blob: d8475b27a21d9666a9fb55954331d104b2040a1e [file] [log] [blame]
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/Loads.h"
Chandler Carruthe41e7b72012-12-10 08:28:39 +000034#include "llvm/Analysis/PtrUseVisitor.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000035#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000036#include "llvm/DIBuilder.h"
37#include "llvm/DebugInfo.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000038#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000046#include "llvm/IR/Operator.h"
Chandler Carruthdbd69582012-11-30 03:08:41 +000047#include "llvm/InstVisitor.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000048#include "llvm/Pass.h"
Chandler Carruth70b44c52012-09-15 11:43:14 +000049#include "llvm/Support/CommandLine.h"
Chandler Carruthf0546402013-07-18 07:15:00 +000050#include "llvm/Support/Compiler.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000051#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000053#include "llvm/Support/MathExtras.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000054#include "llvm/Support/raw_ostream.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000055#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
Chandler Carruth5f5b6162013-03-20 06:30:46 +000061STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
62STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions");
63STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses found");
64STATISTIC(MaxPartitionUsesPerAlloca, "Maximum number of partition uses");
65STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
66STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
Chandler Carruth1b398ae2012-09-14 09:22:59 +000067STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
Chandler Carruth5f5b6162013-03-20 06:30:46 +000068STATISTIC(NumDeleted, "Number of instructions deleted");
69STATISTIC(NumVectorized, "Number of vectorized aggregates");
Chandler Carruth1b398ae2012-09-14 09:22:59 +000070
Chandler Carruth70b44c52012-09-15 11:43:14 +000071/// Hidden option to force the pass to not use DomTree and mem2reg, instead
72/// forming SSA values through the SSAUpdater infrastructure.
73static cl::opt<bool>
74ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
75
Chandler Carruth1b398ae2012-09-14 09:22:59 +000076namespace {
Chandler Carruth34f0c7f2013-03-21 09:52:18 +000077/// \brief A custom IRBuilder inserter which prefixes all names if they are
78/// preserved.
79template <bool preserveNames = true>
80class IRBuilderPrefixedInserter :
81 public IRBuilderDefaultInserter<preserveNames> {
82 std::string Prefix;
83
84public:
85 void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
86
87protected:
88 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
89 BasicBlock::iterator InsertPt) const {
90 IRBuilderDefaultInserter<preserveNames>::InsertHelper(
91 I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
92 }
93};
94
95// Specialization for not preserving the name is trivial.
96template <>
97class IRBuilderPrefixedInserter<false> :
98 public IRBuilderDefaultInserter<false> {
99public:
100 void SetNamePrefix(const Twine &P) {}
101};
102
Chandler Carruthd177f862013-03-20 07:30:36 +0000103/// \brief Provide a typedef for IRBuilder that drops names in release builds.
104#ifndef NDEBUG
Chandler Carruth34f0c7f2013-03-21 09:52:18 +0000105typedef llvm::IRBuilder<true, ConstantFolder,
106 IRBuilderPrefixedInserter<true> > IRBuilderTy;
Chandler Carruthd177f862013-03-20 07:30:36 +0000107#else
Chandler Carruth34f0c7f2013-03-21 09:52:18 +0000108typedef llvm::IRBuilder<false, ConstantFolder,
109 IRBuilderPrefixedInserter<false> > IRBuilderTy;
Chandler Carruthd177f862013-03-20 07:30:36 +0000110#endif
111}
112
113namespace {
Chandler Carruthf0546402013-07-18 07:15:00 +0000114/// \brief A partition of an alloca.
115///
116/// This structure represents a contiguous partition of the alloca. These are
117/// formed by examining the uses of the alloca. During formation, they may
118/// overlap but once an AllocaPartitioning is built, the Partitions within it
119/// are all disjoint. The partition also contains a chain of uses of that
120/// partition.
121class Partition {
Chandler Carruthf74654d2013-03-18 08:36:46 +0000122 /// \brief The beginning offset of the range.
123 uint64_t BeginOffset;
124
125 /// \brief The ending offset, not included in the range.
126 uint64_t EndOffset;
127
Chandler Carruthf0546402013-07-18 07:15:00 +0000128 /// \brief Storage for both the use of this partition and whether it can be
129 /// split.
130 PointerIntPair<Use *, 1, bool> PartitionUseAndIsSplittable;
131
132public:
133 Partition() : BeginOffset(), EndOffset() {}
134 Partition(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
135 : BeginOffset(BeginOffset), EndOffset(EndOffset),
136 PartitionUseAndIsSplittable(U, IsSplittable) {}
137
138 uint64_t beginOffset() const { return BeginOffset; }
139 uint64_t endOffset() const { return EndOffset; }
140
141 bool isSplittable() const { return PartitionUseAndIsSplittable.getInt(); }
142 void makeUnsplittable() { PartitionUseAndIsSplittable.setInt(false); }
143
144 Use *getUse() const { return PartitionUseAndIsSplittable.getPointer(); }
145
146 bool isDead() const { return getUse() == 0; }
147 void kill() { PartitionUseAndIsSplittable.setPointer(0); }
Chandler Carruthf74654d2013-03-18 08:36:46 +0000148
149 /// \brief Support for ordering ranges.
150 ///
151 /// This provides an ordering over ranges such that start offsets are
152 /// always increasing, and within equal start offsets, the end offsets are
153 /// decreasing. Thus the spanning range comes first in a cluster with the
154 /// same start position.
Chandler Carruthf0546402013-07-18 07:15:00 +0000155 bool operator<(const Partition &RHS) const {
156 if (beginOffset() < RHS.beginOffset()) return true;
157 if (beginOffset() > RHS.beginOffset()) return false;
158 if (isSplittable() != RHS.isSplittable()) return !isSplittable();
159 if (endOffset() > RHS.endOffset()) return true;
Chandler Carruthf74654d2013-03-18 08:36:46 +0000160 return false;
161 }
162
163 /// \brief Support comparison with a single offset to allow binary searches.
Chandler Carruthf0546402013-07-18 07:15:00 +0000164 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Partition &LHS,
165 uint64_t RHSOffset) {
166 return LHS.beginOffset() < RHSOffset;
Chandler Carruthf74654d2013-03-18 08:36:46 +0000167 }
Chandler Carruthe3899f22013-07-15 17:36:21 +0000168 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
Chandler Carruthf0546402013-07-18 07:15:00 +0000169 const Partition &RHS) {
170 return LHSOffset < RHS.beginOffset();
Chandler Carruthf74654d2013-03-18 08:36:46 +0000171 }
Chandler Carruthe3899f22013-07-15 17:36:21 +0000172
Chandler Carruthf0546402013-07-18 07:15:00 +0000173 bool operator==(const Partition &RHS) const {
174 return isSplittable() == RHS.isSplittable() &&
175 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
Chandler Carruthe3899f22013-07-15 17:36:21 +0000176 }
Chandler Carruthf0546402013-07-18 07:15:00 +0000177 bool operator!=(const Partition &RHS) const { return !operator==(RHS); }
Chandler Carruthf74654d2013-03-18 08:36:46 +0000178};
Chandler Carruthf0546402013-07-18 07:15:00 +0000179} // end anonymous namespace
Chandler Carruthf74654d2013-03-18 08:36:46 +0000180
181namespace llvm {
Chandler Carruthf0546402013-07-18 07:15:00 +0000182template <typename T> struct isPodLike;
183template <> struct isPodLike<Partition> {
184 static const bool value = true;
185};
Chandler Carruthf74654d2013-03-18 08:36:46 +0000186}
187
188namespace {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000189/// \brief Alloca partitioning representation.
190///
191/// This class represents a partitioning of an alloca into slices, and
192/// information about the nature of uses of each slice of the alloca. The goal
193/// is that this information is sufficient to decide if and how to split the
194/// alloca apart and replace slices with scalars. It is also intended that this
Chandler Carruth93a21e72012-09-14 10:18:49 +0000195/// structure can capture the relevant information needed both to decide about
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000196/// and to enact these transformations.
197class AllocaPartitioning {
198public:
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000199 /// \brief Construct a partitioning of a particular alloca.
200 ///
201 /// Construction does most of the work for partitioning the alloca. This
202 /// performs the necessary walks of users and builds a partitioning from it.
Chandler Carruth90a735d2013-07-19 07:21:28 +0000203 AllocaPartitioning(const DataLayout &DL, AllocaInst &AI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000204
205 /// \brief Test whether a pointer to the allocation escapes our analysis.
206 ///
207 /// If this is true, the partitioning is never fully built and should be
208 /// ignored.
209 bool isEscaped() const { return PointerEscapingInstr; }
210
211 /// \brief Support for iterating over the partitions.
212 /// @{
213 typedef SmallVectorImpl<Partition>::iterator iterator;
214 iterator begin() { return Partitions.begin(); }
215 iterator end() { return Partitions.end(); }
216
217 typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
218 const_iterator begin() const { return Partitions.begin(); }
219 const_iterator end() const { return Partitions.end(); }
220 /// @}
221
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000222 /// \brief Allow iterating the dead users for this alloca.
223 ///
224 /// These are instructions which will never actually use the alloca as they
225 /// are outside the allocated range. They are safe to replace with undef and
226 /// delete.
227 /// @{
228 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
229 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
230 dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
231 /// @}
232
Chandler Carruth93a21e72012-09-14 10:18:49 +0000233 /// \brief Allow iterating the dead expressions referring to this alloca.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000234 ///
235 /// These are operands which have cannot actually be used to refer to the
236 /// alloca as they are outside its range and the user doesn't correct for
237 /// that. These mostly consist of PHI node inputs and the like which we just
238 /// need to replace with undef.
239 /// @{
240 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
241 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
242 dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
243 /// @}
244
Chandler Carruth25fb23d2012-09-14 10:18:51 +0000245#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000246 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
Chandler Carruthf0546402013-07-18 07:15:00 +0000247 void printPartition(raw_ostream &OS, const_iterator I,
248 StringRef Indent = " ") const;
249 void printUse(raw_ostream &OS, const_iterator I,
250 StringRef Indent = " ") const;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000251 void print(raw_ostream &OS) const;
NAKAMURA Takumi4bbca0b2012-09-14 10:06:10 +0000252 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
253 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
Chandler Carruth25fb23d2012-09-14 10:18:51 +0000254#endif
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000255
256private:
257 template <typename DerivedT, typename RetT = void> class BuilderBase;
258 class PartitionBuilder;
259 friend class AllocaPartitioning::PartitionBuilder;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000260
Chandler Carruthb7915f72012-11-20 10:23:07 +0000261#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000262 /// \brief Handle to alloca instruction to simplify method interfaces.
263 AllocaInst &AI;
Benjamin Kramer4622cd72012-09-14 13:08:09 +0000264#endif
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000265
266 /// \brief The instruction responsible for this alloca having no partitioning.
267 ///
268 /// When an instruction (potentially) escapes the pointer to the alloca, we
269 /// store a pointer to that here and abort trying to partition the alloca.
270 /// This will be null if the alloca is partitioned successfully.
271 Instruction *PointerEscapingInstr;
272
273 /// \brief The partitions of the alloca.
274 ///
275 /// We store a vector of the partitions over the alloca here. This vector is
276 /// sorted by increasing begin offset, and then by decreasing end offset. See
Chandler Carruth93a21e72012-09-14 10:18:49 +0000277 /// the Partition inner class for more details. Initially (during
278 /// construction) there are overlaps, but we form a disjoint sequence of
279 /// partitions while finishing construction and a fully constructed object is
280 /// expected to always have this as a disjoint space.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000281 SmallVector<Partition, 8> Partitions;
282
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000283 /// \brief Instructions which will become dead if we rewrite the alloca.
284 ///
285 /// Note that these are not separated by partition. This is because we expect
286 /// a partitioned alloca to be completely rewritten or not rewritten at all.
287 /// If rewritten, all these instructions can simply be removed and replaced
288 /// with undef as they come from outside of the allocated space.
289 SmallVector<Instruction *, 8> DeadUsers;
290
291 /// \brief Operands which will become dead if we rewrite the alloca.
292 ///
293 /// These are operands that in their particular use can be replaced with
294 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
295 /// to PHI nodes and the like. They aren't entirely dead (there might be
296 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
297 /// want to swap this particular input for undef to simplify the use lists of
298 /// the alloca.
299 SmallVector<Use *, 8> DeadOperands;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000300};
301}
302
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000303static Value *foldSelectInst(SelectInst &SI) {
304 // If the condition being selected on is a constant or the same value is
305 // being selected between, fold the select. Yes this does (rarely) happen
306 // early on.
307 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
308 return SI.getOperand(1+CI->isZero());
Jakub Staszak3c6583a2013-02-19 22:14:45 +0000309 if (SI.getOperand(1) == SI.getOperand(2))
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000310 return SI.getOperand(1);
Jakub Staszak3c6583a2013-02-19 22:14:45 +0000311
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000312 return 0;
313}
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000314
315/// \brief Builder for the alloca partitioning.
316///
317/// This class builds an alloca partitioning by recursively visiting the uses
318/// of an alloca and splitting the partitions for each load and store at each
319/// offset.
320class AllocaPartitioning::PartitionBuilder
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000321 : public PtrUseVisitor<PartitionBuilder> {
322 friend class PtrUseVisitor<PartitionBuilder>;
323 friend class InstVisitor<PartitionBuilder>;
324 typedef PtrUseVisitor<PartitionBuilder> Base;
325
326 const uint64_t AllocSize;
327 AllocaPartitioning &P;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000328
329 SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
Chandler Carruthf0546402013-07-18 07:15:00 +0000330 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
331
332 /// \brief Set to de-duplicate dead instructions found in the use walk.
333 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000334
335public:
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000336 PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
337 : PtrUseVisitor<PartitionBuilder>(DL),
338 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())),
339 P(P) {}
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000340
341private:
Chandler Carruthf0546402013-07-18 07:15:00 +0000342 void markAsDead(Instruction &I) {
343 if (VisitedDeadInsts.insert(&I))
344 P.DeadUsers.push_back(&I);
345 }
346
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000347 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
Chandler Carruth97121172012-09-16 19:39:50 +0000348 bool IsSplittable = false) {
Chandler Carruthf02b8bf2012-12-03 10:59:55 +0000349 // Completely skip uses which have a zero size or start either before or
350 // past the end of the allocation.
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000351 if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000352 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
Chandler Carruthf02b8bf2012-12-03 10:59:55 +0000353 << " which has zero size or starts outside of the "
354 << AllocSize << " byte alloca:\n"
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000355 << " alloca: " << P.AI << "\n"
356 << " use: " << I << "\n");
Chandler Carruthf0546402013-07-18 07:15:00 +0000357 return markAsDead(I);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000358 }
359
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000360 uint64_t BeginOffset = Offset.getZExtValue();
361 uint64_t EndOffset = BeginOffset + Size;
Chandler Carruthe7a1ba52012-09-23 11:43:14 +0000362
363 // Clamp the end offset to the end of the allocation. Note that this is
364 // formulated to handle even the case where "BeginOffset + Size" overflows.
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000365 // This may appear superficially to be something we could ignore entirely,
366 // but that is not so! There may be widened loads or PHI-node uses where
367 // some instructions are dead but not others. We can't completely ignore
368 // them, and so have to record at least the information here.
Chandler Carruthe7a1ba52012-09-23 11:43:14 +0000369 assert(AllocSize >= BeginOffset); // Established above.
370 if (Size > AllocSize - BeginOffset) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000371 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
372 << " to remain within the " << AllocSize << " byte alloca:\n"
373 << " alloca: " << P.AI << "\n"
374 << " use: " << I << "\n");
375 EndOffset = AllocSize;
376 }
377
Chandler Carruthf0546402013-07-18 07:15:00 +0000378 P.Partitions.push_back(Partition(BeginOffset, EndOffset, U, IsSplittable));
379 }
380
381 void visitBitCastInst(BitCastInst &BC) {
382 if (BC.use_empty())
383 return markAsDead(BC);
384
385 return Base::visitBitCastInst(BC);
386 }
387
388 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
389 if (GEPI.use_empty())
390 return markAsDead(GEPI);
391
392 return Base::visitGetElementPtrInst(GEPI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000393 }
394
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000395 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000396 uint64_t Size, bool IsVolatile) {
Chandler Carruth58d05562012-10-25 04:37:07 +0000397 // We allow splitting of loads and stores where the type is an integer type
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000398 // and cover the entire alloca. This prevents us from splitting over
399 // eagerly.
400 // FIXME: In the great blue eventually, we should eagerly split all integer
401 // loads and stores, and then have a separate step that merges adjacent
402 // alloca partitions into a single partition suitable for integer widening.
403 // Or we should skip the merge step and rely on GVN and other passes to
404 // merge adjacent loads and stores that survive mem2reg.
405 bool IsSplittable =
406 Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
Chandler Carruth58d05562012-10-25 04:37:07 +0000407
408 insertUse(I, Offset, Size, IsSplittable);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000409 }
410
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000411 void visitLoadInst(LoadInst &LI) {
Chandler Carruth42cb9cb2012-09-18 12:57:43 +0000412 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
413 "All simple FCA loads should have been pre-split");
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000414
415 if (!IsOffsetKnown)
416 return PI.setAborted(&LI);
417
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000418 uint64_t Size = DL.getTypeStoreSize(LI.getType());
419 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000420 }
421
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000422 void visitStoreInst(StoreInst &SI) {
Chandler Carruth42cb9cb2012-09-18 12:57:43 +0000423 Value *ValOp = SI.getValueOperand();
424 if (ValOp == *U)
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000425 return PI.setEscapedAndAborted(&SI);
426 if (!IsOffsetKnown)
427 return PI.setAborted(&SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000428
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000429 uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
430
431 // If this memory access can be shown to *statically* extend outside the
432 // bounds of of the allocation, it's behavior is undefined, so simply
433 // ignore it. Note that this is more strict than the generic clamping
434 // behavior of insertUse. We also try to handle cases which might run the
435 // risk of overflow.
436 // FIXME: We should instead consider the pointer to have escaped if this
437 // function is being instrumented for addressing bugs or race conditions.
438 if (Offset.isNegative() || Size > AllocSize ||
439 Offset.ugt(AllocSize - Size)) {
440 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
441 << " which extends past the end of the " << AllocSize
442 << " byte alloca:\n"
443 << " alloca: " << P.AI << "\n"
444 << " use: " << SI << "\n");
Chandler Carruthf0546402013-07-18 07:15:00 +0000445 return markAsDead(SI);
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000446 }
447
Chandler Carruth42cb9cb2012-09-18 12:57:43 +0000448 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
449 "All simple FCA stores should have been pre-split");
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000450 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000451 }
452
453
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000454 void visitMemSetInst(MemSetInst &II) {
Chandler Carruthb0de6dd2012-09-14 10:26:34 +0000455 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000456 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000457 if ((Length && Length->getValue() == 0) ||
458 (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
459 // Zero-length mem transfer intrinsics can be ignored entirely.
Chandler Carruthf0546402013-07-18 07:15:00 +0000460 return markAsDead(II);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000461
462 if (!IsOffsetKnown)
463 return PI.setAborted(&II);
464
465 insertUse(II, Offset,
466 Length ? Length->getLimitedValue()
467 : AllocSize - Offset.getLimitedValue(),
468 (bool)Length);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000469 }
470
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000471 void visitMemTransferInst(MemTransferInst &II) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000472 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000473 if ((Length && Length->getValue() == 0) ||
474 (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000475 // Zero-length mem transfer intrinsics can be ignored entirely.
Chandler Carruthf0546402013-07-18 07:15:00 +0000476 return markAsDead(II);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000477
478 if (!IsOffsetKnown)
479 return PI.setAborted(&II);
480
481 uint64_t RawOffset = Offset.getLimitedValue();
482 uint64_t Size = Length ? Length->getLimitedValue()
483 : AllocSize - RawOffset;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000484
Chandler Carruthf0546402013-07-18 07:15:00 +0000485 // Check for the special case where the same exact value is used for both
486 // source and dest.
487 if (*U == II.getRawDest() && *U == II.getRawSource()) {
488 // For non-volatile transfers this is a no-op.
489 if (!II.isVolatile())
490 return markAsDead(II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000491
Chandler Carruthf0546402013-07-18 07:15:00 +0000492 return insertUse(II, Offset, Size, /*IsSplittable=*/false);;
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000493 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000494
Chandler Carruthf0546402013-07-18 07:15:00 +0000495 // If we have seen both source and destination for a mem transfer, then
496 // they both point to the same alloca.
497 bool Inserted;
498 SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
499 llvm::tie(MTPI, Inserted) =
500 MemTransferPartitionMap.insert(std::make_pair(&II, P.Partitions.size()));
501 unsigned PrevIdx = MTPI->second;
502 if (!Inserted) {
503 Partition &PrevP = P.Partitions[PrevIdx];
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000504
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000505 // Check if the begin offsets match and this is a non-volatile transfer.
506 // In that case, we can completely elide the transfer.
Chandler Carruthf0546402013-07-18 07:15:00 +0000507 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
508 PrevP.kill();
509 return markAsDead(II);
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000510 }
511
512 // Otherwise we have an offset transfer within the same alloca. We can't
513 // split those.
Chandler Carruthf0546402013-07-18 07:15:00 +0000514 PrevP.makeUnsplittable();
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000515 }
516
Chandler Carruthe3899f22013-07-15 17:36:21 +0000517 // Insert the use now that we've fixed up the splittable nature.
Chandler Carruthf0546402013-07-18 07:15:00 +0000518 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
Chandler Carruthe3899f22013-07-15 17:36:21 +0000519
Chandler Carruthf0546402013-07-18 07:15:00 +0000520 // Check that we ended up with a valid index in the map.
521 assert(P.Partitions[PrevIdx].getUse()->getUser() == &II &&
522 "Map index doesn't point back to a partition with this user.");
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000523 }
524
525 // Disable SRoA for any intrinsics except for lifetime invariants.
Jakub Staszak086f6cd2013-02-19 22:02:21 +0000526 // FIXME: What about debug intrinsics? This matches old behavior, but
Chandler Carruth4b40e002012-09-14 10:26:36 +0000527 // doesn't make sense.
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000528 void visitIntrinsicInst(IntrinsicInst &II) {
529 if (!IsOffsetKnown)
530 return PI.setAborted(&II);
531
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000532 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
533 II.getIntrinsicID() == Intrinsic::lifetime_end) {
534 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000535 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
536 Length->getLimitedValue());
Chandler Carruth97121172012-09-16 19:39:50 +0000537 insertUse(II, Offset, Size, true);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000538 return;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000539 }
540
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000541 Base::visitIntrinsicInst(II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000542 }
543
544 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
545 // We consider any PHI or select that results in a direct load or store of
546 // the same offset to be a viable use for partitioning purposes. These uses
547 // are considered unsplittable and the size is the maximum loaded or stored
548 // size.
549 SmallPtrSet<Instruction *, 4> Visited;
550 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
551 Visited.insert(Root);
552 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
Chandler Carruth8b907e82012-09-25 10:03:40 +0000553 // If there are no loads or stores, the access is dead. We mark that as
554 // a size zero access.
555 Size = 0;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000556 do {
557 Instruction *I, *UsedI;
558 llvm::tie(UsedI, I) = Uses.pop_back_val();
559
560 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000561 Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000562 continue;
563 }
564 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
565 Value *Op = SI->getOperand(0);
566 if (Op == UsedI)
567 return SI;
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000568 Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000569 continue;
570 }
571
572 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
573 if (!GEP->hasAllZeroIndices())
574 return GEP;
575 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
576 !isa<SelectInst>(I)) {
577 return I;
578 }
579
580 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
581 ++UI)
582 if (Visited.insert(cast<Instruction>(*UI)))
583 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
584 } while (!Uses.empty());
585
586 return 0;
587 }
588
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000589 void visitPHINode(PHINode &PN) {
590 if (PN.use_empty())
Chandler Carruthf0546402013-07-18 07:15:00 +0000591 return markAsDead(PN);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000592 if (!IsOffsetKnown)
593 return PI.setAborted(&PN);
594
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000595 // See if we already have computed info on this node.
Chandler Carruthf0546402013-07-18 07:15:00 +0000596 uint64_t &PHISize = PHIOrSelectSizes[&PN];
597 if (!PHISize) {
598 // This is a new PHI node, check for an unsafe use of the PHI node.
599 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
600 return PI.setAborted(UnsafeI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000601 }
602
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000603 // For PHI and select operands outside the alloca, we can't nuke the entire
604 // phi or select -- the other side might still be relevant, so we special
605 // case them here and use a separate structure to track the operands
606 // themselves which should be replaced with undef.
Chandler Carruthf0546402013-07-18 07:15:00 +0000607 // FIXME: This should instead be escaped in the event we're instrumenting
608 // for address sanitization.
609 if ((Offset.isNegative() && (-Offset).uge(PHISize)) ||
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000610 (!Offset.isNegative() && Offset.uge(AllocSize))) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000611 P.DeadOperands.push_back(U);
612 return;
613 }
614
Chandler Carruthf0546402013-07-18 07:15:00 +0000615 insertUse(PN, Offset, PHISize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000616 }
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000617
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000618 void visitSelectInst(SelectInst &SI) {
619 if (SI.use_empty())
620 return markAsDead(SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000621 if (Value *Result = foldSelectInst(SI)) {
622 if (Result == *U)
623 // If the result of the constant fold will be the pointer, recurse
624 // through the select as if we had RAUW'ed it.
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000625 enqueueUsers(SI);
Chandler Carruth225d4bd2012-09-21 23:36:40 +0000626 else
627 // Otherwise the operand to the select is dead, and we can replace it
628 // with undef.
629 P.DeadOperands.push_back(U);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000630
631 return;
632 }
Chandler Carruthf0546402013-07-18 07:15:00 +0000633 if (!IsOffsetKnown)
634 return PI.setAborted(&SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000635
Chandler Carruthf0546402013-07-18 07:15:00 +0000636 // See if we already have computed info on this node.
637 uint64_t &SelectSize = PHIOrSelectSizes[&SI];
638 if (!SelectSize) {
639 // This is a new Select, check for an unsafe use of it.
640 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
641 return PI.setAborted(UnsafeI);
642 }
643
644 // For PHI and select operands outside the alloca, we can't nuke the entire
645 // phi or select -- the other side might still be relevant, so we special
646 // case them here and use a separate structure to track the operands
647 // themselves which should be replaced with undef.
648 // FIXME: This should instead be escaped in the event we're instrumenting
649 // for address sanitization.
650 if ((Offset.isNegative() && Offset.uge(SelectSize)) ||
651 (!Offset.isNegative() && Offset.uge(AllocSize))) {
652 P.DeadOperands.push_back(U);
653 return;
654 }
655
656 insertUse(SI, Offset, SelectSize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000657 }
658
Chandler Carruthf0546402013-07-18 07:15:00 +0000659 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000660 void visitInstruction(Instruction &I) {
Chandler Carruthf0546402013-07-18 07:15:00 +0000661 PI.setAborted(&I);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000662 }
663};
664
Chandler Carruthf0546402013-07-18 07:15:00 +0000665namespace {
666struct IsPartitionDead {
667 bool operator()(const Partition &P) { return P.isDead(); }
668};
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000669}
670
Chandler Carruth90a735d2013-07-19 07:21:28 +0000671AllocaPartitioning::AllocaPartitioning(const DataLayout &DL, AllocaInst &AI)
Benjamin Kramer4622cd72012-09-14 13:08:09 +0000672 :
Chandler Carruthb7915f72012-11-20 10:23:07 +0000673#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Benjamin Kramer4622cd72012-09-14 13:08:09 +0000674 AI(AI),
675#endif
676 PointerEscapingInstr(0) {
Chandler Carruth90a735d2013-07-19 07:21:28 +0000677 PartitionBuilder PB(DL, AI, *this);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000678 PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI);
679 if (PtrI.isEscaped() || PtrI.isAborted()) {
680 // FIXME: We should sink the escape vs. abort info into the caller nicely,
681 // possibly by just storing the PtrInfo in the AllocaPartitioning.
682 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
683 : PtrI.getAbortingInst();
684 assert(PointerEscapingInstr && "Did not track a bad instruction");
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000685 return;
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000686 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000687
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000688 // Sort the uses. This arranges for the offsets to be in ascending order,
689 // and the sizes to be in descending order.
690 std::sort(Partitions.begin(), Partitions.end());
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000691
Chandler Carruthf0546402013-07-18 07:15:00 +0000692 Partitions.erase(
693 std::remove_if(Partitions.begin(), Partitions.end(), IsPartitionDead()),
694 Partitions.end());
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000695
Chandler Carruth5f5b6162013-03-20 06:30:46 +0000696 // Record how many partitions we end up with.
697 NumAllocaPartitions += Partitions.size();
698 MaxPartitionsPerAlloca = std::max<unsigned>(Partitions.size(), MaxPartitionsPerAlloca);
699
Chandler Carruthf0546402013-07-18 07:15:00 +0000700 NumAllocaPartitionUses += Partitions.size();
701 MaxPartitionUsesPerAlloca =
702 std::max<unsigned>(Partitions.size(), MaxPartitionUsesPerAlloca);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000703}
704
Chandler Carruth25fb23d2012-09-14 10:18:51 +0000705#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
706
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000707void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
708 StringRef Indent) const {
Chandler Carruthf0546402013-07-18 07:15:00 +0000709 printPartition(OS, I, Indent);
710 printUse(OS, I, Indent);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000711}
712
Chandler Carruthf0546402013-07-18 07:15:00 +0000713void AllocaPartitioning::printPartition(raw_ostream &OS, const_iterator I,
714 StringRef Indent) const {
715 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
716 << " partition #" << (I - begin())
717 << (I->isSplittable() ? " (splittable)" : "") << "\n";
718}
719
720void AllocaPartitioning::printUse(raw_ostream &OS, const_iterator I,
721 StringRef Indent) const {
722 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000723}
724
725void AllocaPartitioning::print(raw_ostream &OS) const {
726 if (PointerEscapingInstr) {
727 OS << "No partitioning for alloca: " << AI << "\n"
728 << " A pointer to this alloca escaped by:\n"
729 << " " << *PointerEscapingInstr << "\n";
730 return;
731 }
732
733 OS << "Partitioning of alloca: " << AI << "\n";
Chandler Carruthf0546402013-07-18 07:15:00 +0000734 for (const_iterator I = begin(), E = end(); I != E; ++I)
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000735 print(OS, I);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000736}
737
738void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
739void AllocaPartitioning::dump() const { print(dbgs()); }
740
Chandler Carruth25fb23d2012-09-14 10:18:51 +0000741#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
742
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000743namespace {
Chandler Carruth70b44c52012-09-15 11:43:14 +0000744/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
745///
746/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
747/// the loads and stores of an alloca instruction, as well as updating its
748/// debug information. This is used when a domtree is unavailable and thus
749/// mem2reg in its full form can't be used to handle promotion of allocas to
750/// scalar values.
751class AllocaPromoter : public LoadAndStorePromoter {
752 AllocaInst &AI;
753 DIBuilder &DIB;
754
755 SmallVector<DbgDeclareInst *, 4> DDIs;
756 SmallVector<DbgValueInst *, 4> DVIs;
757
758public:
759 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
760 AllocaInst &AI, DIBuilder &DIB)
761 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
762
763 void run(const SmallVectorImpl<Instruction*> &Insts) {
764 // Remember which alloca we're promoting (for isInstInList).
765 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
766 for (Value::use_iterator UI = DebugNode->use_begin(),
767 UE = DebugNode->use_end();
768 UI != UE; ++UI)
769 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
770 DDIs.push_back(DDI);
771 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
772 DVIs.push_back(DVI);
773 }
774
775 LoadAndStorePromoter::run(Insts);
776 AI.eraseFromParent();
777 while (!DDIs.empty())
778 DDIs.pop_back_val()->eraseFromParent();
779 while (!DVIs.empty())
780 DVIs.pop_back_val()->eraseFromParent();
781 }
782
783 virtual bool isInstInList(Instruction *I,
784 const SmallVectorImpl<Instruction*> &Insts) const {
785 if (LoadInst *LI = dyn_cast<LoadInst>(I))
786 return LI->getOperand(0) == &AI;
787 return cast<StoreInst>(I)->getPointerOperand() == &AI;
788 }
789
790 virtual void updateDebugInfo(Instruction *Inst) const {
Craig Topper31ee5862013-07-03 15:07:05 +0000791 for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
Chandler Carruth70b44c52012-09-15 11:43:14 +0000792 E = DDIs.end(); I != E; ++I) {
793 DbgDeclareInst *DDI = *I;
794 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
795 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
796 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
797 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
798 }
Craig Topper31ee5862013-07-03 15:07:05 +0000799 for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
Chandler Carruth70b44c52012-09-15 11:43:14 +0000800 E = DVIs.end(); I != E; ++I) {
801 DbgValueInst *DVI = *I;
Jakub Staszak3c6583a2013-02-19 22:14:45 +0000802 Value *Arg = 0;
Chandler Carruth70b44c52012-09-15 11:43:14 +0000803 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
804 // If an argument is zero extended then use argument directly. The ZExt
805 // may be zapped by an optimization pass in future.
806 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
807 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
Jakub Staszak4f9d1e82013-03-24 09:56:28 +0000808 else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
Chandler Carruth70b44c52012-09-15 11:43:14 +0000809 Arg = dyn_cast<Argument>(SExt->getOperand(0));
810 if (!Arg)
Jakub Staszak4f9d1e82013-03-24 09:56:28 +0000811 Arg = SI->getValueOperand();
Chandler Carruth70b44c52012-09-15 11:43:14 +0000812 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
Jakub Staszak4f9d1e82013-03-24 09:56:28 +0000813 Arg = LI->getPointerOperand();
Chandler Carruth70b44c52012-09-15 11:43:14 +0000814 } else {
815 continue;
816 }
817 Instruction *DbgVal =
818 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
819 Inst);
820 DbgVal->setDebugLoc(DVI->getDebugLoc());
821 }
822 }
823};
824} // end anon namespace
825
826
827namespace {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000828/// \brief An optimization pass providing Scalar Replacement of Aggregates.
829///
830/// This pass takes allocations which can be completely analyzed (that is, they
831/// don't escape) and tries to turn them into scalar SSA values. There are
832/// a few steps to this process.
833///
834/// 1) It takes allocations of aggregates and analyzes the ways in which they
835/// are used to try to split them into smaller allocations, ideally of
836/// a single scalar data type. It will split up memcpy and memset accesses
Jakub Staszak086f6cd2013-02-19 22:02:21 +0000837/// as necessary and try to isolate individual scalar accesses.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000838/// 2) It will transform accesses into forms which are suitable for SSA value
839/// promotion. This can be replacing a memset with a scalar store of an
840/// integer value, or it can involve speculating operations on a PHI or
841/// select to be a PHI or select of the results.
842/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
843/// onto insert and extract operations on a vector value, and convert them to
844/// this form. By doing so, it will enable promotion of vector aggregates to
845/// SSA vector values.
846class SROA : public FunctionPass {
Chandler Carruth70b44c52012-09-15 11:43:14 +0000847 const bool RequiresDomTree;
848
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000849 LLVMContext *C;
Chandler Carruth90a735d2013-07-19 07:21:28 +0000850 const DataLayout *DL;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000851 DominatorTree *DT;
852
853 /// \brief Worklist of alloca instructions to simplify.
854 ///
855 /// Each alloca in the function is added to this. Each new alloca formed gets
856 /// added to it as well to recursively simplify unless that alloca can be
857 /// directly promoted. Finally, each time we rewrite a use of an alloca other
858 /// the one being actively rewritten, we add it back onto the list if not
859 /// already present to ensure it is re-visited.
860 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
861
862 /// \brief A collection of instructions to delete.
863 /// We try to batch deletions to simplify code and make things a bit more
864 /// efficient.
Chandler Carruth18db7952012-11-20 01:12:50 +0000865 SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000866
Chandler Carruthac8317f2012-10-04 12:33:50 +0000867 /// \brief Post-promotion worklist.
868 ///
869 /// Sometimes we discover an alloca which has a high probability of becoming
870 /// viable for SROA after a round of promotion takes place. In those cases,
871 /// the alloca is enqueued here for re-processing.
872 ///
873 /// Note that we have to be very careful to clear allocas out of this list in
874 /// the event they are deleted.
875 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
876
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000877 /// \brief A collection of alloca instructions we can directly promote.
878 std::vector<AllocaInst *> PromotableAllocas;
879
Chandler Carruthf0546402013-07-18 07:15:00 +0000880 /// \brief A worklist of PHIs to speculate prior to promoting allocas.
881 ///
882 /// All of these PHIs have been checked for the safety of speculation and by
883 /// being speculated will allow promoting allocas currently in the promotable
884 /// queue.
885 SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
886
887 /// \brief A worklist of select instructions to speculate prior to promoting
888 /// allocas.
889 ///
890 /// All of these select instructions have been checked for the safety of
891 /// speculation and by being speculated will allow promoting allocas
892 /// currently in the promotable queue.
893 SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
894
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000895public:
Chandler Carruth70b44c52012-09-15 11:43:14 +0000896 SROA(bool RequiresDomTree = true)
897 : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
Chandler Carruth90a735d2013-07-19 07:21:28 +0000898 C(0), DL(0), DT(0) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000899 initializeSROAPass(*PassRegistry::getPassRegistry());
900 }
901 bool runOnFunction(Function &F);
902 void getAnalysisUsage(AnalysisUsage &AU) const;
903
904 const char *getPassName() const { return "SROA"; }
905 static char ID;
906
907private:
Chandler Carruth82a57542012-10-01 10:54:05 +0000908 friend class PHIOrSelectSpeculator;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000909 friend class AllocaPartitionRewriter;
910 friend class AllocaPartitionVectorRewriter;
911
Chandler Carruthf0546402013-07-18 07:15:00 +0000912 bool rewritePartitions(AllocaInst &AI, AllocaPartitioning &P,
913 AllocaPartitioning::iterator B,
914 AllocaPartitioning::iterator E,
915 int64_t BeginOffset, int64_t EndOffset,
916 ArrayRef<AllocaPartitioning::iterator> SplitUses);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000917 bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
918 bool runOnAlloca(AllocaInst &AI);
Chandler Carruth19450da2012-09-14 10:26:38 +0000919 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
Chandler Carruth70b44c52012-09-15 11:43:14 +0000920 bool promoteAllocas(Function &F);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000921};
922}
923
924char SROA::ID = 0;
925
Chandler Carruth70b44c52012-09-15 11:43:14 +0000926FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
927 return new SROA(RequiresDomTree);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000928}
929
930INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
931 false, false)
932INITIALIZE_PASS_DEPENDENCY(DominatorTree)
933INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
934 false, false)
935
Chandler Carruthf0546402013-07-18 07:15:00 +0000936/// Walk a range of a partitioning looking for a common type to cover this
937/// sequence of partition uses.
938static Type *findCommonType(AllocaPartitioning::const_iterator B,
939 AllocaPartitioning::const_iterator E,
940 uint64_t EndOffset) {
941 Type *Ty = 0;
942 for (AllocaPartitioning::const_iterator I = B; I != E; ++I) {
943 Use *U = I->getUse();
944 if (isa<IntrinsicInst>(*U->getUser()))
945 continue;
946 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
947 continue;
Chandler Carruth90c4a3a2012-10-05 01:29:06 +0000948
Chandler Carruthf0546402013-07-18 07:15:00 +0000949 Type *UserTy = 0;
950 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser()))
951 UserTy = LI->getType();
952 else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser()))
953 UserTy = SI->getValueOperand()->getType();
954 else
955 return 0; // Bail if we have weird uses.
Chandler Carruth90c4a3a2012-10-05 01:29:06 +0000956
Chandler Carruthf0546402013-07-18 07:15:00 +0000957 if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
958 // If the type is larger than the partition, skip it. We only encounter
959 // this for split integer operations where we want to use the type of
960 // the
961 // entity causing the split.
962 if (ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
963 continue;
Chandler Carruth90c4a3a2012-10-05 01:29:06 +0000964
Chandler Carruthf0546402013-07-18 07:15:00 +0000965 // If we have found an integer type use covering the alloca, use that
966 // regardless of the other types, as integers are often used for a
967 // "bucket
968 // of bits" type.
969 return ITy;
Chandler Carruthe3899f22013-07-15 17:36:21 +0000970 }
Chandler Carruthf0546402013-07-18 07:15:00 +0000971
972 if (Ty && Ty != UserTy)
973 return 0;
974
975 Ty = UserTy;
Chandler Carruthe3899f22013-07-15 17:36:21 +0000976 }
Chandler Carruthf0546402013-07-18 07:15:00 +0000977 return Ty;
978}
Chandler Carruthe3899f22013-07-15 17:36:21 +0000979
Chandler Carruthf0546402013-07-18 07:15:00 +0000980/// PHI instructions that use an alloca and are subsequently loaded can be
981/// rewritten to load both input pointers in the pred blocks and then PHI the
982/// results, allowing the load of the alloca to be promoted.
983/// From this:
984/// %P2 = phi [i32* %Alloca, i32* %Other]
985/// %V = load i32* %P2
986/// to:
987/// %V1 = load i32* %Alloca -> will be mem2reg'd
988/// ...
989/// %V2 = load i32* %Other
990/// ...
991/// %V = phi [i32 %V1, i32 %V2]
992///
993/// We can do this to a select if its only uses are loads and if the operands
994/// to the select can be loaded unconditionally.
995///
996/// FIXME: This should be hoisted into a generic utility, likely in
997/// Transforms/Util/Local.h
998static bool isSafePHIToSpeculate(PHINode &PN,
Chandler Carruth90a735d2013-07-19 07:21:28 +0000999 const DataLayout *DL = 0) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001000 // For now, we can only do this promotion if the load is in the same block
1001 // as the PHI, and if there are no stores between the phi and load.
1002 // TODO: Allow recursive phi users.
1003 // TODO: Allow stores.
1004 BasicBlock *BB = PN.getParent();
1005 unsigned MaxAlign = 0;
1006 bool HaveLoad = false;
1007 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE;
1008 ++UI) {
1009 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1010 if (LI == 0 || !LI->isSimple())
Chandler Carruthe74ff4c2013-07-15 10:30:19 +00001011 return false;
Chandler Carruthe74ff4c2013-07-15 10:30:19 +00001012
Chandler Carruthf0546402013-07-18 07:15:00 +00001013 // For now we only allow loads in the same block as the PHI. This is
1014 // a common case that happens when instcombine merges two loads through
1015 // a PHI.
1016 if (LI->getParent() != BB)
1017 return false;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001018
Chandler Carruthf0546402013-07-18 07:15:00 +00001019 // Ensure that there are no instructions between the PHI and the load that
1020 // could store.
1021 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1022 if (BBI->mayWriteToMemory())
Chandler Carruthe3899f22013-07-15 17:36:21 +00001023 return false;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001024
Chandler Carruthf0546402013-07-18 07:15:00 +00001025 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1026 HaveLoad = true;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001027 }
1028
Chandler Carruthf0546402013-07-18 07:15:00 +00001029 if (!HaveLoad)
1030 return false;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001031
Chandler Carruthf0546402013-07-18 07:15:00 +00001032 // We can only transform this if it is safe to push the loads into the
1033 // predecessor blocks. The only thing to watch out for is that we can't put
1034 // a possibly trapping load in the predecessor if it is a critical edge.
1035 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1036 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1037 Value *InVal = PN.getIncomingValue(Idx);
Chandler Carruthe3899f22013-07-15 17:36:21 +00001038
Chandler Carruthf0546402013-07-18 07:15:00 +00001039 // If the value is produced by the terminator of the predecessor (an
1040 // invoke) or it has side-effects, there is no valid place to put a load
1041 // in the predecessor.
1042 if (TI == InVal || TI->mayHaveSideEffects())
1043 return false;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001044
Chandler Carruthf0546402013-07-18 07:15:00 +00001045 // If the predecessor has a single successor, then the edge isn't
1046 // critical.
1047 if (TI->getNumSuccessors() == 1)
1048 continue;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001049
Chandler Carruthf0546402013-07-18 07:15:00 +00001050 // If this pointer is always safe to load, or if we can prove that there
1051 // is already a load in the block, then we can move the load to the pred
1052 // block.
1053 if (InVal->isDereferenceablePointer() ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00001054 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
Chandler Carruthf0546402013-07-18 07:15:00 +00001055 continue;
1056
1057 return false;
1058 }
1059
1060 return true;
1061}
1062
1063static void speculatePHINodeLoads(PHINode &PN) {
1064 DEBUG(dbgs() << " original: " << PN << "\n");
1065
1066 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1067 IRBuilderTy PHIBuilder(&PN);
1068 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1069 PN.getName() + ".sroa.speculated");
1070
1071 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1072 // matter which one we get and if any differ.
1073 LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin());
1074 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1075 unsigned Align = SomeLoad->getAlignment();
1076
1077 // Rewrite all loads of the PN to use the new PHI.
1078 while (!PN.use_empty()) {
1079 LoadInst *LI = cast<LoadInst>(*PN.use_begin());
1080 LI->replaceAllUsesWith(NewPN);
1081 LI->eraseFromParent();
1082 }
1083
1084 // Inject loads into all of the pred blocks.
1085 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1086 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1087 TerminatorInst *TI = Pred->getTerminator();
1088 Value *InVal = PN.getIncomingValue(Idx);
1089 IRBuilderTy PredBuilder(TI);
1090
1091 LoadInst *Load = PredBuilder.CreateLoad(
1092 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1093 ++NumLoadsSpeculated;
1094 Load->setAlignment(Align);
1095 if (TBAATag)
1096 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1097 NewPN->addIncoming(Load, Pred);
1098 }
1099
1100 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1101 PN.eraseFromParent();
1102}
1103
1104/// Select instructions that use an alloca and are subsequently loaded can be
1105/// rewritten to load both input pointers and then select between the result,
1106/// allowing the load of the alloca to be promoted.
1107/// From this:
1108/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1109/// %V = load i32* %P2
1110/// to:
1111/// %V1 = load i32* %Alloca -> will be mem2reg'd
1112/// %V2 = load i32* %Other
1113/// %V = select i1 %cond, i32 %V1, i32 %V2
1114///
1115/// We can do this to a select if its only uses are loads and if the operand
1116/// to the select can be loaded unconditionally.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001117static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001118 Value *TValue = SI.getTrueValue();
1119 Value *FValue = SI.getFalseValue();
1120 bool TDerefable = TValue->isDereferenceablePointer();
1121 bool FDerefable = FValue->isDereferenceablePointer();
1122
1123 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE;
1124 ++UI) {
1125 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1126 if (LI == 0 || !LI->isSimple())
1127 return false;
1128
1129 // Both operands to the select need to be dereferencable, either
1130 // absolutely (e.g. allocas) or at this point because we can see other
1131 // accesses to it.
1132 if (!TDerefable &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00001133 !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
Chandler Carruthf0546402013-07-18 07:15:00 +00001134 return false;
1135 if (!FDerefable &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00001136 !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
Chandler Carruthf0546402013-07-18 07:15:00 +00001137 return false;
1138 }
1139
1140 return true;
1141}
1142
1143static void speculateSelectInstLoads(SelectInst &SI) {
1144 DEBUG(dbgs() << " original: " << SI << "\n");
1145
1146 IRBuilderTy IRB(&SI);
1147 Value *TV = SI.getTrueValue();
1148 Value *FV = SI.getFalseValue();
1149 // Replace the loads of the select with a select of two loads.
1150 while (!SI.use_empty()) {
1151 LoadInst *LI = cast<LoadInst>(*SI.use_begin());
1152 assert(LI->isSimple() && "We only speculate simple loads");
1153
1154 IRB.SetInsertPoint(LI);
1155 LoadInst *TL =
Chandler Carruthe3899f22013-07-15 17:36:21 +00001156 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
Chandler Carruthf0546402013-07-18 07:15:00 +00001157 LoadInst *FL =
Chandler Carruthe3899f22013-07-15 17:36:21 +00001158 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
Chandler Carruthf0546402013-07-18 07:15:00 +00001159 NumLoadsSpeculated += 2;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001160
Chandler Carruthf0546402013-07-18 07:15:00 +00001161 // Transfer alignment and TBAA info if present.
1162 TL->setAlignment(LI->getAlignment());
1163 FL->setAlignment(LI->getAlignment());
1164 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1165 TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1166 FL->setMetadata(LLVMContext::MD_tbaa, Tag);
Chandler Carruthe3899f22013-07-15 17:36:21 +00001167 }
Chandler Carruthf0546402013-07-18 07:15:00 +00001168
1169 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1170 LI->getName() + ".sroa.speculated");
1171
1172 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1173 LI->replaceAllUsesWith(V);
1174 LI->eraseFromParent();
Chandler Carruthe3899f22013-07-15 17:36:21 +00001175 }
Chandler Carruthf0546402013-07-18 07:15:00 +00001176 SI.eraseFromParent();
Chandler Carruth90c4a3a2012-10-05 01:29:06 +00001177}
1178
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001179/// \brief Build a GEP out of a base pointer and indices.
1180///
1181/// This will return the BasePtr if that is valid, or build a new GEP
1182/// instruction using the IRBuilder if GEP-ing is needed.
Chandler Carruthd177f862013-03-20 07:30:36 +00001183static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001184 SmallVectorImpl<Value *> &Indices) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001185 if (Indices.empty())
1186 return BasePtr;
1187
1188 // A single zero index is a no-op, so check for this and avoid building a GEP
1189 // in that case.
1190 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1191 return BasePtr;
1192
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001193 return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001194}
1195
1196/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1197/// TargetTy without changing the offset of the pointer.
1198///
1199/// This routine assumes we've already established a properly offset GEP with
1200/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1201/// zero-indices down through type layers until we find one the same as
1202/// TargetTy. If we can't find one with the same type, we at least try to use
1203/// one with the same size. If none of that works, we just produce the GEP as
1204/// indicated by Indices to have the correct offset.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001205static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001206 Value *BasePtr, Type *Ty, Type *TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001207 SmallVectorImpl<Value *> &Indices) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001208 if (Ty == TargetTy)
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001209 return buildGEP(IRB, BasePtr, Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001210
1211 // See if we can descend into a struct and locate a field with the correct
1212 // type.
1213 unsigned NumLayers = 0;
1214 Type *ElementTy = Ty;
1215 do {
1216 if (ElementTy->isPointerTy())
1217 break;
1218 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1219 ElementTy = SeqTy->getElementType();
Chandler Carruth40617f52012-10-17 07:22:16 +00001220 // Note that we use the default address space as this index is over an
1221 // array or a vector, not a pointer.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001222 Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0)));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001223 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
Chandler Carruth503eb2b2012-10-09 01:58:35 +00001224 if (STy->element_begin() == STy->element_end())
1225 break; // Nothing left to descend into.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001226 ElementTy = *STy->element_begin();
1227 Indices.push_back(IRB.getInt32(0));
1228 } else {
1229 break;
1230 }
1231 ++NumLayers;
1232 } while (ElementTy != TargetTy);
1233 if (ElementTy != TargetTy)
1234 Indices.erase(Indices.end() - NumLayers, Indices.end());
1235
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001236 return buildGEP(IRB, BasePtr, Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001237}
1238
1239/// \brief Recursively compute indices for a natural GEP.
1240///
1241/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1242/// element types adding appropriate indices for the GEP.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001243static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001244 Value *Ptr, Type *Ty, APInt &Offset,
1245 Type *TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001246 SmallVectorImpl<Value *> &Indices) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001247 if (Offset == 0)
Chandler Carruth90a735d2013-07-19 07:21:28 +00001248 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001249
1250 // We can't recurse through pointer types.
1251 if (Ty->isPointerTy())
1252 return 0;
1253
Chandler Carruthdd3cea82012-09-14 10:30:40 +00001254 // We try to analyze GEPs over vectors here, but note that these GEPs are
1255 // extremely poorly defined currently. The long-term goal is to remove GEPing
1256 // over a vector from the IR completely.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001257 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001258 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001259 if (ElementSizeInBits % 8)
Chandler Carruthdd3cea82012-09-14 10:30:40 +00001260 return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001261 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
Chandler Carruth6fab42a2012-10-17 09:23:48 +00001262 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001263 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1264 return 0;
1265 Offset -= NumSkippedElements * ElementSize;
1266 Indices.push_back(IRB.getInt(NumSkippedElements));
Chandler Carruth90a735d2013-07-19 07:21:28 +00001267 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001268 Offset, TargetTy, Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001269 }
1270
1271 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1272 Type *ElementTy = ArrTy->getElementType();
Chandler Carruth90a735d2013-07-19 07:21:28 +00001273 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
Chandler Carruth6fab42a2012-10-17 09:23:48 +00001274 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001275 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1276 return 0;
1277
1278 Offset -= NumSkippedElements * ElementSize;
1279 Indices.push_back(IRB.getInt(NumSkippedElements));
Chandler Carruth90a735d2013-07-19 07:21:28 +00001280 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001281 Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001282 }
1283
1284 StructType *STy = dyn_cast<StructType>(Ty);
1285 if (!STy)
1286 return 0;
1287
Chandler Carruth90a735d2013-07-19 07:21:28 +00001288 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001289 uint64_t StructOffset = Offset.getZExtValue();
Chandler Carruthcabd96c2012-09-14 10:30:42 +00001290 if (StructOffset >= SL->getSizeInBytes())
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001291 return 0;
1292 unsigned Index = SL->getElementContainingOffset(StructOffset);
1293 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1294 Type *ElementTy = STy->getElementType(Index);
Chandler Carruth90a735d2013-07-19 07:21:28 +00001295 if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001296 return 0; // The offset points into alignment padding.
1297
1298 Indices.push_back(IRB.getInt32(Index));
Chandler Carruth90a735d2013-07-19 07:21:28 +00001299 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001300 Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001301}
1302
1303/// \brief Get a natural GEP from a base pointer to a particular offset and
1304/// resulting in a particular type.
1305///
1306/// The goal is to produce a "natural" looking GEP that works with the existing
1307/// composite types to arrive at the appropriate offset and element type for
1308/// a pointer. TargetTy is the element type the returned GEP should point-to if
1309/// possible. We recurse by decreasing Offset, adding the appropriate index to
1310/// Indices, and setting Ty to the result subtype.
1311///
Chandler Carruth93a21e72012-09-14 10:18:49 +00001312/// If no natural GEP can be constructed, this function returns null.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001313static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001314 Value *Ptr, APInt Offset, Type *TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001315 SmallVectorImpl<Value *> &Indices) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001316 PointerType *Ty = cast<PointerType>(Ptr->getType());
1317
1318 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1319 // an i8.
1320 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1321 return 0;
1322
1323 Type *ElementTy = Ty->getElementType();
Chandler Carruth3f882d42012-09-18 22:37:19 +00001324 if (!ElementTy->isSized())
1325 return 0; // We can't GEP through an unsized element.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001326 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001327 if (ElementSize == 0)
1328 return 0; // Zero-length arrays can't help us build a natural GEP.
Chandler Carruth6fab42a2012-10-17 09:23:48 +00001329 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001330
1331 Offset -= NumSkippedElements * ElementSize;
1332 Indices.push_back(IRB.getInt(NumSkippedElements));
Chandler Carruth90a735d2013-07-19 07:21:28 +00001333 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001334 Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001335}
1336
1337/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1338/// resulting pointer has PointerTy.
1339///
1340/// This tries very hard to compute a "natural" GEP which arrives at the offset
1341/// and produces the pointer type desired. Where it cannot, it will try to use
1342/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1343/// fails, it will try to use an existing i8* and GEP to the byte offset and
1344/// bitcast to the type.
1345///
1346/// The strategy for finding the more natural GEPs is to peel off layers of the
1347/// pointer, walking back through bit casts and GEPs, searching for a base
1348/// pointer from which we can compute a natural GEP with the desired
Jakub Staszak086f6cd2013-02-19 22:02:21 +00001349/// properties. The algorithm tries to fold as many constant indices into
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001350/// a single GEP as possible, thus making each GEP more independent of the
1351/// surrounding code.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001352static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001353 Value *Ptr, APInt Offset, Type *PointerTy) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001354 // Even though we don't look through PHI nodes, we could be called on an
1355 // instruction in an unreachable block, which may be on a cycle.
1356 SmallPtrSet<Value *, 4> Visited;
1357 Visited.insert(Ptr);
1358 SmallVector<Value *, 4> Indices;
1359
1360 // We may end up computing an offset pointer that has the wrong type. If we
1361 // never are able to compute one directly that has the correct type, we'll
1362 // fall back to it, so keep it around here.
1363 Value *OffsetPtr = 0;
1364
1365 // Remember any i8 pointer we come across to re-use if we need to do a raw
1366 // byte offset.
1367 Value *Int8Ptr = 0;
1368 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1369
1370 Type *TargetTy = PointerTy->getPointerElementType();
1371
1372 do {
1373 // First fold any existing GEPs into the offset.
1374 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1375 APInt GEPOffset(Offset.getBitWidth(), 0);
Chandler Carruth90a735d2013-07-19 07:21:28 +00001376 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001377 break;
1378 Offset += GEPOffset;
1379 Ptr = GEP->getPointerOperand();
1380 if (!Visited.insert(Ptr))
1381 break;
1382 }
1383
1384 // See if we can perform a natural GEP here.
1385 Indices.clear();
Chandler Carruth90a735d2013-07-19 07:21:28 +00001386 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001387 Indices)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001388 if (P->getType() == PointerTy) {
1389 // Zap any offset pointer that we ended up computing in previous rounds.
1390 if (OffsetPtr && OffsetPtr->use_empty())
1391 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1392 I->eraseFromParent();
1393 return P;
1394 }
1395 if (!OffsetPtr) {
1396 OffsetPtr = P;
1397 }
1398 }
1399
1400 // Stash this pointer if we've found an i8*.
1401 if (Ptr->getType()->isIntegerTy(8)) {
1402 Int8Ptr = Ptr;
1403 Int8PtrOffset = Offset;
1404 }
1405
1406 // Peel off a layer of the pointer and update the offset appropriately.
1407 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1408 Ptr = cast<Operator>(Ptr)->getOperand(0);
1409 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1410 if (GA->mayBeOverridden())
1411 break;
1412 Ptr = GA->getAliasee();
1413 } else {
1414 break;
1415 }
1416 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1417 } while (Visited.insert(Ptr));
1418
1419 if (!OffsetPtr) {
1420 if (!Int8Ptr) {
1421 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001422 "raw_cast");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001423 Int8PtrOffset = Offset;
1424 }
1425
1426 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1427 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001428 "raw_idx");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001429 }
1430 Ptr = OffsetPtr;
1431
1432 // On the off chance we were targeting i8*, guard the bitcast here.
1433 if (Ptr->getType() != PointerTy)
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001434 Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001435
1436 return Ptr;
1437}
1438
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001439/// \brief Test whether we can convert a value from the old to the new type.
1440///
1441/// This predicate should be used to guard calls to convertValue in order to
1442/// ensure that we only try to convert viable values. The strategy is that we
1443/// will peel off single element struct and array wrappings to get to an
1444/// underlying value, and convert that value.
1445static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1446 if (OldTy == NewTy)
1447 return true;
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00001448 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1449 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1450 if (NewITy->getBitWidth() >= OldITy->getBitWidth())
1451 return true;
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001452 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1453 return false;
1454 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1455 return false;
1456
1457 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1458 if (NewTy->isPointerTy() && OldTy->isPointerTy())
1459 return true;
1460 if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1461 return true;
1462 return false;
1463 }
1464
1465 return true;
1466}
1467
1468/// \brief Generic routine to convert an SSA value to a value of a different
1469/// type.
1470///
1471/// This will try various different casting techniques, such as bitcasts,
1472/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1473/// two types for viability with this routine.
Chandler Carruthd177f862013-03-20 07:30:36 +00001474static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001475 Type *Ty) {
1476 assert(canConvertValue(DL, V->getType(), Ty) &&
1477 "Value not convertable to type");
1478 if (V->getType() == Ty)
1479 return V;
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00001480 if (IntegerType *OldITy = dyn_cast<IntegerType>(V->getType()))
1481 if (IntegerType *NewITy = dyn_cast<IntegerType>(Ty))
1482 if (NewITy->getBitWidth() > OldITy->getBitWidth())
1483 return IRB.CreateZExt(V, NewITy);
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001484 if (V->getType()->isIntegerTy() && Ty->isPointerTy())
1485 return IRB.CreateIntToPtr(V, Ty);
1486 if (V->getType()->isPointerTy() && Ty->isIntegerTy())
1487 return IRB.CreatePtrToInt(V, Ty);
1488
1489 return IRB.CreateBitCast(V, Ty);
1490}
1491
Chandler Carruthf0546402013-07-18 07:15:00 +00001492/// \brief Test whether the given partition use can be promoted to a vector.
1493///
1494/// This function is called to test each entry in a partioning which is slated
1495/// for a single partition.
1496static bool isVectorPromotionViableForPartitioning(
Chandler Carruth90a735d2013-07-19 07:21:28 +00001497 const DataLayout &DL, AllocaPartitioning &P,
Chandler Carruthf0546402013-07-18 07:15:00 +00001498 uint64_t PartitionBeginOffset, uint64_t PartitionEndOffset, VectorType *Ty,
1499 uint64_t ElementSize, AllocaPartitioning::const_iterator I) {
1500 // First validate the partitioning offsets.
1501 uint64_t BeginOffset =
1502 std::max(I->beginOffset(), PartitionBeginOffset) - PartitionBeginOffset;
1503 uint64_t BeginIndex = BeginOffset / ElementSize;
1504 if (BeginIndex * ElementSize != BeginOffset ||
1505 BeginIndex >= Ty->getNumElements())
1506 return false;
1507 uint64_t EndOffset =
1508 std::min(I->endOffset(), PartitionEndOffset) - PartitionBeginOffset;
1509 uint64_t EndIndex = EndOffset / ElementSize;
1510 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1511 return false;
1512
1513 assert(EndIndex > BeginIndex && "Empty vector!");
1514 uint64_t NumElements = EndIndex - BeginIndex;
1515 Type *PartitionTy =
1516 (NumElements == 1) ? Ty->getElementType()
1517 : VectorType::get(Ty->getElementType(), NumElements);
1518
1519 Type *SplitIntTy =
1520 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1521
1522 Use *U = I->getUse();
1523
1524 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1525 if (MI->isVolatile())
1526 return false;
1527 if (!I->isSplittable())
1528 return false; // Skip any unsplittable intrinsics.
1529 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1530 // Disable vector promotion when there are loads or stores of an FCA.
1531 return false;
1532 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1533 if (LI->isVolatile())
1534 return false;
1535 Type *LTy = LI->getType();
1536 if (PartitionBeginOffset > I->beginOffset() ||
1537 PartitionEndOffset < I->endOffset()) {
1538 assert(LTy->isIntegerTy());
1539 LTy = SplitIntTy;
1540 }
Chandler Carruth90a735d2013-07-19 07:21:28 +00001541 if (!canConvertValue(DL, PartitionTy, LTy))
Chandler Carruthf0546402013-07-18 07:15:00 +00001542 return false;
1543 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1544 if (SI->isVolatile())
1545 return false;
1546 Type *STy = SI->getValueOperand()->getType();
1547 if (PartitionBeginOffset > I->beginOffset() ||
1548 PartitionEndOffset < I->endOffset()) {
1549 assert(STy->isIntegerTy());
1550 STy = SplitIntTy;
1551 }
Chandler Carruth90a735d2013-07-19 07:21:28 +00001552 if (!canConvertValue(DL, STy, PartitionTy))
Chandler Carruthf0546402013-07-18 07:15:00 +00001553 return false;
1554 }
1555
1556 return true;
1557}
1558
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001559/// \brief Test whether the given alloca partition can be promoted to a vector.
1560///
1561/// This is a quick test to check whether we can rewrite a particular alloca
1562/// partition (and its newly formed alloca) into a vector alloca with only
1563/// whole-vector loads and stores such that it could be promoted to a vector
1564/// SSA value. We only can ensure this for a limited set of operations, and we
1565/// don't want to do the rewrites unless we are confident that the result will
1566/// be promotable, so we have an early test here.
Chandler Carruthf0546402013-07-18 07:15:00 +00001567static bool isVectorPromotionViable(
Chandler Carruth90a735d2013-07-19 07:21:28 +00001568 const DataLayout &DL, Type *AllocaTy, AllocaPartitioning &P,
Chandler Carruthf0546402013-07-18 07:15:00 +00001569 uint64_t PartitionBeginOffset, uint64_t PartitionEndOffset,
1570 AllocaPartitioning::const_iterator I, AllocaPartitioning::const_iterator E,
1571 ArrayRef<AllocaPartitioning::iterator> SplitUses) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001572 VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1573 if (!Ty)
1574 return false;
1575
Chandler Carruth90a735d2013-07-19 07:21:28 +00001576 uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001577
1578 // While the definition of LLVM vectors is bitpacked, we don't support sizes
1579 // that aren't byte sized.
1580 if (ElementSize % 8)
1581 return false;
Chandler Carruth90a735d2013-07-19 07:21:28 +00001582 assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
Benjamin Kramerc003a452013-01-01 16:13:35 +00001583 "vector size not a multiple of element size?");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001584 ElementSize /= 8;
1585
Chandler Carruthf0546402013-07-18 07:15:00 +00001586 for (; I != E; ++I)
1587 if (!isVectorPromotionViableForPartitioning(
Chandler Carruth90a735d2013-07-19 07:21:28 +00001588 DL, P, PartitionBeginOffset, PartitionEndOffset, Ty, ElementSize,
Chandler Carruthf0546402013-07-18 07:15:00 +00001589 I))
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001590 return false;
1591
Chandler Carruthf0546402013-07-18 07:15:00 +00001592 for (ArrayRef<AllocaPartitioning::iterator>::const_iterator
1593 SUI = SplitUses.begin(),
1594 SUE = SplitUses.end();
1595 SUI != SUE; ++SUI)
1596 if (!isVectorPromotionViableForPartitioning(
Chandler Carruth90a735d2013-07-19 07:21:28 +00001597 DL, P, PartitionBeginOffset, PartitionEndOffset, Ty, ElementSize,
Chandler Carruthf0546402013-07-18 07:15:00 +00001598 *SUI))
Chandler Carruthe3899f22013-07-15 17:36:21 +00001599 return false;
Chandler Carruthf0546402013-07-18 07:15:00 +00001600
1601 return true;
1602}
1603
1604/// \brief Test whether a partitioning slice of an alloca is a valid set of
1605/// operations for integer widening.
1606///
1607/// This implements the necessary checking for the \c isIntegerWideningViable
1608/// test below on a single partitioning slice of the alloca.
1609static bool isIntegerWideningViableForPartitioning(
Chandler Carruth90a735d2013-07-19 07:21:28 +00001610 const DataLayout &DL, Type *AllocaTy, uint64_t AllocBeginOffset,
Chandler Carruthf0546402013-07-18 07:15:00 +00001611 uint64_t Size, AllocaPartitioning &P, AllocaPartitioning::const_iterator I,
1612 bool &WholeAllocaOp) {
1613 uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
1614 uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
1615
1616 // We can't reasonably handle cases where the load or store extends past
1617 // the end of the aloca's type and into its padding.
1618 if (RelEnd > Size)
1619 return false;
1620
1621 Use *U = I->getUse();
1622
1623 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1624 if (LI->isVolatile())
1625 return false;
1626 if (RelBegin == 0 && RelEnd == Size)
1627 WholeAllocaOp = true;
1628 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001629 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
Chandler Carruthe3899f22013-07-15 17:36:21 +00001630 return false;
Chandler Carruthf0546402013-07-18 07:15:00 +00001631 } else if (RelBegin != 0 || RelEnd != Size ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00001632 !canConvertValue(DL, AllocaTy, LI->getType())) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001633 // Non-integer loads need to be convertible from the alloca type so that
1634 // they are promotable.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001635 return false;
1636 }
Chandler Carruthf0546402013-07-18 07:15:00 +00001637 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1638 Type *ValueTy = SI->getValueOperand()->getType();
1639 if (SI->isVolatile())
1640 return false;
1641 if (RelBegin == 0 && RelEnd == Size)
1642 WholeAllocaOp = true;
1643 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001644 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
Chandler Carruthf0546402013-07-18 07:15:00 +00001645 return false;
1646 } else if (RelBegin != 0 || RelEnd != Size ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00001647 !canConvertValue(DL, ValueTy, AllocaTy)) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001648 // Non-integer stores need to be convertible to the alloca type so that
1649 // they are promotable.
1650 return false;
1651 }
1652 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1653 if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1654 return false;
1655 if (!I->isSplittable())
1656 return false; // Skip any unsplittable intrinsics.
1657 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1658 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1659 II->getIntrinsicID() != Intrinsic::lifetime_end)
1660 return false;
1661 } else {
1662 return false;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001663 }
Chandler Carruthf0546402013-07-18 07:15:00 +00001664
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001665 return true;
1666}
1667
Chandler Carruth435c4e02012-10-15 08:40:30 +00001668/// \brief Test whether the given alloca partition's integer operations can be
1669/// widened to promotable ones.
Chandler Carruth92924fd2012-09-24 00:34:20 +00001670///
Chandler Carruth435c4e02012-10-15 08:40:30 +00001671/// This is a quick test to check whether we can rewrite the integer loads and
1672/// stores to a particular alloca into wider loads and stores and be able to
1673/// promote the resulting alloca.
Chandler Carruthf0546402013-07-18 07:15:00 +00001674static bool
Chandler Carruth90a735d2013-07-19 07:21:28 +00001675isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
Chandler Carruthf0546402013-07-18 07:15:00 +00001676 uint64_t AllocBeginOffset, AllocaPartitioning &P,
1677 AllocaPartitioning::const_iterator I,
1678 AllocaPartitioning::const_iterator E,
1679 ArrayRef<AllocaPartitioning::iterator> SplitUses) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001680 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
Benjamin Kramer47534c72012-12-01 11:53:32 +00001681 // Don't create integer types larger than the maximum bitwidth.
1682 if (SizeInBits > IntegerType::MAX_INT_BITS)
1683 return false;
Chandler Carruth435c4e02012-10-15 08:40:30 +00001684
1685 // Don't try to handle allocas with bit-padding.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001686 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
Chandler Carruth92924fd2012-09-24 00:34:20 +00001687 return false;
1688
Chandler Carruth58d05562012-10-25 04:37:07 +00001689 // We need to ensure that an integer type with the appropriate bitwidth can
1690 // be converted to the alloca type, whatever that is. We don't want to force
1691 // the alloca itself to have an integer type if there is a more suitable one.
1692 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
Chandler Carruth90a735d2013-07-19 07:21:28 +00001693 if (!canConvertValue(DL, AllocaTy, IntTy) ||
1694 !canConvertValue(DL, IntTy, AllocaTy))
Chandler Carruth58d05562012-10-25 04:37:07 +00001695 return false;
1696
Chandler Carruth90a735d2013-07-19 07:21:28 +00001697 uint64_t Size = DL.getTypeStoreSize(AllocaTy);
Chandler Carruth435c4e02012-10-15 08:40:30 +00001698
Chandler Carruthf0546402013-07-18 07:15:00 +00001699 // While examining uses, we ensure that the alloca has a covering load or
1700 // store. We don't want to widen the integer operations only to fail to
1701 // promote due to some other unsplittable entry (which we may make splittable
Chandler Carruth5955c9e2013-07-19 07:12:23 +00001702 // later). However, if there are only splittable uses, go ahead and assume
1703 // that we cover the alloca.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001704 bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
Chandler Carruth43c8b462012-10-04 10:39:28 +00001705
Chandler Carruthf0546402013-07-18 07:15:00 +00001706 for (; I != E; ++I)
Chandler Carruth90a735d2013-07-19 07:21:28 +00001707 if (!isIntegerWideningViableForPartitioning(DL, AllocaTy, AllocBeginOffset,
Chandler Carruthf0546402013-07-18 07:15:00 +00001708 Size, P, I, WholeAllocaOp))
Chandler Carruth43c8b462012-10-04 10:39:28 +00001709 return false;
1710
Chandler Carruthf0546402013-07-18 07:15:00 +00001711 for (ArrayRef<AllocaPartitioning::iterator>::const_iterator
1712 SUI = SplitUses.begin(),
1713 SUE = SplitUses.end();
1714 SUI != SUE; ++SUI)
Chandler Carruth90a735d2013-07-19 07:21:28 +00001715 if (!isIntegerWideningViableForPartitioning(DL, AllocaTy, AllocBeginOffset,
Chandler Carruthf0546402013-07-18 07:15:00 +00001716 Size, P, *SUI, WholeAllocaOp))
Chandler Carruth92924fd2012-09-24 00:34:20 +00001717 return false;
Chandler Carruthf0546402013-07-18 07:15:00 +00001718
Chandler Carruth92924fd2012-09-24 00:34:20 +00001719 return WholeAllocaOp;
1720}
1721
Chandler Carruthd177f862013-03-20 07:30:36 +00001722static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001723 IntegerType *Ty, uint64_t Offset,
1724 const Twine &Name) {
Chandler Carruth18db7952012-11-20 01:12:50 +00001725 DEBUG(dbgs() << " start: " << *V << "\n");
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001726 IntegerType *IntTy = cast<IntegerType>(V->getType());
1727 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1728 "Element extends past full value");
1729 uint64_t ShAmt = 8*Offset;
1730 if (DL.isBigEndian())
1731 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
Chandler Carruth18db7952012-11-20 01:12:50 +00001732 if (ShAmt) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001733 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
Chandler Carruth18db7952012-11-20 01:12:50 +00001734 DEBUG(dbgs() << " shifted: " << *V << "\n");
1735 }
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001736 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1737 "Cannot extract to a larger integer!");
Chandler Carruth18db7952012-11-20 01:12:50 +00001738 if (Ty != IntTy) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001739 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
Chandler Carruth18db7952012-11-20 01:12:50 +00001740 DEBUG(dbgs() << " trunced: " << *V << "\n");
1741 }
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001742 return V;
1743}
1744
Chandler Carruthd177f862013-03-20 07:30:36 +00001745static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001746 Value *V, uint64_t Offset, const Twine &Name) {
1747 IntegerType *IntTy = cast<IntegerType>(Old->getType());
1748 IntegerType *Ty = cast<IntegerType>(V->getType());
1749 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1750 "Cannot insert a larger integer!");
Chandler Carruth18db7952012-11-20 01:12:50 +00001751 DEBUG(dbgs() << " start: " << *V << "\n");
1752 if (Ty != IntTy) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001753 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
Chandler Carruth18db7952012-11-20 01:12:50 +00001754 DEBUG(dbgs() << " extended: " << *V << "\n");
1755 }
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001756 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1757 "Element store outside of alloca store");
1758 uint64_t ShAmt = 8*Offset;
1759 if (DL.isBigEndian())
1760 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
Chandler Carruth18db7952012-11-20 01:12:50 +00001761 if (ShAmt) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001762 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
Chandler Carruth18db7952012-11-20 01:12:50 +00001763 DEBUG(dbgs() << " shifted: " << *V << "\n");
1764 }
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001765
1766 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
1767 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
1768 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
Chandler Carruth18db7952012-11-20 01:12:50 +00001769 DEBUG(dbgs() << " masked: " << *Old << "\n");
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001770 V = IRB.CreateOr(Old, V, Name + ".insert");
Chandler Carruth18db7952012-11-20 01:12:50 +00001771 DEBUG(dbgs() << " inserted: " << *V << "\n");
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001772 }
1773 return V;
1774}
1775
Chandler Carruthd177f862013-03-20 07:30:36 +00001776static Value *extractVector(IRBuilderTy &IRB, Value *V,
Chandler Carruthb6bc8742012-12-17 13:07:30 +00001777 unsigned BeginIndex, unsigned EndIndex,
1778 const Twine &Name) {
1779 VectorType *VecTy = cast<VectorType>(V->getType());
1780 unsigned NumElements = EndIndex - BeginIndex;
1781 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
1782
1783 if (NumElements == VecTy->getNumElements())
1784 return V;
1785
1786 if (NumElements == 1) {
1787 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
1788 Name + ".extract");
1789 DEBUG(dbgs() << " extract: " << *V << "\n");
1790 return V;
1791 }
1792
1793 SmallVector<Constant*, 8> Mask;
1794 Mask.reserve(NumElements);
1795 for (unsigned i = BeginIndex; i != EndIndex; ++i)
1796 Mask.push_back(IRB.getInt32(i));
1797 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1798 ConstantVector::get(Mask),
1799 Name + ".extract");
1800 DEBUG(dbgs() << " shuffle: " << *V << "\n");
1801 return V;
1802}
1803
Chandler Carruthd177f862013-03-20 07:30:36 +00001804static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
Chandler Carruthce4562b2012-12-17 13:41:21 +00001805 unsigned BeginIndex, const Twine &Name) {
1806 VectorType *VecTy = cast<VectorType>(Old->getType());
1807 assert(VecTy && "Can only insert a vector into a vector");
1808
1809 VectorType *Ty = dyn_cast<VectorType>(V->getType());
1810 if (!Ty) {
1811 // Single element to insert.
1812 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
1813 Name + ".insert");
1814 DEBUG(dbgs() << " insert: " << *V << "\n");
1815 return V;
1816 }
1817
1818 assert(Ty->getNumElements() <= VecTy->getNumElements() &&
1819 "Too many elements!");
1820 if (Ty->getNumElements() == VecTy->getNumElements()) {
1821 assert(V->getType() == VecTy && "Vector type mismatch");
1822 return V;
1823 }
1824 unsigned EndIndex = BeginIndex + Ty->getNumElements();
1825
1826 // When inserting a smaller vector into the larger to store, we first
1827 // use a shuffle vector to widen it with undef elements, and then
1828 // a second shuffle vector to select between the loaded vector and the
1829 // incoming vector.
1830 SmallVector<Constant*, 8> Mask;
1831 Mask.reserve(VecTy->getNumElements());
1832 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1833 if (i >= BeginIndex && i < EndIndex)
1834 Mask.push_back(IRB.getInt32(i - BeginIndex));
1835 else
1836 Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
1837 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1838 ConstantVector::get(Mask),
1839 Name + ".expand");
Nadav Rotem1e211912013-05-01 19:53:30 +00001840 DEBUG(dbgs() << " shuffle: " << *V << "\n");
Chandler Carruthce4562b2012-12-17 13:41:21 +00001841
1842 Mask.clear();
1843 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
Nadav Rotem1e211912013-05-01 19:53:30 +00001844 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
1845
1846 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
1847
1848 DEBUG(dbgs() << " blend: " << *V << "\n");
Chandler Carruthce4562b2012-12-17 13:41:21 +00001849 return V;
1850}
1851
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001852namespace {
1853/// \brief Visitor to rewrite instructions using a partition of an alloca to
1854/// use a new alloca.
1855///
1856/// Also implements the rewriting to vector-based accesses when the partition
1857/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
1858/// lives here.
1859class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
1860 bool> {
1861 // Befriend the base class so it can delegate to private visit methods.
1862 friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
Chandler Carruthf0546402013-07-18 07:15:00 +00001863 typedef llvm::InstVisitor<AllocaPartitionRewriter, bool> Base;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001864
Chandler Carruth90a735d2013-07-19 07:21:28 +00001865 const DataLayout &DL;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001866 AllocaPartitioning &P;
1867 SROA &Pass;
1868 AllocaInst &OldAI, &NewAI;
1869 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
Chandler Carruth891fec02012-10-13 02:41:05 +00001870 Type *NewAllocaTy;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001871
1872 // If we are rewriting an alloca partition which can be written as pure
1873 // vector operations, we stash extra information here. When VecTy is
Jakub Staszak086f6cd2013-02-19 22:02:21 +00001874 // non-null, we have some strict guarantees about the rewritten alloca:
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001875 // - The new alloca is exactly the size of the vector type here.
1876 // - The accesses all either map to the entire vector or to a single
1877 // element.
1878 // - The set of accessing instructions is only one of those handled above
1879 // in isVectorPromotionViable. Generally these are the same access kinds
1880 // which are promotable via mem2reg.
1881 VectorType *VecTy;
1882 Type *ElementTy;
1883 uint64_t ElementSize;
1884
Chandler Carruth92924fd2012-09-24 00:34:20 +00001885 // This is a convenience and flag variable that will be null unless the new
Chandler Carruth435c4e02012-10-15 08:40:30 +00001886 // alloca's integer operations should be widened to this integer type due to
1887 // passing isIntegerWideningViable above. If it is non-null, the desired
Chandler Carruth92924fd2012-09-24 00:34:20 +00001888 // integer type will be stored here for easy access during rewriting.
Chandler Carruth435c4e02012-10-15 08:40:30 +00001889 IntegerType *IntTy;
Chandler Carruth92924fd2012-09-24 00:34:20 +00001890
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001891 // The offset of the partition user currently being rewritten.
1892 uint64_t BeginOffset, EndOffset;
Chandler Carruthf0546402013-07-18 07:15:00 +00001893 bool IsSplittable;
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00001894 bool IsSplit;
Chandler Carruth54e8f0b2012-10-01 01:49:22 +00001895 Use *OldUse;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001896 Instruction *OldPtr;
1897
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001898 // Utility IR builder, whose name prefix is setup for each visited use, and
1899 // the insertion point is set to point to the user.
1900 IRBuilderTy IRB;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001901
1902public:
Chandler Carruth90a735d2013-07-19 07:21:28 +00001903 AllocaPartitionRewriter(const DataLayout &DL, AllocaPartitioning &P,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001904 SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
Chandler Carruthf0546402013-07-18 07:15:00 +00001905 uint64_t NewBeginOffset, uint64_t NewEndOffset,
1906 bool IsVectorPromotable = false,
1907 bool IsIntegerPromotable = false)
Chandler Carruth90a735d2013-07-19 07:21:28 +00001908 : DL(DL), P(P), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
Chandler Carruthf0546402013-07-18 07:15:00 +00001909 NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset),
1910 NewAllocaTy(NewAI.getAllocatedType()),
1911 VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0),
1912 ElementTy(VecTy ? VecTy->getElementType() : 0),
Chandler Carruth90a735d2013-07-19 07:21:28 +00001913 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
Chandler Carruthf0546402013-07-18 07:15:00 +00001914 IntTy(IsIntegerPromotable
1915 ? Type::getIntNTy(
1916 NewAI.getContext(),
Chandler Carruth90a735d2013-07-19 07:21:28 +00001917 DL.getTypeSizeInBits(NewAI.getAllocatedType()))
Chandler Carruthf0546402013-07-18 07:15:00 +00001918 : 0),
1919 BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
1920 OldPtr(), IRB(NewAI.getContext(), ConstantFolder()) {
1921 if (VecTy) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001922 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
Chandler Carruthf0546402013-07-18 07:15:00 +00001923 "Only multiple-of-8 sized vector elements are viable");
1924 ++NumVectorized;
1925 }
1926 assert((!IsVectorPromotable && !IsIntegerPromotable) ||
1927 IsVectorPromotable != IsIntegerPromotable);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001928 }
1929
Chandler Carruthf0546402013-07-18 07:15:00 +00001930 bool visit(AllocaPartitioning::const_iterator I) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001931 bool CanSROA = true;
Chandler Carruthf0546402013-07-18 07:15:00 +00001932 BeginOffset = I->beginOffset();
1933 EndOffset = I->endOffset();
1934 IsSplittable = I->isSplittable();
1935 IsSplit =
1936 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001937
Chandler Carruthf0546402013-07-18 07:15:00 +00001938 OldUse = I->getUse();
1939 OldPtr = cast<Instruction>(OldUse->get());
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001940
Chandler Carruthf0546402013-07-18 07:15:00 +00001941 Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
1942 IRB.SetInsertPoint(OldUserI);
1943 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
1944 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
1945
1946 CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
1947 if (VecTy || IntTy)
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001948 assert(CanSROA);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001949 return CanSROA;
1950 }
1951
1952private:
Chandler Carruthf0546402013-07-18 07:15:00 +00001953 // Make sure the other visit overloads are visible.
1954 using Base::visit;
1955
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001956 // Every instruction which can end up as a user must have a rewrite rule.
1957 bool visitInstruction(Instruction &I) {
1958 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
1959 llvm_unreachable("No rewrite rule for this instruction!");
1960 }
1961
Chandler Carruthf0546402013-07-18 07:15:00 +00001962 Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset,
1963 Type *PointerTy) {
1964 assert(Offset >= NewAllocaBeginOffset);
Chandler Carruth90a735d2013-07-19 07:21:28 +00001965 return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(),
Chandler Carruthf0546402013-07-18 07:15:00 +00001966 Offset - NewAllocaBeginOffset),
1967 PointerTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001968 }
1969
Chandler Carruth4b2b38d2012-10-03 08:14:02 +00001970 /// \brief Compute suitable alignment to access an offset into the new alloca.
1971 unsigned getOffsetAlign(uint64_t Offset) {
Chandler Carruth176ca712012-10-01 12:16:54 +00001972 unsigned NewAIAlign = NewAI.getAlignment();
1973 if (!NewAIAlign)
Chandler Carruth90a735d2013-07-19 07:21:28 +00001974 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
Chandler Carruth176ca712012-10-01 12:16:54 +00001975 return MinAlign(NewAIAlign, Offset);
1976 }
Chandler Carruth4b2b38d2012-10-03 08:14:02 +00001977
Chandler Carruth4b2b38d2012-10-03 08:14:02 +00001978 /// \brief Compute suitable alignment to access a type at an offset of the
1979 /// new alloca.
1980 ///
1981 /// \returns zero if the type's ABI alignment is a suitable alignment,
1982 /// otherwise returns the maximal suitable alignment.
1983 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
1984 unsigned Align = getOffsetAlign(Offset);
Chandler Carruth90a735d2013-07-19 07:21:28 +00001985 return Align == DL.getABITypeAlignment(Ty) ? 0 : Align;
Chandler Carruth4b2b38d2012-10-03 08:14:02 +00001986 }
1987
Chandler Carruth845b73c2012-11-21 08:16:30 +00001988 unsigned getIndex(uint64_t Offset) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001989 assert(VecTy && "Can only call getIndex when rewriting a vector");
1990 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
1991 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
1992 uint32_t Index = RelOffset / ElementSize;
1993 assert(Index * ElementSize == RelOffset);
Chandler Carruth845b73c2012-11-21 08:16:30 +00001994 return Index;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001995 }
1996
1997 void deleteIfTriviallyDead(Value *V) {
1998 Instruction *I = cast<Instruction>(V);
1999 if (isInstructionTriviallyDead(I))
Chandler Carruth18db7952012-11-20 01:12:50 +00002000 Pass.DeadInsts.insert(I);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002001 }
2002
Chandler Carruthf0546402013-07-18 07:15:00 +00002003 Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset,
2004 uint64_t NewEndOffset) {
2005 unsigned BeginIndex = getIndex(NewBeginOffset);
2006 unsigned EndIndex = getIndex(NewEndOffset);
Chandler Carruth769445e2012-12-17 12:50:21 +00002007 assert(EndIndex > BeginIndex && "Empty vector!");
Chandler Carruthb6bc8742012-12-17 13:07:30 +00002008
2009 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002010 "load");
2011 return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
Chandler Carruth769445e2012-12-17 12:50:21 +00002012 }
2013
Chandler Carruthf0546402013-07-18 07:15:00 +00002014 Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset,
2015 uint64_t NewEndOffset) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002016 assert(IntTy && "We cannot insert an integer to the alloca");
Chandler Carruth92924fd2012-09-24 00:34:20 +00002017 assert(!LI.isVolatile());
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002018 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002019 "load");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002020 V = convertValue(DL, IRB, V, IntTy);
Chandler Carruthf0546402013-07-18 07:15:00 +00002021 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2022 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2023 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
Chandler Carruth90a735d2013-07-19 07:21:28 +00002024 V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002025 "extract");
Chandler Carruth18db7952012-11-20 01:12:50 +00002026 return V;
Chandler Carruth92924fd2012-09-24 00:34:20 +00002027 }
2028
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002029 bool visitLoadInst(LoadInst &LI) {
2030 DEBUG(dbgs() << " original: " << LI << "\n");
2031 Value *OldOp = LI.getOperand(0);
2032 assert(OldOp == OldPtr);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002033
Chandler Carruthf0546402013-07-18 07:15:00 +00002034 // Compute the intersecting offset range.
2035 assert(BeginOffset < NewAllocaEndOffset);
2036 assert(EndOffset > NewAllocaBeginOffset);
2037 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2038 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2039
2040 uint64_t Size = NewEndOffset - NewBeginOffset;
Chandler Carruth3e994a22012-11-20 10:02:19 +00002041
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00002042 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
2043 : LI.getType();
Chandler Carruth18db7952012-11-20 01:12:50 +00002044 bool IsPtrAdjusted = false;
2045 Value *V;
2046 if (VecTy) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002047 V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset);
Chandler Carruth18db7952012-11-20 01:12:50 +00002048 } else if (IntTy && LI.getType()->isIntegerTy()) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002049 V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset);
2050 } else if (NewBeginOffset == NewAllocaBeginOffset &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00002051 canConvertValue(DL, NewAllocaTy, LI.getType())) {
Chandler Carruth18db7952012-11-20 01:12:50 +00002052 V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002053 LI.isVolatile(), "load");
Chandler Carruth18db7952012-11-20 01:12:50 +00002054 } else {
2055 Type *LTy = TargetTy->getPointerTo();
Chandler Carruthf0546402013-07-18 07:15:00 +00002056 V = IRB.CreateAlignedLoad(
2057 getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy),
2058 getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset),
2059 LI.isVolatile(), "load");
Chandler Carruth18db7952012-11-20 01:12:50 +00002060 IsPtrAdjusted = true;
2061 }
Chandler Carruth90a735d2013-07-19 07:21:28 +00002062 V = convertValue(DL, IRB, V, TargetTy);
Chandler Carruth18db7952012-11-20 01:12:50 +00002063
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00002064 if (IsSplit) {
Chandler Carruth58d05562012-10-25 04:37:07 +00002065 assert(!LI.isVolatile());
2066 assert(LI.getType()->isIntegerTy() &&
2067 "Only integer type loads and stores are split");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002068 assert(Size < DL.getTypeStoreSize(LI.getType()) &&
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00002069 "Split load isn't smaller than original load");
Chandler Carruth58d05562012-10-25 04:37:07 +00002070 assert(LI.getType()->getIntegerBitWidth() ==
Chandler Carruth90a735d2013-07-19 07:21:28 +00002071 DL.getTypeStoreSizeInBits(LI.getType()) &&
Chandler Carruth58d05562012-10-25 04:37:07 +00002072 "Non-byte-multiple bit width");
Chandler Carruth58d05562012-10-25 04:37:07 +00002073 // Move the insertion point just past the load so that we can refer to it.
2074 IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
Chandler Carruth58d05562012-10-25 04:37:07 +00002075 // Create a placeholder value with the same type as LI to use as the
2076 // basis for the new value. This allows us to replace the uses of LI with
2077 // the computed value, and then replace the placeholder with LI, leaving
2078 // LI only used for this computation.
2079 Value *Placeholder
Jakub Staszak4e45abf2012-11-01 01:10:43 +00002080 = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
Chandler Carruth90a735d2013-07-19 07:21:28 +00002081 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002082 "insert");
Chandler Carruth58d05562012-10-25 04:37:07 +00002083 LI.replaceAllUsesWith(V);
2084 Placeholder->replaceAllUsesWith(&LI);
Jakub Staszak4e45abf2012-11-01 01:10:43 +00002085 delete Placeholder;
Chandler Carruth18db7952012-11-20 01:12:50 +00002086 } else {
2087 LI.replaceAllUsesWith(V);
Chandler Carruth58d05562012-10-25 04:37:07 +00002088 }
2089
Chandler Carruth18db7952012-11-20 01:12:50 +00002090 Pass.DeadInsts.insert(&LI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002091 deleteIfTriviallyDead(OldOp);
Chandler Carruth18db7952012-11-20 01:12:50 +00002092 DEBUG(dbgs() << " to: " << *V << "\n");
2093 return !LI.isVolatile() && !IsPtrAdjusted;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002094 }
2095
Chandler Carruthf0546402013-07-18 07:15:00 +00002096 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2097 uint64_t NewBeginOffset,
2098 uint64_t NewEndOffset) {
Bob Wilsonacfc01d2013-06-25 19:09:50 +00002099 if (V->getType() != VecTy) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002100 unsigned BeginIndex = getIndex(NewBeginOffset);
2101 unsigned EndIndex = getIndex(NewEndOffset);
Bob Wilsonacfc01d2013-06-25 19:09:50 +00002102 assert(EndIndex > BeginIndex && "Empty vector!");
2103 unsigned NumElements = EndIndex - BeginIndex;
2104 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2105 Type *PartitionTy
2106 = (NumElements == 1) ? ElementTy
2107 : VectorType::get(ElementTy, NumElements);
2108 if (V->getType() != PartitionTy)
Chandler Carruth90a735d2013-07-19 07:21:28 +00002109 V = convertValue(DL, IRB, V, PartitionTy);
Chandler Carruth845b73c2012-11-21 08:16:30 +00002110
Bob Wilsonacfc01d2013-06-25 19:09:50 +00002111 // Mix in the existing elements.
2112 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2113 "load");
2114 V = insertVector(IRB, Old, V, BeginIndex, "vec");
2115 }
Chandler Carruth871ba722012-09-26 10:27:46 +00002116 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruth18db7952012-11-20 01:12:50 +00002117 Pass.DeadInsts.insert(&SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002118
2119 (void)Store;
2120 DEBUG(dbgs() << " to: " << *Store << "\n");
2121 return true;
2122 }
2123
Chandler Carruthf0546402013-07-18 07:15:00 +00002124 bool rewriteIntegerStore(Value *V, StoreInst &SI,
2125 uint64_t NewBeginOffset, uint64_t NewEndOffset) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002126 assert(IntTy && "We cannot extract an integer from the alloca");
Chandler Carruth92924fd2012-09-24 00:34:20 +00002127 assert(!SI.isVolatile());
Chandler Carruth90a735d2013-07-19 07:21:28 +00002128 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002129 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002130 "oldload");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002131 Old = convertValue(DL, IRB, Old, IntTy);
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002132 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2133 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002134 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002135 "insert");
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002136 }
Chandler Carruth90a735d2013-07-19 07:21:28 +00002137 V = convertValue(DL, IRB, V, NewAllocaTy);
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002138 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruth18db7952012-11-20 01:12:50 +00002139 Pass.DeadInsts.insert(&SI);
Chandler Carruth92924fd2012-09-24 00:34:20 +00002140 (void)Store;
2141 DEBUG(dbgs() << " to: " << *Store << "\n");
2142 return true;
2143 }
2144
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002145 bool visitStoreInst(StoreInst &SI) {
2146 DEBUG(dbgs() << " original: " << SI << "\n");
2147 Value *OldOp = SI.getOperand(1);
2148 assert(OldOp == OldPtr);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002149
Chandler Carruth18db7952012-11-20 01:12:50 +00002150 Value *V = SI.getValueOperand();
Chandler Carruth891fec02012-10-13 02:41:05 +00002151
Chandler Carruthac8317f2012-10-04 12:33:50 +00002152 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2153 // alloca that should be re-examined after promoting this alloca.
Chandler Carruth18db7952012-11-20 01:12:50 +00002154 if (V->getType()->isPointerTy())
2155 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
Chandler Carruthac8317f2012-10-04 12:33:50 +00002156 Pass.PostPromotionWorklist.insert(AI);
2157
Chandler Carruthf0546402013-07-18 07:15:00 +00002158 // Compute the intersecting offset range.
2159 assert(BeginOffset < NewAllocaEndOffset);
2160 assert(EndOffset > NewAllocaBeginOffset);
2161 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2162 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2163
2164 uint64_t Size = NewEndOffset - NewBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002165 if (Size < DL.getTypeStoreSize(V->getType())) {
Chandler Carruth18db7952012-11-20 01:12:50 +00002166 assert(!SI.isVolatile());
2167 assert(V->getType()->isIntegerTy() &&
2168 "Only integer type loads and stores are split");
2169 assert(V->getType()->getIntegerBitWidth() ==
Chandler Carruth90a735d2013-07-19 07:21:28 +00002170 DL.getTypeStoreSizeInBits(V->getType()) &&
Chandler Carruth18db7952012-11-20 01:12:50 +00002171 "Non-byte-multiple bit width");
Chandler Carruth18db7952012-11-20 01:12:50 +00002172 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
Chandler Carruth90a735d2013-07-19 07:21:28 +00002173 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002174 "extract");
Chandler Carruth891fec02012-10-13 02:41:05 +00002175 }
2176
Chandler Carruth18db7952012-11-20 01:12:50 +00002177 if (VecTy)
Chandler Carruthf0546402013-07-18 07:15:00 +00002178 return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset,
2179 NewEndOffset);
Chandler Carruth18db7952012-11-20 01:12:50 +00002180 if (IntTy && V->getType()->isIntegerTy())
Chandler Carruthf0546402013-07-18 07:15:00 +00002181 return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset);
Chandler Carruth435c4e02012-10-15 08:40:30 +00002182
Chandler Carruth18db7952012-11-20 01:12:50 +00002183 StoreInst *NewSI;
Chandler Carruthf0546402013-07-18 07:15:00 +00002184 if (NewBeginOffset == NewAllocaBeginOffset &&
2185 NewEndOffset == NewAllocaEndOffset &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00002186 canConvertValue(DL, V->getType(), NewAllocaTy)) {
2187 V = convertValue(DL, IRB, V, NewAllocaTy);
Chandler Carruth18db7952012-11-20 01:12:50 +00002188 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2189 SI.isVolatile());
2190 } else {
Chandler Carruthf0546402013-07-18 07:15:00 +00002191 Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset,
2192 V->getType()->getPointerTo());
2193 NewSI = IRB.CreateAlignedStore(
2194 V, NewPtr, getOffsetTypeAlign(
2195 V->getType(), NewBeginOffset - NewAllocaBeginOffset),
2196 SI.isVolatile());
Chandler Carruth18db7952012-11-20 01:12:50 +00002197 }
2198 (void)NewSI;
2199 Pass.DeadInsts.insert(&SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002200 deleteIfTriviallyDead(OldOp);
Chandler Carruth18db7952012-11-20 01:12:50 +00002201
2202 DEBUG(dbgs() << " to: " << *NewSI << "\n");
2203 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002204 }
2205
Chandler Carruth514f34f2012-12-17 04:07:30 +00002206 /// \brief Compute an integer value from splatting an i8 across the given
2207 /// number of bytes.
2208 ///
2209 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2210 /// call this routine.
Jakub Staszak086f6cd2013-02-19 22:02:21 +00002211 /// FIXME: Heed the advice above.
Chandler Carruth514f34f2012-12-17 04:07:30 +00002212 ///
2213 /// \param V The i8 value to splat.
2214 /// \param Size The number of bytes in the output (assuming i8 is one byte)
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002215 Value *getIntegerSplat(Value *V, unsigned Size) {
Chandler Carruth514f34f2012-12-17 04:07:30 +00002216 assert(Size > 0 && "Expected a positive number of bytes.");
2217 IntegerType *VTy = cast<IntegerType>(V->getType());
2218 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2219 if (Size == 1)
2220 return V;
2221
2222 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002223 V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
Chandler Carruth514f34f2012-12-17 04:07:30 +00002224 ConstantExpr::getUDiv(
2225 Constant::getAllOnesValue(SplatIntTy),
2226 ConstantExpr::getZExt(
2227 Constant::getAllOnesValue(V->getType()),
2228 SplatIntTy)),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002229 "isplat");
Chandler Carruth514f34f2012-12-17 04:07:30 +00002230 return V;
2231 }
2232
Chandler Carruthccca5042012-12-17 04:07:37 +00002233 /// \brief Compute a vector splat for a given element value.
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002234 Value *getVectorSplat(Value *V, unsigned NumElements) {
2235 V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
Chandler Carruthccca5042012-12-17 04:07:37 +00002236 DEBUG(dbgs() << " splat: " << *V << "\n");
2237 return V;
2238 }
2239
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002240 bool visitMemSetInst(MemSetInst &II) {
2241 DEBUG(dbgs() << " original: " << II << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002242 assert(II.getRawDest() == OldPtr);
2243
2244 // If the memset has a variable size, it cannot be split, just adjust the
2245 // pointer to the new alloca.
2246 if (!isa<Constant>(II.getLength())) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002247 assert(!IsSplit);
2248 assert(BeginOffset >= NewAllocaBeginOffset);
2249 II.setDest(
2250 getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
Chandler Carruth208124f2012-09-26 10:59:22 +00002251 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruthf0546402013-07-18 07:15:00 +00002252 II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset)));
Chandler Carruth208124f2012-09-26 10:59:22 +00002253
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002254 deleteIfTriviallyDead(OldPtr);
2255 return false;
2256 }
2257
2258 // Record this instruction for deletion.
Chandler Carruth18db7952012-11-20 01:12:50 +00002259 Pass.DeadInsts.insert(&II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002260
2261 Type *AllocaTy = NewAI.getAllocatedType();
2262 Type *ScalarTy = AllocaTy->getScalarType();
2263
Chandler Carruthf0546402013-07-18 07:15:00 +00002264 // Compute the intersecting offset range.
2265 assert(BeginOffset < NewAllocaEndOffset);
2266 assert(EndOffset > NewAllocaBeginOffset);
2267 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2268 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2269 uint64_t PartitionOffset = NewBeginOffset - NewAllocaBeginOffset;
2270
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002271 // If this doesn't map cleanly onto the alloca type, and that type isn't
2272 // a single value type, just emit a memset.
Chandler Carruth9d966a22012-10-15 10:24:40 +00002273 if (!VecTy && !IntTy &&
Chandler Carruthf0546402013-07-18 07:15:00 +00002274 (BeginOffset > NewAllocaBeginOffset ||
2275 EndOffset < NewAllocaEndOffset ||
Chandler Carruth9d966a22012-10-15 10:24:40 +00002276 !AllocaTy->isSingleValueType() ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00002277 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2278 DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002279 Type *SizeTy = II.getLength()->getType();
Chandler Carruthf0546402013-07-18 07:15:00 +00002280 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2281 CallInst *New = IRB.CreateMemSet(
2282 getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()),
2283 II.getValue(), Size, getOffsetAlign(PartitionOffset),
2284 II.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002285 (void)New;
2286 DEBUG(dbgs() << " to: " << *New << "\n");
2287 return false;
2288 }
2289
2290 // If we can represent this as a simple value, we have to build the actual
2291 // value to store, which requires expanding the byte present in memset to
2292 // a sensible representation for the alloca type. This is essentially
Chandler Carruthccca5042012-12-17 04:07:37 +00002293 // splatting the byte to a sufficiently wide integer, splatting it across
2294 // any desired vector width, and bitcasting to the final type.
Benjamin Kramerc003a452013-01-01 16:13:35 +00002295 Value *V;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002296
Chandler Carruthccca5042012-12-17 04:07:37 +00002297 if (VecTy) {
2298 // If this is a memset of a vectorized alloca, insert it.
2299 assert(ElementTy == ScalarTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002300
Chandler Carruthf0546402013-07-18 07:15:00 +00002301 unsigned BeginIndex = getIndex(NewBeginOffset);
2302 unsigned EndIndex = getIndex(NewEndOffset);
Chandler Carruthccca5042012-12-17 04:07:37 +00002303 assert(EndIndex > BeginIndex && "Empty vector!");
2304 unsigned NumElements = EndIndex - BeginIndex;
2305 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2306
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002307 Value *Splat =
Chandler Carruth90a735d2013-07-19 07:21:28 +00002308 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2309 Splat = convertValue(DL, IRB, Splat, ElementTy);
Chandler Carruthcacda252012-12-17 14:03:01 +00002310 if (NumElements > 1)
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002311 Splat = getVectorSplat(Splat, NumElements);
Chandler Carruthccca5042012-12-17 04:07:37 +00002312
Chandler Carruthce4562b2012-12-17 13:41:21 +00002313 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002314 "oldload");
2315 V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
Chandler Carruthccca5042012-12-17 04:07:37 +00002316 } else if (IntTy) {
2317 // If this is a memset on an alloca where we can widen stores, insert the
2318 // set integer.
Chandler Carruth9d966a22012-10-15 10:24:40 +00002319 assert(!II.isVolatile());
Chandler Carruthccca5042012-12-17 04:07:37 +00002320
Chandler Carruthf0546402013-07-18 07:15:00 +00002321 uint64_t Size = NewEndOffset - NewBeginOffset;
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002322 V = getIntegerSplat(II.getValue(), Size);
Chandler Carruthccca5042012-12-17 04:07:37 +00002323
2324 if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2325 EndOffset != NewAllocaBeginOffset)) {
2326 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002327 "oldload");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002328 Old = convertValue(DL, IRB, Old, IntTy);
Chandler Carruthf0546402013-07-18 07:15:00 +00002329 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002330 V = insertInteger(DL, IRB, Old, V, Offset, "insert");
Chandler Carruthccca5042012-12-17 04:07:37 +00002331 } else {
2332 assert(V->getType() == IntTy &&
2333 "Wrong type for an alloca wide integer!");
2334 }
Chandler Carruth90a735d2013-07-19 07:21:28 +00002335 V = convertValue(DL, IRB, V, AllocaTy);
Chandler Carruthccca5042012-12-17 04:07:37 +00002336 } else {
2337 // Established these invariants above.
Chandler Carruthf0546402013-07-18 07:15:00 +00002338 assert(NewBeginOffset == NewAllocaBeginOffset);
2339 assert(NewEndOffset == NewAllocaEndOffset);
Chandler Carruthccca5042012-12-17 04:07:37 +00002340
Chandler Carruth90a735d2013-07-19 07:21:28 +00002341 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
Chandler Carruthccca5042012-12-17 04:07:37 +00002342 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002343 V = getVectorSplat(V, AllocaVecTy->getNumElements());
Chandler Carruth95e1fb82012-12-17 13:51:03 +00002344
Chandler Carruth90a735d2013-07-19 07:21:28 +00002345 V = convertValue(DL, IRB, V, AllocaTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002346 }
2347
Chandler Carruth95e1fb82012-12-17 13:51:03 +00002348 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
Chandler Carruth871ba722012-09-26 10:27:46 +00002349 II.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002350 (void)New;
2351 DEBUG(dbgs() << " to: " << *New << "\n");
2352 return !II.isVolatile();
2353 }
2354
2355 bool visitMemTransferInst(MemTransferInst &II) {
2356 // Rewriting of memory transfer instructions can be a bit tricky. We break
2357 // them into two categories: split intrinsics and unsplit intrinsics.
2358
2359 DEBUG(dbgs() << " original: " << II << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002360
Chandler Carruthf0546402013-07-18 07:15:00 +00002361 // Compute the intersecting offset range.
2362 assert(BeginOffset < NewAllocaEndOffset);
2363 assert(EndOffset > NewAllocaBeginOffset);
2364 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2365 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2366
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002367 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2368 bool IsDest = II.getRawDest() == OldPtr;
2369
Chandler Carruth176ca712012-10-01 12:16:54 +00002370 // Compute the relative offset within the transfer.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002371 unsigned IntPtrWidth = DL.getPointerSizeInBits();
Chandler Carruthf0546402013-07-18 07:15:00 +00002372 APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
Chandler Carruth176ca712012-10-01 12:16:54 +00002373
2374 unsigned Align = II.getAlignment();
Chandler Carruthf0546402013-07-18 07:15:00 +00002375 uint64_t PartitionOffset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruth176ca712012-10-01 12:16:54 +00002376 if (Align > 1)
Chandler Carruthf0546402013-07-18 07:15:00 +00002377 Align = MinAlign(
2378 RelOffset.zextOrTrunc(64).getZExtValue(),
2379 MinAlign(II.getAlignment(), getOffsetAlign(PartitionOffset)));
Chandler Carruth176ca712012-10-01 12:16:54 +00002380
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002381 // For unsplit intrinsics, we simply modify the source and destination
2382 // pointers in place. This isn't just an optimization, it is a matter of
2383 // correctness. With unsplit intrinsics we may be dealing with transfers
2384 // within a single alloca before SROA ran, or with transfers that have
2385 // a variable length. We may also be dealing with memmove instead of
2386 // memcpy, and so simply updating the pointers is the necessary for us to
2387 // update both source and dest of a single call.
Chandler Carruthf0546402013-07-18 07:15:00 +00002388 if (!IsSplittable) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002389 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2390 if (IsDest)
Chandler Carruthf0546402013-07-18 07:15:00 +00002391 II.setDest(
2392 getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002393 else
Chandler Carruthf0546402013-07-18 07:15:00 +00002394 II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset,
2395 II.getRawSource()->getType()));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002396
Chandler Carruth208124f2012-09-26 10:59:22 +00002397 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruth176ca712012-10-01 12:16:54 +00002398 II.setAlignment(ConstantInt::get(CstTy, Align));
Chandler Carruth208124f2012-09-26 10:59:22 +00002399
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002400 DEBUG(dbgs() << " to: " << II << "\n");
2401 deleteIfTriviallyDead(OldOp);
2402 return false;
2403 }
2404 // For split transfer intrinsics we have an incredibly useful assurance:
2405 // the source and destination do not reside within the same alloca, and at
2406 // least one of them does not escape. This means that we can replace
2407 // memmove with memcpy, and we don't need to worry about all manner of
2408 // downsides to splitting and transforming the operations.
2409
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002410 // If this doesn't map cleanly onto the alloca type, and that type isn't
2411 // a single value type, just emit a memcpy.
2412 bool EmitMemCpy
Chandler Carruthf0546402013-07-18 07:15:00 +00002413 = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
2414 EndOffset < NewAllocaEndOffset ||
Chandler Carruth49c8eea2012-10-15 10:24:43 +00002415 !NewAI.getAllocatedType()->isSingleValueType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002416
2417 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2418 // size hasn't been shrunk based on analysis of the viable range, this is
2419 // a no-op.
2420 if (EmitMemCpy && &OldAI == &NewAI) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002421 // Ensure the start lines up.
Chandler Carruthf0546402013-07-18 07:15:00 +00002422 assert(NewBeginOffset == BeginOffset);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002423
2424 // Rewrite the size as needed.
Chandler Carruthf0546402013-07-18 07:15:00 +00002425 if (NewEndOffset != EndOffset)
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002426 II.setLength(ConstantInt::get(II.getLength()->getType(),
Chandler Carruthf0546402013-07-18 07:15:00 +00002427 NewEndOffset - NewBeginOffset));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002428 return false;
2429 }
2430 // Record this instruction for deletion.
Chandler Carruth18db7952012-11-20 01:12:50 +00002431 Pass.DeadInsts.insert(&II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002432
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002433 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2434 // alloca that should be re-examined after rewriting this instruction.
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002435 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002436 if (AllocaInst *AI
2437 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Chandler Carruth4bd8f662012-09-26 07:41:40 +00002438 Pass.Worklist.insert(AI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002439
2440 if (EmitMemCpy) {
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002441 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2442 : II.getRawDest()->getType();
2443
2444 // Compute the other pointer, folding as much as possible to produce
2445 // a single, simple GEP in most cases.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002446 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002447
Chandler Carruthf0546402013-07-18 07:15:00 +00002448 Value *OurPtr = getAdjustedAllocaPtr(
2449 IRB, NewBeginOffset,
2450 IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002451 Type *SizeTy = II.getLength()->getType();
Chandler Carruthf0546402013-07-18 07:15:00 +00002452 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002453
2454 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2455 IsDest ? OtherPtr : OurPtr,
Chandler Carruth871ba722012-09-26 10:27:46 +00002456 Size, Align, II.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002457 (void)New;
2458 DEBUG(dbgs() << " to: " << *New << "\n");
2459 return false;
2460 }
2461
Chandler Carruth08e5f492012-10-03 08:26:28 +00002462 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2463 // is equivalent to 1, but that isn't true if we end up rewriting this as
2464 // a load or store.
2465 if (!Align)
2466 Align = 1;
2467
Chandler Carruthf0546402013-07-18 07:15:00 +00002468 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2469 NewEndOffset == NewAllocaEndOffset;
2470 uint64_t Size = NewEndOffset - NewBeginOffset;
2471 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2472 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002473 unsigned NumElements = EndIndex - BeginIndex;
2474 IntegerType *SubIntTy
2475 = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2476
2477 Type *OtherPtrTy = NewAI.getType();
2478 if (VecTy && !IsWholeAlloca) {
2479 if (NumElements == 1)
2480 OtherPtrTy = VecTy->getElementType();
2481 else
2482 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2483
2484 OtherPtrTy = OtherPtrTy->getPointerTo();
2485 } else if (IntTy && !IsWholeAlloca) {
2486 OtherPtrTy = SubIntTy->getPointerTo();
2487 }
2488
Chandler Carruth90a735d2013-07-19 07:21:28 +00002489 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002490 Value *DstPtr = &NewAI;
2491 if (!IsDest)
2492 std::swap(SrcPtr, DstPtr);
2493
2494 Value *Src;
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002495 if (VecTy && !IsWholeAlloca && !IsDest) {
2496 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002497 "load");
2498 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
Chandler Carruth49c8eea2012-10-15 10:24:43 +00002499 } else if (IntTy && !IsWholeAlloca && !IsDest) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002500 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002501 "load");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002502 Src = convertValue(DL, IRB, Src, IntTy);
Chandler Carruthf0546402013-07-18 07:15:00 +00002503 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002504 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002505 } else {
Chandler Carruth871ba722012-09-26 10:27:46 +00002506 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002507 "copyload");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002508 }
2509
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002510 if (VecTy && !IsWholeAlloca && IsDest) {
2511 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002512 "oldload");
2513 Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002514 } else if (IntTy && !IsWholeAlloca && IsDest) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002515 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002516 "oldload");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002517 Old = convertValue(DL, IRB, Old, IntTy);
Chandler Carruthf0546402013-07-18 07:15:00 +00002518 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002519 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2520 Src = convertValue(DL, IRB, Src, NewAllocaTy);
Chandler Carruth49c8eea2012-10-15 10:24:43 +00002521 }
2522
Chandler Carruth871ba722012-09-26 10:27:46 +00002523 StoreInst *Store = cast<StoreInst>(
2524 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2525 (void)Store;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002526 DEBUG(dbgs() << " to: " << *Store << "\n");
2527 return !II.isVolatile();
2528 }
2529
2530 bool visitIntrinsicInst(IntrinsicInst &II) {
2531 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2532 II.getIntrinsicID() == Intrinsic::lifetime_end);
2533 DEBUG(dbgs() << " original: " << II << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002534 assert(II.getArgOperand(1) == OldPtr);
2535
Chandler Carruthf0546402013-07-18 07:15:00 +00002536 // Compute the intersecting offset range.
2537 assert(BeginOffset < NewAllocaEndOffset);
2538 assert(EndOffset > NewAllocaBeginOffset);
2539 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2540 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2541
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002542 // Record this instruction for deletion.
Chandler Carruth18db7952012-11-20 01:12:50 +00002543 Pass.DeadInsts.insert(&II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002544
2545 ConstantInt *Size
2546 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
Chandler Carruthf0546402013-07-18 07:15:00 +00002547 NewEndOffset - NewBeginOffset);
2548 Value *Ptr =
2549 getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002550 Value *New;
2551 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2552 New = IRB.CreateLifetimeStart(Ptr, Size);
2553 else
2554 New = IRB.CreateLifetimeEnd(Ptr, Size);
2555
Edwin Vane82f80d42013-01-29 17:42:24 +00002556 (void)New;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002557 DEBUG(dbgs() << " to: " << *New << "\n");
2558 return true;
2559 }
2560
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002561 bool visitPHINode(PHINode &PN) {
2562 DEBUG(dbgs() << " original: " << PN << "\n");
Chandler Carruthf0546402013-07-18 07:15:00 +00002563 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2564 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
Chandler Carruth82a57542012-10-01 10:54:05 +00002565
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002566 // We would like to compute a new pointer in only one place, but have it be
2567 // as local as possible to the PHI. To do that, we re-use the location of
2568 // the old pointer, which necessarily must be in the right position to
2569 // dominate the PHI.
Chandler Carruthd177f862013-03-20 07:30:36 +00002570 IRBuilderTy PtrBuilder(cast<Instruction>(OldPtr));
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002571 PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
2572 ".");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002573
Chandler Carruthf0546402013-07-18 07:15:00 +00002574 Value *NewPtr =
2575 getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType());
Chandler Carruth82a57542012-10-01 10:54:05 +00002576 // Replace the operands which were using the old pointer.
Benjamin Kramer7ddd7052012-10-20 12:04:57 +00002577 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002578
Chandler Carruth82a57542012-10-01 10:54:05 +00002579 DEBUG(dbgs() << " to: " << PN << "\n");
2580 deleteIfTriviallyDead(OldPtr);
Chandler Carruthf0546402013-07-18 07:15:00 +00002581
2582 // Check whether we can speculate this PHI node, and if so remember that
2583 // fact and return that this alloca remains viable for promotion to an SSA
2584 // value.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002585 if (isSafePHIToSpeculate(PN, &DL)) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002586 Pass.SpeculatablePHIs.insert(&PN);
2587 return true;
2588 }
2589
2590 return false; // PHIs can't be promoted on their own.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002591 }
2592
2593 bool visitSelectInst(SelectInst &SI) {
2594 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer0212dc22013-04-21 17:48:39 +00002595 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2596 "Pointer isn't an operand!");
Chandler Carruthf0546402013-07-18 07:15:00 +00002597 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2598 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
Chandler Carruth82a57542012-10-01 10:54:05 +00002599
Chandler Carruthf0546402013-07-18 07:15:00 +00002600 Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType());
Benjamin Kramer0212dc22013-04-21 17:48:39 +00002601 // Replace the operands which were using the old pointer.
2602 if (SI.getOperand(1) == OldPtr)
2603 SI.setOperand(1, NewPtr);
2604 if (SI.getOperand(2) == OldPtr)
2605 SI.setOperand(2, NewPtr);
2606
Chandler Carruth82a57542012-10-01 10:54:05 +00002607 DEBUG(dbgs() << " to: " << SI << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002608 deleteIfTriviallyDead(OldPtr);
Chandler Carruthf0546402013-07-18 07:15:00 +00002609
2610 // Check whether we can speculate this select instruction, and if so
2611 // remember that fact and return that this alloca remains viable for
2612 // promotion to an SSA value.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002613 if (isSafeSelectToSpeculate(SI, &DL)) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002614 Pass.SpeculatableSelects.insert(&SI);
2615 return true;
2616 }
2617
2618 return false; // Selects can't be promoted on their own.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002619 }
2620
2621};
2622}
2623
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002624namespace {
2625/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2626///
2627/// This pass aggressively rewrites all aggregate loads and stores on
2628/// a particular pointer (or any pointer derived from it which we can identify)
2629/// with scalar loads and stores.
2630class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2631 // Befriend the base class so it can delegate to private visit methods.
2632 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2633
Chandler Carruth90a735d2013-07-19 07:21:28 +00002634 const DataLayout &DL;
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002635
2636 /// Queue of pointer uses to analyze and potentially rewrite.
2637 SmallVector<Use *, 8> Queue;
2638
2639 /// Set to prevent us from cycling with phi nodes and loops.
2640 SmallPtrSet<User *, 8> Visited;
2641
2642 /// The current pointer use being rewritten. This is used to dig up the used
2643 /// value (as opposed to the user).
2644 Use *U;
2645
2646public:
Chandler Carruth90a735d2013-07-19 07:21:28 +00002647 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002648
2649 /// Rewrite loads and stores through a pointer and all pointers derived from
2650 /// it.
2651 bool rewrite(Instruction &I) {
2652 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
2653 enqueueUsers(I);
2654 bool Changed = false;
2655 while (!Queue.empty()) {
2656 U = Queue.pop_back_val();
2657 Changed |= visit(cast<Instruction>(U->getUser()));
2658 }
2659 return Changed;
2660 }
2661
2662private:
2663 /// Enqueue all the users of the given instruction for further processing.
2664 /// This uses a set to de-duplicate users.
2665 void enqueueUsers(Instruction &I) {
2666 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2667 ++UI)
2668 if (Visited.insert(*UI))
2669 Queue.push_back(&UI.getUse());
2670 }
2671
2672 // Conservative default is to not rewrite anything.
2673 bool visitInstruction(Instruction &I) { return false; }
2674
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002675 /// \brief Generic recursive split emission class.
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002676 template <typename Derived>
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002677 class OpSplitter {
2678 protected:
2679 /// The builder used to form new instructions.
Chandler Carruthd177f862013-03-20 07:30:36 +00002680 IRBuilderTy IRB;
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002681 /// The indices which to be used with insert- or extractvalue to select the
2682 /// appropriate value within the aggregate.
2683 SmallVector<unsigned, 4> Indices;
2684 /// The indices to a GEP instruction which will move Ptr to the correct slot
2685 /// within the aggregate.
2686 SmallVector<Value *, 4> GEPIndices;
2687 /// The base pointer of the original op, used as a base for GEPing the
2688 /// split operations.
2689 Value *Ptr;
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002690
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002691 /// Initialize the splitter with an insertion point, Ptr and start with a
2692 /// single zero GEP index.
2693 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002694 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002695
2696 public:
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002697 /// \brief Generic recursive split emission routine.
2698 ///
2699 /// This method recursively splits an aggregate op (load or store) into
2700 /// scalar or vector ops. It splits recursively until it hits a single value
2701 /// and emits that single value operation via the template argument.
2702 ///
2703 /// The logic of this routine relies on GEPs and insertvalue and
2704 /// extractvalue all operating with the same fundamental index list, merely
2705 /// formatted differently (GEPs need actual values).
2706 ///
2707 /// \param Ty The type being split recursively into smaller ops.
2708 /// \param Agg The aggregate value being built up or stored, depending on
2709 /// whether this is splitting a load or a store respectively.
2710 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2711 if (Ty->isSingleValueType())
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002712 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002713
2714 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2715 unsigned OldSize = Indices.size();
2716 (void)OldSize;
2717 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2718 ++Idx) {
2719 assert(Indices.size() == OldSize && "Did not return to the old size");
2720 Indices.push_back(Idx);
2721 GEPIndices.push_back(IRB.getInt32(Idx));
2722 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2723 GEPIndices.pop_back();
2724 Indices.pop_back();
2725 }
2726 return;
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002727 }
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002728
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002729 if (StructType *STy = dyn_cast<StructType>(Ty)) {
2730 unsigned OldSize = Indices.size();
2731 (void)OldSize;
2732 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2733 ++Idx) {
2734 assert(Indices.size() == OldSize && "Did not return to the old size");
2735 Indices.push_back(Idx);
2736 GEPIndices.push_back(IRB.getInt32(Idx));
2737 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2738 GEPIndices.pop_back();
2739 Indices.pop_back();
2740 }
2741 return;
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002742 }
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002743
2744 llvm_unreachable("Only arrays and structs are aggregate loadable types");
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002745 }
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002746 };
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002747
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002748 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002749 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramera59ef572012-09-18 17:11:47 +00002750 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002751
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002752 /// Emit a leaf load of a single value. This is called at the leaves of the
2753 /// recursive emission to actually load values.
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002754 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002755 assert(Ty->isSingleValueType());
2756 // Load the single value and insert it using the indices.
Jakub Staszak3c6583a2013-02-19 22:14:45 +00002757 Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
2758 Value *Load = IRB.CreateLoad(GEP, Name + ".load");
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002759 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2760 DEBUG(dbgs() << " to: " << *Load << "\n");
2761 }
2762 };
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002763
2764 bool visitLoadInst(LoadInst &LI) {
2765 assert(LI.getPointerOperand() == *U);
2766 if (!LI.isSimple() || LI.getType()->isSingleValueType())
2767 return false;
2768
2769 // We have an aggregate being loaded, split it apart.
2770 DEBUG(dbgs() << " original: " << LI << "\n");
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002771 LoadOpSplitter Splitter(&LI, *U);
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002772 Value *V = UndefValue::get(LI.getType());
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002773 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002774 LI.replaceAllUsesWith(V);
2775 LI.eraseFromParent();
2776 return true;
2777 }
2778
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002779 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002780 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramera59ef572012-09-18 17:11:47 +00002781 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002782
2783 /// Emit a leaf store of a single value. This is called at the leaves of the
2784 /// recursive emission to actually produce stores.
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002785 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002786 assert(Ty->isSingleValueType());
2787 // Extract the single value and store it using the indices.
2788 Value *Store = IRB.CreateStore(
2789 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2790 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2791 (void)Store;
2792 DEBUG(dbgs() << " to: " << *Store << "\n");
2793 }
2794 };
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002795
2796 bool visitStoreInst(StoreInst &SI) {
2797 if (!SI.isSimple() || SI.getPointerOperand() != *U)
2798 return false;
2799 Value *V = SI.getValueOperand();
2800 if (V->getType()->isSingleValueType())
2801 return false;
2802
2803 // We have an aggregate being stored, split it apart.
2804 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002805 StoreOpSplitter Splitter(&SI, *U);
2806 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002807 SI.eraseFromParent();
2808 return true;
2809 }
2810
2811 bool visitBitCastInst(BitCastInst &BC) {
2812 enqueueUsers(BC);
2813 return false;
2814 }
2815
2816 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2817 enqueueUsers(GEPI);
2818 return false;
2819 }
2820
2821 bool visitPHINode(PHINode &PN) {
2822 enqueueUsers(PN);
2823 return false;
2824 }
2825
2826 bool visitSelectInst(SelectInst &SI) {
2827 enqueueUsers(SI);
2828 return false;
2829 }
2830};
2831}
2832
Chandler Carruthba931992012-10-13 10:49:33 +00002833/// \brief Strip aggregate type wrapping.
2834///
2835/// This removes no-op aggregate types wrapping an underlying type. It will
2836/// strip as many layers of types as it can without changing either the type
2837/// size or the allocated size.
2838static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
2839 if (Ty->isSingleValueType())
2840 return Ty;
2841
2842 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2843 uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
2844
2845 Type *InnerTy;
2846 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
2847 InnerTy = ArrTy->getElementType();
2848 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
2849 const StructLayout *SL = DL.getStructLayout(STy);
2850 unsigned Index = SL->getElementContainingOffset(0);
2851 InnerTy = STy->getElementType(Index);
2852 } else {
2853 return Ty;
2854 }
2855
2856 if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
2857 TypeSize > DL.getTypeSizeInBits(InnerTy))
2858 return Ty;
2859
2860 return stripAggregateTypeWrapping(DL, InnerTy);
2861}
2862
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002863/// \brief Try to find a partition of the aggregate type passed in for a given
2864/// offset and size.
2865///
2866/// This recurses through the aggregate type and tries to compute a subtype
2867/// based on the offset and size. When the offset and size span a sub-section
Chandler Carruth054a40a2012-09-14 11:08:31 +00002868/// of an array, it will even compute a new array type for that sub-section,
2869/// and the same for structs.
2870///
2871/// Note that this routine is very strict and tries to find a partition of the
2872/// type which produces the *exact* right offset and size. It is not forgiving
2873/// when the size or offset cause either end of type-based partition to be off.
2874/// Also, this is a best-effort routine. It is reasonable to give up and not
2875/// return a type if necessary.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002876static Type *getTypePartition(const DataLayout &DL, Type *Ty,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002877 uint64_t Offset, uint64_t Size) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00002878 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
2879 return stripAggregateTypeWrapping(DL, Ty);
2880 if (Offset > DL.getTypeAllocSize(Ty) ||
2881 (DL.getTypeAllocSize(Ty) - Offset) < Size)
Chandler Carruth58d05562012-10-25 04:37:07 +00002882 return 0;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002883
2884 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
2885 // We can't partition pointers...
2886 if (SeqTy->isPointerTy())
2887 return 0;
2888
2889 Type *ElementTy = SeqTy->getElementType();
Chandler Carruth90a735d2013-07-19 07:21:28 +00002890 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002891 uint64_t NumSkippedElements = Offset / ElementSize;
Jakub Staszak4f9d1e82013-03-24 09:56:28 +00002892 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002893 if (NumSkippedElements >= ArrTy->getNumElements())
2894 return 0;
Jakub Staszak4f9d1e82013-03-24 09:56:28 +00002895 } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002896 if (NumSkippedElements >= VecTy->getNumElements())
2897 return 0;
Jakub Staszak4f9d1e82013-03-24 09:56:28 +00002898 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002899 Offset -= NumSkippedElements * ElementSize;
2900
2901 // First check if we need to recurse.
2902 if (Offset > 0 || Size < ElementSize) {
2903 // Bail if the partition ends in a different array element.
2904 if ((Offset + Size) > ElementSize)
2905 return 0;
2906 // Recurse through the element type trying to peel off offset bytes.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002907 return getTypePartition(DL, ElementTy, Offset, Size);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002908 }
2909 assert(Offset == 0);
2910
2911 if (Size == ElementSize)
Chandler Carruth90a735d2013-07-19 07:21:28 +00002912 return stripAggregateTypeWrapping(DL, ElementTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002913 assert(Size > ElementSize);
2914 uint64_t NumElements = Size / ElementSize;
2915 if (NumElements * ElementSize != Size)
2916 return 0;
2917 return ArrayType::get(ElementTy, NumElements);
2918 }
2919
2920 StructType *STy = dyn_cast<StructType>(Ty);
2921 if (!STy)
2922 return 0;
2923
Chandler Carruth90a735d2013-07-19 07:21:28 +00002924 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth054a40a2012-09-14 11:08:31 +00002925 if (Offset >= SL->getSizeInBytes())
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002926 return 0;
2927 uint64_t EndOffset = Offset + Size;
2928 if (EndOffset > SL->getSizeInBytes())
2929 return 0;
2930
2931 unsigned Index = SL->getElementContainingOffset(Offset);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002932 Offset -= SL->getElementOffset(Index);
2933
2934 Type *ElementTy = STy->getElementType(Index);
Chandler Carruth90a735d2013-07-19 07:21:28 +00002935 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002936 if (Offset >= ElementSize)
2937 return 0; // The offset points into alignment padding.
2938
2939 // See if any partition must be contained by the element.
2940 if (Offset > 0 || Size < ElementSize) {
2941 if ((Offset + Size) > ElementSize)
2942 return 0;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002943 return getTypePartition(DL, ElementTy, Offset, Size);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002944 }
2945 assert(Offset == 0);
2946
2947 if (Size == ElementSize)
Chandler Carruth90a735d2013-07-19 07:21:28 +00002948 return stripAggregateTypeWrapping(DL, ElementTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002949
2950 StructType::element_iterator EI = STy->element_begin() + Index,
2951 EE = STy->element_end();
2952 if (EndOffset < SL->getSizeInBytes()) {
2953 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
2954 if (Index == EndIndex)
2955 return 0; // Within a single element and its padding.
Chandler Carruth054a40a2012-09-14 11:08:31 +00002956
2957 // Don't try to form "natural" types if the elements don't line up with the
2958 // expected size.
2959 // FIXME: We could potentially recurse down through the last element in the
2960 // sub-struct to find a natural end point.
2961 if (SL->getElementOffset(EndIndex) != EndOffset)
2962 return 0;
2963
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002964 assert(Index < EndIndex);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002965 EE = STy->element_begin() + EndIndex;
2966 }
2967
2968 // Try to build up a sub-structure.
Benjamin Kramer7ddd7052012-10-20 12:04:57 +00002969 StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002970 STy->isPacked());
Chandler Carruth90a735d2013-07-19 07:21:28 +00002971 const StructLayout *SubSL = DL.getStructLayout(SubTy);
Chandler Carruth054a40a2012-09-14 11:08:31 +00002972 if (Size != SubSL->getSizeInBytes())
2973 return 0; // The sub-struct doesn't have quite the size needed.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002974
Chandler Carruth054a40a2012-09-14 11:08:31 +00002975 return SubTy;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002976}
2977
2978/// \brief Rewrite an alloca partition's users.
2979///
2980/// This routine drives both of the rewriting goals of the SROA pass. It tries
2981/// to rewrite uses of an alloca partition to be conducive for SSA value
2982/// promotion. If the partition needs a new, more refined alloca, this will
2983/// build that new alloca, preserving as much type information as possible, and
2984/// rewrite the uses of the old alloca to point at the new one and have the
2985/// appropriate new offsets. It also evaluates how successful the rewrite was
2986/// at enabling promotion and if it was successful queues the alloca to be
2987/// promoted.
Chandler Carruthf0546402013-07-18 07:15:00 +00002988bool SROA::rewritePartitions(AllocaInst &AI, AllocaPartitioning &P,
2989 AllocaPartitioning::iterator B,
2990 AllocaPartitioning::iterator E,
2991 int64_t BeginOffset, int64_t EndOffset,
2992 ArrayRef<AllocaPartitioning::iterator> SplitUses) {
2993 assert(BeginOffset < EndOffset);
2994 uint64_t PartitionSize = EndOffset - BeginOffset;
Chandler Carruth82a57542012-10-01 10:54:05 +00002995
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002996 // Try to compute a friendly type for this partition of the alloca. This
2997 // won't always succeed, in which case we fall back to a legal integer type
2998 // or an i8 array of an appropriate size.
Chandler Carruthf0546402013-07-18 07:15:00 +00002999 Type *PartitionTy = 0;
3000 if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
Chandler Carruth90a735d2013-07-19 07:21:28 +00003001 if (DL->getTypeAllocSize(CommonUseTy) >= PartitionSize)
Chandler Carruthf0546402013-07-18 07:15:00 +00003002 PartitionTy = CommonUseTy;
3003 if (!PartitionTy)
Chandler Carruth90a735d2013-07-19 07:21:28 +00003004 if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
Chandler Carruthf0546402013-07-18 07:15:00 +00003005 BeginOffset, PartitionSize))
3006 PartitionTy = TypePartitionTy;
3007 if ((!PartitionTy || (PartitionTy->isArrayTy() &&
3008 PartitionTy->getArrayElementType()->isIntegerTy())) &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00003009 DL->isLegalInteger(PartitionSize * 8))
Chandler Carruthf0546402013-07-18 07:15:00 +00003010 PartitionTy = Type::getIntNTy(*C, PartitionSize * 8);
3011 if (!PartitionTy)
3012 PartitionTy = ArrayType::get(Type::getInt8Ty(*C), PartitionSize);
Chandler Carruth90a735d2013-07-19 07:21:28 +00003013 assert(DL->getTypeAllocSize(PartitionTy) >= PartitionSize);
Chandler Carruthf0546402013-07-18 07:15:00 +00003014
3015 bool IsVectorPromotable = isVectorPromotionViable(
Chandler Carruth90a735d2013-07-19 07:21:28 +00003016 *DL, PartitionTy, P, BeginOffset, EndOffset, B, E, SplitUses);
Chandler Carruthf0546402013-07-18 07:15:00 +00003017
3018 bool IsIntegerPromotable =
3019 !IsVectorPromotable &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00003020 isIntegerWideningViable(*DL, PartitionTy, BeginOffset, P, B, E,
Chandler Carruthf0546402013-07-18 07:15:00 +00003021 SplitUses);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003022
3023 // Check for the case where we're going to rewrite to a new alloca of the
3024 // exact same type as the original, and with the same access offsets. In that
3025 // case, re-use the existing alloca, but still run through the rewriter to
Jakub Staszak086f6cd2013-02-19 22:02:21 +00003026 // perform phi and select speculation.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003027 AllocaInst *NewAI;
Chandler Carruthf0546402013-07-18 07:15:00 +00003028 if (PartitionTy == AI.getAllocatedType()) {
3029 assert(BeginOffset == 0 &&
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003030 "Non-zero begin offset but same alloca type");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003031 NewAI = &AI;
Chandler Carruthf0546402013-07-18 07:15:00 +00003032 // FIXME: We should be able to bail at this point with "nothing changed".
3033 // FIXME: We might want to defer PHI speculation until after here.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003034 } else {
Chandler Carruth903790e2012-09-29 10:41:21 +00003035 unsigned Alignment = AI.getAlignment();
3036 if (!Alignment) {
3037 // The minimum alignment which users can rely on when the explicit
3038 // alignment is omitted or zero is that required by the ABI for this
3039 // type.
Chandler Carruth90a735d2013-07-19 07:21:28 +00003040 Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
Chandler Carruth903790e2012-09-29 10:41:21 +00003041 }
Chandler Carruthf0546402013-07-18 07:15:00 +00003042 Alignment = MinAlign(Alignment, BeginOffset);
Chandler Carruth903790e2012-09-29 10:41:21 +00003043 // If we will get at least this much alignment from the type alone, leave
3044 // the alloca's alignment unconstrained.
Chandler Carruth90a735d2013-07-19 07:21:28 +00003045 if (Alignment <= DL->getABITypeAlignment(PartitionTy))
Chandler Carruth903790e2012-09-29 10:41:21 +00003046 Alignment = 0;
Chandler Carruthf0546402013-07-18 07:15:00 +00003047 NewAI = new AllocaInst(PartitionTy, 0, Alignment,
3048 AI.getName() + ".sroa." + Twine(B - P.begin()), &AI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003049 ++NumNewAllocas;
3050 }
3051
3052 DEBUG(dbgs() << "Rewriting alloca partition "
Chandler Carruthf0546402013-07-18 07:15:00 +00003053 << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
3054 << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003055
Chandler Carruthf0546402013-07-18 07:15:00 +00003056 // Track the high watermark on several worklists that are only relevant for
3057 // promoted allocas. We will reset it to this point if the alloca is not in
3058 // fact scheduled for promotion.
Chandler Carruthac8317f2012-10-04 12:33:50 +00003059 unsigned PPWOldSize = PostPromotionWorklist.size();
Chandler Carruthf0546402013-07-18 07:15:00 +00003060 unsigned SPOldSize = SpeculatablePHIs.size();
3061 unsigned SSOldSize = SpeculatableSelects.size();
Chandler Carruthac8317f2012-10-04 12:33:50 +00003062
Chandler Carruth90a735d2013-07-19 07:21:28 +00003063 AllocaPartitionRewriter Rewriter(*DL, P, *this, AI, *NewAI, BeginOffset,
Chandler Carruthf0546402013-07-18 07:15:00 +00003064 EndOffset, IsVectorPromotable,
3065 IsIntegerPromotable);
3066 bool Promotable = true;
3067 for (ArrayRef<AllocaPartitioning::iterator>::const_iterator
3068 SUI = SplitUses.begin(),
3069 SUE = SplitUses.end();
3070 SUI != SUE; ++SUI) {
3071 DEBUG(dbgs() << " rewriting split ");
3072 DEBUG(P.printPartition(dbgs(), *SUI, ""));
3073 Promotable &= Rewriter.visit(*SUI);
3074 }
3075 for (AllocaPartitioning::iterator I = B; I != E; ++I) {
3076 DEBUG(dbgs() << " rewriting ");
3077 DEBUG(P.printPartition(dbgs(), I, ""));
3078 Promotable &= Rewriter.visit(I);
3079 }
3080
3081 if (Promotable && (SpeculatablePHIs.size() > SPOldSize ||
3082 SpeculatableSelects.size() > SSOldSize)) {
3083 // If we have a promotable alloca except for some unspeculated loads below
3084 // PHIs or Selects, iterate once. We will speculate the loads and on the
3085 // next iteration rewrite them into a promotable form.
3086 Worklist.insert(NewAI);
3087 } else if (Promotable) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003088 DEBUG(dbgs() << " and queuing for promotion\n");
3089 PromotableAllocas.push_back(NewAI);
3090 } else if (NewAI != &AI) {
3091 // If we can't promote the alloca, iterate on it to check for new
3092 // refinements exposed by splitting the current alloca. Don't iterate on an
3093 // alloca which didn't actually change and didn't get promoted.
Chandler Carruthf0546402013-07-18 07:15:00 +00003094 // FIXME: We should actually track whether the rewriter changed anything.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003095 Worklist.insert(NewAI);
3096 }
Chandler Carruthac8317f2012-10-04 12:33:50 +00003097
3098 // Drop any post-promotion work items if promotion didn't happen.
Chandler Carruthf0546402013-07-18 07:15:00 +00003099 if (!Promotable) {
Chandler Carruthac8317f2012-10-04 12:33:50 +00003100 while (PostPromotionWorklist.size() > PPWOldSize)
3101 PostPromotionWorklist.pop_back();
Chandler Carruthf0546402013-07-18 07:15:00 +00003102 while (SpeculatablePHIs.size() > SPOldSize)
3103 SpeculatablePHIs.pop_back();
3104 while (SpeculatableSelects.size() > SSOldSize)
3105 SpeculatableSelects.pop_back();
3106 }
Chandler Carruthac8317f2012-10-04 12:33:50 +00003107
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003108 return true;
3109}
3110
Chandler Carruthf0546402013-07-18 07:15:00 +00003111namespace {
3112 struct IsPartitionEndLessOrEqualTo {
3113 uint64_t UpperBound;
3114
3115 IsPartitionEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {}
3116
3117 bool operator()(const AllocaPartitioning::iterator &I) {
3118 return I->endOffset() <= UpperBound;
3119 }
3120 };
3121}
3122
3123static void removeFinishedSplitUses(
3124 SmallVectorImpl<AllocaPartitioning::iterator> &SplitUses,
3125 uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
3126 if (Offset >= MaxSplitUseEndOffset) {
3127 SplitUses.clear();
3128 MaxSplitUseEndOffset = 0;
3129 return;
3130 }
3131
3132 size_t SplitUsesOldSize = SplitUses.size();
3133 SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
3134 IsPartitionEndLessOrEqualTo(Offset)),
3135 SplitUses.end());
3136 if (SplitUsesOldSize == SplitUses.size())
3137 return;
3138
3139 // Recompute the max. While this is linear, so is remove_if.
3140 MaxSplitUseEndOffset = 0;
3141 for (SmallVectorImpl<AllocaPartitioning::iterator>::iterator
3142 SUI = SplitUses.begin(),
3143 SUE = SplitUses.end();
3144 SUI != SUE; ++SUI)
3145 MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
3146}
3147
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003148/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3149bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
Chandler Carruthf0546402013-07-18 07:15:00 +00003150 if (P.begin() == P.end())
3151 return false;
3152
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003153 bool Changed = false;
Chandler Carruthf0546402013-07-18 07:15:00 +00003154 SmallVector<AllocaPartitioning::iterator, 4> SplitUses;
3155 uint64_t MaxSplitUseEndOffset = 0;
3156
3157 uint64_t BeginOffset = P.begin()->beginOffset();
3158
3159 for (AllocaPartitioning::iterator PI = P.begin(), PJ = llvm::next(PI),
3160 PE = P.end();
3161 PI != PE; PI = PJ) {
3162 uint64_t MaxEndOffset = PI->endOffset();
3163
3164 if (!PI->isSplittable()) {
3165 // When we're forming an unsplittable region, it must always start at he
3166 // first partitioning use and will extend through its end.
3167 assert(BeginOffset == PI->beginOffset());
3168
3169 // Rewrite a partition including all of the overlapping uses with this
3170 // unsplittable partition.
3171 while (PJ != PE && PJ->beginOffset() < MaxEndOffset) {
3172 if (!PJ->isSplittable())
3173 MaxEndOffset = std::max(MaxEndOffset, PJ->endOffset());
3174 ++PJ;
3175 }
3176 } else {
3177 assert(PI->isSplittable()); // Established above.
3178
3179 // Collect all of the overlapping splittable partitions.
3180 while (PJ != PE && PJ->beginOffset() < MaxEndOffset &&
3181 PJ->isSplittable()) {
3182 MaxEndOffset = std::max(MaxEndOffset, PJ->endOffset());
3183 ++PJ;
3184 }
3185
3186 // Back up MaxEndOffset and PJ if we ended the span early when
3187 // encountering an unsplittable partition.
3188 if (PJ != PE && PJ->beginOffset() < MaxEndOffset) {
3189 assert(!PJ->isSplittable());
3190 MaxEndOffset = PJ->beginOffset();
3191 }
3192 }
3193
3194 // Check if we have managed to move the end offset forward yet. If so,
3195 // we'll have to rewrite uses and erase old split uses.
3196 if (BeginOffset < MaxEndOffset) {
3197 // Rewrite a sequence of overlapping partition uses.
3198 Changed |= rewritePartitions(AI, P, PI, PJ, BeginOffset,
3199 MaxEndOffset, SplitUses);
3200
3201 removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
3202 }
3203
3204 // Accumulate all the splittable partitions from the [PI,PJ) region which
3205 // overlap going forward.
3206 for (AllocaPartitioning::iterator PII = PI, PIE = PJ; PII != PIE; ++PII)
3207 if (PII->isSplittable() && PII->endOffset() > MaxEndOffset) {
3208 SplitUses.push_back(PII);
3209 MaxSplitUseEndOffset = std::max(PII->endOffset(), MaxSplitUseEndOffset);
3210 }
3211
3212 // If we're already at the end and we have no split uses, we're done.
3213 if (PJ == PE && SplitUses.empty())
3214 break;
3215
3216 // If we have no split uses or no gap in offsets, we're ready to move to
3217 // the next partitioning use.
3218 if (SplitUses.empty() || (PJ != PE && MaxEndOffset == PJ->beginOffset())) {
3219 BeginOffset = PJ->beginOffset();
3220 continue;
3221 }
3222
3223 // Even if we have split uses, if the next partitioning use is splittable
3224 // and the split uses reach it, we can simply set up the beginning offset
3225 // to bridge between them.
3226 if (PJ != PE && PJ->isSplittable() && MaxSplitUseEndOffset > PJ->beginOffset()) {
3227 BeginOffset = MaxEndOffset;
3228 continue;
3229 }
3230
3231 // Otherwise, we have a tail of split uses. Rewrite them with an empty
3232 // range of partitioning uses.
3233 uint64_t PostSplitEndOffset =
3234 PJ == PE ? MaxSplitUseEndOffset : PJ->beginOffset();
3235
3236 Changed |= rewritePartitions(AI, P, PJ, PJ, MaxEndOffset,
3237 PostSplitEndOffset, SplitUses);
3238 if (PJ == PE)
3239 break; // Skip the rest, we don't need to do any cleanup.
3240
3241 removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
3242 PostSplitEndOffset);
3243
3244 // Now just reset the begin offset for the next iteration.
3245 BeginOffset = PJ->beginOffset();
3246 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003247
3248 return Changed;
3249}
3250
3251/// \brief Analyze an alloca for SROA.
3252///
3253/// This analyzes the alloca to ensure we can reason about it, builds
3254/// a partitioning of the alloca, and then hands it off to be split and
3255/// rewritten as needed.
3256bool SROA::runOnAlloca(AllocaInst &AI) {
3257 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3258 ++NumAllocasAnalyzed;
3259
3260 // Special case dead allocas, as they're trivial.
3261 if (AI.use_empty()) {
3262 AI.eraseFromParent();
3263 return true;
3264 }
3265
3266 // Skip alloca forms that this analysis can't handle.
3267 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00003268 DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003269 return false;
3270
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00003271 bool Changed = false;
3272
3273 // First, split any FCA loads and stores touching this alloca to promote
3274 // better splitting and promotion opportunities.
Chandler Carruth90a735d2013-07-19 07:21:28 +00003275 AggLoadStoreRewriter AggRewriter(*DL);
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00003276 Changed |= AggRewriter.rewrite(AI);
3277
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003278 // Build the partition set using a recursive instruction-visiting builder.
Chandler Carruth90a735d2013-07-19 07:21:28 +00003279 AllocaPartitioning P(*DL, AI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003280 DEBUG(P.print(dbgs()));
3281 if (P.isEscaped())
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00003282 return Changed;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003283
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003284 // Delete all the dead users of this alloca before splitting and rewriting it.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003285 for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3286 DE = P.dead_user_end();
3287 DI != DE; ++DI) {
3288 Changed = true;
3289 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
Chandler Carruth18db7952012-11-20 01:12:50 +00003290 DeadInsts.insert(*DI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003291 }
3292 for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3293 DE = P.dead_op_end();
3294 DO != DE; ++DO) {
3295 Value *OldV = **DO;
3296 // Clobber the use with an undef value.
3297 **DO = UndefValue::get(OldV->getType());
3298 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3299 if (isInstructionTriviallyDead(OldI)) {
3300 Changed = true;
Chandler Carruth18db7952012-11-20 01:12:50 +00003301 DeadInsts.insert(OldI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003302 }
3303 }
3304
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +00003305 // No partitions to split. Leave the dead alloca for a later pass to clean up.
3306 if (P.begin() == P.end())
3307 return Changed;
3308
Chandler Carruthf0546402013-07-18 07:15:00 +00003309 Changed |= splitAlloca(AI, P);
3310
3311 DEBUG(dbgs() << " Speculating PHIs\n");
3312 while (!SpeculatablePHIs.empty())
3313 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
3314
3315 DEBUG(dbgs() << " Speculating Selects\n");
3316 while (!SpeculatableSelects.empty())
3317 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
3318
3319 return Changed;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003320}
3321
Chandler Carruth19450da2012-09-14 10:26:38 +00003322/// \brief Delete the dead instructions accumulated in this run.
3323///
3324/// Recursively deletes the dead instructions we've accumulated. This is done
3325/// at the very end to maximize locality of the recursive delete and to
3326/// minimize the problems of invalidated instruction pointers as such pointers
3327/// are used heavily in the intermediate stages of the algorithm.
3328///
3329/// We also record the alloca instructions deleted here so that they aren't
3330/// subsequently handed to mem2reg to promote.
3331void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003332 while (!DeadInsts.empty()) {
3333 Instruction *I = DeadInsts.pop_back_val();
3334 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3335
Chandler Carruth58d05562012-10-25 04:37:07 +00003336 I->replaceAllUsesWith(UndefValue::get(I->getType()));
3337
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003338 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3339 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3340 // Zero out the operand and see if it becomes trivially dead.
3341 *OI = 0;
3342 if (isInstructionTriviallyDead(U))
Chandler Carruth18db7952012-11-20 01:12:50 +00003343 DeadInsts.insert(U);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003344 }
3345
3346 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3347 DeletedAllocas.insert(AI);
3348
3349 ++NumDeleted;
3350 I->eraseFromParent();
3351 }
3352}
3353
Chandler Carruth70b44c52012-09-15 11:43:14 +00003354/// \brief Promote the allocas, using the best available technique.
3355///
3356/// This attempts to promote whatever allocas have been identified as viable in
3357/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3358/// If there is a domtree available, we attempt to promote using the full power
3359/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3360/// based on the SSAUpdater utilities. This function returns whether any
Jakub Staszak086f6cd2013-02-19 22:02:21 +00003361/// promotion occurred.
Chandler Carruth70b44c52012-09-15 11:43:14 +00003362bool SROA::promoteAllocas(Function &F) {
3363 if (PromotableAllocas.empty())
3364 return false;
3365
3366 NumPromoted += PromotableAllocas.size();
3367
3368 if (DT && !ForceSSAUpdater) {
3369 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3370 PromoteMemToReg(PromotableAllocas, *DT);
3371 PromotableAllocas.clear();
3372 return true;
3373 }
3374
3375 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3376 SSAUpdater SSA;
3377 DIBuilder DIB(*F.getParent());
3378 SmallVector<Instruction*, 64> Insts;
3379
3380 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3381 AllocaInst *AI = PromotableAllocas[Idx];
3382 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3383 UI != UE;) {
3384 Instruction *I = cast<Instruction>(*UI++);
3385 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3386 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3387 // leading to them) here. Eventually it should use them to optimize the
3388 // scalar values produced.
3389 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3390 assert(onlyUsedByLifetimeMarkers(I) &&
3391 "Found a bitcast used outside of a lifetime marker.");
3392 while (!I->use_empty())
3393 cast<Instruction>(*I->use_begin())->eraseFromParent();
3394 I->eraseFromParent();
3395 continue;
3396 }
3397 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3398 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3399 II->getIntrinsicID() == Intrinsic::lifetime_end);
3400 II->eraseFromParent();
3401 continue;
3402 }
3403
3404 Insts.push_back(I);
3405 }
3406 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3407 Insts.clear();
3408 }
3409
3410 PromotableAllocas.clear();
3411 return true;
3412}
3413
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003414namespace {
3415 /// \brief A predicate to test whether an alloca belongs to a set.
3416 class IsAllocaInSet {
3417 typedef SmallPtrSet<AllocaInst *, 4> SetType;
3418 const SetType &Set;
3419
3420 public:
Chandler Carruth3f57b822012-10-03 00:03:00 +00003421 typedef AllocaInst *argument_type;
3422
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003423 IsAllocaInSet(const SetType &Set) : Set(Set) {}
Chandler Carruth3f57b822012-10-03 00:03:00 +00003424 bool operator()(AllocaInst *AI) const { return Set.count(AI); }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003425 };
3426}
3427
3428bool SROA::runOnFunction(Function &F) {
3429 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3430 C = &F.getContext();
Chandler Carruth90a735d2013-07-19 07:21:28 +00003431 DL = getAnalysisIfAvailable<DataLayout>();
3432 if (!DL) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003433 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
3434 return false;
3435 }
Chandler Carruth70b44c52012-09-15 11:43:14 +00003436 DT = getAnalysisIfAvailable<DominatorTree>();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003437
3438 BasicBlock &EntryBB = F.getEntryBlock();
3439 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3440 I != E; ++I)
3441 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3442 Worklist.insert(AI);
3443
3444 bool Changed = false;
Chandler Carruth19450da2012-09-14 10:26:38 +00003445 // A set of deleted alloca instruction pointers which should be removed from
3446 // the list of promotable allocas.
3447 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3448
Chandler Carruthac8317f2012-10-04 12:33:50 +00003449 do {
3450 while (!Worklist.empty()) {
3451 Changed |= runOnAlloca(*Worklist.pop_back_val());
3452 deleteDeadInstructions(DeletedAllocas);
Chandler Carruthb09f0a32012-10-02 22:46:45 +00003453
Chandler Carruthac8317f2012-10-04 12:33:50 +00003454 // Remove the deleted allocas from various lists so that we don't try to
3455 // continue processing them.
3456 if (!DeletedAllocas.empty()) {
3457 Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3458 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3459 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3460 PromotableAllocas.end(),
3461 IsAllocaInSet(DeletedAllocas)),
3462 PromotableAllocas.end());
3463 DeletedAllocas.clear();
3464 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003465 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003466
Chandler Carruthac8317f2012-10-04 12:33:50 +00003467 Changed |= promoteAllocas(F);
3468
3469 Worklist = PostPromotionWorklist;
3470 PostPromotionWorklist.clear();
3471 } while (!Worklist.empty());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003472
3473 return Changed;
3474}
3475
3476void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth70b44c52012-09-15 11:43:14 +00003477 if (RequiresDomTree)
3478 AU.addRequired<DominatorTree>();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003479 AU.setPreservesCFG();
3480}