Chandler Carruth | 95055d8 | 2017-08-02 02:09:22 +0000 | [diff] [blame] | 1 | ; This test contains extremely tricky call graph structures for the inliner to |
| 2 | ; handle correctly. They form cycles where the inliner introduces code that is |
| 3 | ; immediately or can eventually be transformed back into the original code. And |
| 4 | ; each step changes the call graph and so will trigger iteration. This requires |
| 5 | ; some out-of-band way to prevent infinitely re-inlining and re-transforming the |
| 6 | ; code. |
| 7 | ; |
Wei Mi | 80a0c97 | 2018-10-23 23:29:45 +0000 | [diff] [blame] | 8 | ; RUN: opt < %s -passes='cgscc(inline,function(sroa,instcombine))' -inline-threshold=50 -S | FileCheck %s |
Chandler Carruth | 95055d8 | 2017-08-02 02:09:22 +0000 | [diff] [blame] | 9 | |
| 10 | |
| 11 | ; The `test1_*` collection of functions form a directly cycling pattern. |
| 12 | |
| 13 | define void @test1_a(i8** %ptr) { |
| 14 | ; CHECK-LABEL: define void @test1_a( |
| 15 | entry: |
| 16 | call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 0) |
| 17 | ; Inlining and simplifying this call will reliably produce the exact same call, |
| 18 | ; over and over again. However, each inlining increments the count, and so we |
| 19 | ; expect this test case to stop after one round of inlining with a final |
| 20 | ; argument of '1'. |
| 21 | ; CHECK-NOT: call |
| 22 | ; CHECK: call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 1) |
| 23 | ; CHECK-NOT: call |
| 24 | |
| 25 | ret void |
| 26 | } |
| 27 | |
| 28 | define void @test1_b(i8* %arg, i1 %flag, i32 %inline_count) { |
| 29 | ; CHECK-LABEL: define void @test1_b( |
| 30 | entry: |
| 31 | %a = alloca i8* |
| 32 | store i8* %arg, i8** %a |
| 33 | ; This alloca and store should remain through any optimization. |
| 34 | ; CHECK: %[[A:.*]] = alloca |
| 35 | ; CHECK: store i8* %arg, i8** %[[A]] |
| 36 | |
| 37 | br i1 %flag, label %bb1, label %bb2 |
| 38 | |
| 39 | bb1: |
| 40 | call void @test1_a(i8** %a) noinline |
| 41 | br label %bb2 |
| 42 | |
| 43 | bb2: |
| 44 | %cast = bitcast i8** %a to void (i8*, i1, i32)** |
| 45 | %p = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %cast |
| 46 | %inline_count_inc = add i32 %inline_count, 1 |
| 47 | call void %p(i8* %arg, i1 %flag, i32 %inline_count_inc) |
| 48 | ; And we should continue to load and call indirectly through optimization. |
| 49 | ; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i1, i32)** |
| 50 | ; CHECK: %[[P:.*]] = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %[[CAST]] |
| 51 | ; CHECK: call void %[[P]]( |
| 52 | |
| 53 | ret void |
| 54 | } |
| 55 | |
| 56 | define void @test2_a(i8** %ptr) { |
| 57 | ; CHECK-LABEL: define void @test2_a( |
| 58 | entry: |
| 59 | call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 0) |
| 60 | ; Inlining and simplifying this call will reliably produce the exact same call, |
| 61 | ; but only after doing two rounds if inlining, first from @test2_b then |
| 62 | ; @test2_c. We check the exact number of inlining rounds before we cut off to |
| 63 | ; break the cycle by inspecting the last paramater that gets incremented with |
| 64 | ; each inlined function body. |
| 65 | ; CHECK-NOT: call |
| 66 | ; CHECK: call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 2) |
| 67 | ; CHECK-NOT: call |
| 68 | ret void |
| 69 | } |
| 70 | |
| 71 | define void @test2_b(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) { |
| 72 | ; CHECK-LABEL: define void @test2_b( |
| 73 | entry: |
| 74 | %a = alloca i8* |
| 75 | store i8* %arg2, i8** %a |
| 76 | ; This alloca and store should remain through any optimization. |
| 77 | ; CHECK: %[[A:.*]] = alloca |
| 78 | ; CHECK: store i8* %arg2, i8** %[[A]] |
| 79 | |
| 80 | br i1 %flag, label %bb1, label %bb2 |
| 81 | |
| 82 | bb1: |
| 83 | call void @test2_a(i8** %a) noinline |
| 84 | br label %bb2 |
| 85 | |
| 86 | bb2: |
| 87 | %p = load i8*, i8** %a |
| 88 | %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)* |
| 89 | %inline_count_inc = add i32 %inline_count, 1 |
| 90 | call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc) |
| 91 | ; And we should continue to load and call indirectly through optimization. |
| 92 | ; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)** |
| 93 | ; CHECK: %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]] |
| 94 | ; CHECK: call void %[[P]]( |
| 95 | |
| 96 | ret void |
| 97 | } |
| 98 | |
| 99 | define void @test2_c(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) { |
| 100 | ; CHECK-LABEL: define void @test2_c( |
| 101 | entry: |
| 102 | %a = alloca i8* |
| 103 | store i8* %arg1, i8** %a |
| 104 | ; This alloca and store should remain through any optimization. |
| 105 | ; CHECK: %[[A:.*]] = alloca |
| 106 | ; CHECK: store i8* %arg1, i8** %[[A]] |
| 107 | |
| 108 | br i1 %flag, label %bb1, label %bb2 |
| 109 | |
| 110 | bb1: |
| 111 | call void @test2_a(i8** %a) noinline |
| 112 | br label %bb2 |
| 113 | |
| 114 | bb2: |
| 115 | %p = load i8*, i8** %a |
| 116 | %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)* |
| 117 | %inline_count_inc = add i32 %inline_count, 1 |
| 118 | call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc) |
| 119 | ; And we should continue to load and call indirectly through optimization. |
| 120 | ; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)** |
| 121 | ; CHECK: %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]] |
| 122 | ; CHECK: call void %[[P]]( |
| 123 | |
| 124 | ret void |
| 125 | } |
Wei Mi | 80a0c97 | 2018-10-23 23:29:45 +0000 | [diff] [blame] | 126 | |
| 127 | ; Another infinite inlining case. The initial callgraph is like following: |
| 128 | ; |
| 129 | ; test3_a <---> test3_b |
| 130 | ; | ^ |
| 131 | ; v | |
| 132 | ; test3_c <---> test3_d |
| 133 | ; |
| 134 | ; For all the call edges in the call graph, only test3_c and test3_d can be |
| 135 | ; inlined into test3_a, and no other call edge can be inlined. |
| 136 | ; |
| 137 | ; After test3_c is inlined into test3_a, the original call edge test3_a->test3_c |
| 138 | ; will be removed, a new call edge will be added and the call graph becomes: |
| 139 | ; |
| 140 | ; test3_a <---> test3_b |
| 141 | ; \ ^ |
| 142 | ; v / |
| 143 | ; test3_c <---> test3_d |
| 144 | ; But test3_a, test3_b, test3_c and test3_d still belong to the same SCC. |
| 145 | ; |
| 146 | ; Then after test3_a->test3_d is inlined, when test3_a->test3_d is converted to |
| 147 | ; a ref edge, the original SCC will be split into two: {test3_c, test3_d} and |
| 148 | ; {test3_a, test3_b}, immediately after the newly added ref edge |
| 149 | ; test3_a->test3_c will be converted to a call edge, and the two SCCs will be |
| 150 | ; merged into the original one again. During this cycle, the original SCC will |
| 151 | ; be added into UR.CWorklist again and this creates an infinite loop. |
| 152 | |
| 153 | @a = global i64 0 |
| 154 | @b = global i64 0 |
| 155 | |
| 156 | define void @test3_c(i32 %i) { |
| 157 | entry: |
| 158 | %cmp = icmp eq i32 %i, 5 |
| 159 | br i1 %cmp, label %if.end, label %if.then |
| 160 | |
| 161 | if.then: ; preds = %entry |
| 162 | %call = tail call i64 @random() |
| 163 | %t0 = load i64, i64* @a |
| 164 | %add = add nsw i64 %t0, %call |
| 165 | store i64 %add, i64* @a |
| 166 | br label %if.end |
| 167 | |
| 168 | if.end: ; preds = %entry, %if.then |
| 169 | tail call void @test3_d(i32 %i) |
| 170 | %t6 = load i64, i64* @a |
| 171 | %add85 = add nsw i64 %t6, 1 |
| 172 | store i64 %add85, i64* @a |
| 173 | ret void |
| 174 | } |
| 175 | |
| 176 | declare i64 @random() |
| 177 | |
| 178 | define void @test3_d(i32 %i) { |
| 179 | entry: |
| 180 | %cmp = icmp eq i32 %i, 5 |
| 181 | br i1 %cmp, label %if.end, label %if.then |
| 182 | |
| 183 | if.then: ; preds = %entry |
| 184 | %call = tail call i64 @random() |
| 185 | %t0 = load i64, i64* @a |
| 186 | %add = add nsw i64 %t0, %call |
| 187 | store i64 %add, i64* @a |
| 188 | br label %if.end |
| 189 | |
| 190 | if.end: ; preds = %entry, %if.then |
| 191 | tail call void @test3_c(i32 %i) |
| 192 | tail call void @test3_b() |
| 193 | %t6 = load i64, i64* @a |
| 194 | %add79 = add nsw i64 %t6, 3 |
| 195 | store i64 %add79, i64* @a |
| 196 | ret void |
| 197 | } |
| 198 | |
| 199 | ; Function Attrs: noinline |
| 200 | define void @test3_b() #0 { |
| 201 | entry: |
| 202 | tail call void @test3_a() |
| 203 | %t0 = load i64, i64* @a |
| 204 | %add = add nsw i64 %t0, 2 |
| 205 | store i64 %add, i64* @a |
| 206 | ret void |
| 207 | } |
| 208 | |
| 209 | ; Check test3_c is inlined into test3_a once and only once. |
| 210 | ; CHECK-LABEL: @test3_a( |
| 211 | ; CHECK: tail call void @test3_b() |
| 212 | ; CHECK-NEXT: tail call void @test3_d(i32 5) |
| 213 | ; CHECK-NEXT: %[[LD1:.*]] = load i64, i64* @a |
| 214 | ; CHECK-NEXT: %[[ADD1:.*]] = add nsw i64 %[[LD1]], 1 |
| 215 | ; CHECK-NEXT: store i64 %[[ADD1]], i64* @a |
| 216 | ; CHECK-NEXT: %[[LD2:.*]] = load i64, i64* @b |
| 217 | ; CHECK-NEXT: %[[ADD2:.*]] = add nsw i64 %[[LD2]], 5 |
| 218 | ; CHECK-NEXT: store i64 %[[ADD2]], i64* @b |
| 219 | ; CHECK-NEXT: ret void |
| 220 | |
| 221 | ; Function Attrs: noinline |
| 222 | define void @test3_a() #0 { |
| 223 | entry: |
| 224 | tail call void @test3_b() |
| 225 | tail call void @test3_c(i32 5) |
| 226 | %t0 = load i64, i64* @b |
| 227 | %add = add nsw i64 %t0, 5 |
| 228 | store i64 %add, i64* @b |
| 229 | ret void |
| 230 | } |
| 231 | |
| 232 | attributes #0 = { noinline } |