blob: 36a01bd81dfe4586b68c3453880b352a33ed3d90 [file] [log] [blame]
Richard Sandiford8ee1b772013-11-22 16:58:05 +00001//===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass converts vector operations into scalar operations, in order
11// to expose optimization opportunities on the individual scalar operations.
12// It is mainly intended for targets that do not have vector units, but it
13// may also be useful for revectorizing code to different vector widths.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "scalarizer"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/IR/IRBuilder.h"
20#include "llvm/InstVisitor.h"
21#include "llvm/Pass.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Transforms/Utils/BasicBlockUtils.h"
25
26using namespace llvm;
27
28namespace {
29// Used to store the scattered form of a vector.
30typedef SmallVector<Value *, 8> ValueVector;
31
32// Used to map a vector Value to its scattered form. We use std::map
33// because we want iterators to persist across insertion and because the
34// values are relatively large.
35typedef std::map<Value *, ValueVector> ScatterMap;
36
37// Lists Instructions that have been replaced with scalar implementations,
38// along with a pointer to their scattered forms.
39typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
40
41// Provides a very limited vector-like interface for lazily accessing one
42// component of a scattered vector or vector pointer.
43class Scatterer {
44public:
45 // Scatter V into Size components. If new instructions are needed,
46 // insert them before BBI in BB. If Cache is nonnull, use it to cache
47 // the results.
48 Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
49 ValueVector *cachePtr = 0);
50
51 // Return component I, creating a new Value for it if necessary.
52 Value *operator[](unsigned I);
53
54 // Return the number of components.
55 unsigned size() const { return Size; }
56
57private:
58 BasicBlock *BB;
59 BasicBlock::iterator BBI;
60 Value *V;
61 ValueVector *CachePtr;
62 PointerType *PtrTy;
63 ValueVector Tmp;
64 unsigned Size;
65};
66
67// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
68// called Name that compares X and Y in the same way as FCI.
69struct FCmpSplitter {
70 FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
71 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
72 const Twine &Name) const {
73 return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
74 }
75 FCmpInst &FCI;
76};
77
78// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
79// called Name that compares X and Y in the same way as ICI.
80struct ICmpSplitter {
81 ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
82 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
83 const Twine &Name) const {
84 return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
85 }
86 ICmpInst &ICI;
87};
88
89// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
90// a binary operator like BO called Name with operands X and Y.
91struct BinarySplitter {
92 BinarySplitter(BinaryOperator &bo) : BO(bo) {}
93 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
94 const Twine &Name) const {
95 return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
96 }
97 BinaryOperator &BO;
98};
99
100// GEPSpliiter()(Builder, X, Y, Name) uses Builder to create
101// a single GEP called Name with operands X and Y.
102struct GEPSplitter {
103 GEPSplitter() {}
104 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
105 const Twine &Name) const {
106 return Builder.CreateGEP(Op0, Op1, Name);
107 }
108};
109
110// Information about a load or store that we're scalarizing.
111struct VectorLayout {
112 VectorLayout() : VecTy(0), ElemTy(0), VecAlign(0), ElemSize(0) {}
113
114 // Return the alignment of element I.
115 uint64_t getElemAlign(unsigned I) {
116 return MinAlign(VecAlign, I * ElemSize);
117 }
118
119 // The type of the vector.
120 VectorType *VecTy;
121
122 // The type of each element.
123 Type *ElemTy;
124
125 // The alignment of the vector.
126 uint64_t VecAlign;
127
128 // The size of each element.
129 uint64_t ElemSize;
130};
131
132class Scalarizer : public FunctionPass,
133 public InstVisitor<Scalarizer, bool> {
134public:
135 static char ID;
136
137 Scalarizer() :
138 FunctionPass(ID) {
139 initializeScalarizerPass(*PassRegistry::getPassRegistry());
140 }
141
142 virtual bool doInitialization(Module &M);
143 virtual bool runOnFunction(Function &F);
144
145 // InstVisitor methods. They return true if the instruction was scalarized,
146 // false if nothing changed.
147 bool visitInstruction(Instruction &) { return false; }
148 bool visitSelectInst(SelectInst &SI);
149 bool visitICmpInst(ICmpInst &);
150 bool visitFCmpInst(FCmpInst &);
151 bool visitBinaryOperator(BinaryOperator &);
152 bool visitGetElementPtrInst(GetElementPtrInst &);
153 bool visitCastInst(CastInst &);
154 bool visitBitCastInst(BitCastInst &);
155 bool visitShuffleVectorInst(ShuffleVectorInst &);
156 bool visitPHINode(PHINode &);
157 bool visitLoadInst(LoadInst &);
158 bool visitStoreInst(StoreInst &);
159
160private:
161 Scatterer scatter(Instruction *, Value *);
162 void gather(Instruction *, const ValueVector &);
163 bool canTransferMetadata(unsigned Kind);
164 void transferMetadata(Instruction *, const ValueVector &);
165 bool getVectorLayout(Type *, unsigned, VectorLayout &);
166 bool finish();
167
168 template<typename T> bool splitBinary(Instruction &, const T &);
169
170 ScatterMap Scattered;
171 GatherList Gathered;
172 unsigned ParallelLoopAccessMDKind;
173 const DataLayout *TDL;
174};
175
176char Scalarizer::ID = 0;
177} // end anonymous namespace
178
179// This is disabled by default because having separate loads and stores makes
180// it more likely that the -combiner-alias-analysis limits will be reached.
181static cl::opt<bool> ScalarizeLoadStore
182 ("scalarize-load-store", cl::Hidden, cl::init(false),
183 cl::desc("Allow the scalarizer pass to scalarize loads and store"));
184
185INITIALIZE_PASS(Scalarizer, "scalarizer", "Scalarize vector operations",
186 false, false)
187
188Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
189 ValueVector *cachePtr)
190 : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
191 Type *Ty = V->getType();
192 PtrTy = dyn_cast<PointerType>(Ty);
193 if (PtrTy)
194 Ty = PtrTy->getElementType();
195 Size = Ty->getVectorNumElements();
196 if (!CachePtr)
197 Tmp.resize(Size, 0);
198 else if (CachePtr->empty())
199 CachePtr->resize(Size, 0);
200 else
201 assert(Size == CachePtr->size() && "Inconsistent vector sizes");
202}
203
204// Return component I, creating a new Value for it if necessary.
205Value *Scatterer::operator[](unsigned I) {
206 ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
207 // Try to reuse a previous value.
208 if (CV[I])
209 return CV[I];
210 IRBuilder<> Builder(BB, BBI);
211 if (PtrTy) {
212 if (!CV[0]) {
213 Type *Ty =
214 PointerType::get(PtrTy->getElementType()->getVectorElementType(),
215 PtrTy->getAddressSpace());
216 CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
217 }
218 if (I != 0)
219 CV[I] = Builder.CreateConstGEP1_32(CV[0], I,
220 V->getName() + ".i" + Twine(I));
221 } else {
222 // Search through a chain of InsertElementInsts looking for element I.
223 // Record other elements in the cache. The new V is still suitable
224 // for all uncached indices.
225 for (;;) {
226 InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
227 if (!Insert)
228 break;
229 ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
230 if (!Idx)
231 break;
232 unsigned J = Idx->getZExtValue();
233 CV[J] = Insert->getOperand(1);
234 V = Insert->getOperand(0);
235 if (I == J)
236 return CV[J];
237 }
238 CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
239 V->getName() + ".i" + Twine(I));
240 }
241 return CV[I];
242}
243
244bool Scalarizer::doInitialization(Module &M) {
245 ParallelLoopAccessMDKind =
246 M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
247 return false;
248}
249
250bool Scalarizer::runOnFunction(Function &F) {
251 TDL = getAnalysisIfAvailable<DataLayout>();
252 for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
253 BasicBlock *BB = BBI;
254 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
255 Instruction *I = II;
256 bool Done = visit(I);
257 ++II;
258 if (Done && I->getType()->isVoidTy())
259 I->eraseFromParent();
260 }
261 }
262 return finish();
263}
264
265// Return a scattered form of V that can be accessed by Point. V must be a
266// vector or a pointer to a vector.
267Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
268 if (Argument *VArg = dyn_cast<Argument>(V)) {
269 // Put the scattered form of arguments in the entry block,
270 // so that it can be used everywhere.
271 Function *F = VArg->getParent();
272 BasicBlock *BB = &F->getEntryBlock();
273 return Scatterer(BB, BB->begin(), V, &Scattered[V]);
274 }
275 if (Instruction *VOp = dyn_cast<Instruction>(V)) {
276 // Put the scattered form of an instruction directly after the
277 // instruction.
278 BasicBlock *BB = VOp->getParent();
279 return Scatterer(BB, llvm::next(BasicBlock::iterator(VOp)),
280 V, &Scattered[V]);
281 }
282 // In the fallback case, just put the scattered before Point and
283 // keep the result local to Point.
284 return Scatterer(Point->getParent(), Point, V);
285}
286
287// Replace Op with the gathered form of the components in CV. Defer the
288// deletion of Op and creation of the gathered form to the end of the pass,
289// so that we can avoid creating the gathered form if all uses of Op are
290// replaced with uses of CV.
291void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
292 // Since we're not deleting Op yet, stub out its operands, so that it
293 // doesn't make anything live unnecessarily.
294 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
295 Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
296
297 transferMetadata(Op, CV);
298
299 // If we already have a scattered form of Op (created from ExtractElements
300 // of Op itself), replace them with the new form.
301 ValueVector &SV = Scattered[Op];
302 if (!SV.empty()) {
303 for (unsigned I = 0, E = SV.size(); I != E; ++I) {
304 Instruction *Old = cast<Instruction>(SV[I]);
305 CV[I]->takeName(Old);
306 Old->replaceAllUsesWith(CV[I]);
307 Old->eraseFromParent();
308 }
309 }
310 SV = CV;
311 Gathered.push_back(GatherList::value_type(Op, &SV));
312}
313
314// Return true if it is safe to transfer the given metadata tag from
315// vector to scalar instructions.
316bool Scalarizer::canTransferMetadata(unsigned Tag) {
317 return (Tag == LLVMContext::MD_tbaa
318 || Tag == LLVMContext::MD_fpmath
319 || Tag == LLVMContext::MD_tbaa_struct
320 || Tag == LLVMContext::MD_invariant_load
321 || Tag == ParallelLoopAccessMDKind);
322}
323
324// Transfer metadata from Op to the instructions in CV if it is known
325// to be safe to do so.
326void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
327 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
328 Op->getAllMetadataOtherThanDebugLoc(MDs);
329 for (unsigned I = 0, E = CV.size(); I != E; ++I) {
330 if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
331 for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
332 MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI)
333 if (canTransferMetadata(MI->first))
334 New->setMetadata(MI->first, MI->second);
335 New->setDebugLoc(Op->getDebugLoc());
336 }
337 }
338}
339
340// Try to fill in Layout from Ty, returning true on success. Alignment is
341// the alignment of the vector, or 0 if the ABI default should be used.
342bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
343 VectorLayout &Layout) {
344 if (!TDL)
345 return false;
346
347 // Make sure we're dealing with a vector.
348 Layout.VecTy = dyn_cast<VectorType>(Ty);
349 if (!Layout.VecTy)
350 return false;
351
352 // Check that we're dealing with full-byte elements.
353 Layout.ElemTy = Layout.VecTy->getElementType();
354 if (TDL->getTypeSizeInBits(Layout.ElemTy) !=
355 TDL->getTypeStoreSizeInBits(Layout.ElemTy))
356 return false;
357
358 if (Alignment)
359 Layout.VecAlign = Alignment;
360 else
361 Layout.VecAlign = TDL->getABITypeAlignment(Layout.VecTy);
362 Layout.ElemSize = TDL->getTypeStoreSize(Layout.ElemTy);
363 return true;
364}
365
366// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
367// to create an instruction like I with operands X and Y and name Name.
368template<typename Splitter>
369bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
370 VectorType *VT = dyn_cast<VectorType>(I.getType());
371 if (!VT)
372 return false;
373
374 unsigned NumElems = VT->getNumElements();
375 IRBuilder<> Builder(I.getParent(), &I);
376 Scatterer Op0 = scatter(&I, I.getOperand(0));
377 Scatterer Op1 = scatter(&I, I.getOperand(1));
378 assert(Op0.size() == NumElems && "Mismatched binary operation");
379 assert(Op1.size() == NumElems && "Mismatched binary operation");
380 ValueVector Res;
381 Res.resize(NumElems);
382 for (unsigned Elem = 0; Elem < NumElems; ++Elem)
383 Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
384 I.getName() + ".i" + Twine(Elem));
385 gather(&I, Res);
386 return true;
387}
388
389bool Scalarizer::visitSelectInst(SelectInst &SI) {
390 VectorType *VT = dyn_cast<VectorType>(SI.getType());
391 if (!VT)
392 return false;
393
394 unsigned NumElems = VT->getNumElements();
395 IRBuilder<> Builder(SI.getParent(), &SI);
396 Scatterer Op1 = scatter(&SI, SI.getOperand(1));
397 Scatterer Op2 = scatter(&SI, SI.getOperand(2));
398 assert(Op1.size() == NumElems && "Mismatched select");
399 assert(Op2.size() == NumElems && "Mismatched select");
400 ValueVector Res;
401 Res.resize(NumElems);
402
403 if (SI.getOperand(0)->getType()->isVectorTy()) {
404 Scatterer Op0 = scatter(&SI, SI.getOperand(0));
405 assert(Op0.size() == NumElems && "Mismatched select");
406 for (unsigned I = 0; I < NumElems; ++I)
407 Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
408 SI.getName() + ".i" + Twine(I));
409 } else {
410 Value *Op0 = SI.getOperand(0);
411 for (unsigned I = 0; I < NumElems; ++I)
412 Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
413 SI.getName() + ".i" + Twine(I));
414 }
415 gather(&SI, Res);
416 return true;
417}
418
419bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
420 return splitBinary(ICI, ICmpSplitter(ICI));
421}
422
423bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
424 return splitBinary(FCI, FCmpSplitter(FCI));
425}
426
427bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
428 return splitBinary(BO, BinarySplitter(BO));
429}
430
431bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
432 return splitBinary(GEPI, GEPSplitter());
433}
434
435bool Scalarizer::visitCastInst(CastInst &CI) {
436 VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
437 if (!VT)
438 return false;
439
440 unsigned NumElems = VT->getNumElements();
441 IRBuilder<> Builder(CI.getParent(), &CI);
442 Scatterer Op0 = scatter(&CI, CI.getOperand(0));
443 assert(Op0.size() == NumElems && "Mismatched cast");
444 ValueVector Res;
445 Res.resize(NumElems);
446 for (unsigned I = 0; I < NumElems; ++I)
447 Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
448 CI.getName() + ".i" + Twine(I));
449 gather(&CI, Res);
450 return true;
451}
452
453bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
454 VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
455 VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
456 if (!DstVT || !SrcVT)
457 return false;
458
459 unsigned DstNumElems = DstVT->getNumElements();
460 unsigned SrcNumElems = SrcVT->getNumElements();
461 IRBuilder<> Builder(BCI.getParent(), &BCI);
462 Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
463 ValueVector Res;
464 Res.resize(DstNumElems);
465
466 if (DstNumElems == SrcNumElems) {
467 for (unsigned I = 0; I < DstNumElems; ++I)
468 Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
469 BCI.getName() + ".i" + Twine(I));
470 } else if (DstNumElems > SrcNumElems) {
471 // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
472 // individual elements to the destination.
473 unsigned FanOut = DstNumElems / SrcNumElems;
474 Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
475 unsigned ResI = 0;
476 for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
477 Value *V = Op0[Op0I];
478 Instruction *VI;
479 // Look through any existing bitcasts before converting to <N x t2>.
480 // In the best case, the resulting conversion might be a no-op.
481 while ((VI = dyn_cast<Instruction>(V)) &&
482 VI->getOpcode() == Instruction::BitCast)
483 V = VI->getOperand(0);
484 V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
485 Scatterer Mid = scatter(&BCI, V);
486 for (unsigned MidI = 0; MidI < FanOut; ++MidI)
487 Res[ResI++] = Mid[MidI];
488 }
489 } else {
490 // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
491 unsigned FanIn = SrcNumElems / DstNumElems;
492 Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
493 unsigned Op0I = 0;
494 for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
495 Value *V = UndefValue::get(MidTy);
496 for (unsigned MidI = 0; MidI < FanIn; ++MidI)
497 V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
498 BCI.getName() + ".i" + Twine(ResI)
499 + ".upto" + Twine(MidI));
500 Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
501 BCI.getName() + ".i" + Twine(ResI));
502 }
503 }
504 gather(&BCI, Res);
505 return true;
506}
507
508bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
509 VectorType *VT = dyn_cast<VectorType>(SVI.getType());
510 if (!VT)
511 return false;
512
513 unsigned NumElems = VT->getNumElements();
514 Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
515 Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
516 ValueVector Res;
517 Res.resize(NumElems);
518
519 for (unsigned I = 0; I < NumElems; ++I) {
520 int Selector = SVI.getMaskValue(I);
521 if (Selector < 0)
522 Res[I] = UndefValue::get(VT->getElementType());
523 else if (unsigned(Selector) < Op0.size())
524 Res[I] = Op0[Selector];
525 else
526 Res[I] = Op1[Selector - Op0.size()];
527 }
528 gather(&SVI, Res);
529 return true;
530}
531
532bool Scalarizer::visitPHINode(PHINode &PHI) {
533 VectorType *VT = dyn_cast<VectorType>(PHI.getType());
534 if (!VT)
535 return false;
536
537 unsigned NumElems = VT->getNumElements();
538 IRBuilder<> Builder(PHI.getParent(), &PHI);
539 ValueVector Res;
540 Res.resize(NumElems);
541
542 unsigned NumOps = PHI.getNumOperands();
543 for (unsigned I = 0; I < NumElems; ++I)
544 Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
545 PHI.getName() + ".i" + Twine(I));
546
547 for (unsigned I = 0; I < NumOps; ++I) {
548 Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
549 BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
550 for (unsigned J = 0; J < NumElems; ++J)
551 cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
552 }
553 gather(&PHI, Res);
554 return true;
555}
556
557bool Scalarizer::visitLoadInst(LoadInst &LI) {
558 if (!ScalarizeLoadStore)
559 return false;
560 if (!LI.isSimple())
561 return false;
562
563 VectorLayout Layout;
564 if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout))
565 return false;
566
567 unsigned NumElems = Layout.VecTy->getNumElements();
568 IRBuilder<> Builder(LI.getParent(), &LI);
569 Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
570 ValueVector Res;
571 Res.resize(NumElems);
572
573 for (unsigned I = 0; I < NumElems; ++I)
574 Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
575 LI.getName() + ".i" + Twine(I));
576 gather(&LI, Res);
577 return true;
578}
579
580bool Scalarizer::visitStoreInst(StoreInst &SI) {
581 if (!ScalarizeLoadStore)
582 return false;
583 if (!SI.isSimple())
584 return false;
585
586 VectorLayout Layout;
587 Value *FullValue = SI.getValueOperand();
588 if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout))
589 return false;
590
591 unsigned NumElems = Layout.VecTy->getNumElements();
592 IRBuilder<> Builder(SI.getParent(), &SI);
593 Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
594 Scatterer Val = scatter(&SI, FullValue);
595
596 ValueVector Stores;
597 Stores.resize(NumElems);
598 for (unsigned I = 0; I < NumElems; ++I) {
599 unsigned Align = Layout.getElemAlign(I);
600 Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
601 }
602 transferMetadata(&SI, Stores);
603 return true;
604}
605
606// Delete the instructions that we scalarized. If a full vector result
607// is still needed, recreate it using InsertElements.
608bool Scalarizer::finish() {
609 if (Gathered.empty())
610 return false;
611 for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
612 GMI != GME; ++GMI) {
613 Instruction *Op = GMI->first;
614 ValueVector &CV = *GMI->second;
615 if (!Op->use_empty()) {
616 // The value is still needed, so recreate it using a series of
617 // InsertElements.
618 Type *Ty = Op->getType();
619 Value *Res = UndefValue::get(Ty);
620 unsigned Count = Ty->getVectorNumElements();
621 IRBuilder<> Builder(Op->getParent(), Op);
622 for (unsigned I = 0; I < Count; ++I)
623 Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
624 Op->getName() + ".upto" + Twine(I));
625 Res->takeName(Op);
626 Op->replaceAllUsesWith(Res);
627 }
628 Op->eraseFromParent();
629 }
630 Gathered.clear();
631 Scattered.clear();
632 return true;
633}
634
635FunctionPass *llvm::createScalarizerPass() {
636 return new Scalarizer();
637}