Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1 | /* |
| 2 | * kmp_tasking.c -- OpenMP 3.0 tasking support. |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 3 | * $Revision: 42852 $ |
| 4 | * $Date: 2013-12-04 10:50:49 -0600 (Wed, 04 Dec 2013) $ |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 5 | */ |
| 6 | |
| 7 | |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The LLVM Compiler Infrastructure |
| 11 | // |
| 12 | // This file is dual licensed under the MIT and the University of Illinois Open |
| 13 | // Source Licenses. See LICENSE.txt for details. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | |
| 18 | #include "kmp.h" |
| 19 | #include "kmp_i18n.h" |
| 20 | #include "kmp_itt.h" |
| 21 | |
| 22 | |
| 23 | #if OMP_30_ENABLED |
| 24 | |
| 25 | /* ------------------------------------------------------------------------ */ |
| 26 | /* ------------------------------------------------------------------------ */ |
| 27 | |
| 28 | |
| 29 | /* forward declaration */ |
| 30 | static void __kmp_enable_tasking( kmp_task_team_t *task_team, kmp_info_t *this_thr ); |
| 31 | static void __kmp_alloc_task_deque( kmp_info_t *thread, kmp_thread_data_t *thread_data ); |
| 32 | static int __kmp_realloc_task_threads_data( kmp_info_t *thread, kmp_task_team_t *task_team ); |
| 33 | |
| 34 | #ifndef KMP_DEBUG |
| 35 | # define __kmp_static_delay( arg ) /* nothing to do */ |
| 36 | #else |
| 37 | |
| 38 | static void |
| 39 | __kmp_static_delay( int arg ) |
| 40 | { |
| 41 | /* Work around weird code-gen bug that causes assert to trip */ |
| 42 | # if KMP_ARCH_X86_64 && KMP_OS_LINUX |
| 43 | KMP_ASSERT( arg != 0 ); |
| 44 | # else |
| 45 | KMP_ASSERT( arg >= 0 ); |
| 46 | # endif |
| 47 | } |
| 48 | #endif /* KMP_DEBUG */ |
| 49 | |
| 50 | static void |
| 51 | __kmp_static_yield( int arg ) |
| 52 | { |
| 53 | __kmp_yield( arg ); |
| 54 | } |
| 55 | |
| 56 | #ifdef BUILD_TIED_TASK_STACK |
| 57 | |
| 58 | //--------------------------------------------------------------------------- |
| 59 | // __kmp_trace_task_stack: print the tied tasks from the task stack in order |
| 60 | // from top do bottom |
| 61 | // |
| 62 | // gtid: global thread identifier for thread containing stack |
| 63 | // thread_data: thread data for task team thread containing stack |
| 64 | // threshold: value above which the trace statement triggers |
| 65 | // location: string identifying call site of this function (for trace) |
| 66 | |
| 67 | static void |
| 68 | __kmp_trace_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data, int threshold, char *location ) |
| 69 | { |
| 70 | kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks; |
| 71 | kmp_taskdata_t **stack_top = task_stack -> ts_top; |
| 72 | kmp_int32 entries = task_stack -> ts_entries; |
| 73 | kmp_taskdata_t *tied_task; |
| 74 | |
| 75 | KA_TRACE(threshold, ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " |
| 76 | "first_block = %p, stack_top = %p \n", |
| 77 | location, gtid, entries, task_stack->ts_first_block, stack_top ) ); |
| 78 | |
| 79 | KMP_DEBUG_ASSERT( stack_top != NULL ); |
| 80 | KMP_DEBUG_ASSERT( entries > 0 ); |
| 81 | |
| 82 | while ( entries != 0 ) |
| 83 | { |
| 84 | KMP_DEBUG_ASSERT( stack_top != & task_stack->ts_first_block.sb_block[0] ); |
| 85 | // fix up ts_top if we need to pop from previous block |
| 86 | if ( entries & TASK_STACK_INDEX_MASK == 0 ) |
| 87 | { |
| 88 | kmp_stack_block_t *stack_block = (kmp_stack_block_t *) (stack_top) ; |
| 89 | |
| 90 | stack_block = stack_block -> sb_prev; |
| 91 | stack_top = & stack_block -> sb_block[TASK_STACK_BLOCK_SIZE]; |
| 92 | } |
| 93 | |
| 94 | // finish bookkeeping |
| 95 | stack_top--; |
| 96 | entries--; |
| 97 | |
| 98 | tied_task = * stack_top; |
| 99 | |
| 100 | KMP_DEBUG_ASSERT( tied_task != NULL ); |
| 101 | KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED ); |
| 102 | |
| 103 | KA_TRACE(threshold, ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " |
| 104 | "stack_top=%p, tied_task=%p\n", |
| 105 | location, gtid, entries, stack_top, tied_task ) ); |
| 106 | } |
| 107 | KMP_DEBUG_ASSERT( stack_top == & task_stack->ts_first_block.sb_block[0] ); |
| 108 | |
| 109 | KA_TRACE(threshold, ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", |
| 110 | location, gtid ) ); |
| 111 | } |
| 112 | |
| 113 | //--------------------------------------------------------------------------- |
| 114 | // __kmp_init_task_stack: initialize the task stack for the first time |
| 115 | // after a thread_data structure is created. |
| 116 | // It should not be necessary to do this again (assuming the stack works). |
| 117 | // |
| 118 | // gtid: global thread identifier of calling thread |
| 119 | // thread_data: thread data for task team thread containing stack |
| 120 | |
| 121 | static void |
| 122 | __kmp_init_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data ) |
| 123 | { |
| 124 | kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks; |
| 125 | kmp_stack_block_t *first_block; |
| 126 | |
| 127 | // set up the first block of the stack |
| 128 | first_block = & task_stack -> ts_first_block; |
| 129 | task_stack -> ts_top = (kmp_taskdata_t **) first_block; |
| 130 | memset( (void *) first_block, '\0', TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); |
| 131 | |
| 132 | // initialize the stack to be empty |
| 133 | task_stack -> ts_entries = TASK_STACK_EMPTY; |
| 134 | first_block -> sb_next = NULL; |
| 135 | first_block -> sb_prev = NULL; |
| 136 | } |
| 137 | |
| 138 | |
| 139 | //--------------------------------------------------------------------------- |
| 140 | // __kmp_free_task_stack: free the task stack when thread_data is destroyed. |
| 141 | // |
| 142 | // gtid: global thread identifier for calling thread |
| 143 | // thread_data: thread info for thread containing stack |
| 144 | |
| 145 | static void |
| 146 | __kmp_free_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data ) |
| 147 | { |
| 148 | kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks; |
| 149 | kmp_stack_block_t *stack_block = & task_stack -> ts_first_block; |
| 150 | |
| 151 | KMP_DEBUG_ASSERT( task_stack -> ts_entries == TASK_STACK_EMPTY ); |
| 152 | // free from the second block of the stack |
| 153 | while ( stack_block != NULL ) { |
| 154 | kmp_stack_block_t *next_block = (stack_block) ? stack_block -> sb_next : NULL; |
| 155 | |
| 156 | stack_block -> sb_next = NULL; |
| 157 | stack_block -> sb_prev = NULL; |
| 158 | if (stack_block != & task_stack -> ts_first_block) { |
| 159 | __kmp_thread_free( thread, stack_block ); // free the block, if not the first |
| 160 | } |
| 161 | stack_block = next_block; |
| 162 | } |
| 163 | // initialize the stack to be empty |
| 164 | task_stack -> ts_entries = 0; |
| 165 | task_stack -> ts_top = NULL; |
| 166 | } |
| 167 | |
| 168 | |
| 169 | //--------------------------------------------------------------------------- |
| 170 | // __kmp_push_task_stack: Push the tied task onto the task stack. |
| 171 | // Grow the stack if necessary by allocating another block. |
| 172 | // |
| 173 | // gtid: global thread identifier for calling thread |
| 174 | // thread: thread info for thread containing stack |
| 175 | // tied_task: the task to push on the stack |
| 176 | |
| 177 | static void |
| 178 | __kmp_push_task_stack( kmp_int32 gtid, kmp_info_t *thread, kmp_taskdata_t * tied_task ) |
| 179 | { |
| 180 | // GEH - need to consider what to do if tt_threads_data not allocated yet |
| 181 | kmp_thread_data_t *thread_data = & thread -> th.th_task_team -> |
| 182 | tt.tt_threads_data[ __kmp_tid_from_gtid( gtid ) ]; |
| 183 | kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks ; |
| 184 | |
| 185 | if ( tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser ) { |
| 186 | return; // Don't push anything on stack if team or team tasks are serialized |
| 187 | } |
| 188 | |
| 189 | KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED ); |
| 190 | KMP_DEBUG_ASSERT( task_stack -> ts_top != NULL ); |
| 191 | |
| 192 | KA_TRACE(20, ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", |
| 193 | gtid, thread, tied_task ) ); |
| 194 | // Store entry |
| 195 | * (task_stack -> ts_top) = tied_task; |
| 196 | |
| 197 | // Do bookkeeping for next push |
| 198 | task_stack -> ts_top++; |
| 199 | task_stack -> ts_entries++; |
| 200 | |
| 201 | if ( task_stack -> ts_entries & TASK_STACK_INDEX_MASK == 0 ) |
| 202 | { |
| 203 | // Find beginning of this task block |
| 204 | kmp_stack_block_t *stack_block = |
| 205 | (kmp_stack_block_t *) (task_stack -> ts_top - TASK_STACK_BLOCK_SIZE); |
| 206 | |
| 207 | // Check if we already have a block |
| 208 | if ( stack_block -> sb_next != NULL ) |
| 209 | { // reset ts_top to beginning of next block |
| 210 | task_stack -> ts_top = & stack_block -> sb_next -> sb_block[0]; |
| 211 | } |
| 212 | else |
| 213 | { // Alloc new block and link it up |
| 214 | kmp_stack_block_t *new_block = (kmp_stack_block_t *) |
| 215 | __kmp_thread_calloc(thread, sizeof(kmp_stack_block_t)); |
| 216 | |
| 217 | task_stack -> ts_top = & new_block -> sb_block[0]; |
| 218 | stack_block -> sb_next = new_block; |
| 219 | new_block -> sb_prev = stack_block; |
| 220 | new_block -> sb_next = NULL; |
| 221 | |
| 222 | KA_TRACE(30, ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", |
| 223 | gtid, tied_task, new_block ) ); |
| 224 | } |
| 225 | } |
| 226 | KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, tied_task ) ); |
| 227 | } |
| 228 | |
| 229 | //--------------------------------------------------------------------------- |
| 230 | // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return |
| 231 | // the task, just check to make sure it matches the ending task passed in. |
| 232 | // |
| 233 | // gtid: global thread identifier for the calling thread |
| 234 | // thread: thread info structure containing stack |
| 235 | // tied_task: the task popped off the stack |
| 236 | // ending_task: the task that is ending (should match popped task) |
| 237 | |
| 238 | static void |
| 239 | __kmp_pop_task_stack( kmp_int32 gtid, kmp_info_t *thread, kmp_taskdata_t *ending_task ) |
| 240 | { |
| 241 | // GEH - need to consider what to do if tt_threads_data not allocated yet |
| 242 | kmp_thread_data_t *thread_data = & thread -> th.th_task_team -> tt_threads_data[ __kmp_tid_from_gtid( gtid ) ]; |
| 243 | kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks ; |
| 244 | kmp_taskdata_t *tied_task; |
| 245 | |
| 246 | if ( ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser ) { |
| 247 | return; // Don't pop anything from stack if team or team tasks are serialized |
| 248 | } |
| 249 | |
| 250 | KMP_DEBUG_ASSERT( task_stack -> ts_top != NULL ); |
| 251 | KMP_DEBUG_ASSERT( task_stack -> ts_entries > 0 ); |
| 252 | |
| 253 | KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, thread ) ); |
| 254 | |
| 255 | // fix up ts_top if we need to pop from previous block |
| 256 | if ( task_stack -> ts_entries & TASK_STACK_INDEX_MASK == 0 ) |
| 257 | { |
| 258 | kmp_stack_block_t *stack_block = |
| 259 | (kmp_stack_block_t *) (task_stack -> ts_top) ; |
| 260 | |
| 261 | stack_block = stack_block -> sb_prev; |
| 262 | task_stack -> ts_top = & stack_block -> sb_block[TASK_STACK_BLOCK_SIZE]; |
| 263 | } |
| 264 | |
| 265 | // finish bookkeeping |
| 266 | task_stack -> ts_top--; |
| 267 | task_stack -> ts_entries--; |
| 268 | |
| 269 | tied_task = * (task_stack -> ts_top ); |
| 270 | |
| 271 | KMP_DEBUG_ASSERT( tied_task != NULL ); |
| 272 | KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED ); |
| 273 | KMP_DEBUG_ASSERT( tied_task == ending_task ); // If we built the stack correctly |
| 274 | |
| 275 | KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, tied_task ) ); |
| 276 | return; |
| 277 | } |
| 278 | #endif /* BUILD_TIED_TASK_STACK */ |
| 279 | |
| 280 | //--------------------------------------------------- |
| 281 | // __kmp_push_task: Add a task to the thread's deque |
| 282 | |
| 283 | static kmp_int32 |
| 284 | __kmp_push_task(kmp_int32 gtid, kmp_task_t * task ) |
| 285 | { |
| 286 | kmp_info_t * thread = __kmp_threads[ gtid ]; |
| 287 | kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); |
| 288 | kmp_task_team_t * task_team = thread->th.th_task_team; |
| 289 | kmp_int32 tid = __kmp_tid_from_gtid( gtid ); |
| 290 | kmp_thread_data_t * thread_data; |
| 291 | |
| 292 | KA_TRACE(20, ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata ) ); |
| 293 | |
| 294 | // The first check avoids building task_team thread data if serialized |
| 295 | if ( taskdata->td_flags.task_serial ) { |
| 296 | KA_TRACE(20, ( "__kmp_push_task: T#%d team serialized; returning TASK_NOT_PUSHED for task %p\n", |
| 297 | gtid, taskdata ) ); |
| 298 | return TASK_NOT_PUSHED; |
| 299 | } |
| 300 | |
| 301 | // Now that serialized tasks have returned, we can assume that we are not in immediate exec mode |
| 302 | KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); |
| 303 | if ( ! KMP_TASKING_ENABLED( task_team, thread->th.th_task_state ) ) { |
| 304 | __kmp_enable_tasking( task_team, thread ); |
| 305 | } |
| 306 | KMP_DEBUG_ASSERT( TCR_4(task_team -> tt.tt_found_tasks) == TRUE ); |
| 307 | KMP_DEBUG_ASSERT( TCR_PTR(task_team -> tt.tt_threads_data) != NULL ); |
| 308 | |
| 309 | // Find tasking deque specific to encountering thread |
| 310 | thread_data = & task_team -> tt.tt_threads_data[ tid ]; |
| 311 | |
| 312 | // No lock needed since only owner can allocate |
| 313 | if (thread_data -> td.td_deque == NULL ) { |
| 314 | __kmp_alloc_task_deque( thread, thread_data ); |
| 315 | } |
| 316 | |
| 317 | // Check if deque is full |
| 318 | if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE ) |
| 319 | { |
| 320 | KA_TRACE(20, ( "__kmp_push_task: T#%d deque is full; returning TASK_NOT_PUSHED for task %p\n", |
| 321 | gtid, taskdata ) ); |
| 322 | return TASK_NOT_PUSHED; |
| 323 | } |
| 324 | |
| 325 | // Lock the deque for the task push operation |
| 326 | __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock ); |
| 327 | |
| 328 | // Must have room since no thread can add tasks but calling thread |
| 329 | KMP_DEBUG_ASSERT( TCR_4(thread_data -> td.td_deque_ntasks) < TASK_DEQUE_SIZE ); |
| 330 | |
| 331 | thread_data -> td.td_deque[ thread_data -> td.td_deque_tail ] = taskdata; // Push taskdata |
| 332 | // Wrap index. |
| 333 | thread_data -> td.td_deque_tail = ( thread_data -> td.td_deque_tail + 1 ) & TASK_DEQUE_MASK; |
| 334 | TCW_4(thread_data -> td.td_deque_ntasks, TCR_4(thread_data -> td.td_deque_ntasks) + 1); // Adjust task count |
| 335 | |
| 336 | __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock ); |
| 337 | |
| 338 | KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " |
| 339 | "task=%p ntasks=%d head=%u tail=%u\n", |
| 340 | gtid, taskdata, thread_data->td.td_deque_ntasks, |
| 341 | thread_data->td.td_deque_tail, thread_data->td.td_deque_head) ); |
| 342 | |
| 343 | return TASK_SUCCESSFULLY_PUSHED; |
| 344 | } |
| 345 | |
| 346 | |
| 347 | //----------------------------------------------------------------------------------------- |
| 348 | // __kmp_pop_current_task_from_thread: set up current task from called thread when team ends |
| 349 | // this_thr: thread structure to set current_task in. |
| 350 | |
| 351 | void |
| 352 | __kmp_pop_current_task_from_thread( kmp_info_t *this_thr ) |
| 353 | { |
| 354 | KF_TRACE( 10, ("__kmp_pop_current_task_from_thread(enter): T#%d this_thread=%p, curtask=%p, " |
| 355 | "curtask_parent=%p\n", |
| 356 | 0, this_thr, this_thr -> th.th_current_task, |
| 357 | this_thr -> th.th_current_task -> td_parent ) ); |
| 358 | |
| 359 | this_thr -> th.th_current_task = this_thr -> th.th_current_task -> td_parent; |
| 360 | |
| 361 | KF_TRACE( 10, ("__kmp_pop_current_task_from_thread(exit): T#%d this_thread=%p, curtask=%p, " |
| 362 | "curtask_parent=%p\n", |
| 363 | 0, this_thr, this_thr -> th.th_current_task, |
| 364 | this_thr -> th.th_current_task -> td_parent ) ); |
| 365 | } |
| 366 | |
| 367 | |
| 368 | //--------------------------------------------------------------------------------------- |
| 369 | // __kmp_push_current_task_to_thread: set up current task in called thread for a new team |
| 370 | // this_thr: thread structure to set up |
| 371 | // team: team for implicit task data |
| 372 | // tid: thread within team to set up |
| 373 | |
| 374 | void |
| 375 | __kmp_push_current_task_to_thread( kmp_info_t *this_thr, kmp_team_t *team, int tid ) |
| 376 | { |
| 377 | // current task of the thread is a parent of the new just created implicit tasks of new team |
| 378 | KF_TRACE( 10, ( "__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p curtask=%p " |
| 379 | "parent_task=%p\n", |
| 380 | tid, this_thr, this_thr->th.th_current_task, |
| 381 | team->t.t_implicit_task_taskdata[tid].td_parent ) ); |
| 382 | |
| 383 | KMP_DEBUG_ASSERT (this_thr != NULL); |
| 384 | |
| 385 | if( tid == 0 ) { |
| 386 | if( this_thr->th.th_current_task != & team -> t.t_implicit_task_taskdata[ 0 ] ) { |
| 387 | team -> t.t_implicit_task_taskdata[ 0 ].td_parent = this_thr->th.th_current_task; |
| 388 | this_thr->th.th_current_task = & team -> t.t_implicit_task_taskdata[ 0 ]; |
| 389 | } |
| 390 | } else { |
| 391 | team -> t.t_implicit_task_taskdata[ tid ].td_parent = team -> t.t_implicit_task_taskdata[ 0 ].td_parent; |
| 392 | this_thr->th.th_current_task = & team -> t.t_implicit_task_taskdata[ tid ]; |
| 393 | } |
| 394 | |
| 395 | KF_TRACE( 10, ( "__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p curtask=%p " |
| 396 | "parent_task=%p\n", |
| 397 | tid, this_thr, this_thr->th.th_current_task, |
| 398 | team->t.t_implicit_task_taskdata[tid].td_parent ) ); |
| 399 | } |
| 400 | |
| 401 | |
| 402 | //---------------------------------------------------------------------- |
| 403 | // __kmp_task_start: bookkeeping for a task starting execution |
| 404 | // GTID: global thread id of calling thread |
| 405 | // task: task starting execution |
| 406 | // current_task: task suspending |
| 407 | |
| 408 | static void |
| 409 | __kmp_task_start( kmp_int32 gtid, kmp_task_t * task, kmp_taskdata_t * current_task ) |
| 410 | { |
| 411 | kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); |
| 412 | kmp_info_t * thread = __kmp_threads[ gtid ]; |
| 413 | |
| 414 | KA_TRACE(10, ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", |
| 415 | gtid, taskdata, current_task) ); |
| 416 | |
| 417 | KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT ); |
| 418 | |
| 419 | // mark currently executing task as suspended |
| 420 | // TODO: GEH - make sure root team implicit task is initialized properly. |
| 421 | // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); |
| 422 | current_task -> td_flags.executing = 0; |
| 423 | |
| 424 | // Add task to stack if tied |
| 425 | #ifdef BUILD_TIED_TASK_STACK |
| 426 | if ( taskdata -> td_flags.tiedness == TASK_TIED ) |
| 427 | { |
| 428 | __kmp_push_task_stack( gtid, thread, taskdata ); |
| 429 | } |
| 430 | #endif /* BUILD_TIED_TASK_STACK */ |
| 431 | |
| 432 | // mark starting task as executing and as current task |
| 433 | thread -> th.th_current_task = taskdata; |
| 434 | |
| 435 | KMP_DEBUG_ASSERT( taskdata -> td_flags.started == 0 ); |
| 436 | KMP_DEBUG_ASSERT( taskdata -> td_flags.executing == 0 ); |
| 437 | taskdata -> td_flags.started = 1; |
| 438 | taskdata -> td_flags.executing = 1; |
| 439 | KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 0 ); |
| 440 | KMP_DEBUG_ASSERT( taskdata -> td_flags.freed == 0 ); |
| 441 | |
| 442 | // GEH TODO: shouldn't we pass some sort of location identifier here? |
| 443 | // APT: yes, we will pass location here. |
| 444 | // need to store current thread state (in a thread or taskdata structure) |
| 445 | // before setting work_state, otherwise wrong state is set after end of task |
| 446 | |
| 447 | KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", |
| 448 | gtid, taskdata ) ); |
| 449 | |
| 450 | return; |
| 451 | } |
| 452 | |
| 453 | |
| 454 | //---------------------------------------------------------------------- |
| 455 | // __kmpc_omp_task_begin_if0: report that a given serialized task has started execution |
| 456 | // loc_ref: source location information; points to beginning of task block. |
| 457 | // gtid: global thread number. |
| 458 | // task: task thunk for the started task. |
| 459 | |
| 460 | void |
| 461 | __kmpc_omp_task_begin_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task ) |
| 462 | { |
| 463 | kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); |
| 464 | kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task; |
| 465 | |
| 466 | KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p current_task=%p\n", |
| 467 | gtid, loc_ref, taskdata, current_task ) ); |
| 468 | |
| 469 | taskdata -> td_flags.task_serial = 1; // Execute this task immediately, not deferred. |
| 470 | __kmp_task_start( gtid, task, current_task ); |
| 471 | |
| 472 | KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", |
| 473 | gtid, loc_ref, taskdata ) ); |
| 474 | |
| 475 | return; |
| 476 | } |
| 477 | |
| 478 | #ifdef TASK_UNUSED |
| 479 | //---------------------------------------------------------------------- |
| 480 | // __kmpc_omp_task_begin: report that a given task has started execution |
| 481 | // NEVER GENERATED BY COMPILER, DEPRECATED!!! |
| 482 | |
| 483 | void |
| 484 | __kmpc_omp_task_begin( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task ) |
| 485 | { |
| 486 | kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task; |
| 487 | |
| 488 | KA_TRACE(10, ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", |
| 489 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task ) ); |
| 490 | |
| 491 | __kmp_task_start( gtid, task, current_task ); |
| 492 | |
| 493 | KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", |
| 494 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); |
| 495 | |
| 496 | return; |
| 497 | } |
| 498 | #endif // TASK_UNUSED |
| 499 | |
| 500 | |
| 501 | //------------------------------------------------------------------------------------- |
| 502 | // __kmp_free_task: free the current task space and the space for shareds |
| 503 | // gtid: Global thread ID of calling thread |
| 504 | // taskdata: task to free |
| 505 | // thread: thread data structure of caller |
| 506 | |
| 507 | static void |
| 508 | __kmp_free_task( kmp_int32 gtid, kmp_taskdata_t * taskdata, kmp_info_t * thread ) |
| 509 | { |
| 510 | KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", |
| 511 | gtid, taskdata) ); |
| 512 | |
| 513 | // Check to make sure all flags and counters have the correct values |
| 514 | KMP_DEBUG_ASSERT( taskdata->td_flags.tasktype == TASK_EXPLICIT ); |
| 515 | KMP_DEBUG_ASSERT( taskdata->td_flags.executing == 0 ); |
| 516 | KMP_DEBUG_ASSERT( taskdata->td_flags.complete == 1 ); |
| 517 | KMP_DEBUG_ASSERT( taskdata->td_flags.freed == 0 ); |
| 518 | KMP_DEBUG_ASSERT( TCR_4(taskdata->td_allocated_child_tasks) == 0 || taskdata->td_flags.task_serial == 1); |
| 519 | KMP_DEBUG_ASSERT( TCR_4(taskdata->td_incomplete_child_tasks) == 0 ); |
| 520 | |
| 521 | taskdata->td_flags.freed = 1; |
| 522 | // deallocate the taskdata and shared variable blocks associated with this task |
| 523 | #if USE_FAST_MEMORY |
| 524 | __kmp_fast_free( thread, taskdata ); |
| 525 | #else /* ! USE_FAST_MEMORY */ |
| 526 | __kmp_thread_free( thread, taskdata ); |
| 527 | #endif |
| 528 | |
| 529 | KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", |
| 530 | gtid, taskdata) ); |
| 531 | } |
| 532 | |
| 533 | //------------------------------------------------------------------------------------- |
| 534 | // __kmp_free_task_and_ancestors: free the current task and ancestors without children |
| 535 | // |
| 536 | // gtid: Global thread ID of calling thread |
| 537 | // taskdata: task to free |
| 538 | // thread: thread data structure of caller |
| 539 | |
| 540 | static void |
| 541 | __kmp_free_task_and_ancestors( kmp_int32 gtid, kmp_taskdata_t * taskdata, kmp_info_t * thread ) |
| 542 | { |
| 543 | kmp_int32 children = 0; |
| 544 | kmp_int32 team_or_tasking_serialized = taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser; |
| 545 | |
| 546 | KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT ); |
| 547 | |
| 548 | if ( !team_or_tasking_serialized ) { |
| 549 | children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_allocated_child_tasks) ) - 1; |
| 550 | KMP_DEBUG_ASSERT( children >= 0 ); |
| 551 | } |
| 552 | |
| 553 | // Now, go up the ancestor tree to see if any ancestors can now be freed. |
| 554 | while ( children == 0 ) |
| 555 | { |
| 556 | kmp_taskdata_t * parent_taskdata = taskdata -> td_parent; |
| 557 | |
| 558 | KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " |
| 559 | "and freeing itself\n", gtid, taskdata) ); |
| 560 | |
| 561 | // --- Deallocate my ancestor task --- |
| 562 | __kmp_free_task( gtid, taskdata, thread ); |
| 563 | |
| 564 | taskdata = parent_taskdata; |
| 565 | |
| 566 | // Stop checking ancestors at implicit task or if tasking serialized |
| 567 | // instead of walking up ancestor tree to avoid premature deallocation of ancestors. |
| 568 | if ( team_or_tasking_serialized || taskdata -> td_flags.tasktype == TASK_IMPLICIT ) |
| 569 | return; |
| 570 | |
| 571 | if ( !team_or_tasking_serialized ) { |
| 572 | // Predecrement simulated by "- 1" calculation |
| 573 | children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_allocated_child_tasks) ) - 1; |
| 574 | KMP_DEBUG_ASSERT( children >= 0 ); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | KA_TRACE(20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " |
| 579 | "not freeing it yet\n", gtid, taskdata, children) ); |
| 580 | } |
| 581 | |
| 582 | //--------------------------------------------------------------------- |
| 583 | // __kmp_task_finish: bookkeeping to do when a task finishes execution |
| 584 | // gtid: global thread ID for calling thread |
| 585 | // task: task to be finished |
| 586 | // resumed_task: task to be resumed. (may be NULL if task is serialized) |
| 587 | |
| 588 | static void |
| 589 | __kmp_task_finish( kmp_int32 gtid, kmp_task_t *task, kmp_taskdata_t *resumed_task ) |
| 590 | { |
| 591 | kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); |
| 592 | kmp_info_t * thread = __kmp_threads[ gtid ]; |
| 593 | kmp_int32 children = 0; |
| 594 | |
| 595 | KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming task %p\n", |
| 596 | gtid, taskdata, resumed_task) ); |
| 597 | |
| 598 | KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT ); |
| 599 | |
| 600 | // Pop task from stack if tied |
| 601 | #ifdef BUILD_TIED_TASK_STACK |
| 602 | if ( taskdata -> td_flags.tiedness == TASK_TIED ) |
| 603 | { |
| 604 | __kmp_pop_task_stack( gtid, thread, taskdata ); |
| 605 | } |
| 606 | #endif /* BUILD_TIED_TASK_STACK */ |
| 607 | |
| 608 | KMP_DEBUG_ASSERT( taskdata -> td_flags.executing == 1 ); |
| 609 | KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 0 ); |
| 610 | taskdata -> td_flags.executing = 0; // suspend the finishing task |
| 611 | taskdata -> td_flags.complete = 1; // mark the task as completed |
| 612 | KMP_DEBUG_ASSERT( taskdata -> td_flags.started == 1 ); |
| 613 | KMP_DEBUG_ASSERT( taskdata -> td_flags.freed == 0 ); |
| 614 | |
| 615 | // Only need to keep track of count if team parallel and tasking not serialized |
| 616 | if ( !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) ) { |
| 617 | // Predecrement simulated by "- 1" calculation |
| 618 | children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_parent -> td_incomplete_child_tasks) ) - 1; |
| 619 | KMP_DEBUG_ASSERT( children >= 0 ); |
| 620 | #if OMP_40_ENABLED |
| 621 | if ( taskdata->td_taskgroup ) |
| 622 | KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata->td_taskgroup->count) ); |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 623 | __kmp_release_deps(gtid,taskdata); |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 624 | #endif |
| 625 | } |
| 626 | |
| 627 | KA_TRACE(20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", |
| 628 | gtid, taskdata, children) ); |
| 629 | |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 630 | #if OMP_40_ENABLED |
| 631 | /* If the tasks' destructor thunk flag has been set, we need to invoke the |
| 632 | destructor thunk that has been generated by the compiler. |
| 633 | The code is placed here, since at this point other tasks might have been released |
| 634 | hence overlapping the destructor invokations with some other work in the |
| 635 | released tasks. The OpenMP spec is not specific on when the destructors are |
| 636 | invoked, so we should be free to choose. |
| 637 | */ |
| 638 | if (taskdata->td_flags.destructors_thunk) { |
| 639 | kmp_routine_entry_t destr_thunk = task->destructors; |
| 640 | KMP_ASSERT(destr_thunk); |
| 641 | destr_thunk(gtid, task); |
| 642 | } |
| 643 | #endif // OMP_40_ENABLED |
| 644 | |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 645 | // bookkeeping for resuming task: |
| 646 | // GEH - note tasking_ser => task_serial |
| 647 | KMP_DEBUG_ASSERT( (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == |
| 648 | taskdata->td_flags.task_serial); |
| 649 | if ( taskdata->td_flags.task_serial ) |
| 650 | { |
| 651 | if (resumed_task == NULL) { |
| 652 | resumed_task = taskdata->td_parent; // In a serialized task, the resumed task is the parent |
| 653 | } |
| 654 | else { |
| 655 | // verify resumed task passed in points to parent |
| 656 | KMP_DEBUG_ASSERT( resumed_task == taskdata->td_parent ); |
| 657 | } |
| 658 | } |
| 659 | else { |
| 660 | KMP_DEBUG_ASSERT( resumed_task != NULL ); // verify that resumed task is passed as arguemnt |
| 661 | } |
| 662 | |
| 663 | // Free this task and then ancestor tasks if they have no children. |
| 664 | __kmp_free_task_and_ancestors(gtid, taskdata, thread); |
| 665 | |
| 666 | __kmp_threads[ gtid ] -> th.th_current_task = resumed_task; // restore current_task |
| 667 | |
| 668 | // TODO: GEH - make sure root team implicit task is initialized properly. |
| 669 | // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); |
| 670 | resumed_task->td_flags.executing = 1; // resume previous task |
| 671 | |
| 672 | KA_TRACE(10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", |
| 673 | gtid, taskdata, resumed_task) ); |
| 674 | |
| 675 | return; |
| 676 | } |
| 677 | |
| 678 | //--------------------------------------------------------------------- |
| 679 | // __kmpc_omp_task_complete_if0: report that a task has completed execution |
| 680 | // loc_ref: source location information; points to end of task block. |
| 681 | // gtid: global thread number. |
| 682 | // task: task thunk for the completed task. |
| 683 | |
| 684 | void |
| 685 | __kmpc_omp_task_complete_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task ) |
| 686 | { |
| 687 | KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", |
| 688 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); |
| 689 | |
| 690 | __kmp_task_finish( gtid, task, NULL ); // this routine will provide task to resume |
| 691 | |
| 692 | KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", |
| 693 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); |
| 694 | |
| 695 | return; |
| 696 | } |
| 697 | |
| 698 | #ifdef TASK_UNUSED |
| 699 | //--------------------------------------------------------------------- |
| 700 | // __kmpc_omp_task_complete: report that a task has completed execution |
| 701 | // NEVER GENERATED BY COMPILER, DEPRECATED!!! |
| 702 | |
| 703 | void |
| 704 | __kmpc_omp_task_complete( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task ) |
| 705 | { |
| 706 | KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", |
| 707 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); |
| 708 | |
| 709 | __kmp_task_finish( gtid, task, NULL ); // Not sure how to find task to resume |
| 710 | |
| 711 | KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", |
| 712 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); |
| 713 | return; |
| 714 | } |
| 715 | #endif // TASK_UNUSED |
| 716 | |
| 717 | |
| 718 | //---------------------------------------------------------------------------------------------------- |
| 719 | // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit task for a given thread |
| 720 | // |
| 721 | // loc_ref: reference to source location of parallel region |
| 722 | // this_thr: thread data structure corresponding to implicit task |
| 723 | // team: team for this_thr |
| 724 | // tid: thread id of given thread within team |
| 725 | // set_curr_task: TRUE if need to push current task to thread |
| 726 | // NOTE: Routine does not set up the implicit task ICVS. This is assumed to have already been done elsewhere. |
| 727 | // TODO: Get better loc_ref. Value passed in may be NULL |
| 728 | |
| 729 | void |
| 730 | __kmp_init_implicit_task( ident_t *loc_ref, kmp_info_t *this_thr, kmp_team_t *team, int tid, int set_curr_task ) |
| 731 | { |
| 732 | kmp_taskdata_t * task = & team->t.t_implicit_task_taskdata[ tid ]; |
| 733 | |
| 734 | KF_TRACE(10, ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", |
| 735 | tid, team, task, set_curr_task ? "TRUE" : "FALSE" ) ); |
| 736 | |
| 737 | task->td_task_id = KMP_GEN_TASK_ID(); |
| 738 | task->td_team = team; |
| 739 | // task->td_parent = NULL; // fix for CQ230101 (broken parent task info in debugger) |
| 740 | task->td_ident = loc_ref; |
| 741 | task->td_taskwait_ident = NULL; |
| 742 | task->td_taskwait_counter = 0; |
| 743 | task->td_taskwait_thread = 0; |
| 744 | |
| 745 | task->td_flags.tiedness = TASK_TIED; |
| 746 | task->td_flags.tasktype = TASK_IMPLICIT; |
| 747 | // All implicit tasks are executed immediately, not deferred |
| 748 | task->td_flags.task_serial = 1; |
| 749 | task->td_flags.tasking_ser = ( __kmp_tasking_mode == tskm_immediate_exec ); |
| 750 | task->td_flags.team_serial = ( team->t.t_serialized ) ? 1 : 0; |
| 751 | |
| 752 | task->td_flags.started = 1; |
| 753 | task->td_flags.executing = 1; |
| 754 | task->td_flags.complete = 0; |
| 755 | task->td_flags.freed = 0; |
| 756 | |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 757 | #if OMP_40_ENABLED |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 758 | task->td_dephash = NULL; |
| 759 | task->td_depnode = NULL; |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 760 | #endif |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 761 | |
| 762 | if (set_curr_task) { // only do this initialization the first time a thread is created |
| 763 | task->td_incomplete_child_tasks = 0; |
| 764 | task->td_allocated_child_tasks = 0; // Not used because do not need to deallocate implicit task |
| 765 | #if OMP_40_ENABLED |
| 766 | task->td_taskgroup = NULL; // An implicit task does not have taskgroup |
| 767 | #endif |
| 768 | __kmp_push_current_task_to_thread( this_thr, team, tid ); |
| 769 | } else { |
| 770 | KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); |
| 771 | KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); |
| 772 | } |
| 773 | |
| 774 | KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", |
| 775 | tid, team, task ) ); |
| 776 | } |
| 777 | |
| 778 | // Round up a size to a power of two specified by val |
| 779 | // Used to insert padding between structures co-allocated using a single malloc() call |
| 780 | static size_t |
| 781 | __kmp_round_up_to_val( size_t size, size_t val ) { |
| 782 | if ( size & ( val - 1 ) ) { |
| 783 | size &= ~ ( val - 1 ); |
| 784 | if ( size <= KMP_SIZE_T_MAX - val ) { |
| 785 | size += val; // Round up if there is no overflow. |
| 786 | }; // if |
| 787 | }; // if |
| 788 | return size; |
| 789 | } // __kmp_round_up_to_va |
| 790 | |
| 791 | |
| 792 | //--------------------------------------------------------------------------------- |
| 793 | // __kmp_task_alloc: Allocate the taskdata and task data structures for a task |
| 794 | // |
| 795 | // loc_ref: source location information |
| 796 | // gtid: global thread number. |
| 797 | // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' task encountered. |
| 798 | // Converted from kmp_int32 to kmp_tasking_flags_t in routine. |
| 799 | // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including private vars accessed in task. |
| 800 | // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed in task. |
| 801 | // task_entry: Pointer to task code entry point generated by compiler. |
| 802 | // returns: a pointer to the allocated kmp_task_t structure (task). |
| 803 | |
| 804 | kmp_task_t * |
| 805 | __kmp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_tasking_flags_t *flags, |
| 806 | size_t sizeof_kmp_task_t, size_t sizeof_shareds, |
| 807 | kmp_routine_entry_t task_entry ) |
| 808 | { |
| 809 | kmp_task_t *task; |
| 810 | kmp_taskdata_t *taskdata; |
| 811 | kmp_info_t *thread = __kmp_threads[ gtid ]; |
| 812 | kmp_team_t *team = thread->th.th_team; |
| 813 | kmp_taskdata_t *parent_task = thread->th.th_current_task; |
| 814 | size_t shareds_offset; |
| 815 | |
| 816 | KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " |
| 817 | "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", |
| 818 | gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, |
| 819 | sizeof_shareds, task_entry) ); |
| 820 | |
| 821 | if ( parent_task->td_flags.final ) { |
| 822 | if (flags->merged_if0) { |
| 823 | } |
| 824 | flags->final = 1; |
| 825 | } |
| 826 | |
| 827 | // Calculate shared structure offset including padding after kmp_task_t struct |
| 828 | // to align pointers in shared struct |
| 829 | shareds_offset = sizeof( kmp_taskdata_t ) + sizeof_kmp_task_t; |
| 830 | shareds_offset = __kmp_round_up_to_val( shareds_offset, sizeof( void * )); |
| 831 | |
| 832 | // Allocate a kmp_taskdata_t block and a kmp_task_t block. |
| 833 | KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", |
| 834 | gtid, shareds_offset) ); |
| 835 | KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", |
| 836 | gtid, sizeof_shareds) ); |
| 837 | |
| 838 | // Avoid double allocation here by combining shareds with taskdata |
| 839 | #if USE_FAST_MEMORY |
| 840 | taskdata = (kmp_taskdata_t *) __kmp_fast_allocate( thread, shareds_offset + sizeof_shareds ); |
| 841 | #else /* ! USE_FAST_MEMORY */ |
| 842 | taskdata = (kmp_taskdata_t *) __kmp_thread_malloc( thread, shareds_offset + sizeof_shareds ); |
| 843 | #endif /* USE_FAST_MEMORY */ |
| 844 | |
| 845 | task = KMP_TASKDATA_TO_TASK(taskdata); |
| 846 | |
| 847 | // Make sure task & taskdata are aligned appropriately |
| 848 | #if KMP_ARCH_X86 |
| 849 | KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)taskdata) & (sizeof(double)-1) ) == 0 ); |
| 850 | KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task) & (sizeof(double)-1) ) == 0 ); |
| 851 | #else |
| 852 | KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)taskdata) & (sizeof(_Quad)-1) ) == 0 ); |
| 853 | KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task) & (sizeof(_Quad)-1) ) == 0 ); |
| 854 | #endif |
| 855 | if (sizeof_shareds > 0) { |
| 856 | // Avoid double allocation here by combining shareds with taskdata |
| 857 | task->shareds = & ((char *) taskdata)[ shareds_offset ]; |
| 858 | // Make sure shareds struct is aligned to pointer size |
| 859 | KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task->shareds) & (sizeof(void *)-1) ) == 0 ); |
| 860 | } else { |
| 861 | task->shareds = NULL; |
| 862 | } |
| 863 | task->routine = task_entry; |
| 864 | task->part_id = 0; // AC: Always start with 0 part id |
| 865 | |
| 866 | taskdata->td_task_id = KMP_GEN_TASK_ID(); |
| 867 | taskdata->td_team = team; |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 868 | taskdata->td_alloc_thread = thread; |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 869 | taskdata->td_parent = parent_task; |
| 870 | taskdata->td_level = parent_task->td_level + 1; // increment nesting level |
| 871 | taskdata->td_ident = loc_ref; |
| 872 | taskdata->td_taskwait_ident = NULL; |
| 873 | taskdata->td_taskwait_counter = 0; |
| 874 | taskdata->td_taskwait_thread = 0; |
| 875 | KMP_DEBUG_ASSERT( taskdata->td_parent != NULL ); |
| 876 | copy_icvs( &taskdata->td_icvs, &taskdata->td_parent->td_icvs ); |
| 877 | |
| 878 | taskdata->td_flags.tiedness = flags->tiedness; |
| 879 | taskdata->td_flags.final = flags->final; |
| 880 | taskdata->td_flags.merged_if0 = flags->merged_if0; |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 881 | #if OMP_40_ENABLED |
| 882 | taskdata->td_flags.destructors_thunk = flags->destructors_thunk; |
| 883 | #endif // OMP_40_ENABLED |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 884 | taskdata->td_flags.tasktype = TASK_EXPLICIT; |
| 885 | |
| 886 | // GEH - TODO: fix this to copy parent task's value of tasking_ser flag |
| 887 | taskdata->td_flags.tasking_ser = ( __kmp_tasking_mode == tskm_immediate_exec ); |
| 888 | |
| 889 | // GEH - TODO: fix this to copy parent task's value of team_serial flag |
| 890 | taskdata->td_flags.team_serial = ( team->t.t_serialized ) ? 1 : 0; |
| 891 | |
| 892 | // GEH - Note we serialize the task if the team is serialized to make sure implicit parallel region |
| 893 | // tasks are not left until program termination to execute. Also, it helps locality to execute |
| 894 | // immediately. |
| 895 | taskdata->td_flags.task_serial = ( taskdata->td_flags.final |
| 896 | || taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser ); |
| 897 | |
| 898 | taskdata->td_flags.started = 0; |
| 899 | taskdata->td_flags.executing = 0; |
| 900 | taskdata->td_flags.complete = 0; |
| 901 | taskdata->td_flags.freed = 0; |
| 902 | |
| 903 | taskdata->td_flags.native = flags->native; |
| 904 | |
| 905 | taskdata->td_incomplete_child_tasks = 0; |
| 906 | taskdata->td_allocated_child_tasks = 1; // start at one because counts current task and children |
| 907 | #if OMP_40_ENABLED |
| 908 | taskdata->td_taskgroup = parent_task->td_taskgroup; // task inherits the taskgroup from the parent task |
| 909 | taskdata->td_dephash = NULL; |
| 910 | taskdata->td_depnode = NULL; |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 911 | #endif |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 912 | // Only need to keep track of child task counts if team parallel and tasking not serialized |
| 913 | if ( !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) ) { |
| 914 | KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_incomplete_child_tasks) ); |
| 915 | #if OMP_40_ENABLED |
| 916 | if ( parent_task->td_taskgroup ) |
| 917 | KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_taskgroup->count) ); |
| 918 | #endif |
| 919 | // Only need to keep track of allocated child tasks for explicit tasks since implicit not deallocated |
| 920 | if ( taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT ) { |
| 921 | KMP_TEST_THEN_INC32( (kmp_int32 *)(& taskdata->td_parent->td_allocated_child_tasks) ); |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", |
| 926 | gtid, taskdata, taskdata->td_parent) ); |
| 927 | |
| 928 | return task; |
| 929 | } |
| 930 | |
| 931 | |
| 932 | kmp_task_t * |
| 933 | __kmpc_omp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, |
| 934 | size_t sizeof_kmp_task_t, size_t sizeof_shareds, |
| 935 | kmp_routine_entry_t task_entry ) |
| 936 | { |
| 937 | kmp_task_t *retval; |
| 938 | kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *) & flags; |
| 939 | |
| 940 | input_flags->native = FALSE; |
| 941 | // __kmp_task_alloc() sets up all other runtime flags |
| 942 | |
| 943 | KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s) " |
| 944 | "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", |
| 945 | gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", |
| 946 | sizeof_kmp_task_t, sizeof_shareds, task_entry) ); |
| 947 | |
| 948 | retval = __kmp_task_alloc( loc_ref, gtid, input_flags, sizeof_kmp_task_t, |
| 949 | sizeof_shareds, task_entry ); |
| 950 | |
| 951 | KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval) ); |
| 952 | |
| 953 | return retval; |
| 954 | } |
| 955 | |
| 956 | //----------------------------------------------------------- |
| 957 | // __kmp_invoke_task: invoke the specified task |
| 958 | // |
| 959 | // gtid: global thread ID of caller |
| 960 | // task: the task to invoke |
| 961 | // current_task: the task to resume after task invokation |
| 962 | |
| 963 | static void |
| 964 | __kmp_invoke_task( kmp_int32 gtid, kmp_task_t *task, kmp_taskdata_t * current_task ) |
| 965 | { |
| 966 | kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 967 | #if OMP_40_ENABLED |
| 968 | int discard = 0 /* false */; |
| 969 | #endif |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 970 | KA_TRACE(30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", |
| 971 | gtid, taskdata, current_task) ); |
| 972 | |
| 973 | __kmp_task_start( gtid, task, current_task ); |
| 974 | |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 975 | #if OMP_40_ENABLED |
| 976 | // TODO: cancel tasks if the parallel region has also been cancelled |
| 977 | // TODO: check if this sequence can be hoisted above __kmp_task_start |
| 978 | // if cancellation has been enabled for this run ... |
| 979 | if (__kmp_omp_cancellation) { |
| 980 | kmp_info_t *this_thr = __kmp_threads [ gtid ]; |
| 981 | kmp_team_t * this_team = this_thr->th.th_team; |
| 982 | kmp_taskgroup_t * taskgroup = taskdata->td_taskgroup; |
| 983 | if ((taskgroup && taskgroup->cancel_request) || (this_team->t.t_cancel_request == cancel_parallel)) { |
| 984 | // this task belongs to a task group and we need to cancel it |
| 985 | discard = 1 /* true */; |
| 986 | } |
| 987 | } |
| 988 | |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 989 | // |
| 990 | // Invoke the task routine and pass in relevant data. |
| 991 | // Thunks generated by gcc take a different argument list. |
| 992 | // |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 993 | if (!discard) { |
| 994 | #endif // OMP_40_ENABLED |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 995 | #ifdef KMP_GOMP_COMPAT |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 996 | if (taskdata->td_flags.native) { |
| 997 | ((void (*)(void *))(*(task->routine)))(task->shareds); |
| 998 | } |
| 999 | else |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1000 | #endif /* KMP_GOMP_COMPAT */ |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1001 | { |
| 1002 | (*(task->routine))(gtid, task); |
| 1003 | } |
| 1004 | #if OMP_40_ENABLED |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1005 | } |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1006 | #endif // OMP_40_ENABLED |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1007 | |
| 1008 | __kmp_task_finish( gtid, task, current_task ); |
| 1009 | |
| 1010 | KA_TRACE(30, ("__kmp_inovke_task(exit): T#%d completed task %p, resuming task %p\n", |
| 1011 | gtid, taskdata, current_task) ); |
| 1012 | return; |
| 1013 | } |
| 1014 | |
| 1015 | //----------------------------------------------------------------------- |
| 1016 | // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution |
| 1017 | // |
| 1018 | // loc_ref: location of original task pragma (ignored) |
| 1019 | // gtid: Global Thread ID of encountering thread |
| 1020 | // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' |
| 1021 | // Returns: |
| 1022 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to be resumed later. |
| 1023 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be resumed later. |
| 1024 | |
| 1025 | kmp_int32 |
| 1026 | __kmpc_omp_task_parts( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task) |
| 1027 | { |
| 1028 | kmp_taskdata_t * new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
| 1029 | |
| 1030 | KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", |
| 1031 | gtid, loc_ref, new_taskdata ) ); |
| 1032 | |
| 1033 | /* Should we execute the new task or queue it? For now, let's just always try to |
| 1034 | queue it. If the queue fills up, then we'll execute it. */ |
| 1035 | |
| 1036 | if ( __kmp_push_task( gtid, new_task ) == TASK_NOT_PUSHED ) // if cannot defer |
| 1037 | { // Execute this task immediately |
| 1038 | kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task; |
| 1039 | new_taskdata->td_flags.task_serial = 1; |
| 1040 | __kmp_invoke_task( gtid, new_task, current_task ); |
| 1041 | } |
| 1042 | |
| 1043 | KA_TRACE(10, ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " |
| 1044 | "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", gtid, loc_ref, |
| 1045 | new_taskdata ) ); |
| 1046 | |
| 1047 | return TASK_CURRENT_NOT_QUEUED; |
| 1048 | } |
| 1049 | |
| 1050 | |
| 1051 | //--------------------------------------------------------------------- |
| 1052 | // __kmpc_omp_task: Schedule a non-thread-switchable task for execution |
| 1053 | // loc_ref: location of original task pragma (ignored) |
| 1054 | // gtid: Global Thread ID of encountering thread |
| 1055 | // new_task: non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() |
| 1056 | // returns: |
| 1057 | // |
| 1058 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to be resumed later. |
| 1059 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be resumed later. |
| 1060 | |
| 1061 | kmp_int32 |
| 1062 | __kmpc_omp_task( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task) |
| 1063 | { |
| 1064 | kmp_taskdata_t * new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
| 1065 | kmp_int32 rc; |
| 1066 | |
| 1067 | KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", |
| 1068 | gtid, loc_ref, new_taskdata ) ); |
| 1069 | |
| 1070 | /* Should we execute the new task or queue it? For now, let's just always try to |
| 1071 | queue it. If the queue fills up, then we'll execute it. */ |
| 1072 | |
| 1073 | if ( __kmp_push_task( gtid, new_task ) == TASK_NOT_PUSHED ) // if cannot defer |
| 1074 | { // Execute this task immediately |
| 1075 | kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task; |
| 1076 | new_taskdata -> td_flags.task_serial = 1; |
| 1077 | __kmp_invoke_task( gtid, new_task, current_task ); |
| 1078 | } |
| 1079 | |
| 1080 | KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", |
| 1081 | gtid, loc_ref, new_taskdata ) ); |
| 1082 | |
| 1083 | return TASK_CURRENT_NOT_QUEUED; |
| 1084 | } |
| 1085 | |
| 1086 | |
| 1087 | //------------------------------------------------------------------------------------- |
| 1088 | // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are complete |
| 1089 | |
| 1090 | kmp_int32 |
| 1091 | __kmpc_omp_taskwait( ident_t *loc_ref, kmp_int32 gtid ) |
| 1092 | { |
| 1093 | kmp_taskdata_t * taskdata; |
| 1094 | kmp_info_t * thread; |
| 1095 | int thread_finished = FALSE; |
| 1096 | |
| 1097 | KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", |
| 1098 | gtid, loc_ref) ); |
| 1099 | |
| 1100 | if ( __kmp_tasking_mode != tskm_immediate_exec ) { |
| 1101 | // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark begin wait? |
| 1102 | |
| 1103 | thread = __kmp_threads[ gtid ]; |
| 1104 | taskdata = thread -> th.th_current_task; |
| 1105 | #if USE_ITT_BUILD |
| 1106 | // Note: These values are used by ITT events as well. |
| 1107 | #endif /* USE_ITT_BUILD */ |
| 1108 | taskdata->td_taskwait_counter += 1; |
| 1109 | taskdata->td_taskwait_ident = loc_ref; |
| 1110 | taskdata->td_taskwait_thread = gtid + 1; |
| 1111 | |
| 1112 | #if USE_ITT_BUILD |
| 1113 | void * itt_sync_obj = __kmp_itt_taskwait_object( gtid ); |
| 1114 | if ( itt_sync_obj != NULL ) |
| 1115 | __kmp_itt_taskwait_starting( gtid, itt_sync_obj ); |
| 1116 | #endif /* USE_ITT_BUILD */ |
| 1117 | |
| 1118 | if ( ! taskdata->td_flags.team_serial ) { |
| 1119 | // GEH: if team serialized, avoid reading the volatile variable below. |
| 1120 | while ( TCR_4(taskdata -> td_incomplete_child_tasks) != 0 ) { |
| 1121 | __kmp_execute_tasks( thread, gtid, &(taskdata->td_incomplete_child_tasks), |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1122 | 0, FALSE, &thread_finished |
| 1123 | USE_ITT_BUILD_ARG(itt_sync_obj), |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1124 | __kmp_task_stealing_constraint ); |
| 1125 | } |
| 1126 | } |
| 1127 | #if USE_ITT_BUILD |
| 1128 | if ( itt_sync_obj != NULL ) |
| 1129 | __kmp_itt_taskwait_finished( gtid, itt_sync_obj ); |
| 1130 | #endif /* USE_ITT_BUILD */ |
| 1131 | |
| 1132 | // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark end of wait? |
| 1133 | taskdata->td_taskwait_thread = - taskdata->td_taskwait_thread; |
| 1134 | } |
| 1135 | |
| 1136 | KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " |
| 1137 | "returning TASK_CURRENT_NOT_QUEUED\n", gtid, taskdata) ); |
| 1138 | |
| 1139 | return TASK_CURRENT_NOT_QUEUED; |
| 1140 | } |
| 1141 | |
| 1142 | |
| 1143 | //------------------------------------------------- |
| 1144 | // __kmpc_omp_taskyield: switch to a different task |
| 1145 | |
| 1146 | kmp_int32 |
| 1147 | __kmpc_omp_taskyield( ident_t *loc_ref, kmp_int32 gtid, int end_part ) |
| 1148 | { |
| 1149 | kmp_taskdata_t * taskdata; |
| 1150 | kmp_info_t * thread; |
| 1151 | int thread_finished = FALSE; |
| 1152 | |
| 1153 | KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", |
| 1154 | gtid, loc_ref, end_part) ); |
| 1155 | |
| 1156 | if ( __kmp_tasking_mode != tskm_immediate_exec ) { |
| 1157 | // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark begin wait? |
| 1158 | |
| 1159 | thread = __kmp_threads[ gtid ]; |
| 1160 | taskdata = thread -> th.th_current_task; |
| 1161 | // Should we model this as a task wait or not? |
| 1162 | #if USE_ITT_BUILD |
| 1163 | // Note: These values are used by ITT events as well. |
| 1164 | #endif /* USE_ITT_BUILD */ |
| 1165 | taskdata->td_taskwait_counter += 1; |
| 1166 | taskdata->td_taskwait_ident = loc_ref; |
| 1167 | taskdata->td_taskwait_thread = gtid + 1; |
| 1168 | |
| 1169 | #if USE_ITT_BUILD |
| 1170 | void * itt_sync_obj = __kmp_itt_taskwait_object( gtid ); |
| 1171 | if ( itt_sync_obj != NULL ) |
| 1172 | __kmp_itt_taskwait_starting( gtid, itt_sync_obj ); |
| 1173 | #endif /* USE_ITT_BUILD */ |
| 1174 | if ( ! taskdata->td_flags.team_serial ) { |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1175 | __kmp_execute_tasks( thread, gtid, NULL, 0, FALSE, &thread_finished |
| 1176 | USE_ITT_BUILD_ARG(itt_sync_obj), |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1177 | __kmp_task_stealing_constraint ); |
| 1178 | } |
| 1179 | |
| 1180 | #if USE_ITT_BUILD |
| 1181 | if ( itt_sync_obj != NULL ) |
| 1182 | __kmp_itt_taskwait_finished( gtid, itt_sync_obj ); |
| 1183 | #endif /* USE_ITT_BUILD */ |
| 1184 | |
| 1185 | // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark end of wait? |
| 1186 | taskdata->td_taskwait_thread = - taskdata->td_taskwait_thread; |
| 1187 | } |
| 1188 | |
| 1189 | KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " |
| 1190 | "returning TASK_CURRENT_NOT_QUEUED\n", gtid, taskdata) ); |
| 1191 | |
| 1192 | return TASK_CURRENT_NOT_QUEUED; |
| 1193 | } |
| 1194 | |
| 1195 | |
| 1196 | #if OMP_40_ENABLED |
| 1197 | //------------------------------------------------------------------------------------- |
| 1198 | // __kmpc_taskgroup: Start a new taskgroup |
| 1199 | |
| 1200 | void |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1201 | __kmpc_taskgroup( ident_t* loc, int gtid ) |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1202 | { |
| 1203 | kmp_info_t * thread = __kmp_threads[ gtid ]; |
| 1204 | kmp_taskdata_t * taskdata = thread->th.th_current_task; |
| 1205 | kmp_taskgroup_t * tg_new = |
| 1206 | (kmp_taskgroup_t *)__kmp_thread_malloc( thread, sizeof( kmp_taskgroup_t ) ); |
| 1207 | KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new) ); |
| 1208 | tg_new->count = 0; |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1209 | tg_new->cancel_request = cancel_noreq; |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1210 | tg_new->parent = taskdata->td_taskgroup; |
| 1211 | taskdata->td_taskgroup = tg_new; |
| 1212 | } |
| 1213 | |
| 1214 | |
| 1215 | //------------------------------------------------------------------------------------- |
| 1216 | // __kmpc_end_taskgroup: Wait until all tasks generated by the current task |
| 1217 | // and its descendants are complete |
| 1218 | |
| 1219 | void |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1220 | __kmpc_end_taskgroup( ident_t* loc, int gtid ) |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1221 | { |
| 1222 | kmp_info_t * thread = __kmp_threads[ gtid ]; |
| 1223 | kmp_taskdata_t * taskdata = thread->th.th_current_task; |
| 1224 | kmp_taskgroup_t * taskgroup = taskdata->td_taskgroup; |
| 1225 | int thread_finished = FALSE; |
| 1226 | |
| 1227 | KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc) ); |
| 1228 | KMP_DEBUG_ASSERT( taskgroup != NULL ); |
| 1229 | |
| 1230 | if ( __kmp_tasking_mode != tskm_immediate_exec ) { |
| 1231 | #if USE_ITT_BUILD |
| 1232 | // For ITT the taskgroup wait is similar to taskwait until we need to distinguish them |
| 1233 | void * itt_sync_obj = __kmp_itt_taskwait_object( gtid ); |
| 1234 | if ( itt_sync_obj != NULL ) |
| 1235 | __kmp_itt_taskwait_starting( gtid, itt_sync_obj ); |
| 1236 | #endif /* USE_ITT_BUILD */ |
| 1237 | |
| 1238 | if ( ! taskdata->td_flags.team_serial ) { |
| 1239 | while ( TCR_4(taskgroup->count) != 0 ) { |
| 1240 | __kmp_execute_tasks( thread, gtid, &(taskgroup->count), |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1241 | 0, FALSE, &thread_finished |
| 1242 | USE_ITT_BUILD_ARG(itt_sync_obj), |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1243 | __kmp_task_stealing_constraint ); |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | #if USE_ITT_BUILD |
| 1248 | if ( itt_sync_obj != NULL ) |
| 1249 | __kmp_itt_taskwait_finished( gtid, itt_sync_obj ); |
| 1250 | #endif /* USE_ITT_BUILD */ |
| 1251 | } |
| 1252 | KMP_DEBUG_ASSERT( taskgroup->count == 0 ); |
| 1253 | |
| 1254 | // Restore parent taskgroup for the current task |
| 1255 | taskdata->td_taskgroup = taskgroup->parent; |
| 1256 | __kmp_thread_free( thread, taskgroup ); |
| 1257 | |
| 1258 | KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", gtid, taskdata) ); |
| 1259 | } |
| 1260 | #endif |
| 1261 | |
| 1262 | |
| 1263 | //------------------------------------------------------ |
| 1264 | // __kmp_remove_my_task: remove a task from my own deque |
| 1265 | |
| 1266 | static kmp_task_t * |
| 1267 | __kmp_remove_my_task( kmp_info_t * thread, kmp_int32 gtid, kmp_task_team_t *task_team, |
| 1268 | kmp_int32 is_constrained ) |
| 1269 | { |
| 1270 | kmp_task_t * task; |
| 1271 | kmp_taskdata_t * taskdata; |
| 1272 | kmp_thread_data_t *thread_data; |
| 1273 | kmp_uint32 tail; |
| 1274 | |
| 1275 | KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); |
| 1276 | KMP_DEBUG_ASSERT( task_team -> tt.tt_threads_data != NULL ); // Caller should check this condition |
| 1277 | |
| 1278 | thread_data = & task_team -> tt.tt_threads_data[ __kmp_tid_from_gtid( gtid ) ]; |
| 1279 | |
| 1280 | KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", |
| 1281 | gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, |
| 1282 | thread_data->td.td_deque_tail) ); |
| 1283 | |
| 1284 | if (TCR_4(thread_data -> td.td_deque_ntasks) == 0) { |
| 1285 | KA_TRACE(10, ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n", |
| 1286 | gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, |
| 1287 | thread_data->td.td_deque_tail) ); |
| 1288 | return NULL; |
| 1289 | } |
| 1290 | |
| 1291 | __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock ); |
| 1292 | |
| 1293 | if (TCR_4(thread_data -> td.td_deque_ntasks) == 0) { |
| 1294 | __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock ); |
| 1295 | KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n", |
| 1296 | gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, |
| 1297 | thread_data->td.td_deque_tail) ); |
| 1298 | return NULL; |
| 1299 | } |
| 1300 | |
| 1301 | tail = ( thread_data -> td.td_deque_tail - 1 ) & TASK_DEQUE_MASK; // Wrap index. |
| 1302 | taskdata = thread_data -> td.td_deque[ tail ]; |
| 1303 | |
| 1304 | if (is_constrained) { |
| 1305 | // we need to check if the candidate obeys task scheduling constraint: |
| 1306 | // only child of current task can be scheduled |
| 1307 | kmp_taskdata_t * current = thread->th.th_current_task; |
| 1308 | kmp_int32 level = current->td_level; |
| 1309 | kmp_taskdata_t * parent = taskdata->td_parent; |
| 1310 | while ( parent != current && parent->td_level > level ) { |
| 1311 | parent = parent->td_parent; // check generation up to the level of the current task |
| 1312 | KMP_DEBUG_ASSERT(parent != NULL); |
| 1313 | } |
| 1314 | if ( parent != current ) { |
| 1315 | // If the tail task is not a child, then no other childs can appear in the deque. |
| 1316 | __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock ); |
| 1317 | KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n", |
| 1318 | gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, |
| 1319 | thread_data->td.td_deque_tail) ); |
| 1320 | return NULL; |
| 1321 | } |
| 1322 | } |
| 1323 | |
| 1324 | thread_data -> td.td_deque_tail = tail; |
| 1325 | TCW_4(thread_data -> td.td_deque_ntasks, thread_data -> td.td_deque_ntasks - 1); |
| 1326 | |
| 1327 | __kmp_release_bootstrap_lock( & thread_data->td.td_deque_lock ); |
| 1328 | |
| 1329 | KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d task %p removed: ntasks=%d head=%u tail=%u\n", |
| 1330 | gtid, taskdata, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, |
| 1331 | thread_data->td.td_deque_tail) ); |
| 1332 | |
| 1333 | task = KMP_TASKDATA_TO_TASK( taskdata ); |
| 1334 | return task; |
| 1335 | } |
| 1336 | |
| 1337 | |
| 1338 | //----------------------------------------------------------- |
| 1339 | // __kmp_steal_task: remove a task from another thread's deque |
| 1340 | // Assume that calling thread has already checked existence of |
| 1341 | // task_team thread_data before calling this routine. |
| 1342 | |
| 1343 | static kmp_task_t * |
| 1344 | __kmp_steal_task( kmp_info_t *victim, kmp_int32 gtid, kmp_task_team_t *task_team, |
| 1345 | volatile kmp_uint32 *unfinished_threads, int *thread_finished, |
| 1346 | kmp_int32 is_constrained ) |
| 1347 | { |
| 1348 | kmp_task_t * task; |
| 1349 | kmp_taskdata_t * taskdata; |
| 1350 | kmp_thread_data_t *victim_td, *threads_data; |
| 1351 | kmp_int32 victim_tid, thread_tid; |
| 1352 | |
| 1353 | KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); |
| 1354 | |
| 1355 | threads_data = task_team -> tt.tt_threads_data; |
| 1356 | KMP_DEBUG_ASSERT( threads_data != NULL ); // Caller should check this condition |
| 1357 | |
| 1358 | victim_tid = victim->th.th_info.ds.ds_tid; |
| 1359 | victim_td = & threads_data[ victim_tid ]; |
| 1360 | |
| 1361 | KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: task_team=%p ntasks=%d " |
| 1362 | "head=%u tail=%u\n", |
| 1363 | gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks, |
| 1364 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail) ); |
| 1365 | |
| 1366 | if ( (TCR_4(victim_td -> td.td_deque_ntasks) == 0) || // Caller should not check this condition |
| 1367 | (TCR_PTR(victim->th.th_task_team) != task_team)) // GEH: why would this happen? |
| 1368 | { |
| 1369 | KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: task_team=%p " |
| 1370 | "ntasks=%d head=%u tail=%u\n", |
| 1371 | gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks, |
| 1372 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail) ); |
| 1373 | return NULL; |
| 1374 | } |
| 1375 | |
| 1376 | __kmp_acquire_bootstrap_lock( & victim_td -> td.td_deque_lock ); |
| 1377 | |
| 1378 | // Check again after we acquire the lock |
| 1379 | if ( (TCR_4(victim_td -> td.td_deque_ntasks) == 0) || |
| 1380 | (TCR_PTR(victim->th.th_task_team) != task_team)) // GEH: why would this happen? |
| 1381 | { |
| 1382 | __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock ); |
| 1383 | KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: task_team=%p " |
| 1384 | "ntasks=%d head=%u tail=%u\n", |
| 1385 | gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks, |
| 1386 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail) ); |
| 1387 | return NULL; |
| 1388 | } |
| 1389 | |
| 1390 | KMP_DEBUG_ASSERT( victim_td -> td.td_deque != NULL ); |
| 1391 | |
| 1392 | if ( !is_constrained ) { |
| 1393 | taskdata = victim_td -> td.td_deque[ victim_td -> td.td_deque_head ]; |
| 1394 | // Bump head pointer and Wrap. |
| 1395 | victim_td -> td.td_deque_head = ( victim_td -> td.td_deque_head + 1 ) & TASK_DEQUE_MASK; |
| 1396 | } else { |
| 1397 | // While we have postponed tasks let's steal from tail of the deque (smaller tasks) |
| 1398 | kmp_int32 tail = ( victim_td -> td.td_deque_tail - 1 ) & TASK_DEQUE_MASK; // Wrap index. |
| 1399 | taskdata = victim_td -> td.td_deque[ tail ]; |
| 1400 | // we need to check if the candidate obeys task scheduling constraint: |
| 1401 | // only child of current task can be scheduled |
| 1402 | kmp_taskdata_t * current = __kmp_threads[ gtid ]->th.th_current_task; |
| 1403 | kmp_int32 level = current->td_level; |
| 1404 | kmp_taskdata_t * parent = taskdata->td_parent; |
| 1405 | while ( parent != current && parent->td_level > level ) { |
| 1406 | parent = parent->td_parent; // check generation up to the level of the current task |
| 1407 | KMP_DEBUG_ASSERT(parent != NULL); |
| 1408 | } |
| 1409 | if ( parent != current ) { |
| 1410 | // If the tail task is not a child, then no other childs can appear in the deque (?). |
| 1411 | __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock ); |
| 1412 | KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: task_team=%p " |
| 1413 | "ntasks=%d head=%u tail=%u\n", |
| 1414 | gtid, __kmp_gtid_from_thread( threads_data[victim_tid].td.td_thr ), |
| 1415 | task_team, victim_td->td.td_deque_ntasks, |
| 1416 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail) ); |
| 1417 | return NULL; |
| 1418 | } |
| 1419 | victim_td -> td.td_deque_tail = tail; |
| 1420 | } |
| 1421 | if (*thread_finished) { |
| 1422 | // We need to un-mark this victim as a finished victim. This must be done before |
| 1423 | // releasing the lock, or else other threads (starting with the master victim) |
| 1424 | // might be prematurely released from the barrier!!! |
| 1425 | kmp_uint32 count = KMP_TEST_THEN_INC32( (kmp_int32 *)unfinished_threads ); |
| 1426 | |
| 1427 | KA_TRACE(20, ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", |
| 1428 | gtid, count + 1, task_team) ); |
| 1429 | |
| 1430 | *thread_finished = FALSE; |
| 1431 | } |
| 1432 | TCW_4(victim_td -> td.td_deque_ntasks, TCR_4(victim_td -> td.td_deque_ntasks) - 1); |
| 1433 | |
| 1434 | __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock ); |
| 1435 | |
| 1436 | KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d stole task %p from T#d: task_team=%p " |
| 1437 | "ntasks=%d head=%u tail=%u\n", |
| 1438 | gtid, taskdata, __kmp_gtid_from_thread( victim ), task_team, |
| 1439 | victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, |
| 1440 | victim_td->td.td_deque_tail) ); |
| 1441 | |
| 1442 | task = KMP_TASKDATA_TO_TASK( taskdata ); |
| 1443 | return task; |
| 1444 | } |
| 1445 | |
| 1446 | |
| 1447 | //----------------------------------------------------------------------------- |
| 1448 | // __kmp_execute_tasks: Choose and execute tasks until either the condition |
| 1449 | // is statisfied (return true) or there are none left (return false). |
| 1450 | // final_spin is TRUE if this is the spin at the release barrier. |
| 1451 | // thread_finished indicates whether the thread is finished executing all |
| 1452 | // the tasks it has on its deque, and is at the release barrier. |
| 1453 | // spinner is the location on which to spin. |
| 1454 | // spinner == NULL means only execute a single task and return. |
| 1455 | // checker is the value to check to terminate the spin. |
| 1456 | |
| 1457 | int |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1458 | __kmp_execute_tasks( kmp_info_t *thread, |
| 1459 | kmp_int32 gtid, |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1460 | volatile kmp_uint *spinner, |
| 1461 | kmp_uint checker, |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1462 | int final_spin, |
| 1463 | int *thread_finished |
| 1464 | USE_ITT_BUILD_ARG(void * itt_sync_obj), |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1465 | kmp_int32 is_constrained ) |
| 1466 | { |
| 1467 | kmp_task_team_t * task_team; |
| 1468 | kmp_team_t * team; |
| 1469 | kmp_thread_data_t * threads_data; |
| 1470 | kmp_task_t * task; |
| 1471 | kmp_taskdata_t * current_task = thread -> th.th_current_task; |
| 1472 | volatile kmp_uint32 * unfinished_threads; |
| 1473 | kmp_int32 nthreads, last_stolen, k, tid; |
| 1474 | |
| 1475 | KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); |
| 1476 | KMP_DEBUG_ASSERT( thread == __kmp_threads[ gtid ] ); |
| 1477 | |
| 1478 | task_team = thread -> th.th_task_team; |
| 1479 | KMP_DEBUG_ASSERT( task_team != NULL ); |
| 1480 | |
| 1481 | KA_TRACE(15, ("__kmp_execute_tasks(enter): T#%d final_spin=%d *thread_finished=%d\n", |
| 1482 | gtid, final_spin, *thread_finished) ); |
| 1483 | |
| 1484 | threads_data = (kmp_thread_data_t *)TCR_PTR(task_team -> tt.tt_threads_data); |
| 1485 | KMP_DEBUG_ASSERT( threads_data != NULL ); |
| 1486 | |
| 1487 | nthreads = task_team -> tt.tt_nproc; |
| 1488 | unfinished_threads = &(task_team -> tt.tt_unfinished_threads); |
| 1489 | KMP_DEBUG_ASSERT( nthreads > 1 ); |
| 1490 | KMP_DEBUG_ASSERT( TCR_4((int)*unfinished_threads) >= 0 ); |
| 1491 | |
| 1492 | // Choose tasks from our own work queue. |
| 1493 | start: |
| 1494 | while (( task = __kmp_remove_my_task( thread, gtid, task_team, is_constrained )) != NULL ) { |
| 1495 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
| 1496 | if ( __itt_sync_create_ptr || KMP_ITT_DEBUG ) { |
| 1497 | if ( itt_sync_obj == NULL ) { |
| 1498 | // we are at fork barrier where we could not get the object reliably |
| 1499 | itt_sync_obj = __kmp_itt_barrier_object( gtid, bs_forkjoin_barrier ); |
| 1500 | } |
| 1501 | __kmp_itt_task_starting( itt_sync_obj ); |
| 1502 | } |
| 1503 | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ |
| 1504 | __kmp_invoke_task( gtid, task, current_task ); |
| 1505 | #if USE_ITT_BUILD |
| 1506 | if ( itt_sync_obj != NULL ) |
| 1507 | __kmp_itt_task_finished( itt_sync_obj ); |
| 1508 | #endif /* USE_ITT_BUILD */ |
| 1509 | |
| 1510 | // If this thread is only partway through the barrier and the condition |
| 1511 | // is met, then return now, so that the barrier gather/release pattern can proceed. |
| 1512 | // If this thread is in the last spin loop in the barrier, waiting to be |
| 1513 | // released, we know that the termination condition will not be satisified, |
| 1514 | // so don't waste any cycles checking it. |
| 1515 | if ((spinner == NULL) || ((!final_spin) && (TCR_4(*spinner) == checker))) { |
| 1516 | KA_TRACE(15, ("__kmp_execute_tasks(exit #1): T#%d spin condition satisfied\n", gtid) ); |
| 1517 | return TRUE; |
| 1518 | } |
| 1519 | KMP_YIELD( __kmp_library == library_throughput ); // Yield before executing next task |
| 1520 | } |
| 1521 | |
| 1522 | // This thread's work queue is empty. If we are in the final spin loop |
| 1523 | // of the barrier, check and see if the termination condition is satisfied. |
| 1524 | if (final_spin) { |
| 1525 | // First, decrement the #unfinished threads, if that has not already |
| 1526 | // been done. This decrement might be to the spin location, and |
| 1527 | // result in the termination condition being satisfied. |
| 1528 | if (! *thread_finished) { |
| 1529 | kmp_uint32 count = KMP_TEST_THEN_DEC32( (kmp_int32 *)unfinished_threads ) - 1; |
| 1530 | KA_TRACE(20, ("__kmp_execute_tasks(dec #1): T#%d dec unfinished_threads to %d task_team=%p\n", |
| 1531 | gtid, count, task_team) ); |
| 1532 | *thread_finished = TRUE; |
| 1533 | } |
| 1534 | |
| 1535 | // It is now unsafe to reference thread->th.th_team !!! |
| 1536 | // Decrementing task_team->tt.tt_unfinished_threads can allow the master |
| 1537 | // thread to pass through the barrier, where it might reset each thread's |
| 1538 | // th.th_team field for the next parallel region. |
| 1539 | // If we can steal more work, we know that this has not happened yet. |
| 1540 | if ((spinner != NULL) && (TCR_4(*spinner) == checker)) { |
| 1541 | KA_TRACE(15, ("__kmp_execute_tasks(exit #2): T#%d spin condition satisfied\n", gtid) ); |
| 1542 | return TRUE; |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | // Try to steal from the last place I stole from successfully. |
| 1547 | tid = thread -> th.th_info.ds.ds_tid;//__kmp_tid_from_gtid( gtid ); |
| 1548 | last_stolen = threads_data[ tid ].td.td_deque_last_stolen; |
| 1549 | |
| 1550 | if (last_stolen != -1) { |
| 1551 | kmp_info_t *other_thread = threads_data[last_stolen].td.td_thr; |
| 1552 | |
| 1553 | while ((task = __kmp_steal_task( other_thread, gtid, task_team, unfinished_threads, |
| 1554 | thread_finished, is_constrained )) != NULL) |
| 1555 | { |
| 1556 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
| 1557 | if ( __itt_sync_create_ptr || KMP_ITT_DEBUG ) { |
| 1558 | if ( itt_sync_obj == NULL ) { |
| 1559 | // we are at fork barrier where we could not get the object reliably |
| 1560 | itt_sync_obj = __kmp_itt_barrier_object( gtid, bs_forkjoin_barrier ); |
| 1561 | } |
| 1562 | __kmp_itt_task_starting( itt_sync_obj ); |
| 1563 | } |
| 1564 | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ |
| 1565 | __kmp_invoke_task( gtid, task, current_task ); |
| 1566 | #if USE_ITT_BUILD |
| 1567 | if ( itt_sync_obj != NULL ) |
| 1568 | __kmp_itt_task_finished( itt_sync_obj ); |
| 1569 | #endif /* USE_ITT_BUILD */ |
| 1570 | |
| 1571 | // Check to see if this thread can proceed. |
| 1572 | if ((spinner == NULL) || ((!final_spin) && (TCR_4(*spinner) == checker))) { |
| 1573 | KA_TRACE(15, ("__kmp_execute_tasks(exit #3): T#%d spin condition satisfied\n", |
| 1574 | gtid) ); |
| 1575 | return TRUE; |
| 1576 | } |
| 1577 | |
| 1578 | KMP_YIELD( __kmp_library == library_throughput ); // Yield before executing next task |
| 1579 | // If the execution of the stolen task resulted in more tasks being |
| 1580 | // placed on our run queue, then restart the whole process. |
| 1581 | if (TCR_4(threads_data[ tid ].td.td_deque_ntasks) != 0) { |
| 1582 | KA_TRACE(20, ("__kmp_execute_tasks: T#%d stolen task spawned other tasks, restart\n", |
| 1583 | gtid) ); |
| 1584 | goto start; |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | // Don't give priority to stealing from this thread anymore. |
| 1589 | threads_data[ tid ].td.td_deque_last_stolen = -1; |
| 1590 | |
| 1591 | // The victims's work queue is empty. If we are in the final spin loop |
| 1592 | // of the barrier, check and see if the termination condition is satisfied. |
| 1593 | if (final_spin) { |
| 1594 | // First, decrement the #unfinished threads, if that has not already |
| 1595 | // been done. This decrement might be to the spin location, and |
| 1596 | // result in the termination condition being satisfied. |
| 1597 | if (! *thread_finished) { |
| 1598 | kmp_uint32 count = KMP_TEST_THEN_DEC32( (kmp_int32 *)unfinished_threads ) - 1; |
| 1599 | KA_TRACE(20, ("__kmp_execute_tasks(dec #2): T#%d dec unfinished_threads to %d " |
| 1600 | "task_team=%p\n", gtid, count, task_team) ); |
| 1601 | *thread_finished = TRUE; |
| 1602 | } |
| 1603 | |
| 1604 | // If __kmp_tasking_mode != tskm_immediate_exec |
| 1605 | // then it is now unsafe to reference thread->th.th_team !!! |
| 1606 | // Decrementing task_team->tt.tt_unfinished_threads can allow the master |
| 1607 | // thread to pass through the barrier, where it might reset each thread's |
| 1608 | // th.th_team field for the next parallel region. |
| 1609 | // If we can steal more work, we know that this has not happened yet. |
| 1610 | if ((spinner != NULL) && (TCR_4(*spinner) == checker)) { |
| 1611 | KA_TRACE(15, ("__kmp_execute_tasks(exit #4): T#%d spin condition satisfied\n", |
| 1612 | gtid) ); |
| 1613 | return TRUE; |
| 1614 | } |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | // Find a different thread to steal work from. Pick a random thread. |
| 1619 | // My initial plan was to cycle through all the threads, and only return |
| 1620 | // if we tried to steal from every thread, and failed. Arch says that's |
| 1621 | // not such a great idea. |
| 1622 | // GEH - need yield code in this loop for throughput library mode? |
| 1623 | new_victim: |
| 1624 | k = __kmp_get_random( thread ) % (nthreads - 1); |
| 1625 | if ( k >= thread -> th.th_info.ds.ds_tid ) { |
| 1626 | ++k; // Adjusts random distribution to exclude self |
| 1627 | } |
| 1628 | { |
| 1629 | kmp_info_t *other_thread = threads_data[k].td.td_thr; |
| 1630 | int first; |
| 1631 | |
| 1632 | // There is a slight chance that __kmp_enable_tasking() did not wake up |
| 1633 | // all threads waiting at the barrier. If this thread is sleeping, then |
| 1634 | // then wake it up. Since we weree going to pay the cache miss penalty |
| 1635 | // for referenceing another thread's kmp_info_t struct anyway, the check |
| 1636 | // shouldn't cost too much performance at this point. |
| 1637 | // In extra barrier mode, tasks do not sleep at the separate tasking |
| 1638 | // barrier, so this isn't a problem. |
| 1639 | if ( ( __kmp_tasking_mode == tskm_task_teams ) && |
| 1640 | (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && |
| 1641 | (TCR_PTR(other_thread->th.th_sleep_loc) != NULL)) |
| 1642 | { |
| 1643 | __kmp_resume( __kmp_gtid_from_thread( other_thread ), NULL ); |
| 1644 | |
| 1645 | // A sleeping thread should not have any tasks on it's queue. |
Alp Toker | 8f2d3f0 | 2014-02-24 10:40:15 +0000 | [diff] [blame^] | 1646 | // There is a slight possibility that it resumes, steals a task from |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1647 | // another thread, which spawns more tasks, all in the that it takes |
| 1648 | // this thread to check => don't write an assertion that the victim's |
| 1649 | // queue is empty. Try stealing from a different thread. |
| 1650 | goto new_victim; |
| 1651 | } |
| 1652 | |
| 1653 | // Now try to steal work from the selected thread |
| 1654 | first = TRUE; |
| 1655 | while ((task = __kmp_steal_task( other_thread, gtid, task_team, unfinished_threads, |
| 1656 | thread_finished, is_constrained )) != NULL) |
| 1657 | { |
| 1658 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
| 1659 | if ( __itt_sync_create_ptr || KMP_ITT_DEBUG ) { |
| 1660 | if ( itt_sync_obj == NULL ) { |
| 1661 | // we are at fork barrier where we could not get the object reliably |
| 1662 | itt_sync_obj = __kmp_itt_barrier_object( gtid, bs_forkjoin_barrier ); |
| 1663 | } |
| 1664 | __kmp_itt_task_starting( itt_sync_obj ); |
| 1665 | } |
| 1666 | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ |
| 1667 | __kmp_invoke_task( gtid, task, current_task ); |
| 1668 | #if USE_ITT_BUILD |
| 1669 | if ( itt_sync_obj != NULL ) |
| 1670 | __kmp_itt_task_finished( itt_sync_obj ); |
| 1671 | #endif /* USE_ITT_BUILD */ |
| 1672 | |
| 1673 | // Try stealing from this victim again, in the future. |
| 1674 | if (first) { |
| 1675 | threads_data[ tid ].td.td_deque_last_stolen = k; |
| 1676 | first = FALSE; |
| 1677 | } |
| 1678 | |
| 1679 | // Check to see if this thread can proceed. |
| 1680 | if ((spinner == NULL) || ((!final_spin) && (TCR_4(*spinner) == checker))) { |
| 1681 | KA_TRACE(15, ("__kmp_execute_tasks(exit #5): T#%d spin condition satisfied\n", |
| 1682 | gtid) ); |
| 1683 | return TRUE; |
| 1684 | } |
| 1685 | KMP_YIELD( __kmp_library == library_throughput ); // Yield before executing next task |
| 1686 | |
| 1687 | // If the execution of the stolen task resulted in more tasks being |
| 1688 | // placed on our run queue, then restart the whole process. |
| 1689 | if (TCR_4(threads_data[ tid ].td.td_deque_ntasks) != 0) { |
| 1690 | KA_TRACE(20, ("__kmp_execute_tasks: T#%d stolen task spawned other tasks, restart\n", |
| 1691 | gtid) ); |
| 1692 | goto start; |
| 1693 | } |
| 1694 | } |
| 1695 | |
| 1696 | // The victims's work queue is empty. If we are in the final spin loop |
| 1697 | // of the barrier, check and see if the termination condition is satisfied. |
| 1698 | // Going on and finding a new victim to steal from is expensive, as it |
| 1699 | // involves a lot of cache misses, so we definitely want to re-check the |
| 1700 | // termination condition before doing that. |
| 1701 | if (final_spin) { |
| 1702 | // First, decrement the #unfinished threads, if that has not already |
| 1703 | // been done. This decrement might be to the spin location, and |
| 1704 | // result in the termination condition being satisfied. |
| 1705 | if (! *thread_finished) { |
| 1706 | kmp_uint32 count = KMP_TEST_THEN_DEC32( (kmp_int32 *)unfinished_threads ) - 1; |
| 1707 | KA_TRACE(20, ("__kmp_execute_tasks(dec #3): T#%d dec unfinished_threads to %d; " |
| 1708 | "task_team=%p\n", |
| 1709 | gtid, count, task_team) ); |
| 1710 | *thread_finished = TRUE; |
| 1711 | } |
| 1712 | |
| 1713 | // If __kmp_tasking_mode != tskm_immediate_exec, |
| 1714 | // then it is now unsafe to reference thread->th.th_team !!! |
| 1715 | // Decrementing task_team->tt.tt_unfinished_threads can allow the master |
| 1716 | // thread to pass through the barrier, where it might reset each thread's |
| 1717 | // th.th_team field for the next parallel region. |
| 1718 | // If we can steal more work, we know that this has not happened yet. |
| 1719 | if ((spinner != NULL) && (TCR_4(*spinner) == checker)) { |
| 1720 | KA_TRACE(15, ("__kmp_execute_tasks(exit #6): T#%d spin condition satisfied\n", |
| 1721 | gtid) ); |
| 1722 | return TRUE; |
| 1723 | } |
| 1724 | } |
| 1725 | } |
| 1726 | |
| 1727 | KA_TRACE(15, ("__kmp_execute_tasks(exit #7): T#%d can't find work\n", gtid) ); |
| 1728 | return FALSE; |
| 1729 | } |
| 1730 | |
| 1731 | |
| 1732 | //----------------------------------------------------------------------------- |
| 1733 | // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the |
| 1734 | // next barrier so they can assist in executing enqueued tasks. |
| 1735 | // First thread in allocates the task team atomically. |
| 1736 | |
| 1737 | static void |
| 1738 | __kmp_enable_tasking( kmp_task_team_t *task_team, kmp_info_t *this_thr ) |
| 1739 | { |
| 1740 | kmp_team_t *team = this_thr->th.th_team; |
| 1741 | kmp_thread_data_t *threads_data; |
| 1742 | int nthreads, i, is_init_thread; |
| 1743 | |
| 1744 | KA_TRACE( 10, ( "__kmp_enable_tasking(enter): T#%d\n", |
| 1745 | __kmp_gtid_from_thread( this_thr ) ) ); |
| 1746 | |
| 1747 | KMP_DEBUG_ASSERT(task_team != NULL); |
| 1748 | KMP_DEBUG_ASSERT(team != NULL); |
| 1749 | |
| 1750 | nthreads = task_team->tt.tt_nproc; |
| 1751 | KMP_DEBUG_ASSERT(nthreads > 0); |
| 1752 | KMP_DEBUG_ASSERT(nthreads == team->t.t_nproc); |
| 1753 | |
| 1754 | // Allocate or increase the size of threads_data if necessary |
| 1755 | is_init_thread = __kmp_realloc_task_threads_data( this_thr, task_team ); |
| 1756 | |
| 1757 | if (!is_init_thread) { |
| 1758 | // Some other thread already set up the array. |
| 1759 | KA_TRACE( 20, ( "__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", |
| 1760 | __kmp_gtid_from_thread( this_thr ) ) ); |
| 1761 | return; |
| 1762 | } |
| 1763 | threads_data = (kmp_thread_data_t *)TCR_PTR(task_team -> tt.tt_threads_data); |
| 1764 | KMP_DEBUG_ASSERT( threads_data != NULL ); |
| 1765 | |
| 1766 | if ( ( __kmp_tasking_mode == tskm_task_teams ) && |
| 1767 | ( __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ) ) |
| 1768 | { |
| 1769 | // Release any threads sleeping at the barrier, so that they can steal |
| 1770 | // tasks and execute them. In extra barrier mode, tasks do not sleep |
| 1771 | // at the separate tasking barrier, so this isn't a problem. |
| 1772 | for (i = 0; i < nthreads; i++) { |
| 1773 | volatile kmp_uint *sleep_loc; |
| 1774 | kmp_info_t *thread = threads_data[i].td.td_thr; |
| 1775 | |
| 1776 | if (i == this_thr->th.th_info.ds.ds_tid) { |
| 1777 | continue; |
| 1778 | } |
| 1779 | // Since we haven't locked the thread's suspend mutex lock at this |
| 1780 | // point, there is a small window where a thread might be putting |
| 1781 | // itself to sleep, but hasn't set the th_sleep_loc field yet. |
| 1782 | // To work around this, __kmp_execute_tasks() periodically checks |
| 1783 | // see if other threads are sleeping (using the same random |
| 1784 | // mechanism that is used for task stealing) and awakens them if |
| 1785 | // they are. |
| 1786 | if ( ( sleep_loc = (volatile kmp_uint *) |
| 1787 | TCR_PTR( thread -> th.th_sleep_loc) ) != NULL ) |
| 1788 | { |
| 1789 | KF_TRACE( 50, ( "__kmp_enable_tasking: T#%d waking up thread T#%d\n", |
| 1790 | __kmp_gtid_from_thread( this_thr ), |
| 1791 | __kmp_gtid_from_thread( thread ) ) ); |
| 1792 | __kmp_resume( __kmp_gtid_from_thread( thread ), sleep_loc ); |
| 1793 | } |
| 1794 | else { |
| 1795 | KF_TRACE( 50, ( "__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", |
| 1796 | __kmp_gtid_from_thread( this_thr ), |
| 1797 | __kmp_gtid_from_thread( thread ) ) ); |
| 1798 | } |
| 1799 | } |
| 1800 | } |
| 1801 | |
| 1802 | KA_TRACE( 10, ( "__kmp_enable_tasking(exit): T#%d\n", |
| 1803 | __kmp_gtid_from_thread( this_thr ) ) ); |
| 1804 | } |
| 1805 | |
| 1806 | |
| 1807 | /* ------------------------------------------------------------------------ */ |
| 1808 | /* |
| 1809 | * Utility routines for "task teams". A task team (kmp_task_t) is kind of |
| 1810 | * like a shadow of the kmp_team_t data struct, with a different lifetime. |
| 1811 | * After a child * thread checks into a barrier and calls __kmp_release() from |
| 1812 | * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no |
| 1813 | * longer assume that the kmp_team_t structure is intact (at any moment, the |
| 1814 | * master thread may exit the barrier code and free the team data structure, |
| 1815 | * and return the threads to the thread pool). |
| 1816 | * |
| 1817 | * This does not work with the the tasking code, as the thread is still |
| 1818 | * expected to participate in the execution of any tasks that may have been |
| 1819 | * spawned my a member of the team, and the thread still needs access to all |
| 1820 | * to each thread in the team, so that it can steal work from it. |
| 1821 | * |
| 1822 | * Enter the existence of the kmp_task_team_t struct. It employs a reference |
| 1823 | * counting mechanims, and is allocated by the master thread before calling |
| 1824 | * __kmp_<barrier_kind>_release, and then is release by the last thread to |
| 1825 | * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes |
| 1826 | * of the kmp_task_team_t structs for consecutive barriers can overlap |
| 1827 | * (and will, unless the master thread is the last thread to exit the barrier |
| 1828 | * release phase, which is not typical). |
| 1829 | * |
| 1830 | * The existence of such a struct is useful outside the context of tasking, |
| 1831 | * but for now, I'm trying to keep it specific to the OMP_30_ENABLED macro, |
| 1832 | * so that any performance differences show up when comparing the 2.5 vs. 3.0 |
| 1833 | * libraries. |
| 1834 | * |
| 1835 | * We currently use the existence of the threads array as an indicator that |
| 1836 | * tasks were spawned since the last barrier. If the structure is to be |
| 1837 | * useful outside the context of tasking, then this will have to change, but |
| 1838 | * not settting the field minimizes the performance impact of tasking on |
| 1839 | * barriers, when no explicit tasks were spawned (pushed, actually). |
| 1840 | */ |
| 1841 | |
| 1842 | static kmp_task_team_t *__kmp_free_task_teams = NULL; // Free list for task_team data structures |
| 1843 | // Lock for task team data structures |
| 1844 | static kmp_bootstrap_lock_t __kmp_task_team_lock = KMP_BOOTSTRAP_LOCK_INITIALIZER( __kmp_task_team_lock ); |
| 1845 | |
| 1846 | |
| 1847 | //------------------------------------------------------------------------------ |
| 1848 | // __kmp_alloc_task_deque: |
| 1849 | // Allocates a task deque for a particular thread, and initialize the necessary |
| 1850 | // data structures relating to the deque. This only happens once per thread |
| 1851 | // per task team since task teams are recycled. |
| 1852 | // No lock is needed during allocation since each thread allocates its own |
| 1853 | // deque. |
| 1854 | |
| 1855 | static void |
| 1856 | __kmp_alloc_task_deque( kmp_info_t *thread, kmp_thread_data_t *thread_data ) |
| 1857 | { |
| 1858 | __kmp_init_bootstrap_lock( & thread_data -> td.td_deque_lock ); |
| 1859 | KMP_DEBUG_ASSERT( thread_data -> td.td_deque == NULL ); |
| 1860 | |
| 1861 | // Initialize last stolen task field to "none" |
| 1862 | thread_data -> td.td_deque_last_stolen = -1; |
| 1863 | |
| 1864 | KMP_DEBUG_ASSERT( TCR_4(thread_data -> td.td_deque_ntasks) == 0 ); |
| 1865 | KMP_DEBUG_ASSERT( thread_data -> td.td_deque_head == 0 ); |
| 1866 | KMP_DEBUG_ASSERT( thread_data -> td.td_deque_tail == 0 ); |
| 1867 | |
| 1868 | KE_TRACE( 10, ( "__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", |
| 1869 | __kmp_gtid_from_thread( thread ), TASK_DEQUE_SIZE, thread_data ) ); |
| 1870 | // Allocate space for task deque, and zero the deque |
| 1871 | // Cannot use __kmp_thread_calloc() because threads not around for |
| 1872 | // kmp_reap_task_team( ). |
| 1873 | thread_data -> td.td_deque = (kmp_taskdata_t **) |
| 1874 | __kmp_allocate( TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); |
| 1875 | } |
| 1876 | |
| 1877 | |
| 1878 | //------------------------------------------------------------------------------ |
| 1879 | // __kmp_free_task_deque: |
| 1880 | // Deallocates a task deque for a particular thread. |
| 1881 | // Happens at library deallocation so don't need to reset all thread data fields. |
| 1882 | |
| 1883 | static void |
| 1884 | __kmp_free_task_deque( kmp_thread_data_t *thread_data ) |
| 1885 | { |
| 1886 | __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock ); |
| 1887 | |
| 1888 | if ( thread_data -> td.td_deque != NULL ) { |
| 1889 | TCW_4(thread_data -> td.td_deque_ntasks, 0); |
| 1890 | __kmp_free( thread_data -> td.td_deque ); |
| 1891 | thread_data -> td.td_deque = NULL; |
| 1892 | } |
| 1893 | __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock ); |
| 1894 | |
| 1895 | #ifdef BUILD_TIED_TASK_STACK |
| 1896 | // GEH: Figure out what to do here for td_susp_tied_tasks |
| 1897 | if ( thread_data -> td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY ) { |
| 1898 | __kmp_free_task_stack( __kmp_thread_from_gtid( gtid ), thread_data ); |
| 1899 | } |
| 1900 | #endif // BUILD_TIED_TASK_STACK |
| 1901 | } |
| 1902 | |
| 1903 | |
| 1904 | //------------------------------------------------------------------------------ |
| 1905 | // __kmp_realloc_task_threads_data: |
| 1906 | // Allocates a threads_data array for a task team, either by allocating an initial |
| 1907 | // array or enlarging an existing array. Only the first thread to get the lock |
| 1908 | // allocs or enlarges the array and re-initializes the array eleemnts. |
| 1909 | // That thread returns "TRUE", the rest return "FALSE". |
| 1910 | // Assumes that the new array size is given by task_team -> tt.tt_nproc. |
| 1911 | // The current size is given by task_team -> tt.tt_max_threads. |
| 1912 | |
| 1913 | static int |
| 1914 | __kmp_realloc_task_threads_data( kmp_info_t *thread, kmp_task_team_t *task_team ) |
| 1915 | { |
| 1916 | kmp_thread_data_t ** threads_data_p; |
| 1917 | kmp_int32 nthreads, maxthreads; |
| 1918 | int is_init_thread = FALSE; |
| 1919 | |
| 1920 | if ( TCR_4(task_team -> tt.tt_found_tasks) ) { |
| 1921 | // Already reallocated and initialized. |
| 1922 | return FALSE; |
| 1923 | } |
| 1924 | |
| 1925 | threads_data_p = & task_team -> tt.tt_threads_data; |
| 1926 | nthreads = task_team -> tt.tt_nproc; |
| 1927 | maxthreads = task_team -> tt.tt_max_threads; |
| 1928 | |
| 1929 | // All threads must lock when they encounter the first task of the implicit task |
| 1930 | // region to make sure threads_data fields are (re)initialized before used. |
| 1931 | __kmp_acquire_bootstrap_lock( & task_team -> tt.tt_threads_lock ); |
| 1932 | |
| 1933 | if ( ! TCR_4(task_team -> tt.tt_found_tasks) ) { |
| 1934 | // first thread to enable tasking |
| 1935 | kmp_team_t *team = thread -> th.th_team; |
| 1936 | int i; |
| 1937 | |
| 1938 | is_init_thread = TRUE; |
| 1939 | if ( maxthreads < nthreads ) { |
| 1940 | |
| 1941 | if ( *threads_data_p != NULL ) { |
| 1942 | kmp_thread_data_t *old_data = *threads_data_p; |
| 1943 | kmp_thread_data_t *new_data = NULL; |
| 1944 | |
| 1945 | KE_TRACE( 10, ( "__kmp_realloc_task_threads_data: T#%d reallocating " |
| 1946 | "threads data for task_team %p, new_size = %d, old_size = %d\n", |
| 1947 | __kmp_gtid_from_thread( thread ), task_team, |
| 1948 | nthreads, maxthreads ) ); |
| 1949 | // Reallocate threads_data to have more elements than current array |
| 1950 | // Cannot use __kmp_thread_realloc() because threads not around for |
| 1951 | // kmp_reap_task_team( ). Note all new array entries are initialized |
| 1952 | // to zero by __kmp_allocate(). |
| 1953 | new_data = (kmp_thread_data_t *) |
| 1954 | __kmp_allocate( nthreads * sizeof(kmp_thread_data_t) ); |
| 1955 | // copy old data to new data |
| 1956 | memcpy( (void *) new_data, (void *) old_data, |
| 1957 | maxthreads * sizeof(kmp_taskdata_t *) ); |
| 1958 | |
| 1959 | #ifdef BUILD_TIED_TASK_STACK |
| 1960 | // GEH: Figure out if this is the right thing to do |
| 1961 | for (i = maxthreads; i < nthreads; i++) { |
| 1962 | kmp_thread_data_t *thread_data = & (*threads_data_p)[i]; |
| 1963 | __kmp_init_task_stack( __kmp_gtid_from_thread( thread ), thread_data ); |
| 1964 | } |
| 1965 | #endif // BUILD_TIED_TASK_STACK |
| 1966 | // Install the new data and free the old data |
| 1967 | (*threads_data_p) = new_data; |
| 1968 | __kmp_free( old_data ); |
| 1969 | } |
| 1970 | else { |
| 1971 | KE_TRACE( 10, ( "__kmp_realloc_task_threads_data: T#%d allocating " |
| 1972 | "threads data for task_team %p, size = %d\n", |
| 1973 | __kmp_gtid_from_thread( thread ), task_team, nthreads ) ); |
| 1974 | // Make the initial allocate for threads_data array, and zero entries |
| 1975 | // Cannot use __kmp_thread_calloc() because threads not around for |
| 1976 | // kmp_reap_task_team( ). |
| 1977 | *threads_data_p = (kmp_thread_data_t *) |
| 1978 | __kmp_allocate( nthreads * sizeof(kmp_thread_data_t) ); |
| 1979 | #ifdef BUILD_TIED_TASK_STACK |
| 1980 | // GEH: Figure out if this is the right thing to do |
| 1981 | for (i = 0; i < nthreads; i++) { |
| 1982 | kmp_thread_data_t *thread_data = & (*threads_data_p)[i]; |
| 1983 | __kmp_init_task_stack( __kmp_gtid_from_thread( thread ), thread_data ); |
| 1984 | } |
| 1985 | #endif // BUILD_TIED_TASK_STACK |
| 1986 | } |
| 1987 | task_team -> tt.tt_max_threads = nthreads; |
| 1988 | } |
| 1989 | else { |
| 1990 | // If array has (more than) enough elements, go ahead and use it |
| 1991 | KMP_DEBUG_ASSERT( *threads_data_p != NULL ); |
| 1992 | } |
| 1993 | |
| 1994 | // initialize threads_data pointers back to thread_info structures |
| 1995 | for (i = 0; i < nthreads; i++) { |
| 1996 | kmp_thread_data_t *thread_data = & (*threads_data_p)[i]; |
| 1997 | thread_data -> td.td_thr = team -> t.t_threads[i]; |
| 1998 | |
| 1999 | if ( thread_data -> td.td_deque_last_stolen >= nthreads) { |
| 2000 | // The last stolen field survives across teams / barrier, and the number |
| 2001 | // of threads may have changed. It's possible (likely?) that a new |
| 2002 | // parallel region will exhibit the same behavior as the previous region. |
| 2003 | thread_data -> td.td_deque_last_stolen = -1; |
| 2004 | } |
| 2005 | } |
| 2006 | |
| 2007 | KMP_MB(); |
| 2008 | TCW_SYNC_4(task_team -> tt.tt_found_tasks, TRUE); |
| 2009 | } |
| 2010 | |
| 2011 | __kmp_release_bootstrap_lock( & task_team -> tt.tt_threads_lock ); |
| 2012 | return is_init_thread; |
| 2013 | } |
| 2014 | |
| 2015 | |
| 2016 | //------------------------------------------------------------------------------ |
| 2017 | // __kmp_free_task_threads_data: |
| 2018 | // Deallocates a threads_data array for a task team, including any attached |
| 2019 | // tasking deques. Only occurs at library shutdown. |
| 2020 | |
| 2021 | static void |
| 2022 | __kmp_free_task_threads_data( kmp_task_team_t *task_team ) |
| 2023 | { |
| 2024 | __kmp_acquire_bootstrap_lock( & task_team -> tt.tt_threads_lock ); |
| 2025 | if ( task_team -> tt.tt_threads_data != NULL ) { |
| 2026 | int i; |
| 2027 | for (i = 0; i < task_team->tt.tt_max_threads; i++ ) { |
| 2028 | __kmp_free_task_deque( & task_team -> tt.tt_threads_data[i] ); |
| 2029 | } |
| 2030 | __kmp_free( task_team -> tt.tt_threads_data ); |
| 2031 | task_team -> tt.tt_threads_data = NULL; |
| 2032 | } |
| 2033 | __kmp_release_bootstrap_lock( & task_team -> tt.tt_threads_lock ); |
| 2034 | } |
| 2035 | |
| 2036 | |
| 2037 | //------------------------------------------------------------------------------ |
| 2038 | // __kmp_allocate_task_team: |
| 2039 | // Allocates a task team associated with a specific team, taking it from |
| 2040 | // the global task team free list if possible. Also initializes data structures. |
| 2041 | |
| 2042 | static kmp_task_team_t * |
| 2043 | __kmp_allocate_task_team( kmp_info_t *thread, kmp_team_t *team ) |
| 2044 | { |
| 2045 | kmp_task_team_t *task_team = NULL; |
| 2046 | int nthreads; |
| 2047 | |
| 2048 | KA_TRACE( 20, ( "__kmp_allocate_task_team: T#%d entering; team = %p\n", |
| 2049 | (thread ? __kmp_gtid_from_thread( thread ) : -1), team ) ); |
| 2050 | |
| 2051 | if (TCR_PTR(__kmp_free_task_teams) != NULL) { |
| 2052 | // Take a task team from the task team pool |
| 2053 | __kmp_acquire_bootstrap_lock( &__kmp_task_team_lock ); |
| 2054 | if (__kmp_free_task_teams != NULL) { |
| 2055 | task_team = __kmp_free_task_teams; |
| 2056 | TCW_PTR(__kmp_free_task_teams, task_team -> tt.tt_next); |
| 2057 | task_team -> tt.tt_next = NULL; |
| 2058 | } |
| 2059 | __kmp_release_bootstrap_lock( &__kmp_task_team_lock ); |
| 2060 | } |
| 2061 | |
| 2062 | if (task_team == NULL) { |
| 2063 | KE_TRACE( 10, ( "__kmp_allocate_task_team: T#%d allocating " |
| 2064 | "task team for team %p\n", |
| 2065 | __kmp_gtid_from_thread( thread ), team ) ); |
| 2066 | // Allocate a new task team if one is not available. |
| 2067 | // Cannot use __kmp_thread_malloc() because threads not around for |
| 2068 | // kmp_reap_task_team( ). |
| 2069 | task_team = (kmp_task_team_t *) __kmp_allocate( sizeof(kmp_task_team_t) ); |
| 2070 | __kmp_init_bootstrap_lock( & task_team -> tt.tt_threads_lock ); |
| 2071 | //task_team -> tt.tt_threads_data = NULL; // AC: __kmp_allocate zeroes returned memory |
| 2072 | //task_team -> tt.tt_max_threads = 0; |
| 2073 | //task_team -> tt.tt_next = NULL; |
| 2074 | } |
| 2075 | |
| 2076 | TCW_4(task_team -> tt.tt_found_tasks, FALSE); |
| 2077 | task_team -> tt.tt_nproc = nthreads = team->t.t_nproc; |
| 2078 | |
| 2079 | task_team -> tt.tt_state = 0; |
| 2080 | TCW_4( task_team -> tt.tt_unfinished_threads, nthreads ); |
| 2081 | TCW_4( task_team -> tt.tt_active, TRUE ); |
| 2082 | TCW_4( task_team -> tt.tt_ref_ct, nthreads - 1); |
| 2083 | |
| 2084 | KA_TRACE( 20, ( "__kmp_allocate_task_team: T#%d exiting; task_team = %p\n", |
| 2085 | (thread ? __kmp_gtid_from_thread( thread ) : -1), task_team ) ); |
| 2086 | return task_team; |
| 2087 | } |
| 2088 | |
| 2089 | |
| 2090 | //------------------------------------------------------------------------------ |
| 2091 | // __kmp_free_task_team: |
| 2092 | // Frees the task team associated with a specific thread, and adds it |
| 2093 | // to the global task team free list. |
| 2094 | // |
| 2095 | |
| 2096 | static void |
| 2097 | __kmp_free_task_team( kmp_info_t *thread, kmp_task_team_t *task_team ) |
| 2098 | { |
| 2099 | KA_TRACE( 20, ( "__kmp_free_task_team: T#%d task_team = %p\n", |
| 2100 | thread ? __kmp_gtid_from_thread( thread ) : -1, task_team ) ); |
| 2101 | |
| 2102 | KMP_DEBUG_ASSERT( TCR_4(task_team -> tt.tt_ref_ct) == 0 ); |
| 2103 | |
| 2104 | // Put task team back on free list |
| 2105 | __kmp_acquire_bootstrap_lock( & __kmp_task_team_lock ); |
| 2106 | |
| 2107 | KMP_DEBUG_ASSERT( task_team -> tt.tt_next == NULL ); |
| 2108 | task_team -> tt.tt_next = __kmp_free_task_teams; |
| 2109 | TCW_4(task_team -> tt.tt_found_tasks, FALSE); |
| 2110 | TCW_PTR(__kmp_free_task_teams, task_team); |
| 2111 | |
| 2112 | __kmp_release_bootstrap_lock( & __kmp_task_team_lock ); |
| 2113 | } |
| 2114 | |
| 2115 | |
| 2116 | //------------------------------------------------------------------------------ |
| 2117 | // __kmp_reap_task_teams: |
| 2118 | // Free all the task teams on the task team free list. |
| 2119 | // Should only be done during library shutdown. |
| 2120 | // Cannot do anything that needs a thread structure or gtid since they are already gone. |
| 2121 | |
| 2122 | void |
| 2123 | __kmp_reap_task_teams( void ) |
| 2124 | { |
| 2125 | kmp_task_team_t *task_team; |
| 2126 | |
| 2127 | if ( TCR_PTR(__kmp_free_task_teams) != NULL ) { |
| 2128 | // Free all task_teams on the free list |
| 2129 | __kmp_acquire_bootstrap_lock( &__kmp_task_team_lock ); |
| 2130 | while ( ( task_team = __kmp_free_task_teams ) != NULL ) { |
| 2131 | __kmp_free_task_teams = task_team -> tt.tt_next; |
| 2132 | task_team -> tt.tt_next = NULL; |
| 2133 | |
| 2134 | // Free threads_data if necessary |
| 2135 | if ( task_team -> tt.tt_threads_data != NULL ) { |
| 2136 | __kmp_free_task_threads_data( task_team ); |
| 2137 | } |
| 2138 | __kmp_free( task_team ); |
| 2139 | } |
| 2140 | __kmp_release_bootstrap_lock( &__kmp_task_team_lock ); |
| 2141 | } |
| 2142 | } |
| 2143 | |
| 2144 | |
| 2145 | //------------------------------------------------------------------------------ |
| 2146 | // __kmp_unref_task_teams: |
| 2147 | // Remove one thread from referencing the task team structure by |
| 2148 | // decreasing the reference count and deallocate task team if no more |
| 2149 | // references to it. |
| 2150 | // |
| 2151 | void |
| 2152 | __kmp_unref_task_team( kmp_task_team_t *task_team, kmp_info_t *thread ) |
| 2153 | { |
| 2154 | kmp_uint ref_ct; |
| 2155 | |
| 2156 | ref_ct = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& task_team->tt.tt_ref_ct) ) - 1; |
| 2157 | |
| 2158 | KA_TRACE( 20, ( "__kmp_unref_task_team: T#%d task_team = %p ref_ct = %d\n", |
| 2159 | __kmp_gtid_from_thread( thread ), task_team, ref_ct ) ); |
| 2160 | |
| 2161 | |
| 2162 | if ( ref_ct == 0 ) { |
| 2163 | __kmp_free_task_team( thread, task_team ); |
| 2164 | } |
| 2165 | |
| 2166 | TCW_PTR( *((volatile kmp_task_team_t **)(&thread->th.th_task_team)), NULL ); |
| 2167 | } |
| 2168 | |
| 2169 | |
| 2170 | //------------------------------------------------------------------------------ |
| 2171 | // __kmp_wait_to_unref_task_teams: |
| 2172 | // Some threads could still be in the fork barrier release code, possibly |
| 2173 | // trying to steal tasks. Wait for each thread to unreference its task team. |
| 2174 | // |
| 2175 | void |
| 2176 | __kmp_wait_to_unref_task_teams(void) |
| 2177 | { |
| 2178 | kmp_info_t *thread; |
| 2179 | kmp_uint32 spins; |
| 2180 | int done; |
| 2181 | |
| 2182 | KMP_INIT_YIELD( spins ); |
| 2183 | |
| 2184 | |
| 2185 | for (;;) { |
| 2186 | done = TRUE; |
| 2187 | |
| 2188 | // TODO: GEH - this may be is wrong because some sync would be necessary |
| 2189 | // in case threads are added to the pool during the traversal. |
| 2190 | // Need to verify that lock for thread pool is held when calling |
| 2191 | // this routine. |
| 2192 | for (thread = (kmp_info_t *)__kmp_thread_pool; |
| 2193 | thread != NULL; |
| 2194 | thread = thread->th.th_next_pool) |
| 2195 | { |
| 2196 | volatile kmp_uint *sleep_loc; |
| 2197 | #if KMP_OS_WINDOWS |
| 2198 | DWORD exit_val; |
| 2199 | #endif |
| 2200 | if ( TCR_PTR(thread->th.th_task_team) == NULL ) { |
| 2201 | KA_TRACE( 10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", |
| 2202 | __kmp_gtid_from_thread( thread ) ) ); |
| 2203 | continue; |
| 2204 | } |
| 2205 | #if KMP_OS_WINDOWS |
| 2206 | // TODO: GEH - add this check for Linux* OS / OS X* as well? |
| 2207 | if (!__kmp_is_thread_alive(thread, &exit_val)) { |
| 2208 | if (TCR_PTR(thread->th.th_task_team) != NULL) { |
| 2209 | __kmp_unref_task_team( thread->th.th_task_team, thread ); |
| 2210 | } |
| 2211 | continue; |
| 2212 | } |
| 2213 | #endif |
| 2214 | |
| 2215 | done = FALSE; // Because th_task_team pointer is not NULL for this thread |
| 2216 | |
| 2217 | KA_TRACE( 10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to unreference task_team\n", |
| 2218 | __kmp_gtid_from_thread( thread ) ) ); |
| 2219 | |
| 2220 | if ( __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ) { |
| 2221 | // If the thread is sleeping, awaken it. |
| 2222 | if ( ( sleep_loc = (volatile kmp_uint *) TCR_PTR( thread->th.th_sleep_loc) ) != NULL ) { |
| 2223 | KA_TRACE( 10, ( "__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", |
| 2224 | __kmp_gtid_from_thread( thread ), __kmp_gtid_from_thread( thread ) ) ); |
| 2225 | __kmp_resume( __kmp_gtid_from_thread( thread ), sleep_loc ); |
| 2226 | } |
| 2227 | } |
| 2228 | } |
| 2229 | if (done) { |
| 2230 | break; |
| 2231 | } |
| 2232 | |
| 2233 | // If we are oversubscribed, |
| 2234 | // or have waited a bit (and library mode is throughput), yield. |
| 2235 | // Pause is in the following code. |
| 2236 | KMP_YIELD( TCR_4(__kmp_nth) > __kmp_avail_proc ); |
| 2237 | KMP_YIELD_SPIN( spins ); // Yields only if KMP_LIBRARY=throughput |
| 2238 | } |
| 2239 | |
| 2240 | |
| 2241 | } |
| 2242 | |
| 2243 | |
| 2244 | //------------------------------------------------------------------------------ |
| 2245 | // __kmp_task_team_setup: Create a task_team for the current team, but use |
| 2246 | // an already created, unused one if it already exists. |
| 2247 | // This may be called by any thread, but only for teams with # threads >1. |
| 2248 | |
| 2249 | void |
| 2250 | __kmp_task_team_setup( kmp_info_t *this_thr, kmp_team_t *team ) |
| 2251 | { |
| 2252 | KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); |
| 2253 | |
| 2254 | if ( ( team->t.t_task_team == NULL ) && ( team->t.t_nproc > 1 ) ) { |
| 2255 | // Allocate a new task team, which will be propagated to |
| 2256 | // all of the worker threads after the barrier. As they |
| 2257 | // spin in the barrier release phase, then will continue |
| 2258 | // to use the previous task team struct, until they receive |
| 2259 | // the signal to stop checking for tasks (they can't safely |
| 2260 | // reference the kmp_team_t struct, which could be reallocated |
| 2261 | // by the master thread). |
| 2262 | team->t.t_task_team = __kmp_allocate_task_team( this_thr, team ); |
| 2263 | KA_TRACE( 20, ( "__kmp_task_team_setup: Master T#%d created new " |
| 2264 | "task_team %p for team %d\n", |
| 2265 | __kmp_gtid_from_thread( this_thr ), team->t.t_task_team, |
| 2266 | ((team != NULL) ? team->t.t_id : -1)) ); |
| 2267 | } |
| 2268 | else { |
| 2269 | // All threads have reported in, and no tasks were spawned |
| 2270 | // for this release->gather region. Leave the old task |
| 2271 | // team struct in place for the upcoming region. No task |
| 2272 | // teams are formed for serialized teams. |
| 2273 | } |
| 2274 | if ( team->t.t_task_team != NULL ) { |
| 2275 | // Toggle the state flag so that we can tell which side of |
| 2276 | // the barrier we are on. |
| 2277 | team->t.t_task_team->tt.tt_state = 1 - this_thr->th.th_task_state; |
| 2278 | } |
| 2279 | } |
| 2280 | |
| 2281 | |
| 2282 | //------------------------------------------------------------------------------ |
| 2283 | // __kmp_task_team_sync: Propagation of task team data from team to threads |
| 2284 | // which happens just after the release phase of a team barrier. This may be |
| 2285 | // called by any thread, but only for teams with # threads > 1. |
| 2286 | |
| 2287 | void |
| 2288 | __kmp_task_team_sync( kmp_info_t *this_thr, kmp_team_t *team ) |
| 2289 | { |
| 2290 | KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); |
| 2291 | |
| 2292 | // On the rare chance that this thread never saw that the task |
| 2293 | // team was no longer active, then unref/deallocate it now. |
| 2294 | if ( this_thr->th.th_task_team != NULL ) { |
| 2295 | if ( ! TCR_SYNC_4( this_thr->th.th_task_team->tt.tt_active ) ) { |
| 2296 | KMP_DEBUG_ASSERT( ! KMP_MASTER_TID( __kmp_tid_from_gtid( __kmp_gtid_from_thread( this_thr ) ) ) ); |
| 2297 | __kmp_unref_task_team( this_thr->th.th_task_team, this_thr ); |
| 2298 | } else { |
| 2299 | // |
| 2300 | // We are re-using a task team that was never enabled. |
| 2301 | // |
| 2302 | KMP_DEBUG_ASSERT( this_thr->th.th_task_team == team->t.t_task_team ); |
| 2303 | } |
| 2304 | } |
| 2305 | |
| 2306 | // |
| 2307 | // It is now safe to propagate the task team pointer from the |
| 2308 | // team struct to the current thread. |
| 2309 | // |
| 2310 | TCW_PTR(this_thr->th.th_task_team, team->t.t_task_team); |
| 2311 | if ( this_thr->th.th_task_team != NULL ) { |
| 2312 | // |
| 2313 | // Toggle the th_task_state field, instead of reading it from |
| 2314 | // the task team. Reading the tt_state field at this point |
| 2315 | // causes a 30% regression on EPCC parallel - toggling it |
| 2316 | // is much cheaper. |
| 2317 | // |
| 2318 | this_thr->th.th_task_state = 1 - this_thr->th.th_task_state; |
| 2319 | KMP_DEBUG_ASSERT( this_thr->th.th_task_state == TCR_4(team->t.t_task_team->tt.tt_state) ); |
| 2320 | } |
| 2321 | KA_TRACE( 20, ( "__kmp_task_team_sync: Thread T#%d task team assigned pointer (%p) from Team #%d task team\n", |
| 2322 | __kmp_gtid_from_thread( this_thr ), &this_thr->th.th_task_team, |
| 2323 | this_thr->th.th_task_team, ((team != NULL) ? (team->t.t_id) : -1) ) ); |
| 2324 | } |
| 2325 | |
| 2326 | |
| 2327 | //------------------------------------------------------------------------------ |
| 2328 | // __kmp_task_team_wait: Master thread waits for outstanding tasks after |
| 2329 | // the barrier gather phase. Only called by master thread if #threads |
| 2330 | // in team > 1 ! |
| 2331 | |
| 2332 | void |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 2333 | __kmp_task_team_wait( kmp_info_t *this_thr, |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 2334 | kmp_team_t *team |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 2335 | USE_ITT_BUILD_ARG(void * itt_sync_obj) |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 2336 | ) |
| 2337 | { |
| 2338 | kmp_task_team_t *task_team = team->t.t_task_team; |
| 2339 | |
| 2340 | KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); |
| 2341 | KMP_DEBUG_ASSERT( task_team == this_thr->th.th_task_team ); |
| 2342 | |
| 2343 | if ( ( task_team != NULL ) && KMP_TASKING_ENABLED( task_team, this_thr->th.th_task_state ) ) { |
| 2344 | KA_TRACE( 20, ( "__kmp_task_team_wait: Master T#%d waiting for all tasks: task_team = %p\n", |
| 2345 | __kmp_gtid_from_thread( this_thr ), task_team ) ); |
| 2346 | // |
| 2347 | // All worker threads might have dropped through to the |
| 2348 | // release phase, but could still be executing tasks. |
| 2349 | // Wait here for all tasks to complete. To avoid memory |
| 2350 | // contention, only the master thread checks for the |
| 2351 | // termination condition. |
| 2352 | // |
| 2353 | __kmp_wait_sleep( this_thr, &task_team->tt.tt_unfinished_threads, 0, TRUE |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 2354 | USE_ITT_BUILD_ARG(itt_sync_obj) |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 2355 | ); |
| 2356 | |
| 2357 | // |
| 2358 | // Kill the old task team, so that the worker threads will |
| 2359 | // stop referencing it while spinning. They will |
| 2360 | // deallocate it when the reference count reaches zero. |
| 2361 | // The master thread is not included in the ref count. |
| 2362 | // |
| 2363 | KA_TRACE( 20, ( "__kmp_task_team_wait: Master T#%d deactivating task_team %p\n", |
| 2364 | __kmp_gtid_from_thread( this_thr ), task_team ) ); |
| 2365 | KMP_DEBUG_ASSERT( task_team->tt.tt_nproc > 1 ); |
| 2366 | TCW_SYNC_4( task_team->tt.tt_active, FALSE ); |
| 2367 | KMP_MB(); |
| 2368 | |
| 2369 | TCW_PTR(this_thr->th.th_task_team, NULL); |
| 2370 | team->t.t_task_team = NULL; |
| 2371 | } |
| 2372 | } |
| 2373 | |
| 2374 | |
| 2375 | //------------------------------------------------------------------------------ |
| 2376 | // __kmp_tasking_barrier: |
| 2377 | // Internal function to execute all tasks prior to a regular barrier or a |
| 2378 | // join barrier. It is a full barrier itself, which unfortunately turns |
| 2379 | // regular barriers into double barriers and join barriers into 1 1/2 |
| 2380 | // barriers. |
| 2381 | // This routine may only called when __kmp_tasking_mode == tskm_extra_barrier. |
| 2382 | |
| 2383 | void |
| 2384 | __kmp_tasking_barrier( kmp_team_t *team, kmp_info_t *thread, int gtid ) |
| 2385 | { |
| 2386 | volatile kmp_uint32 *spin = &team->t.t_task_team->tt.tt_unfinished_threads; |
| 2387 | int flag = FALSE; |
| 2388 | KMP_DEBUG_ASSERT( __kmp_tasking_mode == tskm_extra_barrier ); |
| 2389 | |
| 2390 | #if USE_ITT_BUILD |
| 2391 | KMP_FSYNC_SPIN_INIT( spin, (kmp_uint32*) NULL ); |
| 2392 | #endif /* USE_ITT_BUILD */ |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 2393 | while (! __kmp_execute_tasks( thread, gtid, spin, 0, TRUE, &flag |
| 2394 | USE_ITT_BUILD_ARG(NULL), 0 ) ) { |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 2395 | #if USE_ITT_BUILD |
| 2396 | // TODO: What about itt_sync_obj?? |
| 2397 | KMP_FSYNC_SPIN_PREPARE( spin ); |
| 2398 | #endif /* USE_ITT_BUILD */ |
| 2399 | |
| 2400 | if( TCR_4(__kmp_global.g.g_done) ) { |
| 2401 | if( __kmp_global.g.g_abort ) |
| 2402 | __kmp_abort_thread( ); |
| 2403 | break; |
| 2404 | } |
| 2405 | KMP_YIELD( TRUE ); // GH: We always yield here |
| 2406 | } |
| 2407 | #if USE_ITT_BUILD |
| 2408 | KMP_FSYNC_SPIN_ACQUIRED( (void*) spin ); |
| 2409 | #endif /* USE_ITT_BUILD */ |
| 2410 | } |
| 2411 | |
| 2412 | #endif // OMP_30_ENABLED |
| 2413 | |