blob: 29b2d9f9429e52d58fca3424224cb8883d7395b6 [file] [log] [blame]
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001//===--- BitTracker.cpp ---------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10// SSA-based bit propagation.
11//
12// The purpose of this code is, for a given virtual register, to provide
13// information about the value of each bit in the register. The values
14// of bits are represented by the class BitValue, and take one of four
15// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
16// "ref" value means that the bit is a copy of another bit (which itself
17// cannot be a copy of yet another bit---such chains are not allowed).
18// A "ref" value is associated with a BitRef structure, which indicates
19// which virtual register, and which bit in that register is the origin
20// of the value. For example, given an instruction
21// vreg2 = ASL vreg1, 1
22// assuming that nothing is known about bits of vreg1, bit 1 of vreg2
23// will be a "ref" to (vreg1, 0). If there is a subsequent instruction
24// vreg3 = ASL vreg2, 2
25// then bit 3 of vreg3 will be a "ref" to (vreg1, 0) as well.
26// The "bottom" case means that the bit's value cannot be determined,
27// and that this virtual register actually defines it. The "bottom" case
28// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
29// to self", so for the vreg1 above, the bit 0 of it will be a "ref" to
30// (vreg1, 0), bit 1 will be a "ref" to (vreg1, 1), etc.
31//
32// The tracker implements the Wegman-Zadeck algorithm, originally developed
33// for SSA-based constant propagation. Each register is represented as
34// a sequence of bits, with the convention that bit 0 is the least signi-
35// ficant bit. Each bit is propagated individually. The class RegisterCell
36// implements the register's representation, and is also the subject of
37// the lattice operations in the tracker.
38//
39// The intended usage of the bit tracker is to create a target-specific
40// machine instruction evaluator, pass the evaluator to the BitTracker
41// object, and run the tracker. The tracker will then collect the bit
42// value information for a given machine function. After that, it can be
43// queried for the cells for each virtual register.
44// Sample code:
45// const TargetSpecificEvaluator TSE(TRI, MRI);
46// BitTracker BT(TSE, MF);
47// BT.run();
48// ...
49// unsigned Reg = interestingRegister();
50// RegisterCell RC = BT.get(Reg);
51// if (RC[3].is(1))
52// Reg0bit3 = 1;
53//
54// The code below is intended to be fully target-independent.
55
56#include "llvm/CodeGen/MachineBasicBlock.h"
57#include "llvm/CodeGen/MachineFunction.h"
58#include "llvm/CodeGen/MachineInstr.h"
59#include "llvm/CodeGen/MachineRegisterInfo.h"
60#include "llvm/IR/Constants.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Target/TargetRegisterInfo.h"
64
65#include "BitTracker.h"
66
67using namespace llvm;
68
69typedef BitTracker BT;
70
71namespace {
72 // Local trickery to pretty print a register (without the whole "%vreg"
73 // business).
74 struct printv {
75 printv(unsigned r) : R(r) {}
76 unsigned R;
77 };
78 raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
79 if (PV.R)
80 OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R);
81 else
82 OS << 's';
83 return OS;
84 }
85}
86
Krzysztof Parzyszek754bad82016-02-18 16:10:27 +000087namespace llvm {
88 raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
89 switch (BV.Type) {
90 case BT::BitValue::Top:
91 OS << 'T';
92 break;
93 case BT::BitValue::Zero:
94 OS << '0';
95 break;
96 case BT::BitValue::One:
97 OS << '1';
98 break;
99 case BT::BitValue::Ref:
100 OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
101 break;
102 }
103 return OS;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000104 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000105
Krzysztof Parzyszek754bad82016-02-18 16:10:27 +0000106 raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
107 unsigned n = RC.Bits.size();
108 OS << "{ w:" << n;
109 // Instead of printing each bit value individually, try to group them
110 // into logical segments, such as sequences of 0 or 1 bits or references
111 // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
112 // "Start" will be the index of the beginning of the most recent segment.
113 unsigned Start = 0;
114 bool SeqRef = false; // A sequence of refs to consecutive bits.
115 bool ConstRef = false; // A sequence of refs to the same bit.
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000116
Krzysztof Parzyszek754bad82016-02-18 16:10:27 +0000117 for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
118 const BT::BitValue &V = RC[i];
119 const BT::BitValue &SV = RC[Start];
120 bool IsRef = (V.Type == BT::BitValue::Ref);
121 // If the current value is the same as Start, skip to the next one.
122 if (!IsRef && V == SV)
123 continue;
124 if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
125 if (Start+1 == i) {
126 SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
127 ConstRef = (V.RefI.Pos == SV.RefI.Pos);
128 }
129 if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
130 continue;
131 if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
132 continue;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000133 }
Krzysztof Parzyszek754bad82016-02-18 16:10:27 +0000134
135 // The current value is different. Print the previous one and reset
136 // the Start.
137 OS << " [" << Start;
138 unsigned Count = i - Start;
139 if (Count == 1) {
140 OS << "]:" << SV;
141 } else {
142 OS << '-' << i-1 << "]:";
143 if (SV.Type == BT::BitValue::Ref && SeqRef)
144 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
145 << SV.RefI.Pos+(Count-1) << ']';
146 else
147 OS << SV;
148 }
149 Start = i;
150 SeqRef = ConstRef = false;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000151 }
152
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000153 OS << " [" << Start;
Krzysztof Parzyszek754bad82016-02-18 16:10:27 +0000154 unsigned Count = n - Start;
155 if (n-Start == 1) {
156 OS << "]:" << RC[Start];
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000157 } else {
Krzysztof Parzyszek754bad82016-02-18 16:10:27 +0000158 OS << '-' << n-1 << "]:";
159 const BT::BitValue &SV = RC[Start];
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000160 if (SV.Type == BT::BitValue::Ref && SeqRef)
161 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
162 << SV.RefI.Pos+(Count-1) << ']';
163 else
164 OS << SV;
165 }
Krzysztof Parzyszek754bad82016-02-18 16:10:27 +0000166 OS << " }";
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000167
Krzysztof Parzyszek754bad82016-02-18 16:10:27 +0000168 return OS;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000169 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000170}
171
Krzysztof Parzyszek623afbd2016-08-03 18:13:32 +0000172void BitTracker::print_cells(raw_ostream &OS) const {
173 for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
174 dbgs() << PrintReg(I->first, &ME.TRI) << " -> " << I->second << "\n";
175}
176
177
Benjamin Kramerd8861512015-07-13 20:38:16 +0000178BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
179 : Trace(false), ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType) {}
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000180
181BitTracker::~BitTracker() {
182 delete &Map;
183}
184
185
186// If we were allowed to update a cell for a part of a register, the meet
187// operation would need to be parametrized by the register number and the
188// exact part of the register, so that the computer BitRefs correspond to
189// the actual bits of the "self" register.
190// While this cannot happen in the current implementation, I'm not sure
191// if this should be ruled out in the future.
192bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
193 // An example when "meet" can be invoked with SelfR == 0 is a phi node
194 // with a physical register as an operand.
195 assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR));
196 bool Changed = false;
197 for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
198 const BitValue &RCV = RC[i];
199 Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
200 }
201 return Changed;
202}
203
204
205// Insert the entire cell RC into the current cell at position given by M.
206BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
207 const BitMask &M) {
208 uint16_t B = M.first(), E = M.last(), W = width();
209 // Sanity: M must be a valid mask for *this.
210 assert(B < W && E < W);
211 // Sanity: the masked part of *this must have the same number of bits
212 // as the source.
213 assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|.
214 assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|.
215 if (B <= E) {
216 for (uint16_t i = 0; i <= E-B; ++i)
217 Bits[i+B] = RC[i];
218 } else {
219 for (uint16_t i = 0; i < W-B; ++i)
220 Bits[i+B] = RC[i];
221 for (uint16_t i = 0; i <= E; ++i)
222 Bits[i] = RC[i+(W-B)];
223 }
224 return *this;
225}
226
227
228BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
229 uint16_t B = M.first(), E = M.last(), W = width();
230 assert(B < W && E < W);
231 if (B <= E) {
232 RegisterCell RC(E-B+1);
233 for (uint16_t i = B; i <= E; ++i)
234 RC.Bits[i-B] = Bits[i];
235 return RC;
236 }
237
238 RegisterCell RC(E+(W-B)+1);
239 for (uint16_t i = 0; i < W-B; ++i)
240 RC.Bits[i] = Bits[i+B];
241 for (uint16_t i = 0; i <= E; ++i)
242 RC.Bits[i+(W-B)] = Bits[i];
243 return RC;
244}
245
246
247BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
248 // Rotate left (i.e. towards increasing bit indices).
249 // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1]
250 uint16_t W = width();
251 Sh = Sh % W;
252 if (Sh == 0)
253 return *this;
254
255 RegisterCell Tmp(W-Sh);
256 // Tmp = [0..W-Sh-1].
257 for (uint16_t i = 0; i < W-Sh; ++i)
258 Tmp[i] = Bits[i];
259 // Shift [W-Sh..W-1] to [0..Sh-1].
260 for (uint16_t i = 0; i < Sh; ++i)
261 Bits[i] = Bits[W-Sh+i];
262 // Copy Tmp to [Sh..W-1].
263 for (uint16_t i = 0; i < W-Sh; ++i)
264 Bits[i+Sh] = Tmp.Bits[i];
265 return *this;
266}
267
268
269BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
270 const BitValue &V) {
271 assert(B <= E);
272 while (B < E)
273 Bits[B++] = V;
274 return *this;
275}
276
277
278BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
279 // Append the cell given as the argument to the "this" cell.
280 // Bit 0 of RC becomes bit W of the result, where W is this->width().
281 uint16_t W = width(), WRC = RC.width();
282 Bits.resize(W+WRC);
283 for (uint16_t i = 0; i < WRC; ++i)
284 Bits[i+W] = RC.Bits[i];
285 return *this;
286}
287
288
289uint16_t BT::RegisterCell::ct(bool B) const {
290 uint16_t W = width();
291 uint16_t C = 0;
292 BitValue V = B;
293 while (C < W && Bits[C] == V)
294 C++;
295 return C;
296}
297
298
299uint16_t BT::RegisterCell::cl(bool B) const {
300 uint16_t W = width();
301 uint16_t C = 0;
302 BitValue V = B;
303 while (C < W && Bits[W-(C+1)] == V)
304 C++;
305 return C;
306}
307
308
309bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
310 uint16_t W = Bits.size();
311 if (RC.Bits.size() != W)
312 return false;
313 for (uint16_t i = 0; i < W; ++i)
314 if (Bits[i] != RC[i])
315 return false;
316 return true;
317}
318
319
320uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
321 // The general problem is with finding a register class that corresponds
322 // to a given reference reg:sub. There can be several such classes, and
323 // since we only care about the register size, it does not matter which
324 // such class we would find.
325 // The easiest way to accomplish what we want is to
326 // 1. find a physical register PhysR from the same class as RR.Reg,
327 // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
328 // 3. find a register class that contains PhysS.
329 unsigned PhysR;
330 if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) {
331 const TargetRegisterClass *VC = MRI.getRegClass(RR.Reg);
332 assert(VC->begin() != VC->end() && "Empty register class");
333 PhysR = *VC->begin();
334 } else {
335 assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg));
336 PhysR = RR.Reg;
337 }
338
339 unsigned PhysS = (RR.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RR.Sub);
340 const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS);
341 uint16_t BW = RC->getSize()*8;
342 return BW;
343}
344
345
346BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
347 const CellMapType &M) const {
348 uint16_t BW = getRegBitWidth(RR);
349
350 // Physical registers are assumed to be present in the map with an unknown
351 // value. Don't actually insert anything in the map, just return the cell.
352 if (TargetRegisterInfo::isPhysicalRegister(RR.Reg))
353 return RegisterCell::self(0, BW);
354
355 assert(TargetRegisterInfo::isVirtualRegister(RR.Reg));
356 // For virtual registers that belong to a class that is not tracked,
357 // generate an "unknown" value as well.
358 const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
359 if (!track(C))
360 return RegisterCell::self(0, BW);
361
362 CellMapType::const_iterator F = M.find(RR.Reg);
363 if (F != M.end()) {
364 if (!RR.Sub)
365 return F->second;
366 BitMask M = mask(RR.Reg, RR.Sub);
367 return F->second.extract(M);
368 }
369 // If not found, create a "top" entry, but do not insert it in the map.
370 return RegisterCell::top(BW);
371}
372
373
374void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
375 CellMapType &M) const {
376 // While updating the cell map can be done in a meaningful way for
377 // a part of a register, it makes little sense to implement it as the
378 // SSA representation would never contain such "partial definitions".
379 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
380 return;
381 assert(RR.Sub == 0 && "Unexpected sub-register in definition");
382 // Eliminate all ref-to-reg-0 bit values: replace them with "self".
383 for (unsigned i = 0, n = RC.width(); i < n; ++i) {
384 const BitValue &V = RC[i];
385 if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
386 RC[i].RefI = BitRef(RR.Reg, i);
387 }
388 M[RR.Reg] = RC;
389}
390
391
392// Check if the cell represents a compile-time integer value.
393bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
394 uint16_t W = A.width();
395 for (uint16_t i = 0; i < W; ++i)
396 if (!A[i].is(0) && !A[i].is(1))
397 return false;
398 return true;
399}
400
401
402// Convert a cell to the integer value. The result must fit in uint64_t.
403uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
404 assert(isInt(A));
405 uint64_t Val = 0;
406 uint16_t W = A.width();
407 for (uint16_t i = 0; i < W; ++i) {
408 Val <<= 1;
409 Val |= A[i].is(1);
410 }
411 return Val;
412}
413
414
415// Evaluator helper functions. These implement some common operation on
416// register cells that can be used to implement target-specific instructions
417// in a target-specific evaluator.
418
419BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
420 RegisterCell Res(W);
421 // For bits beyond the 63rd, this will generate the sign bit of V.
422 for (uint16_t i = 0; i < W; ++i) {
423 Res[i] = BitValue(V & 1);
424 V >>= 1;
425 }
426 return Res;
427}
428
429
430BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
Benjamin Kramer46e38f32016-06-08 10:01:20 +0000431 const APInt &A = CI->getValue();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000432 uint16_t BW = A.getBitWidth();
433 assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
434 RegisterCell Res(BW);
435 for (uint16_t i = 0; i < BW; ++i)
436 Res[i] = A[i];
437 return Res;
438}
439
440
441BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
442 const RegisterCell &A2) const {
443 uint16_t W = A1.width();
444 assert(W == A2.width());
445 RegisterCell Res(W);
446 bool Carry = false;
447 uint16_t I;
448 for (I = 0; I < W; ++I) {
449 const BitValue &V1 = A1[I];
450 const BitValue &V2 = A2[I];
451 if (!V1.num() || !V2.num())
452 break;
453 unsigned S = bool(V1) + bool(V2) + Carry;
454 Res[I] = BitValue(S & 1);
455 Carry = (S > 1);
456 }
457 for (; I < W; ++I) {
458 const BitValue &V1 = A1[I];
459 const BitValue &V2 = A2[I];
460 // If the next bit is same as Carry, the result will be 0 plus the
461 // other bit. The Carry bit will remain unchanged.
462 if (V1.is(Carry))
463 Res[I] = BitValue::ref(V2);
464 else if (V2.is(Carry))
465 Res[I] = BitValue::ref(V1);
466 else
467 break;
468 }
469 for (; I < W; ++I)
470 Res[I] = BitValue::self();
471 return Res;
472}
473
474
475BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
476 const RegisterCell &A2) const {
477 uint16_t W = A1.width();
478 assert(W == A2.width());
479 RegisterCell Res(W);
480 bool Borrow = false;
481 uint16_t I;
482 for (I = 0; I < W; ++I) {
483 const BitValue &V1 = A1[I];
484 const BitValue &V2 = A2[I];
485 if (!V1.num() || !V2.num())
486 break;
487 unsigned S = bool(V1) - bool(V2) - Borrow;
488 Res[I] = BitValue(S & 1);
489 Borrow = (S > 1);
490 }
491 for (; I < W; ++I) {
492 const BitValue &V1 = A1[I];
493 const BitValue &V2 = A2[I];
494 if (V1.is(Borrow)) {
495 Res[I] = BitValue::ref(V2);
496 break;
497 }
498 if (V2.is(Borrow))
499 Res[I] = BitValue::ref(V1);
500 else
501 break;
502 }
503 for (; I < W; ++I)
504 Res[I] = BitValue::self();
505 return Res;
506}
507
508
509BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
510 const RegisterCell &A2) const {
511 uint16_t W = A1.width() + A2.width();
512 uint16_t Z = A1.ct(0) + A2.ct(0);
513 RegisterCell Res(W);
514 Res.fill(0, Z, BitValue::Zero);
515 Res.fill(Z, W, BitValue::self());
516 return Res;
517}
518
519
520BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
521 const RegisterCell &A2) const {
522 uint16_t W = A1.width() + A2.width();
523 uint16_t Z = A1.ct(0) + A2.ct(0);
524 RegisterCell Res(W);
525 Res.fill(0, Z, BitValue::Zero);
526 Res.fill(Z, W, BitValue::self());
527 return Res;
528}
529
530
531BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
532 uint16_t Sh) const {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000533 assert(Sh <= A1.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000534 RegisterCell Res = RegisterCell::ref(A1);
535 Res.rol(Sh);
536 Res.fill(0, Sh, BitValue::Zero);
537 return Res;
538}
539
540
541BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
542 uint16_t Sh) const {
543 uint16_t W = A1.width();
544 assert(Sh <= W);
545 RegisterCell Res = RegisterCell::ref(A1);
546 Res.rol(W-Sh);
547 Res.fill(W-Sh, W, BitValue::Zero);
548 return Res;
549}
550
551
552BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
553 uint16_t Sh) const {
554 uint16_t W = A1.width();
555 assert(Sh <= W);
556 RegisterCell Res = RegisterCell::ref(A1);
557 BitValue Sign = Res[W-1];
558 Res.rol(W-Sh);
559 Res.fill(W-Sh, W, Sign);
560 return Res;
561}
562
563
564BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
565 const RegisterCell &A2) const {
566 uint16_t W = A1.width();
567 assert(W == A2.width());
568 RegisterCell Res(W);
569 for (uint16_t i = 0; i < W; ++i) {
570 const BitValue &V1 = A1[i];
571 const BitValue &V2 = A2[i];
572 if (V1.is(1))
573 Res[i] = BitValue::ref(V2);
574 else if (V2.is(1))
575 Res[i] = BitValue::ref(V1);
576 else if (V1.is(0) || V2.is(0))
577 Res[i] = BitValue::Zero;
578 else if (V1 == V2)
579 Res[i] = V1;
580 else
581 Res[i] = BitValue::self();
582 }
583 return Res;
584}
585
586
587BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
588 const RegisterCell &A2) const {
589 uint16_t W = A1.width();
590 assert(W == A2.width());
591 RegisterCell Res(W);
592 for (uint16_t i = 0; i < W; ++i) {
593 const BitValue &V1 = A1[i];
594 const BitValue &V2 = A2[i];
595 if (V1.is(1) || V2.is(1))
596 Res[i] = BitValue::One;
597 else if (V1.is(0))
598 Res[i] = BitValue::ref(V2);
599 else if (V2.is(0))
600 Res[i] = BitValue::ref(V1);
601 else if (V1 == V2)
602 Res[i] = V1;
603 else
604 Res[i] = BitValue::self();
605 }
606 return Res;
607}
608
609
610BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
611 const RegisterCell &A2) const {
612 uint16_t W = A1.width();
613 assert(W == A2.width());
614 RegisterCell Res(W);
615 for (uint16_t i = 0; i < W; ++i) {
616 const BitValue &V1 = A1[i];
617 const BitValue &V2 = A2[i];
618 if (V1.is(0))
619 Res[i] = BitValue::ref(V2);
620 else if (V2.is(0))
621 Res[i] = BitValue::ref(V1);
622 else if (V1 == V2)
623 Res[i] = BitValue::Zero;
624 else
625 Res[i] = BitValue::self();
626 }
627 return Res;
628}
629
630
631BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
632 uint16_t W = A1.width();
633 RegisterCell Res(W);
634 for (uint16_t i = 0; i < W; ++i) {
635 const BitValue &V = A1[i];
636 if (V.is(0))
637 Res[i] = BitValue::One;
638 else if (V.is(1))
639 Res[i] = BitValue::Zero;
640 else
641 Res[i] = BitValue::self();
642 }
643 return Res;
644}
645
646
647BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
648 uint16_t BitN) const {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000649 assert(BitN < A1.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000650 RegisterCell Res = RegisterCell::ref(A1);
651 Res[BitN] = BitValue::One;
652 return Res;
653}
654
655
656BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
657 uint16_t BitN) const {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000658 assert(BitN < A1.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000659 RegisterCell Res = RegisterCell::ref(A1);
660 Res[BitN] = BitValue::Zero;
661 return Res;
662}
663
664
665BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
666 uint16_t W) const {
667 uint16_t C = A1.cl(B), AW = A1.width();
668 // If the last leading non-B bit is not a constant, then we don't know
669 // the real count.
670 if ((C < AW && A1[AW-1-C].num()) || C == AW)
671 return eIMM(C, W);
672 return RegisterCell::self(0, W);
673}
674
675
676BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
677 uint16_t W) const {
678 uint16_t C = A1.ct(B), AW = A1.width();
679 // If the last trailing non-B bit is not a constant, then we don't know
680 // the real count.
681 if ((C < AW && A1[C].num()) || C == AW)
682 return eIMM(C, W);
683 return RegisterCell::self(0, W);
684}
685
686
687BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
688 uint16_t FromN) const {
689 uint16_t W = A1.width();
690 assert(FromN <= W);
691 RegisterCell Res = RegisterCell::ref(A1);
692 BitValue Sign = Res[FromN-1];
693 // Sign-extend "inreg".
694 Res.fill(FromN, W, Sign);
695 return Res;
696}
697
698
699BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
700 uint16_t FromN) const {
701 uint16_t W = A1.width();
702 assert(FromN <= W);
703 RegisterCell Res = RegisterCell::ref(A1);
704 Res.fill(FromN, W, BitValue::Zero);
705 return Res;
706}
707
708
709BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
710 uint16_t B, uint16_t E) const {
711 uint16_t W = A1.width();
712 assert(B < W && E <= W);
713 if (B == E)
714 return RegisterCell(0);
715 uint16_t Last = (E > 0) ? E-1 : W-1;
716 RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
717 // Return shorter cell.
718 return Res;
719}
720
721
722BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
723 const RegisterCell &A2, uint16_t AtN) const {
724 uint16_t W1 = A1.width(), W2 = A2.width();
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000725 (void)W1;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000726 assert(AtN < W1 && AtN+W2 <= W1);
727 // Copy bits from A1, insert A2 at position AtN.
728 RegisterCell Res = RegisterCell::ref(A1);
729 if (W2 > 0)
730 Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
731 return Res;
732}
733
734
735BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
736 assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
737 uint16_t W = getRegBitWidth(Reg);
738 assert(W > 0 && "Cannot generate mask for empty register");
739 return BitMask(0, W-1);
740}
741
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000742bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
743 const CellMapType &Inputs,
744 CellMapType &Outputs) const {
745 unsigned Opc = MI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000746 switch (Opc) {
747 case TargetOpcode::REG_SEQUENCE: {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000748 RegisterRef RD = MI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000749 assert(RD.Sub == 0);
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000750 RegisterRef RS = MI.getOperand(1);
751 unsigned SS = MI.getOperand(2).getImm();
752 RegisterRef RT = MI.getOperand(3);
753 unsigned ST = MI.getOperand(4).getImm();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000754 assert(SS != ST);
755
756 uint16_t W = getRegBitWidth(RD);
757 RegisterCell Res(W);
758 Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
759 Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
760 putCell(RD, Res, Outputs);
761 break;
762 }
763
764 case TargetOpcode::COPY: {
765 // COPY can transfer a smaller register into a wider one.
766 // If that is the case, fill the remaining high bits with 0.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000767 RegisterRef RD = MI.getOperand(0);
768 RegisterRef RS = MI.getOperand(1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000769 assert(RD.Sub == 0);
770 uint16_t WD = getRegBitWidth(RD);
771 uint16_t WS = getRegBitWidth(RS);
772 assert(WD >= WS);
773 RegisterCell Src = getCell(RS, Inputs);
774 RegisterCell Res(WD);
775 Res.insert(Src, BitMask(0, WS-1));
776 Res.fill(WS, WD, BitValue::Zero);
777 putCell(RD, Res, Outputs);
778 break;
779 }
780
781 default:
782 return false;
783 }
784
785 return true;
786}
787
788
789// Main W-Z implementation.
790
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000791void BT::visitPHI(const MachineInstr &PI) {
792 int ThisN = PI.getParent()->getNumber();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000793 if (Trace)
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000794 dbgs() << "Visit FI(BB#" << ThisN << "): " << PI;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000795
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000796 const MachineOperand &MD = PI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000797 assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
798 RegisterRef DefRR(MD);
799 uint16_t DefBW = ME.getRegBitWidth(DefRR);
800
801 RegisterCell DefC = ME.getCell(DefRR, Map);
802 if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow
803 return;
804
805 bool Changed = false;
806
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000807 for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
808 const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000809 int PredN = PB->getNumber();
810 if (Trace)
811 dbgs() << " edge BB#" << PredN << "->BB#" << ThisN;
812 if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
813 if (Trace)
814 dbgs() << " not executable\n";
815 continue;
816 }
817
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000818 RegisterRef RU = PI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000819 RegisterCell ResC = ME.getCell(RU, Map);
820 if (Trace)
821 dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub)
822 << " cell: " << ResC << "\n";
823 Changed |= DefC.meet(ResC, DefRR.Reg);
824 }
825
826 if (Changed) {
827 if (Trace)
828 dbgs() << "Output: " << PrintReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
829 << " cell: " << DefC << "\n";
830 ME.putCell(DefRR, DefC, Map);
831 visitUsesOf(DefRR.Reg);
832 }
833}
834
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000835void BT::visitNonBranch(const MachineInstr &MI) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000836 if (Trace) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000837 int ThisN = MI.getParent()->getNumber();
838 dbgs() << "Visit MI(BB#" << ThisN << "): " << MI;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000839 }
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000840 if (MI.isDebugValue())
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000841 return;
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000842 assert(!MI.isBranch() && "Unexpected branch instruction");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000843
844 CellMapType ResMap;
845 bool Eval = ME.evaluate(MI, Map, ResMap);
846
847 if (Trace && Eval) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000848 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
849 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000850 if (!MO.isReg() || !MO.isUse())
851 continue;
852 RegisterRef RU(MO);
853 dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub)
854 << " cell: " << ME.getCell(RU, Map) << "\n";
855 }
856 dbgs() << "Outputs:\n";
857 for (CellMapType::iterator I = ResMap.begin(), E = ResMap.end();
858 I != E; ++I) {
859 RegisterRef RD(I->first);
860 dbgs() << " " << PrintReg(I->first, &ME.TRI) << " cell: "
861 << ME.getCell(RD, ResMap) << "\n";
862 }
863 }
864
865 // Iterate over all definitions of the instruction, and update the
866 // cells accordingly.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000867 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
868 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000869 // Visit register defs only.
870 if (!MO.isReg() || !MO.isDef())
871 continue;
872 RegisterRef RD(MO);
873 assert(RD.Sub == 0 && "Unexpected sub-register in definition");
874 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg))
875 continue;
876
877 bool Changed = false;
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000878 if (!Eval || ResMap.count(RD.Reg) == 0) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000879 // Set to "ref" (aka "bottom").
880 uint16_t DefBW = ME.getRegBitWidth(RD);
881 RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
882 if (RefC != ME.getCell(RD, Map)) {
883 ME.putCell(RD, RefC, Map);
884 Changed = true;
885 }
886 } else {
887 RegisterCell DefC = ME.getCell(RD, Map);
888 RegisterCell ResC = ME.getCell(RD, ResMap);
889 // This is a non-phi instruction, so the values of the inputs come
890 // from the same registers each time this instruction is evaluated.
891 // During the propagation, the values of the inputs can become lowered
892 // in the sense of the lattice operation, which may cause different
893 // results to be calculated in subsequent evaluations. This should
894 // not cause the bottoming of the result in the map, since the new
895 // result is already reflecting the lowered inputs.
896 for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
897 BitValue &V = DefC[i];
898 // Bits that are already "bottom" should not be updated.
899 if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
900 continue;
901 // Same for those that are identical in DefC and ResC.
902 if (V == ResC[i])
903 continue;
904 V = ResC[i];
905 Changed = true;
906 }
907 if (Changed)
908 ME.putCell(RD, DefC, Map);
909 }
910 if (Changed)
911 visitUsesOf(RD.Reg);
912 }
913}
914
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000915void BT::visitBranchesFrom(const MachineInstr &BI) {
916 const MachineBasicBlock &B = *BI.getParent();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000917 MachineBasicBlock::const_iterator It = BI, End = B.end();
918 BranchTargetList Targets, BTs;
919 bool FallsThrough = true, DefaultToAll = false;
920 int ThisN = B.getNumber();
921
922 do {
923 BTs.clear();
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000924 const MachineInstr &MI = *It;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000925 if (Trace)
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000926 dbgs() << "Visit BR(BB#" << ThisN << "): " << MI;
927 assert(MI.isBranch() && "Expecting branch instruction");
928 InstrExec.insert(&MI);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000929 bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
930 if (!Eval) {
931 // If the evaluation failed, we will add all targets. Keep going in
932 // the loop to mark all executable branches as such.
933 DefaultToAll = true;
934 FallsThrough = true;
935 if (Trace)
936 dbgs() << " failed to evaluate: will add all CFG successors\n";
937 } else if (!DefaultToAll) {
938 // If evaluated successfully add the targets to the cumulative list.
939 if (Trace) {
940 dbgs() << " adding targets:";
941 for (unsigned i = 0, n = BTs.size(); i < n; ++i)
942 dbgs() << " BB#" << BTs[i]->getNumber();
943 if (FallsThrough)
944 dbgs() << "\n falls through\n";
945 else
946 dbgs() << "\n does not fall through\n";
947 }
948 Targets.insert(BTs.begin(), BTs.end());
949 }
950 ++It;
951 } while (FallsThrough && It != End);
952
953 typedef MachineBasicBlock::const_succ_iterator succ_iterator;
954 if (!DefaultToAll) {
955 // Need to add all CFG successors that lead to EH landing pads.
956 // There won't be explicit branches to these blocks, but they must
957 // be processed.
958 for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) {
959 const MachineBasicBlock *SB = *I;
Reid Kleckner0e288232015-08-27 23:27:47 +0000960 if (SB->isEHPad())
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000961 Targets.insert(SB);
962 }
963 if (FallsThrough) {
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000964 MachineFunction::const_iterator BIt = B.getIterator();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000965 MachineFunction::const_iterator Next = std::next(BIt);
966 if (Next != MF.end())
967 Targets.insert(&*Next);
968 }
969 } else {
970 for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I)
971 Targets.insert(*I);
972 }
973
974 for (unsigned i = 0, n = Targets.size(); i < n; ++i) {
975 int TargetN = Targets[i]->getNumber();
976 FlowQ.push(CFGEdge(ThisN, TargetN));
977 }
978}
979
980
981void BT::visitUsesOf(unsigned Reg) {
982 if (Trace)
983 dbgs() << "visiting uses of " << PrintReg(Reg, &ME.TRI) << "\n";
984
985 typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
986 use_iterator End = MRI.use_nodbg_end();
987 for (use_iterator I = MRI.use_nodbg_begin(Reg); I != End; ++I) {
988 MachineInstr *UseI = I->getParent();
989 if (!InstrExec.count(UseI))
990 continue;
991 if (UseI->isPHI())
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000992 visitPHI(*UseI);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000993 else if (!UseI->isBranch())
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000994 visitNonBranch(*UseI);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000995 else
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000996 visitBranchesFrom(*UseI);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000997 }
998}
999
1000
1001BT::RegisterCell BT::get(RegisterRef RR) const {
1002 return ME.getCell(RR, Map);
1003}
1004
1005
1006void BT::put(RegisterRef RR, const RegisterCell &RC) {
1007 ME.putCell(RR, RC, Map);
1008}
1009
1010
1011// Replace all references to bits from OldRR with the corresponding bits
1012// in NewRR.
1013void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +00001014 assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001015 BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
1016 BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
1017 uint16_t OMB = OM.first(), OME = OM.last();
1018 uint16_t NMB = NM.first(), NME = NM.last();
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +00001019 (void)NME;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001020 assert((OME-OMB == NME-NMB) &&
1021 "Substituting registers of different lengths");
1022 for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
1023 RegisterCell &RC = I->second;
1024 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
1025 BitValue &V = RC[i];
1026 if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
1027 continue;
1028 if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
1029 continue;
1030 V.RefI.Reg = NewRR.Reg;
1031 V.RefI.Pos += NMB-OMB;
1032 }
1033 }
1034}
1035
1036
1037// Check if the block has been "executed" during propagation. (If not, the
1038// block is dead, but it may still appear to be reachable.)
1039bool BT::reached(const MachineBasicBlock *B) const {
1040 int BN = B->getNumber();
1041 assert(BN >= 0);
1042 for (EdgeSetType::iterator I = EdgeExec.begin(), E = EdgeExec.end();
1043 I != E; ++I) {
1044 if (I->second == BN)
1045 return true;
1046 }
1047 return false;
1048}
1049
1050
Krzysztof Parzyszek6eba5b82016-07-26 19:08:45 +00001051// Visit an individual instruction. This could be a newly added instruction,
1052// or one that has been modified by an optimization.
Krzysztof Parzyszek9273ecc2016-08-19 14:10:57 +00001053void BT::visit(const MachineInstr &MI) {
Krzysztof Parzyszek6eba5b82016-07-26 19:08:45 +00001054 assert(!MI.isBranch() && "Only non-branches are allowed");
1055 InstrExec.insert(&MI);
1056 visitNonBranch(MI);
1057}
1058
1059
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001060void BT::reset() {
1061 EdgeExec.clear();
1062 InstrExec.clear();
1063 Map.clear();
1064}
1065
1066
1067void BT::run() {
1068 reset();
1069 assert(FlowQ.empty());
1070
1071 typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits;
1072 const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
1073
1074 unsigned MaxBN = 0;
1075 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
1076 I != E; ++I) {
1077 assert(I->getNumber() >= 0 && "Disconnected block");
1078 unsigned BN = I->getNumber();
1079 if (BN > MaxBN)
1080 MaxBN = BN;
1081 }
1082
1083 // Keep track of visited blocks.
1084 BitVector BlockScanned(MaxBN+1);
1085
1086 int EntryN = Entry->getNumber();
1087 // Generate a fake edge to get something to start with.
1088 FlowQ.push(CFGEdge(-1, EntryN));
1089
1090 while (!FlowQ.empty()) {
1091 CFGEdge Edge = FlowQ.front();
1092 FlowQ.pop();
1093
1094 if (EdgeExec.count(Edge))
1095 continue;
1096 EdgeExec.insert(Edge);
1097
1098 const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
1099 MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
1100 // Visit PHI nodes first.
1101 while (It != End && It->isPHI()) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001102 const MachineInstr &PI = *It++;
1103 InstrExec.insert(&PI);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001104 visitPHI(PI);
1105 }
1106
1107 // If this block has already been visited through a flow graph edge,
1108 // then the instructions have already been processed. Any updates to
1109 // the cells would now only happen through visitUsesOf...
1110 if (BlockScanned[Edge.second])
1111 continue;
1112 BlockScanned[Edge.second] = true;
1113
1114 // Visit non-branch instructions.
1115 while (It != End && !It->isBranch()) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001116 const MachineInstr &MI = *It++;
1117 InstrExec.insert(&MI);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001118 visitNonBranch(MI);
1119 }
1120 // If block end has been reached, add the fall-through edge to the queue.
1121 if (It == End) {
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +00001122 MachineFunction::const_iterator BIt = B.getIterator();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001123 MachineFunction::const_iterator Next = std::next(BIt);
Duncan P. N. Exon Smith83c4b682015-11-07 00:01:16 +00001124 if (Next != MF.end() && B.isSuccessor(&*Next)) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001125 int ThisN = B.getNumber();
1126 int NextN = Next->getNumber();
1127 FlowQ.push(CFGEdge(ThisN, NextN));
1128 }
1129 } else {
1130 // Handle the remaining sequence of branches. This function will update
1131 // the work queue.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001132 visitBranchesFrom(*It);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001133 }
1134 } // while (!FlowQ->empty())
1135
Krzysztof Parzyszek623afbd2016-08-03 18:13:32 +00001136 if (Trace)
1137 print_cells(dbgs() << "Cells after propagation:\n");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001138}
1139