blob: 82e6de4221e69f90abbf18bac567d44a9785d3ff [file] [log] [blame]
Preston Gurd8b7ab4b2013-04-25 20:29:37 +00001//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which will find instructions which
11// can be re-written as LEA instructions in order to reduce pipeline
12// delays for some models of the Intel Atom family.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "x86-fixup-LEAs"
17#include "X86.h"
18#include "X86InstrInfo.h"
19#include "X86Subtarget.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/CodeGen/LiveVariables.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29using namespace llvm;
30
31STATISTIC(NumLEAs, "Number of LEA instructions created");
32
33namespace {
34 class FixupLEAPass : public MachineFunctionPass {
35 enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
36 static char ID;
37 bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
38
39 virtual const char *getPassName() const { return "X86 Atom LEA Fixup";}
40 void seekLEAFixup(MachineOperand& p, MachineBasicBlock::iterator& I,
41 MachineFunction::iterator MFI);
42 void processInstruction(MachineBasicBlock::iterator& I,
43 MachineFunction::iterator MFI);
44 RegUsageState usesRegister(MachineOperand& p,
45 MachineBasicBlock::iterator I);
46 MachineBasicBlock::iterator searchBackwards(MachineOperand& p,
47 MachineBasicBlock::iterator& I,
48 MachineFunction::iterator MFI);
49 MachineInstr* postRAConvertToLEA(MachineFunction::iterator &MFI,
50 MachineBasicBlock::iterator &MBBI,
51 LiveVariables *LV) const;
52
53 public:
54 FixupLEAPass() : MachineFunctionPass(ID) {}
55
56 virtual bool runOnMachineFunction(MachineFunction &MF);
57
58 private:
59 MachineFunction *MF;
60 const TargetMachine *TM;
61 const TargetInstrInfo *TII; // Machine instruction info.
62 LiveVariables *LV;
63
64 };
65 char FixupLEAPass::ID = 0;
66}
67
68/// postRAConvertToLEA - if an instruction can be converted to an
69/// equivalent LEA, insert the new instruction into the basic block
70/// and return a pointer to it. Otherwise, return zero.
71MachineInstr *
72FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
73 MachineBasicBlock::iterator &MBBI,
74 LiveVariables *LV) const {
75 MachineInstr* MI = MBBI;
76 MachineInstr* NewMI;
77 switch (MI->getOpcode()) {
78 case X86::MOV32rr:
79 case X86::MOV64rr: {
80 const MachineOperand& Src = MI->getOperand(1);
81 const MachineOperand& Dest = MI->getOperand(0);
82 NewMI = BuildMI(*MF, MI->getDebugLoc(),
83 TII->get( MI->getOpcode() == X86::MOV32rr ? X86::LEA32r : X86::LEA64r))
84 .addOperand(Dest)
85 .addOperand(Src).addImm(1).addReg(0).addImm(0).addReg(0);
86 MFI->insert(MBBI, NewMI); // Insert the new inst
87 return NewMI;
88 }
89 case X86::ADD64ri32:
90 case X86::ADD64ri8:
91 case X86::ADD64ri32_DB:
92 case X86::ADD64ri8_DB:
93 case X86::ADD32ri:
94 case X86::ADD32ri8:
95 case X86::ADD32ri_DB:
96 case X86::ADD32ri8_DB:
97 case X86::ADD16ri:
98 case X86::ADD16ri8:
99 case X86::ADD16ri_DB:
100 case X86::ADD16ri8_DB:
101 if (!MI->getOperand(2).isImm()) {
102 // convertToThreeAddress will call getImm()
103 // which requires isImm() to be true
104 return 0;
105 }
106 }
107 return TII->convertToThreeAddress(MFI, MBBI, LV);
108}
109
110FunctionPass *llvm::createX86FixupLEAs() {
111 return new FixupLEAPass();
112}
113
114/// runOnMachineFunction - Loop over all of the basic blocks,
115/// replacing instructions by equivalent LEA instructions
116/// if needed and when possible.
117bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
118 MF = &Func;
119 TII = Func.getTarget().getInstrInfo();
120 TM = &MF->getTarget();
121 LV = getAnalysisIfAvailable<LiveVariables>();
122
123 DEBUG(dbgs() << "Start X86FixupLEAs\n";);
124 // Process all basic blocks.
125 for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
126 processBasicBlock(Func, I);
127 DEBUG(dbgs() << "End X86FixupLEAs\n";);
128
129 return true;
130}
131
132/// usesRegister - Determine if an instruction references a machine register
133/// and, if so, whether it reads or writes the register.
134FixupLEAPass::RegUsageState FixupLEAPass::usesRegister(MachineOperand& p,
135 MachineBasicBlock::iterator I) {
136 RegUsageState RegUsage = RU_NotUsed;
137 MachineInstr* MI = I;
138
139 for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
140 MachineOperand& opnd = MI->getOperand(i);
141 if (opnd.isReg() && opnd.getReg() == p.getReg()){
142 if (opnd.isDef())
143 return RU_Write;
144 RegUsage = RU_Read;
145 }
146 }
147 return RegUsage;
148}
149
150/// getPreviousInstr - Given a reference to an instruction in a basic
151/// block, return a reference to the previous instruction in the block,
152/// wrapping around to the last instruction of the block if the block
153/// branches to itself.
154static inline bool getPreviousInstr(MachineBasicBlock::iterator& I,
155 MachineFunction::iterator MFI) {
156 if (I == MFI->begin()) {
157 if (MFI->isPredecessor(MFI)) {
158 I = --MFI->end();
159 return true;
160 }
161 else
162 return false;
163 }
164 --I;
165 return true;
166}
167
168/// searchBackwards - Step backwards through a basic block, looking
169/// for an instruction which writes a register within
170/// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
171MachineBasicBlock::iterator FixupLEAPass::searchBackwards(MachineOperand& p,
172 MachineBasicBlock::iterator& I,
173 MachineFunction::iterator MFI) {
174 int InstrDistance = 1;
175 MachineBasicBlock::iterator CurInst;
176 static const int INSTR_DISTANCE_THRESHOLD = 5;
177
178 CurInst = I;
179 bool Found;
180 Found = getPreviousInstr(CurInst, MFI);
181 while( Found && I != CurInst) {
182 if (CurInst->isCall() || CurInst->isInlineAsm())
183 break;
184 if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
185 break; // too far back to make a difference
186 if (usesRegister(p, CurInst) == RU_Write){
187 return CurInst;
188 }
189 InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
190 Found = getPreviousInstr(CurInst, MFI);
191 }
192 return 0;
193}
194
195/// processInstruction - Given a memory access or LEA instruction
196/// whose address mode uses a base and/or index register, look for
197/// an opportunity to replace the instruction which sets the base or index
198/// register with an equivalent LEA instruction.
199void FixupLEAPass::processInstruction(MachineBasicBlock::iterator& I,
200 MachineFunction::iterator MFI) {
201 // Process a load, store, or LEA instruction.
202 MachineInstr *MI = I;
203 int opcode = MI->getOpcode();
204 const MCInstrDesc& Desc = MI->getDesc();
205 int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
206 if (AddrOffset >= 0) {
207 AddrOffset += X86II::getOperandBias(Desc);
208 MachineOperand& p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
209 if (p.isReg() && p.getReg() != X86::ESP) {
210 seekLEAFixup(p, I, MFI);
211 }
212 MachineOperand& q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
213 if (q.isReg() && q.getReg() != X86::ESP) {
214 seekLEAFixup(q, I, MFI);
215 }
216 }
217}
218
219/// seekLEAFixup - Given a machine register, look for the instruction
220/// which writes it in the current basic block. If found,
221/// try to replace it with an equivalent LEA instruction.
222/// If replacement succeeds, then also process the the newly created
223/// instruction.
224void FixupLEAPass::seekLEAFixup(MachineOperand& p,
225 MachineBasicBlock::iterator& I,
226 MachineFunction::iterator MFI) {
227 MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
228 if (MBI) {
229 MachineInstr* NewMI = postRAConvertToLEA(MFI, MBI, LV);
230 if (NewMI) {
231 ++NumLEAs;
232 DEBUG(dbgs() << "Candidate to replace:"; MBI->dump(););
233 // now to replace with an equivalent LEA...
234 DEBUG(dbgs() << "Replaced by: "; NewMI->dump(););
235 MFI->erase(MBI);
236 MachineBasicBlock::iterator J =
237 static_cast<MachineBasicBlock::iterator> (NewMI);
238 processInstruction(J, MFI);
239 }
240 }
241}
242
243/// processBasicBlock - Loop over all of the instructions in the basic block,
244/// replacing adds and shifts with LEA instructions, where appropriate.
245bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
246 MachineFunction::iterator MFI) {
247
248 for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I)
249 processInstruction(I, MFI);
250 return false;
251}