Richard Sandiford | 8ee1b77 | 2013-11-22 16:58:05 +0000 | [diff] [blame^] | 1 | //===--- Scalarizer.cpp - Scalarize vector operations ---------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This pass converts vector operations into scalar operations, in order |
| 11 | // to expose optimization opportunities on the individual scalar operations. |
| 12 | // It is mainly intended for targets that do not have vector units, but it |
| 13 | // may also be useful for revectorizing code to different vector widths. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #define DEBUG_TYPE "scalarizer" |
| 18 | #include "llvm/ADT/STLExtras.h" |
| 19 | #include "llvm/IR/IRBuilder.h" |
| 20 | #include "llvm/InstVisitor.h" |
| 21 | #include "llvm/Pass.h" |
| 22 | #include "llvm/Support/CommandLine.h" |
| 23 | #include "llvm/Transforms/Scalar.h" |
| 24 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 25 | |
| 26 | using namespace llvm; |
| 27 | |
| 28 | namespace { |
| 29 | // Used to store the scattered form of a vector. |
| 30 | typedef SmallVector<Value *, 8> ValueVector; |
| 31 | |
| 32 | // Used to map a vector Value to its scattered form. We use std::map |
| 33 | // because we want iterators to persist across insertion and because the |
| 34 | // values are relatively large. |
| 35 | typedef std::map<Value *, ValueVector> ScatterMap; |
| 36 | |
| 37 | // Lists Instructions that have been replaced with scalar implementations, |
| 38 | // along with a pointer to their scattered forms. |
| 39 | typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList; |
| 40 | |
| 41 | // Provides a very limited vector-like interface for lazily accessing one |
| 42 | // component of a scattered vector or vector pointer. |
| 43 | class Scatterer { |
| 44 | public: |
| 45 | // Scatter V into Size components. If new instructions are needed, |
| 46 | // insert them before BBI in BB. If Cache is nonnull, use it to cache |
| 47 | // the results. |
| 48 | Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, |
| 49 | ValueVector *cachePtr = 0); |
| 50 | |
| 51 | // Return component I, creating a new Value for it if necessary. |
| 52 | Value *operator[](unsigned I); |
| 53 | |
| 54 | // Return the number of components. |
| 55 | unsigned size() const { return Size; } |
| 56 | |
| 57 | private: |
| 58 | BasicBlock *BB; |
| 59 | BasicBlock::iterator BBI; |
| 60 | Value *V; |
| 61 | ValueVector *CachePtr; |
| 62 | PointerType *PtrTy; |
| 63 | ValueVector Tmp; |
| 64 | unsigned Size; |
| 65 | }; |
| 66 | |
| 67 | // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp |
| 68 | // called Name that compares X and Y in the same way as FCI. |
| 69 | struct FCmpSplitter { |
| 70 | FCmpSplitter(FCmpInst &fci) : FCI(fci) {} |
| 71 | Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| 72 | const Twine &Name) const { |
| 73 | return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name); |
| 74 | } |
| 75 | FCmpInst &FCI; |
| 76 | }; |
| 77 | |
| 78 | // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp |
| 79 | // called Name that compares X and Y in the same way as ICI. |
| 80 | struct ICmpSplitter { |
| 81 | ICmpSplitter(ICmpInst &ici) : ICI(ici) {} |
| 82 | Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| 83 | const Twine &Name) const { |
| 84 | return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name); |
| 85 | } |
| 86 | ICmpInst &ICI; |
| 87 | }; |
| 88 | |
| 89 | // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create |
| 90 | // a binary operator like BO called Name with operands X and Y. |
| 91 | struct BinarySplitter { |
| 92 | BinarySplitter(BinaryOperator &bo) : BO(bo) {} |
| 93 | Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| 94 | const Twine &Name) const { |
| 95 | return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name); |
| 96 | } |
| 97 | BinaryOperator &BO; |
| 98 | }; |
| 99 | |
| 100 | // GEPSpliiter()(Builder, X, Y, Name) uses Builder to create |
| 101 | // a single GEP called Name with operands X and Y. |
| 102 | struct GEPSplitter { |
| 103 | GEPSplitter() {} |
| 104 | Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| 105 | const Twine &Name) const { |
| 106 | return Builder.CreateGEP(Op0, Op1, Name); |
| 107 | } |
| 108 | }; |
| 109 | |
| 110 | // Information about a load or store that we're scalarizing. |
| 111 | struct VectorLayout { |
| 112 | VectorLayout() : VecTy(0), ElemTy(0), VecAlign(0), ElemSize(0) {} |
| 113 | |
| 114 | // Return the alignment of element I. |
| 115 | uint64_t getElemAlign(unsigned I) { |
| 116 | return MinAlign(VecAlign, I * ElemSize); |
| 117 | } |
| 118 | |
| 119 | // The type of the vector. |
| 120 | VectorType *VecTy; |
| 121 | |
| 122 | // The type of each element. |
| 123 | Type *ElemTy; |
| 124 | |
| 125 | // The alignment of the vector. |
| 126 | uint64_t VecAlign; |
| 127 | |
| 128 | // The size of each element. |
| 129 | uint64_t ElemSize; |
| 130 | }; |
| 131 | |
| 132 | class Scalarizer : public FunctionPass, |
| 133 | public InstVisitor<Scalarizer, bool> { |
| 134 | public: |
| 135 | static char ID; |
| 136 | |
| 137 | Scalarizer() : |
| 138 | FunctionPass(ID) { |
| 139 | initializeScalarizerPass(*PassRegistry::getPassRegistry()); |
| 140 | } |
| 141 | |
| 142 | virtual bool doInitialization(Module &M); |
| 143 | virtual bool runOnFunction(Function &F); |
| 144 | |
| 145 | // InstVisitor methods. They return true if the instruction was scalarized, |
| 146 | // false if nothing changed. |
| 147 | bool visitInstruction(Instruction &) { return false; } |
| 148 | bool visitSelectInst(SelectInst &SI); |
| 149 | bool visitICmpInst(ICmpInst &); |
| 150 | bool visitFCmpInst(FCmpInst &); |
| 151 | bool visitBinaryOperator(BinaryOperator &); |
| 152 | bool visitGetElementPtrInst(GetElementPtrInst &); |
| 153 | bool visitCastInst(CastInst &); |
| 154 | bool visitBitCastInst(BitCastInst &); |
| 155 | bool visitShuffleVectorInst(ShuffleVectorInst &); |
| 156 | bool visitPHINode(PHINode &); |
| 157 | bool visitLoadInst(LoadInst &); |
| 158 | bool visitStoreInst(StoreInst &); |
| 159 | |
| 160 | private: |
| 161 | Scatterer scatter(Instruction *, Value *); |
| 162 | void gather(Instruction *, const ValueVector &); |
| 163 | bool canTransferMetadata(unsigned Kind); |
| 164 | void transferMetadata(Instruction *, const ValueVector &); |
| 165 | bool getVectorLayout(Type *, unsigned, VectorLayout &); |
| 166 | bool finish(); |
| 167 | |
| 168 | template<typename T> bool splitBinary(Instruction &, const T &); |
| 169 | |
| 170 | ScatterMap Scattered; |
| 171 | GatherList Gathered; |
| 172 | unsigned ParallelLoopAccessMDKind; |
| 173 | const DataLayout *TDL; |
| 174 | }; |
| 175 | |
| 176 | char Scalarizer::ID = 0; |
| 177 | } // end anonymous namespace |
| 178 | |
| 179 | // This is disabled by default because having separate loads and stores makes |
| 180 | // it more likely that the -combiner-alias-analysis limits will be reached. |
| 181 | static cl::opt<bool> ScalarizeLoadStore |
| 182 | ("scalarize-load-store", cl::Hidden, cl::init(false), |
| 183 | cl::desc("Allow the scalarizer pass to scalarize loads and store")); |
| 184 | |
| 185 | INITIALIZE_PASS(Scalarizer, "scalarizer", "Scalarize vector operations", |
| 186 | false, false) |
| 187 | |
| 188 | Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, |
| 189 | ValueVector *cachePtr) |
| 190 | : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) { |
| 191 | Type *Ty = V->getType(); |
| 192 | PtrTy = dyn_cast<PointerType>(Ty); |
| 193 | if (PtrTy) |
| 194 | Ty = PtrTy->getElementType(); |
| 195 | Size = Ty->getVectorNumElements(); |
| 196 | if (!CachePtr) |
| 197 | Tmp.resize(Size, 0); |
| 198 | else if (CachePtr->empty()) |
| 199 | CachePtr->resize(Size, 0); |
| 200 | else |
| 201 | assert(Size == CachePtr->size() && "Inconsistent vector sizes"); |
| 202 | } |
| 203 | |
| 204 | // Return component I, creating a new Value for it if necessary. |
| 205 | Value *Scatterer::operator[](unsigned I) { |
| 206 | ValueVector &CV = (CachePtr ? *CachePtr : Tmp); |
| 207 | // Try to reuse a previous value. |
| 208 | if (CV[I]) |
| 209 | return CV[I]; |
| 210 | IRBuilder<> Builder(BB, BBI); |
| 211 | if (PtrTy) { |
| 212 | if (!CV[0]) { |
| 213 | Type *Ty = |
| 214 | PointerType::get(PtrTy->getElementType()->getVectorElementType(), |
| 215 | PtrTy->getAddressSpace()); |
| 216 | CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0"); |
| 217 | } |
| 218 | if (I != 0) |
| 219 | CV[I] = Builder.CreateConstGEP1_32(CV[0], I, |
| 220 | V->getName() + ".i" + Twine(I)); |
| 221 | } else { |
| 222 | // Search through a chain of InsertElementInsts looking for element I. |
| 223 | // Record other elements in the cache. The new V is still suitable |
| 224 | // for all uncached indices. |
| 225 | for (;;) { |
| 226 | InsertElementInst *Insert = dyn_cast<InsertElementInst>(V); |
| 227 | if (!Insert) |
| 228 | break; |
| 229 | ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2)); |
| 230 | if (!Idx) |
| 231 | break; |
| 232 | unsigned J = Idx->getZExtValue(); |
| 233 | CV[J] = Insert->getOperand(1); |
| 234 | V = Insert->getOperand(0); |
| 235 | if (I == J) |
| 236 | return CV[J]; |
| 237 | } |
| 238 | CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I), |
| 239 | V->getName() + ".i" + Twine(I)); |
| 240 | } |
| 241 | return CV[I]; |
| 242 | } |
| 243 | |
| 244 | bool Scalarizer::doInitialization(Module &M) { |
| 245 | ParallelLoopAccessMDKind = |
| 246 | M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); |
| 247 | return false; |
| 248 | } |
| 249 | |
| 250 | bool Scalarizer::runOnFunction(Function &F) { |
| 251 | TDL = getAnalysisIfAvailable<DataLayout>(); |
| 252 | for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { |
| 253 | BasicBlock *BB = BBI; |
| 254 | for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { |
| 255 | Instruction *I = II; |
| 256 | bool Done = visit(I); |
| 257 | ++II; |
| 258 | if (Done && I->getType()->isVoidTy()) |
| 259 | I->eraseFromParent(); |
| 260 | } |
| 261 | } |
| 262 | return finish(); |
| 263 | } |
| 264 | |
| 265 | // Return a scattered form of V that can be accessed by Point. V must be a |
| 266 | // vector or a pointer to a vector. |
| 267 | Scatterer Scalarizer::scatter(Instruction *Point, Value *V) { |
| 268 | if (Argument *VArg = dyn_cast<Argument>(V)) { |
| 269 | // Put the scattered form of arguments in the entry block, |
| 270 | // so that it can be used everywhere. |
| 271 | Function *F = VArg->getParent(); |
| 272 | BasicBlock *BB = &F->getEntryBlock(); |
| 273 | return Scatterer(BB, BB->begin(), V, &Scattered[V]); |
| 274 | } |
| 275 | if (Instruction *VOp = dyn_cast<Instruction>(V)) { |
| 276 | // Put the scattered form of an instruction directly after the |
| 277 | // instruction. |
| 278 | BasicBlock *BB = VOp->getParent(); |
| 279 | return Scatterer(BB, llvm::next(BasicBlock::iterator(VOp)), |
| 280 | V, &Scattered[V]); |
| 281 | } |
| 282 | // In the fallback case, just put the scattered before Point and |
| 283 | // keep the result local to Point. |
| 284 | return Scatterer(Point->getParent(), Point, V); |
| 285 | } |
| 286 | |
| 287 | // Replace Op with the gathered form of the components in CV. Defer the |
| 288 | // deletion of Op and creation of the gathered form to the end of the pass, |
| 289 | // so that we can avoid creating the gathered form if all uses of Op are |
| 290 | // replaced with uses of CV. |
| 291 | void Scalarizer::gather(Instruction *Op, const ValueVector &CV) { |
| 292 | // Since we're not deleting Op yet, stub out its operands, so that it |
| 293 | // doesn't make anything live unnecessarily. |
| 294 | for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) |
| 295 | Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType())); |
| 296 | |
| 297 | transferMetadata(Op, CV); |
| 298 | |
| 299 | // If we already have a scattered form of Op (created from ExtractElements |
| 300 | // of Op itself), replace them with the new form. |
| 301 | ValueVector &SV = Scattered[Op]; |
| 302 | if (!SV.empty()) { |
| 303 | for (unsigned I = 0, E = SV.size(); I != E; ++I) { |
| 304 | Instruction *Old = cast<Instruction>(SV[I]); |
| 305 | CV[I]->takeName(Old); |
| 306 | Old->replaceAllUsesWith(CV[I]); |
| 307 | Old->eraseFromParent(); |
| 308 | } |
| 309 | } |
| 310 | SV = CV; |
| 311 | Gathered.push_back(GatherList::value_type(Op, &SV)); |
| 312 | } |
| 313 | |
| 314 | // Return true if it is safe to transfer the given metadata tag from |
| 315 | // vector to scalar instructions. |
| 316 | bool Scalarizer::canTransferMetadata(unsigned Tag) { |
| 317 | return (Tag == LLVMContext::MD_tbaa |
| 318 | || Tag == LLVMContext::MD_fpmath |
| 319 | || Tag == LLVMContext::MD_tbaa_struct |
| 320 | || Tag == LLVMContext::MD_invariant_load |
| 321 | || Tag == ParallelLoopAccessMDKind); |
| 322 | } |
| 323 | |
| 324 | // Transfer metadata from Op to the instructions in CV if it is known |
| 325 | // to be safe to do so. |
| 326 | void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) { |
| 327 | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| 328 | Op->getAllMetadataOtherThanDebugLoc(MDs); |
| 329 | for (unsigned I = 0, E = CV.size(); I != E; ++I) { |
| 330 | if (Instruction *New = dyn_cast<Instruction>(CV[I])) { |
| 331 | for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator |
| 332 | MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) |
| 333 | if (canTransferMetadata(MI->first)) |
| 334 | New->setMetadata(MI->first, MI->second); |
| 335 | New->setDebugLoc(Op->getDebugLoc()); |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | // Try to fill in Layout from Ty, returning true on success. Alignment is |
| 341 | // the alignment of the vector, or 0 if the ABI default should be used. |
| 342 | bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment, |
| 343 | VectorLayout &Layout) { |
| 344 | if (!TDL) |
| 345 | return false; |
| 346 | |
| 347 | // Make sure we're dealing with a vector. |
| 348 | Layout.VecTy = dyn_cast<VectorType>(Ty); |
| 349 | if (!Layout.VecTy) |
| 350 | return false; |
| 351 | |
| 352 | // Check that we're dealing with full-byte elements. |
| 353 | Layout.ElemTy = Layout.VecTy->getElementType(); |
| 354 | if (TDL->getTypeSizeInBits(Layout.ElemTy) != |
| 355 | TDL->getTypeStoreSizeInBits(Layout.ElemTy)) |
| 356 | return false; |
| 357 | |
| 358 | if (Alignment) |
| 359 | Layout.VecAlign = Alignment; |
| 360 | else |
| 361 | Layout.VecAlign = TDL->getABITypeAlignment(Layout.VecTy); |
| 362 | Layout.ElemSize = TDL->getTypeStoreSize(Layout.ElemTy); |
| 363 | return true; |
| 364 | } |
| 365 | |
| 366 | // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) |
| 367 | // to create an instruction like I with operands X and Y and name Name. |
| 368 | template<typename Splitter> |
| 369 | bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) { |
| 370 | VectorType *VT = dyn_cast<VectorType>(I.getType()); |
| 371 | if (!VT) |
| 372 | return false; |
| 373 | |
| 374 | unsigned NumElems = VT->getNumElements(); |
| 375 | IRBuilder<> Builder(I.getParent(), &I); |
| 376 | Scatterer Op0 = scatter(&I, I.getOperand(0)); |
| 377 | Scatterer Op1 = scatter(&I, I.getOperand(1)); |
| 378 | assert(Op0.size() == NumElems && "Mismatched binary operation"); |
| 379 | assert(Op1.size() == NumElems && "Mismatched binary operation"); |
| 380 | ValueVector Res; |
| 381 | Res.resize(NumElems); |
| 382 | for (unsigned Elem = 0; Elem < NumElems; ++Elem) |
| 383 | Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem], |
| 384 | I.getName() + ".i" + Twine(Elem)); |
| 385 | gather(&I, Res); |
| 386 | return true; |
| 387 | } |
| 388 | |
| 389 | bool Scalarizer::visitSelectInst(SelectInst &SI) { |
| 390 | VectorType *VT = dyn_cast<VectorType>(SI.getType()); |
| 391 | if (!VT) |
| 392 | return false; |
| 393 | |
| 394 | unsigned NumElems = VT->getNumElements(); |
| 395 | IRBuilder<> Builder(SI.getParent(), &SI); |
| 396 | Scatterer Op1 = scatter(&SI, SI.getOperand(1)); |
| 397 | Scatterer Op2 = scatter(&SI, SI.getOperand(2)); |
| 398 | assert(Op1.size() == NumElems && "Mismatched select"); |
| 399 | assert(Op2.size() == NumElems && "Mismatched select"); |
| 400 | ValueVector Res; |
| 401 | Res.resize(NumElems); |
| 402 | |
| 403 | if (SI.getOperand(0)->getType()->isVectorTy()) { |
| 404 | Scatterer Op0 = scatter(&SI, SI.getOperand(0)); |
| 405 | assert(Op0.size() == NumElems && "Mismatched select"); |
| 406 | for (unsigned I = 0; I < NumElems; ++I) |
| 407 | Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I], |
| 408 | SI.getName() + ".i" + Twine(I)); |
| 409 | } else { |
| 410 | Value *Op0 = SI.getOperand(0); |
| 411 | for (unsigned I = 0; I < NumElems; ++I) |
| 412 | Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I], |
| 413 | SI.getName() + ".i" + Twine(I)); |
| 414 | } |
| 415 | gather(&SI, Res); |
| 416 | return true; |
| 417 | } |
| 418 | |
| 419 | bool Scalarizer::visitICmpInst(ICmpInst &ICI) { |
| 420 | return splitBinary(ICI, ICmpSplitter(ICI)); |
| 421 | } |
| 422 | |
| 423 | bool Scalarizer::visitFCmpInst(FCmpInst &FCI) { |
| 424 | return splitBinary(FCI, FCmpSplitter(FCI)); |
| 425 | } |
| 426 | |
| 427 | bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) { |
| 428 | return splitBinary(BO, BinarySplitter(BO)); |
| 429 | } |
| 430 | |
| 431 | bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 432 | return splitBinary(GEPI, GEPSplitter()); |
| 433 | } |
| 434 | |
| 435 | bool Scalarizer::visitCastInst(CastInst &CI) { |
| 436 | VectorType *VT = dyn_cast<VectorType>(CI.getDestTy()); |
| 437 | if (!VT) |
| 438 | return false; |
| 439 | |
| 440 | unsigned NumElems = VT->getNumElements(); |
| 441 | IRBuilder<> Builder(CI.getParent(), &CI); |
| 442 | Scatterer Op0 = scatter(&CI, CI.getOperand(0)); |
| 443 | assert(Op0.size() == NumElems && "Mismatched cast"); |
| 444 | ValueVector Res; |
| 445 | Res.resize(NumElems); |
| 446 | for (unsigned I = 0; I < NumElems; ++I) |
| 447 | Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(), |
| 448 | CI.getName() + ".i" + Twine(I)); |
| 449 | gather(&CI, Res); |
| 450 | return true; |
| 451 | } |
| 452 | |
| 453 | bool Scalarizer::visitBitCastInst(BitCastInst &BCI) { |
| 454 | VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy()); |
| 455 | VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy()); |
| 456 | if (!DstVT || !SrcVT) |
| 457 | return false; |
| 458 | |
| 459 | unsigned DstNumElems = DstVT->getNumElements(); |
| 460 | unsigned SrcNumElems = SrcVT->getNumElements(); |
| 461 | IRBuilder<> Builder(BCI.getParent(), &BCI); |
| 462 | Scatterer Op0 = scatter(&BCI, BCI.getOperand(0)); |
| 463 | ValueVector Res; |
| 464 | Res.resize(DstNumElems); |
| 465 | |
| 466 | if (DstNumElems == SrcNumElems) { |
| 467 | for (unsigned I = 0; I < DstNumElems; ++I) |
| 468 | Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(), |
| 469 | BCI.getName() + ".i" + Twine(I)); |
| 470 | } else if (DstNumElems > SrcNumElems) { |
| 471 | // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the |
| 472 | // individual elements to the destination. |
| 473 | unsigned FanOut = DstNumElems / SrcNumElems; |
| 474 | Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut); |
| 475 | unsigned ResI = 0; |
| 476 | for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) { |
| 477 | Value *V = Op0[Op0I]; |
| 478 | Instruction *VI; |
| 479 | // Look through any existing bitcasts before converting to <N x t2>. |
| 480 | // In the best case, the resulting conversion might be a no-op. |
| 481 | while ((VI = dyn_cast<Instruction>(V)) && |
| 482 | VI->getOpcode() == Instruction::BitCast) |
| 483 | V = VI->getOperand(0); |
| 484 | V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast"); |
| 485 | Scatterer Mid = scatter(&BCI, V); |
| 486 | for (unsigned MidI = 0; MidI < FanOut; ++MidI) |
| 487 | Res[ResI++] = Mid[MidI]; |
| 488 | } |
| 489 | } else { |
| 490 | // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2. |
| 491 | unsigned FanIn = SrcNumElems / DstNumElems; |
| 492 | Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn); |
| 493 | unsigned Op0I = 0; |
| 494 | for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) { |
| 495 | Value *V = UndefValue::get(MidTy); |
| 496 | for (unsigned MidI = 0; MidI < FanIn; ++MidI) |
| 497 | V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI), |
| 498 | BCI.getName() + ".i" + Twine(ResI) |
| 499 | + ".upto" + Twine(MidI)); |
| 500 | Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(), |
| 501 | BCI.getName() + ".i" + Twine(ResI)); |
| 502 | } |
| 503 | } |
| 504 | gather(&BCI, Res); |
| 505 | return true; |
| 506 | } |
| 507 | |
| 508 | bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) { |
| 509 | VectorType *VT = dyn_cast<VectorType>(SVI.getType()); |
| 510 | if (!VT) |
| 511 | return false; |
| 512 | |
| 513 | unsigned NumElems = VT->getNumElements(); |
| 514 | Scatterer Op0 = scatter(&SVI, SVI.getOperand(0)); |
| 515 | Scatterer Op1 = scatter(&SVI, SVI.getOperand(1)); |
| 516 | ValueVector Res; |
| 517 | Res.resize(NumElems); |
| 518 | |
| 519 | for (unsigned I = 0; I < NumElems; ++I) { |
| 520 | int Selector = SVI.getMaskValue(I); |
| 521 | if (Selector < 0) |
| 522 | Res[I] = UndefValue::get(VT->getElementType()); |
| 523 | else if (unsigned(Selector) < Op0.size()) |
| 524 | Res[I] = Op0[Selector]; |
| 525 | else |
| 526 | Res[I] = Op1[Selector - Op0.size()]; |
| 527 | } |
| 528 | gather(&SVI, Res); |
| 529 | return true; |
| 530 | } |
| 531 | |
| 532 | bool Scalarizer::visitPHINode(PHINode &PHI) { |
| 533 | VectorType *VT = dyn_cast<VectorType>(PHI.getType()); |
| 534 | if (!VT) |
| 535 | return false; |
| 536 | |
| 537 | unsigned NumElems = VT->getNumElements(); |
| 538 | IRBuilder<> Builder(PHI.getParent(), &PHI); |
| 539 | ValueVector Res; |
| 540 | Res.resize(NumElems); |
| 541 | |
| 542 | unsigned NumOps = PHI.getNumOperands(); |
| 543 | for (unsigned I = 0; I < NumElems; ++I) |
| 544 | Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps, |
| 545 | PHI.getName() + ".i" + Twine(I)); |
| 546 | |
| 547 | for (unsigned I = 0; I < NumOps; ++I) { |
| 548 | Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I)); |
| 549 | BasicBlock *IncomingBlock = PHI.getIncomingBlock(I); |
| 550 | for (unsigned J = 0; J < NumElems; ++J) |
| 551 | cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock); |
| 552 | } |
| 553 | gather(&PHI, Res); |
| 554 | return true; |
| 555 | } |
| 556 | |
| 557 | bool Scalarizer::visitLoadInst(LoadInst &LI) { |
| 558 | if (!ScalarizeLoadStore) |
| 559 | return false; |
| 560 | if (!LI.isSimple()) |
| 561 | return false; |
| 562 | |
| 563 | VectorLayout Layout; |
| 564 | if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout)) |
| 565 | return false; |
| 566 | |
| 567 | unsigned NumElems = Layout.VecTy->getNumElements(); |
| 568 | IRBuilder<> Builder(LI.getParent(), &LI); |
| 569 | Scatterer Ptr = scatter(&LI, LI.getPointerOperand()); |
| 570 | ValueVector Res; |
| 571 | Res.resize(NumElems); |
| 572 | |
| 573 | for (unsigned I = 0; I < NumElems; ++I) |
| 574 | Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I), |
| 575 | LI.getName() + ".i" + Twine(I)); |
| 576 | gather(&LI, Res); |
| 577 | return true; |
| 578 | } |
| 579 | |
| 580 | bool Scalarizer::visitStoreInst(StoreInst &SI) { |
| 581 | if (!ScalarizeLoadStore) |
| 582 | return false; |
| 583 | if (!SI.isSimple()) |
| 584 | return false; |
| 585 | |
| 586 | VectorLayout Layout; |
| 587 | Value *FullValue = SI.getValueOperand(); |
| 588 | if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout)) |
| 589 | return false; |
| 590 | |
| 591 | unsigned NumElems = Layout.VecTy->getNumElements(); |
| 592 | IRBuilder<> Builder(SI.getParent(), &SI); |
| 593 | Scatterer Ptr = scatter(&SI, SI.getPointerOperand()); |
| 594 | Scatterer Val = scatter(&SI, FullValue); |
| 595 | |
| 596 | ValueVector Stores; |
| 597 | Stores.resize(NumElems); |
| 598 | for (unsigned I = 0; I < NumElems; ++I) { |
| 599 | unsigned Align = Layout.getElemAlign(I); |
| 600 | Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align); |
| 601 | } |
| 602 | transferMetadata(&SI, Stores); |
| 603 | return true; |
| 604 | } |
| 605 | |
| 606 | // Delete the instructions that we scalarized. If a full vector result |
| 607 | // is still needed, recreate it using InsertElements. |
| 608 | bool Scalarizer::finish() { |
| 609 | if (Gathered.empty()) |
| 610 | return false; |
| 611 | for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end(); |
| 612 | GMI != GME; ++GMI) { |
| 613 | Instruction *Op = GMI->first; |
| 614 | ValueVector &CV = *GMI->second; |
| 615 | if (!Op->use_empty()) { |
| 616 | // The value is still needed, so recreate it using a series of |
| 617 | // InsertElements. |
| 618 | Type *Ty = Op->getType(); |
| 619 | Value *Res = UndefValue::get(Ty); |
| 620 | unsigned Count = Ty->getVectorNumElements(); |
| 621 | IRBuilder<> Builder(Op->getParent(), Op); |
| 622 | for (unsigned I = 0; I < Count; ++I) |
| 623 | Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I), |
| 624 | Op->getName() + ".upto" + Twine(I)); |
| 625 | Res->takeName(Op); |
| 626 | Op->replaceAllUsesWith(Res); |
| 627 | } |
| 628 | Op->eraseFromParent(); |
| 629 | } |
| 630 | Gathered.clear(); |
| 631 | Scattered.clear(); |
| 632 | return true; |
| 633 | } |
| 634 | |
| 635 | FunctionPass *llvm::createScalarizerPass() { |
| 636 | return new Scalarizer(); |
| 637 | } |