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
865 Value *S1 = getShadow(&I, 0);
866 Value *S2 = getShadow(&I, 1);
867 Value *V1 = IRB.CreateNot(I.getOperand(0));
868 Value *V2 = IRB.CreateNot(I.getOperand(1));
869 if (V1->getType() != S1->getType()) {
870 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
871 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
872 }
873 Value *S1S2 = IRB.CreateAnd(S1, S2);
874 Value *V1S2 = IRB.CreateAnd(V1, S2);
875 Value *S1V2 = IRB.CreateAnd(S1, V2);
876 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
877 setOriginForNaryOp(I);
878 }
879
880 /// \brief Propagate origin for an instruction.
881 ///
882 /// This is a general case of origin propagation. For an Nary operation,
883 /// is set to the origin of an argument that is not entirely initialized.
Evgeniy Stepanovf433cec2012-11-29 14:44:00 +0000884 /// If there is more than one such arguments, the rightmost of them is picked.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000885 /// It does not matter which one is picked if all arguments are initialized.
886 void setOriginForNaryOp(Instruction &I) {
887 if (!ClTrackOrigins) return;
888 IRBuilder<> IRB(&I);
889 Value *Origin = getOrigin(&I, 0);
890 for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op) {
Evgeniy Stepanovf433cec2012-11-29 14:44:00 +0000891 Value *S = convertToShadowTyNoVec(getShadow(&I, Op), IRB);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000892 Origin = IRB.CreateSelect(IRB.CreateICmpNE(S, getCleanShadow(S)),
Evgeniy Stepanovf433cec2012-11-29 14:44:00 +0000893 getOrigin(&I, Op), Origin);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000894 }
895 setOrigin(&I, Origin);
896 }
897
898 /// \brief Propagate shadow for a binary operation.
899 ///
900 /// Shadow = Shadow0 | Shadow1, all 3 must have the same type.
901 /// Bitwise OR is selected as an operation that will never lose even a bit of
902 /// poison.
903 void handleShadowOrBinary(Instruction &I) {
904 IRBuilder<> IRB(&I);
905 Value *Shadow0 = getShadow(&I, 0);
906 Value *Shadow1 = getShadow(&I, 1);
907 setShadow(&I, IRB.CreateOr(Shadow0, Shadow1, "_msprop"));
908 setOriginForNaryOp(I);
909 }
910
911 /// \brief Propagate shadow for arbitrary operation.
912 ///
913 /// This is a general case of shadow propagation, used in all cases where we
914 /// don't know and/or care about what the operation actually does.
915 /// It converts all input shadow values to a common type (extending or
916 /// truncating as necessary), and bitwise OR's them.
917 ///
918 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
919 /// fully initialized), and less prone to false positives.
920 // FIXME: is the casting actually correct?
921 // FIXME: merge this with handleShadowOrBinary.
922 void handleShadowOr(Instruction &I) {
923 IRBuilder<> IRB(&I);
924 Value *Shadow = getShadow(&I, 0);
925 for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op)
926 Shadow = IRB.CreateOr(
927 Shadow, IRB.CreateIntCast(getShadow(&I, Op), Shadow->getType(), false),
928 "_msprop");
929 Shadow = IRB.CreateIntCast(Shadow, getShadowTy(&I), false);
930 setShadow(&I, Shadow);
931 setOriginForNaryOp(I);
932 }
933
934 void visitFAdd(BinaryOperator &I) { handleShadowOrBinary(I); }
935 void visitFSub(BinaryOperator &I) { handleShadowOrBinary(I); }
936 void visitFMul(BinaryOperator &I) { handleShadowOrBinary(I); }
937 void visitAdd(BinaryOperator &I) { handleShadowOrBinary(I); }
938 void visitSub(BinaryOperator &I) { handleShadowOrBinary(I); }
939 void visitXor(BinaryOperator &I) { handleShadowOrBinary(I); }
940 void visitMul(BinaryOperator &I) { handleShadowOrBinary(I); }
941
942 void handleDiv(Instruction &I) {
943 IRBuilder<> IRB(&I);
944 // Strict on the second argument.
945 insertCheck(I.getOperand(1), &I);
946 setShadow(&I, getShadow(&I, 0));
947 setOrigin(&I, getOrigin(&I, 0));
948 }
949
950 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
951 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
952 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
953 void visitURem(BinaryOperator &I) { handleDiv(I); }
954 void visitSRem(BinaryOperator &I) { handleDiv(I); }
955 void visitFRem(BinaryOperator &I) { handleDiv(I); }
956
957 /// \brief Instrument == and != comparisons.
958 ///
959 /// Sometimes the comparison result is known even if some of the bits of the
960 /// arguments are not.
961 void handleEqualityComparison(ICmpInst &I) {
962 IRBuilder<> IRB(&I);
963 Value *A = I.getOperand(0);
964 Value *B = I.getOperand(1);
965 Value *Sa = getShadow(A);
966 Value *Sb = getShadow(B);
967 if (A->getType()->isPointerTy())
968 A = IRB.CreatePointerCast(A, MS.IntptrTy);
969 if (B->getType()->isPointerTy())
970 B = IRB.CreatePointerCast(B, MS.IntptrTy);
971 // A == B <==> (C = A^B) == 0
972 // A != B <==> (C = A^B) != 0
973 // Sc = Sa | Sb
974 Value *C = IRB.CreateXor(A, B);
975 Value *Sc = IRB.CreateOr(Sa, Sb);
976 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
977 // Result is defined if one of the following is true
978 // * there is a defined 1 bit in C
979 // * C is fully defined
980 // Si = !(C & ~Sc) && Sc
981 Value *Zero = Constant::getNullValue(Sc->getType());
982 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
983 Value *Si =
984 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
985 IRB.CreateICmpEQ(
986 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
987 Si->setName("_msprop_icmp");
988 setShadow(&I, Si);
989 setOriginForNaryOp(I);
990 }
991
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +0000992 /// \brief Instrument signed relational comparisons.
993 ///
994 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
995 /// propagating the highest bit of the shadow. Everything else is delegated
996 /// to handleShadowOr().
997 void handleSignedRelationalComparison(ICmpInst &I) {
998 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
999 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1000 Value* op = NULL;
1001 CmpInst::Predicate pre = I.getPredicate();
1002 if (constOp0 && constOp0->isNullValue() &&
1003 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1004 op = I.getOperand(1);
1005 } else if (constOp1 && constOp1->isNullValue() &&
1006 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1007 op = I.getOperand(0);
1008 }
1009 if (op) {
1010 IRBuilder<> IRB(&I);
1011 Value* Shadow =
1012 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1013 setShadow(&I, Shadow);
1014 setOrigin(&I, getOrigin(op));
1015 } else {
1016 handleShadowOr(I);
1017 }
1018 }
1019
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001020 void visitICmpInst(ICmpInst &I) {
1021 if (ClHandleICmp && I.isEquality())
1022 handleEqualityComparison(I);
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001023 else if (ClHandleICmp && I.isSigned() && I.isRelational())
1024 handleSignedRelationalComparison(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001025 else
1026 handleShadowOr(I);
1027 }
1028
1029 void visitFCmpInst(FCmpInst &I) {
1030 handleShadowOr(I);
1031 }
1032
1033 void handleShift(BinaryOperator &I) {
1034 IRBuilder<> IRB(&I);
1035 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1036 // Otherwise perform the same shift on S1.
1037 Value *S1 = getShadow(&I, 0);
1038 Value *S2 = getShadow(&I, 1);
1039 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1040 S2->getType());
1041 Value *V2 = I.getOperand(1);
1042 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1043 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1044 setOriginForNaryOp(I);
1045 }
1046
1047 void visitShl(BinaryOperator &I) { handleShift(I); }
1048 void visitAShr(BinaryOperator &I) { handleShift(I); }
1049 void visitLShr(BinaryOperator &I) { handleShift(I); }
1050
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001051 /// \brief Instrument llvm.memmove
1052 ///
1053 /// At this point we don't know if llvm.memmove will be inlined or not.
1054 /// If we don't instrument it and it gets inlined,
1055 /// our interceptor will not kick in and we will lose the memmove.
1056 /// If we instrument the call here, but it does not get inlined,
1057 /// we will memove the shadow twice: which is bad in case
1058 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1059 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001060 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001061 void visitMemMoveInst(MemMoveInst &I) {
1062 IRBuilder<> IRB(&I);
1063 IRB.CreateCall3(
1064 MS.MemmoveFn,
1065 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1066 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1067 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1068 I.eraseFromParent();
1069 }
1070
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001071 // Similar to memmove: avoid copying shadow twice.
1072 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1073 // FIXME: consider doing manual inline for small constant sizes and proper
1074 // alignment.
1075 void visitMemCpyInst(MemCpyInst &I) {
1076 IRBuilder<> IRB(&I);
1077 IRB.CreateCall3(
1078 MS.MemcpyFn,
1079 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1080 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1081 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1082 I.eraseFromParent();
1083 }
1084
1085 // Same as memcpy.
1086 void visitMemSetInst(MemSetInst &I) {
1087 IRBuilder<> IRB(&I);
1088 IRB.CreateCall3(
1089 MS.MemsetFn,
1090 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1091 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1092 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1093 I.eraseFromParent();
1094 }
1095
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001096 void visitVAStartInst(VAStartInst &I) {
1097 VAHelper->visitVAStartInst(I);
1098 }
1099
1100 void visitVACopyInst(VACopyInst &I) {
1101 VAHelper->visitVACopyInst(I);
1102 }
1103
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001104 void handleBswap(IntrinsicInst &I) {
1105 IRBuilder<> IRB(&I);
1106 Value *Op = I.getArgOperand(0);
1107 Type *OpType = Op->getType();
1108 Function *BswapFunc = Intrinsic::getDeclaration(
1109 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1110 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1111 setOrigin(&I, getOrigin(Op));
1112 }
1113
1114 void visitIntrinsicInst(IntrinsicInst &I) {
1115 switch (I.getIntrinsicID()) {
1116 case llvm::Intrinsic::bswap:
1117 handleBswap(I); break;
1118 default:
1119 visitInstruction(I); break;
1120 }
1121 }
1122
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001123 void visitCallSite(CallSite CS) {
1124 Instruction &I = *CS.getInstruction();
1125 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1126 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00001127 CallInst *Call = cast<CallInst>(&I);
1128
1129 // For inline asm, do the usual thing: check argument shadow and mark all
1130 // outputs as clean. Note that any side effects of the inline asm that are
1131 // not immediately visible in its constraints are not handled.
1132 if (Call->isInlineAsm()) {
1133 visitInstruction(I);
1134 return;
1135 }
1136
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001137 // Allow only tail calls with the same types, otherwise
1138 // we may have a false positive: shadow for a non-void RetVal
1139 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001140 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
1141 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001142
1143 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001144 }
1145 IRBuilder<> IRB(&I);
1146 unsigned ArgOffset = 0;
1147 DEBUG(dbgs() << " CallSite: " << I << "\n");
1148 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1149 ArgIt != End; ++ArgIt) {
1150 Value *A = *ArgIt;
1151 unsigned i = ArgIt - CS.arg_begin();
1152 if (!A->getType()->isSized()) {
1153 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
1154 continue;
1155 }
1156 unsigned Size = 0;
1157 Value *Store = 0;
1158 // Compute the Shadow for arg even if it is ByVal, because
1159 // in that case getShadow() will copy the actual arg shadow to
1160 // __msan_param_tls.
1161 Value *ArgShadow = getShadow(A);
1162 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
1163 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
1164 " Shadow: " << *ArgShadow << "\n");
1165 if (CS.paramHasAttr(i + 1, Attributes::ByVal)) {
1166 assert(A->getType()->isPointerTy() &&
1167 "ByVal argument is not a pointer!");
1168 Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
1169 unsigned Alignment = CS.getParamAlignment(i + 1);
1170 Store = IRB.CreateMemCpy(ArgShadowBase,
1171 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
1172 Size, Alignment);
1173 } else {
1174 Size = MS.TD->getTypeAllocSize(A->getType());
1175 Store = IRB.CreateStore(ArgShadow, ArgShadowBase);
1176 }
1177 if (ClTrackOrigins)
1178 IRB.CreateStore(getOrigin(A),
1179 getOriginPtrForArgument(A, IRB, ArgOffset));
1180 assert(Size != 0 && Store != 0);
1181 DEBUG(dbgs() << " Param:" << *Store << "\n");
1182 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
1183 }
1184 DEBUG(dbgs() << " done with call args\n");
1185
1186 FunctionType *FT =
1187 cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
1188 if (FT->isVarArg()) {
1189 VAHelper->visitCallSite(CS, IRB);
1190 }
1191
1192 // Now, get the shadow for the RetVal.
1193 if (!I.getType()->isSized()) return;
1194 IRBuilder<> IRBBefore(&I);
1195 // Untill we have full dynamic coverage, make sure the retval shadow is 0.
1196 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
1197 IRBBefore.CreateStore(getCleanShadow(&I), Base);
1198 Instruction *NextInsn = 0;
1199 if (CS.isCall()) {
1200 NextInsn = I.getNextNode();
1201 } else {
1202 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
1203 if (!NormalDest->getSinglePredecessor()) {
1204 // FIXME: this case is tricky, so we are just conservative here.
1205 // Perhaps we need to split the edge between this BB and NormalDest,
1206 // but a naive attempt to use SplitEdge leads to a crash.
1207 setShadow(&I, getCleanShadow(&I));
1208 setOrigin(&I, getCleanOrigin());
1209 return;
1210 }
1211 NextInsn = NormalDest->getFirstInsertionPt();
1212 assert(NextInsn &&
1213 "Could not find insertion point for retval shadow load");
1214 }
1215 IRBuilder<> IRBAfter(NextInsn);
1216 setShadow(&I, IRBAfter.CreateLoad(getShadowPtrForRetval(&I, IRBAfter),
1217 "_msret"));
1218 if (ClTrackOrigins)
1219 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
1220 }
1221
1222 void visitReturnInst(ReturnInst &I) {
1223 IRBuilder<> IRB(&I);
1224 if (Value *RetVal = I.getReturnValue()) {
1225 // Set the shadow for the RetVal.
1226 Value *Shadow = getShadow(RetVal);
1227 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
1228 DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
1229 IRB.CreateStore(Shadow, ShadowPtr);
1230 if (ClTrackOrigins)
1231 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
1232 }
1233 }
1234
1235 void visitPHINode(PHINode &I) {
1236 IRBuilder<> IRB(&I);
1237 ShadowPHINodes.push_back(&I);
1238 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
1239 "_msphi_s"));
1240 if (ClTrackOrigins)
1241 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
1242 "_msphi_o"));
1243 }
1244
1245 void visitAllocaInst(AllocaInst &I) {
1246 setShadow(&I, getCleanShadow(&I));
1247 if (!ClPoisonStack) return;
1248 IRBuilder<> IRB(I.getNextNode());
1249 uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
1250 if (ClPoisonStackWithCall) {
1251 IRB.CreateCall2(MS.MsanPoisonStackFn,
1252 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1253 ConstantInt::get(MS.IntptrTy, Size));
1254 } else {
1255 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
1256 IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
1257 Size, I.getAlignment());
1258 }
1259
1260 if (ClTrackOrigins) {
1261 setOrigin(&I, getCleanOrigin());
1262 SmallString<2048> StackDescriptionStorage;
1263 raw_svector_ostream StackDescription(StackDescriptionStorage);
1264 // We create a string with a description of the stack allocation and
1265 // pass it into __msan_set_alloca_origin.
1266 // It will be printed by the run-time if stack-originated UMR is found.
1267 // The first 4 bytes of the string are set to '----' and will be replaced
1268 // by __msan_va_arg_overflow_size_tls at the first call.
1269 StackDescription << "----" << I.getName() << "@" << F.getName();
1270 Value *Descr =
1271 createPrivateNonConstGlobalForString(*F.getParent(),
1272 StackDescription.str());
1273 IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
1274 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1275 ConstantInt::get(MS.IntptrTy, Size),
1276 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
1277 }
1278 }
1279
1280 void visitSelectInst(SelectInst& I) {
1281 IRBuilder<> IRB(&I);
1282 setShadow(&I, IRB.CreateSelect(I.getCondition(),
1283 getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
1284 "_msprop"));
1285 if (ClTrackOrigins)
1286 setOrigin(&I, IRB.CreateSelect(I.getCondition(),
1287 getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
1288 }
1289
1290 void visitLandingPadInst(LandingPadInst &I) {
1291 // Do nothing.
1292 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
1293 setShadow(&I, getCleanShadow(&I));
1294 setOrigin(&I, getCleanOrigin());
1295 }
1296
1297 void visitGetElementPtrInst(GetElementPtrInst &I) {
1298 handleShadowOr(I);
1299 }
1300
1301 void visitExtractValueInst(ExtractValueInst &I) {
1302 IRBuilder<> IRB(&I);
1303 Value *Agg = I.getAggregateOperand();
1304 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
1305 Value *AggShadow = getShadow(Agg);
1306 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1307 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
1308 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
1309 setShadow(&I, ResShadow);
1310 setOrigin(&I, getCleanOrigin());
1311 }
1312
1313 void visitInsertValueInst(InsertValueInst &I) {
1314 IRBuilder<> IRB(&I);
1315 DEBUG(dbgs() << "InsertValue: " << I << "\n");
1316 Value *AggShadow = getShadow(I.getAggregateOperand());
1317 Value *InsShadow = getShadow(I.getInsertedValueOperand());
1318 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1319 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
1320 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
1321 DEBUG(dbgs() << " Res: " << *Res << "\n");
1322 setShadow(&I, Res);
1323 setOrigin(&I, getCleanOrigin());
1324 }
1325
1326 void dumpInst(Instruction &I) {
1327 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1328 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
1329 } else {
1330 errs() << "ZZZ " << I.getOpcodeName() << "\n";
1331 }
1332 errs() << "QQQ " << I << "\n";
1333 }
1334
1335 void visitResumeInst(ResumeInst &I) {
1336 DEBUG(dbgs() << "Resume: " << I << "\n");
1337 // Nothing to do here.
1338 }
1339
1340 void visitInstruction(Instruction &I) {
1341 // Everything else: stop propagating and check for poisoned shadow.
1342 if (ClDumpStrictInstructions)
1343 dumpInst(I);
1344 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
1345 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
1346 insertCheck(I.getOperand(i), &I);
1347 setShadow(&I, getCleanShadow(&I));
1348 setOrigin(&I, getCleanOrigin());
1349 }
1350};
1351
1352/// \brief AMD64-specific implementation of VarArgHelper.
1353struct VarArgAMD64Helper : public VarArgHelper {
1354 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
1355 // See a comment in visitCallSite for more details.
1356 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
1357 static const unsigned AMD64FpEndOffset = 176;
1358
1359 Function &F;
1360 MemorySanitizer &MS;
1361 MemorySanitizerVisitor &MSV;
1362 Value *VAArgTLSCopy;
1363 Value *VAArgOverflowSize;
1364
1365 SmallVector<CallInst*, 16> VAStartInstrumentationList;
1366
1367 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
1368 MemorySanitizerVisitor &MSV)
1369 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
1370
1371 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
1372
1373 ArgKind classifyArgument(Value* arg) {
1374 // A very rough approximation of X86_64 argument classification rules.
1375 Type *T = arg->getType();
1376 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
1377 return AK_FloatingPoint;
1378 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
1379 return AK_GeneralPurpose;
1380 if (T->isPointerTy())
1381 return AK_GeneralPurpose;
1382 return AK_Memory;
1383 }
1384
1385 // For VarArg functions, store the argument shadow in an ABI-specific format
1386 // that corresponds to va_list layout.
1387 // We do this because Clang lowers va_arg in the frontend, and this pass
1388 // only sees the low level code that deals with va_list internals.
1389 // A much easier alternative (provided that Clang emits va_arg instructions)
1390 // would have been to associate each live instance of va_list with a copy of
1391 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
1392 // order.
1393 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
1394 unsigned GpOffset = 0;
1395 unsigned FpOffset = AMD64GpEndOffset;
1396 unsigned OverflowOffset = AMD64FpEndOffset;
1397 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1398 ArgIt != End; ++ArgIt) {
1399 Value *A = *ArgIt;
1400 ArgKind AK = classifyArgument(A);
1401 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
1402 AK = AK_Memory;
1403 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
1404 AK = AK_Memory;
1405 Value *Base;
1406 switch (AK) {
1407 case AK_GeneralPurpose:
1408 Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
1409 GpOffset += 8;
1410 break;
1411 case AK_FloatingPoint:
1412 Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
1413 FpOffset += 16;
1414 break;
1415 case AK_Memory:
1416 uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
1417 Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
1418 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
1419 }
1420 IRB.CreateStore(MSV.getShadow(A), Base);
1421 }
1422 Constant *OverflowSize =
1423 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
1424 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
1425 }
1426
1427 /// \brief Compute the shadow address for a given va_arg.
1428 Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
1429 int ArgOffset) {
1430 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
1431 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1432 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
1433 "_msarg");
1434 }
1435
1436 void visitVAStartInst(VAStartInst &I) {
1437 IRBuilder<> IRB(&I);
1438 VAStartInstrumentationList.push_back(&I);
1439 Value *VAListTag = I.getArgOperand(0);
1440 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1441
1442 // Unpoison the whole __va_list_tag.
1443 // FIXME: magic ABI constants.
1444 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
1445 /* size */24, /* alignment */16, false);
1446 }
1447
1448 void visitVACopyInst(VACopyInst &I) {
1449 IRBuilder<> IRB(&I);
1450 Value *VAListTag = I.getArgOperand(0);
1451 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1452
1453 // Unpoison the whole __va_list_tag.
1454 // FIXME: magic ABI constants.
1455 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
1456 /* size */ 24, /* alignment */ 16, false);
1457 }
1458
1459 void finalizeInstrumentation() {
1460 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
1461 "finalizeInstrumentation called twice");
1462 if (!VAStartInstrumentationList.empty()) {
1463 // If there is a va_start in this function, make a backup copy of
1464 // va_arg_tls somewhere in the function entry block.
1465 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1466 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
1467 Value *CopySize =
1468 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
1469 VAArgOverflowSize);
1470 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
1471 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
1472 }
1473
1474 // Instrument va_start.
1475 // Copy va_list shadow from the backup copy of the TLS contents.
1476 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
1477 CallInst *OrigInst = VAStartInstrumentationList[i];
1478 IRBuilder<> IRB(OrigInst->getNextNode());
1479 Value *VAListTag = OrigInst->getArgOperand(0);
1480
1481 Value *RegSaveAreaPtrPtr =
1482 IRB.CreateIntToPtr(
1483 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1484 ConstantInt::get(MS.IntptrTy, 16)),
1485 Type::getInt64PtrTy(*MS.C));
1486 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
1487 Value *RegSaveAreaShadowPtr =
1488 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
1489 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
1490 AMD64FpEndOffset, 16);
1491
1492 Value *OverflowArgAreaPtrPtr =
1493 IRB.CreateIntToPtr(
1494 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1495 ConstantInt::get(MS.IntptrTy, 8)),
1496 Type::getInt64PtrTy(*MS.C));
1497 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
1498 Value *OverflowArgAreaShadowPtr =
1499 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
1500 Value *SrcPtr =
1501 getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
1502 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
1503 }
1504 }
1505};
1506
1507VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1508 MemorySanitizerVisitor &Visitor) {
1509 return new VarArgAMD64Helper(Func, Msan, Visitor);
1510}
1511
1512} // namespace
1513
1514bool MemorySanitizer::runOnFunction(Function &F) {
1515 MemorySanitizerVisitor Visitor(F, *this);
1516
1517 // Clear out readonly/readnone attributes.
1518 AttrBuilder B;
1519 B.addAttribute(Attributes::ReadOnly)
1520 .addAttribute(Attributes::ReadNone);
1521 F.removeAttribute(AttrListPtr::FunctionIndex,
1522 Attributes::get(F.getContext(), B));
1523
1524 return Visitor.runOnFunction();
1525}