blob: 355fae32876f97f02bfc0981d7241e2175993a74 [file] [log] [blame]
Lama Saba92746832018-04-02 13:48:28 +00001//===- X86AvoidStoreForwardingBlockis.cpp - Avoid HW Store Forward Block --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// If a load follows a store and reloads data that the store has written to
11// memory, Intel microarchitectures can in many cases forward the data directly
12// from the store to the load, This "store forwarding" saves cycles by enabling
13// the load to directly obtain the data instead of accessing the data from
14// cache or memory.
15// A "store forward block" occurs in cases that a store cannot be forwarded to
16// the load. The most typical case of store forward block on Intel Core
17// microarchitecture that a small store cannot be forwarded to a large load.
18// The estimated penalty for a store forward block is ~13 cycles.
19//
20// This pass tries to recognize and handle cases where "store forward block"
21// is created by the compiler when lowering memcpy calls to a sequence
22// of a load and a store.
23//
24// The pass currently only handles cases where memcpy is lowered to
25// XMM/YMM registers, it tries to break the memcpy into smaller copies.
26// breaking the memcpy should be possible since there is no atomicity
27// guarantee for loads and stores to XMM/YMM.
28//
29// It could be better for performance to solve the problem by loading
30// to XMM/YMM then inserting the partial store before storing back from XMM/YMM
31// to memory, but this will result in a more conservative optimization since it
32// requires we prove that all memory accesses between the blocking store and the
33// load must alias/don't alias before we can move the store, whereas the
34// transformation done here is correct regardless to other memory accesses.
35//===----------------------------------------------------------------------===//
36
37#include "X86InstrInfo.h"
38#include "X86Subtarget.h"
39#include "llvm/CodeGen/MachineBasicBlock.h"
40#include "llvm/CodeGen/MachineFunction.h"
41#include "llvm/CodeGen/MachineFunctionPass.h"
42#include "llvm/CodeGen/MachineInstr.h"
43#include "llvm/CodeGen/MachineInstrBuilder.h"
44#include "llvm/CodeGen/MachineOperand.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/IR/DebugInfoMetadata.h"
47#include "llvm/IR/DebugLoc.h"
48#include "llvm/IR/Function.h"
49#include "llvm/MC/MCInstrDesc.h"
50
51using namespace llvm;
52
53#define DEBUG_TYPE "x86-avoid-SFB"
54
55namespace llvm {
56void initializeX86AvoidSFBPassPass(PassRegistry &);
57} // end namespace llvm
58
59static cl::opt<bool> DisableX86AvoidStoreForwardBlocks(
60 "x86-disable-avoid-SFB", cl::Hidden,
61 cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
62
63static cl::opt<unsigned> X86AvoidSFBInspectionLimit(
64 "x86-sfb-inspection-limit",
65 cl::desc("X86: Number of instructions backward to "
66 "inspect for store forwarding blocks."),
67 cl::init(20), cl::Hidden);
68
69namespace {
70
71using DisplacementSizeMap = std::map<int64_t, unsigned>;
72
73class X86AvoidSFBPass : public MachineFunctionPass {
74public:
75 static char ID;
76 X86AvoidSFBPass() : MachineFunctionPass(ID) {
77 initializeX86AvoidSFBPassPass(*PassRegistry::getPassRegistry());
78 }
79
80 StringRef getPassName() const override {
81 return "X86 Avoid Store Forwarding Blocks";
82 }
83
84 bool runOnMachineFunction(MachineFunction &MF) override;
85
86 void getAnalysisUsage(AnalysisUsage &AU) const override {
87 MachineFunctionPass::getAnalysisUsage(AU);
88 AU.addRequired<AAResultsWrapperPass>();
89 }
90
91private:
92 MachineRegisterInfo *MRI;
93 const X86InstrInfo *TII;
94 const X86RegisterInfo *TRI;
95 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2>
96 BlockedLoadsStoresPairs;
97 SmallVector<MachineInstr *, 2> ForRemoval;
98 AliasAnalysis *AA;
99
100 /// \brief Returns couples of Load then Store to memory which look
101 /// like a memcpy.
102 void findPotentiallylBlockedCopies(MachineFunction &MF);
103 /// \brief Break the memcpy's load and store into smaller copies
104 /// such that each memory load that was blocked by a smaller store
105 /// would now be copied separately.
106 void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
107 const DisplacementSizeMap &BlockingStoresDispSizeMap);
108 /// \brief Break a copy of size Size to smaller copies.
109 void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
110 MachineInstr *StoreInst, int64_t StDispImm,
111 int64_t LMMOffset, int64_t SMMOffset);
112
113 void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
114 MachineInstr *StoreInst, unsigned NStoreOpcode,
115 int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
116 int64_t SMMOffset);
117
118 bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const;
119
120 unsigned getRegSizeInBytes(MachineInstr *Inst);
121};
122
123} // end anonymous namespace
124
125char X86AvoidSFBPass::ID = 0;
126
127INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking",
128 false, false)
129INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
130INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false,
131 false)
132
133FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() {
134 return new X86AvoidSFBPass();
135}
136
137static bool isXMMLoadOpcode(unsigned Opcode) {
138 return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
139 Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
140 Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
141 Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
142 Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
143 Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
144 Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
145 Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
146}
147static bool isYMMLoadOpcode(unsigned Opcode) {
148 return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
149 Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
150 Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
151 Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
152 Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
153 Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
154 Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
155}
156
157static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
158 return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
159}
160
161static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode) {
162 switch (LdOpcode) {
163 case X86::MOVUPSrm:
164 case X86::MOVAPSrm:
165 return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr;
166 case X86::VMOVUPSrm:
167 case X86::VMOVAPSrm:
168 return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr;
169 case X86::VMOVUPDrm:
170 case X86::VMOVAPDrm:
171 return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr;
172 case X86::VMOVDQUrm:
173 case X86::VMOVDQArm:
174 return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr;
175 case X86::VMOVUPSZ128rm:
176 case X86::VMOVAPSZ128rm:
177 return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr;
178 case X86::VMOVUPDZ128rm:
179 case X86::VMOVAPDZ128rm:
180 return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr;
181 case X86::VMOVUPSYrm:
182 case X86::VMOVAPSYrm:
183 return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr;
184 case X86::VMOVUPDYrm:
185 case X86::VMOVAPDYrm:
186 return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr;
187 case X86::VMOVDQUYrm:
188 case X86::VMOVDQAYrm:
189 return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr;
190 case X86::VMOVUPSZ256rm:
191 case X86::VMOVAPSZ256rm:
192 return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr;
193 case X86::VMOVUPDZ256rm:
194 case X86::VMOVAPDZ256rm:
195 return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr;
196 case X86::VMOVDQU64Z128rm:
197 case X86::VMOVDQA64Z128rm:
198 return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr;
199 case X86::VMOVDQU32Z128rm:
200 case X86::VMOVDQA32Z128rm:
201 return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr;
202 case X86::VMOVDQU64Z256rm:
203 case X86::VMOVDQA64Z256rm:
204 return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr;
205 case X86::VMOVDQU32Z256rm:
206 case X86::VMOVDQA32Z256rm:
207 return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr;
208 default:
209 return false;
210 }
211}
212
213static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) {
214 bool PBlock = false;
215 PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
216 Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
217 Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
218 Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
219 if (isYMMLoadOpcode(LoadOpcode))
220 PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
221 Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
222 Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
223 Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
224 Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
225 Opcode == X86::VMOVDQU64Z128mr ||
226 Opcode == X86::VMOVDQA64Z128mr ||
227 Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
228 return PBlock;
229}
230
231static const int MOV128SZ = 16;
232static const int MOV64SZ = 8;
233static const int MOV32SZ = 4;
234static const int MOV16SZ = 2;
235static const int MOV8SZ = 1;
236
237static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) {
238 switch (LoadOpcode) {
239 case X86::VMOVUPSYrm:
240 case X86::VMOVAPSYrm:
241 return X86::VMOVUPSrm;
242 case X86::VMOVUPDYrm:
243 case X86::VMOVAPDYrm:
244 return X86::VMOVUPDrm;
245 case X86::VMOVDQUYrm:
246 case X86::VMOVDQAYrm:
247 return X86::VMOVDQUrm;
248 case X86::VMOVUPSZ256rm:
249 case X86::VMOVAPSZ256rm:
250 return X86::VMOVUPSZ128rm;
251 case X86::VMOVUPDZ256rm:
252 case X86::VMOVAPDZ256rm:
253 return X86::VMOVUPDZ128rm;
254 case X86::VMOVDQU64Z256rm:
255 case X86::VMOVDQA64Z256rm:
256 return X86::VMOVDQU64Z128rm;
257 case X86::VMOVDQU32Z256rm:
258 case X86::VMOVDQA32Z256rm:
259 return X86::VMOVDQU32Z128rm;
260 default:
261 llvm_unreachable("Unexpected Load Instruction Opcode");
262 }
263 return 0;
264}
265
266static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) {
267 switch (StoreOpcode) {
268 case X86::VMOVUPSYmr:
269 case X86::VMOVAPSYmr:
270 return X86::VMOVUPSmr;
271 case X86::VMOVUPDYmr:
272 case X86::VMOVAPDYmr:
273 return X86::VMOVUPDmr;
274 case X86::VMOVDQUYmr:
275 case X86::VMOVDQAYmr:
276 return X86::VMOVDQUmr;
277 case X86::VMOVUPSZ256mr:
278 case X86::VMOVAPSZ256mr:
279 return X86::VMOVUPSZ128mr;
280 case X86::VMOVUPDZ256mr:
281 case X86::VMOVAPDZ256mr:
282 return X86::VMOVUPDZ128mr;
283 case X86::VMOVDQU64Z256mr:
284 case X86::VMOVDQA64Z256mr:
285 return X86::VMOVDQU64Z128mr;
286 case X86::VMOVDQU32Z256mr:
287 case X86::VMOVDQA32Z256mr:
288 return X86::VMOVDQU32Z128mr;
289 default:
290 llvm_unreachable("Unexpected Load Instruction Opcode");
291 }
292 return 0;
293}
294
295static int getAddrOffset(MachineInstr *MI) {
296 const MCInstrDesc &Descl = MI->getDesc();
297 int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
298 assert(AddrOffset != -1 && "Expected Memory Operand");
299 AddrOffset += X86II::getOperandBias(Descl);
300 return AddrOffset;
301}
302
303static MachineOperand &getBaseOperand(MachineInstr *MI) {
304 int AddrOffset = getAddrOffset(MI);
305 return MI->getOperand(AddrOffset + X86::AddrBaseReg);
306}
307
308static MachineOperand &getDispOperand(MachineInstr *MI) {
309 int AddrOffset = getAddrOffset(MI);
310 return MI->getOperand(AddrOffset + X86::AddrDisp);
311}
312
313// Relevant addressing modes contain only base register and immediate
314// displacement or frameindex and immediate displacement.
315// TODO: Consider expanding to other addressing modes in the future
316static bool isRelevantAddressingMode(MachineInstr *MI) {
317 int AddrOffset = getAddrOffset(MI);
318 MachineOperand &Base = getBaseOperand(MI);
319 MachineOperand &Disp = getDispOperand(MI);
320 MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
321 MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
322 MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);
323
324 if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
325 return false;
326 if (!Disp.isImm())
327 return false;
328 if (Scale.getImm() != 1)
329 return false;
330 if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
331 return false;
332 if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
333 return false;
334 return true;
335}
336
337// Collect potentially blocking stores.
338// Limit the number of instructions backwards we want to inspect
339// since the effect of store block won't be visible if the store
340// and load instructions have enough instructions in between to
341// keep the core busy.
342static SmallVector<MachineInstr *, 2>
343findPotentialBlockers(MachineInstr *LoadInst) {
344 SmallVector<MachineInstr *, 2> PotentialBlockers;
345 unsigned BlockCount = 0;
346 const unsigned InspectionLimit = X86AvoidSFBInspectionLimit;
347 for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)),
348 E = LoadInst->getParent()->rend();
349 PBInst != E; ++PBInst) {
350 BlockCount++;
351 if (BlockCount >= InspectionLimit)
352 break;
353 MachineInstr &MI = *PBInst;
354 if (MI.getDesc().isCall())
355 return PotentialBlockers;
356 PotentialBlockers.push_back(&MI);
357 }
358 // If we didn't get to the instructions limit try predecessing blocks.
359 // Ideally we should traverse the predecessor blocks in depth with some
360 // coloring algorithm, but for now let's just look at the first order
361 // predecessors.
362 if (BlockCount < InspectionLimit) {
363 MachineBasicBlock *MBB = LoadInst->getParent();
364 int LimitLeft = InspectionLimit - BlockCount;
365 for (MachineBasicBlock::pred_iterator PB = MBB->pred_begin(),
366 PE = MBB->pred_end();
367 PB != PE; ++PB) {
368 MachineBasicBlock *PMBB = *PB;
369 int PredCount = 0;
370 for (MachineBasicBlock::reverse_iterator PBInst = PMBB->rbegin(),
371 PME = PMBB->rend();
372 PBInst != PME; ++PBInst) {
373 PredCount++;
374 if (PredCount >= LimitLeft)
375 break;
376 if (PBInst->getDesc().isCall())
377 break;
378 PotentialBlockers.push_back(&*PBInst);
379 }
380 }
381 }
382 return PotentialBlockers;
383}
384
385void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
386 int64_t LoadDisp, MachineInstr *StoreInst,
387 unsigned NStoreOpcode, int64_t StoreDisp,
388 unsigned Size, int64_t LMMOffset,
389 int64_t SMMOffset) {
390 MachineOperand &LoadBase = getBaseOperand(LoadInst);
391 MachineOperand &StoreBase = getBaseOperand(StoreInst);
392 MachineBasicBlock *MBB = LoadInst->getParent();
393 MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
394 MachineMemOperand *SMMO = *StoreInst->memoperands_begin();
395
396 unsigned Reg1 = MRI->createVirtualRegister(
397 TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
398 BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode), Reg1)
399 .add(LoadBase)
400 .addImm(1)
401 .addReg(X86::NoRegister)
402 .addImm(LoadDisp)
403 .addReg(X86::NoRegister)
404 .addMemOperand(
405 MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
406 DEBUG(LoadInst->getPrevNode()->dump());
407 // If the load and store are consecutive, use the loadInst location to
408 // reduce register pressure.
409 MachineInstr *StInst = StoreInst;
410 if (StoreInst->getPrevNode() == LoadInst)
411 StInst = LoadInst;
412 BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
413 .add(StoreBase)
414 .addImm(1)
415 .addReg(X86::NoRegister)
416 .addImm(StoreDisp)
417 .addReg(X86::NoRegister)
418 .addReg(Reg1)
419 .addMemOperand(
420 MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
421 DEBUG(StInst->getPrevNode()->dump());
422}
423
424void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
425 int64_t LdDispImm, MachineInstr *StoreInst,
426 int64_t StDispImm, int64_t LMMOffset,
427 int64_t SMMOffset) {
428 int LdDisp = LdDispImm;
429 int StDisp = StDispImm;
430 while (Size > 0) {
431 if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
432 Size = Size - MOV128SZ;
433 buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp,
434 StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()),
435 StDisp, MOV128SZ, LMMOffset, SMMOffset);
436 LdDisp += MOV128SZ;
437 StDisp += MOV128SZ;
438 LMMOffset += MOV128SZ;
439 SMMOffset += MOV128SZ;
440 continue;
441 }
442 if (Size - MOV64SZ >= 0) {
443 Size = Size - MOV64SZ;
444 buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
445 MOV64SZ, LMMOffset, SMMOffset);
446 LdDisp += MOV64SZ;
447 StDisp += MOV64SZ;
448 LMMOffset += MOV64SZ;
449 SMMOffset += MOV64SZ;
450 continue;
451 }
452 if (Size - MOV32SZ >= 0) {
453 Size = Size - MOV32SZ;
454 buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
455 MOV32SZ, LMMOffset, SMMOffset);
456 LdDisp += MOV32SZ;
457 StDisp += MOV32SZ;
458 LMMOffset += MOV32SZ;
459 SMMOffset += MOV32SZ;
460 continue;
461 }
462 if (Size - MOV16SZ >= 0) {
463 Size = Size - MOV16SZ;
464 buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
465 MOV16SZ, LMMOffset, SMMOffset);
466 LdDisp += MOV16SZ;
467 StDisp += MOV16SZ;
468 LMMOffset += MOV16SZ;
469 SMMOffset += MOV16SZ;
470 continue;
471 }
472 if (Size - MOV8SZ >= 0) {
473 Size = Size - MOV8SZ;
474 buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
475 MOV8SZ, LMMOffset, SMMOffset);
476 LdDisp += MOV8SZ;
477 StDisp += MOV8SZ;
478 LMMOffset += MOV8SZ;
479 SMMOffset += MOV8SZ;
480 continue;
481 }
482 }
483 assert(Size == 0 && "Wrong size division");
484}
485
486static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
487 MachineOperand &LoadBase = getBaseOperand(LoadInst);
488 MachineOperand &StoreBase = getBaseOperand(StoreInst);
489 if (LoadBase.isReg()) {
490 MachineInstr *LastLoad = LoadInst->getPrevNode();
491 // If the original load and store to xmm/ymm were consecutive
492 // then the partial copies were also created in
493 // a consecutive order to reduce register pressure,
494 // and the location of the last load is before the last store.
495 if (StoreInst->getPrevNode() == LoadInst)
496 LastLoad = LoadInst->getPrevNode()->getPrevNode();
497 getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
498 }
499 if (StoreBase.isReg()) {
500 MachineInstr *StInst = StoreInst;
501 if (StoreInst->getPrevNode() == LoadInst)
502 StInst = LoadInst;
503 getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
504 }
505}
506
507bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1,
508 const MachineMemOperand &Op2) const {
509 if (!Op1.getValue() || !Op2.getValue())
510 return true;
511
512 int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
513 int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
514 int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;
515
516 AliasResult AAResult =
517 AA->alias(MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()),
518 MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo()));
519 return AAResult != NoAlias;
520}
521
522void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
523 for (auto &MBB : MF)
524 for (auto &MI : MBB) {
525 if (!isPotentialBlockedMemCpyLd(MI.getOpcode()))
526 continue;
527 int DefVR = MI.getOperand(0).getReg();
528 if (!MRI->hasOneUse(DefVR))
529 continue;
530 for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end();
531 UI != UE;) {
532 MachineOperand &StoreMO = *UI++;
533 MachineInstr &StoreMI = *StoreMO.getParent();
534 // Skip cases where the memcpy may overlap.
535 if (StoreMI.getParent() == MI.getParent() &&
536 isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) &&
537 isRelevantAddressingMode(&MI) &&
538 isRelevantAddressingMode(&StoreMI)) {
539 assert(MI.hasOneMemOperand() &&
540 "Expected one memory operand for load instruction");
541 assert(StoreMI.hasOneMemOperand() &&
542 "Expected one memory operand for store instruction");
543 if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin()))
544 BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI));
545 }
546 }
547 }
548}
549
550unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
551 auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
552 *LoadInst->getParent()->getParent());
553 return TRI->getRegSizeInBits(*TRC) / 8;
554}
555
556void X86AvoidSFBPass::breakBlockedCopies(
557 MachineInstr *LoadInst, MachineInstr *StoreInst,
558 const DisplacementSizeMap &BlockingStoresDispSizeMap) {
559 int64_t LdDispImm = getDispOperand(LoadInst).getImm();
560 int64_t StDispImm = getDispOperand(StoreInst).getImm();
561 int64_t LMMOffset = (*LoadInst->memoperands_begin())->getOffset();
562 int64_t SMMOffset = (*StoreInst->memoperands_begin())->getOffset();
563
564 int64_t LdDisp1 = LdDispImm;
565 int64_t LdDisp2 = 0;
566 int64_t StDisp1 = StDispImm;
567 int64_t StDisp2 = 0;
568 unsigned Size1 = 0;
569 unsigned Size2 = 0;
570 int64_t LdStDelta = StDispImm - LdDispImm;
571
572 for (auto DispSizePair : BlockingStoresDispSizeMap) {
573 LdDisp2 = DispSizePair.first;
574 StDisp2 = DispSizePair.first + LdStDelta;
575 Size2 = DispSizePair.second;
576 // Avoid copying overlapping areas.
577 if (LdDisp2 < LdDisp1) {
578 int OverlapDelta = LdDisp1 - LdDisp2;
579 LdDisp2 += OverlapDelta;
580 StDisp2 += OverlapDelta;
581 Size2 -= OverlapDelta;
582 }
583 Size1 = std::abs(std::abs(LdDisp2) - std::abs(LdDisp1));
584
585 // Build a copy for the point until the current blocking store's
586 // displacement.
587 buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
588 SMMOffset);
589 // Build a copy for the current blocking store.
590 buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
591 SMMOffset + Size1);
592 LdDisp1 = LdDisp2 + Size2;
593 StDisp1 = StDisp2 + Size2;
594 LMMOffset += Size1 + Size2;
595 SMMOffset += Size1 + Size2;
596 }
597 unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
598 buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
599 LMMOffset);
600}
601
602static bool hasSameBaseOpValue(MachineInstr *LoadInst,
603 MachineInstr *StoreInst) {
604 MachineOperand &LoadBase = getBaseOperand(LoadInst);
605 MachineOperand &StoreBase = getBaseOperand(StoreInst);
606 if (LoadBase.isReg() != StoreBase.isReg())
607 return false;
608 if (LoadBase.isReg())
609 return LoadBase.getReg() == StoreBase.getReg();
610 return LoadBase.getIndex() == StoreBase.getIndex();
611}
612
613static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize,
614 int64_t StoreDispImm, unsigned StoreSize) {
615 return ((StoreDispImm >= LoadDispImm) &&
616 (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize)));
617}
618
619// Keep track of all stores blocking a load
620static void
621updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap,
622 int64_t DispImm, unsigned Size) {
623 if (BlockingStoresDispSizeMap.count(DispImm)) {
624 // Choose the smallest blocking store starting at this displacement.
625 if (BlockingStoresDispSizeMap[DispImm] > Size)
626 BlockingStoresDispSizeMap[DispImm] = Size;
627
628 } else
629 BlockingStoresDispSizeMap[DispImm] = Size;
630}
631
632// Remove blocking stores contained in each other.
633static void
634removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) {
635 if (BlockingStoresDispSizeMap.size() <= 1)
636 return;
637
638 int64_t PrevDisp = BlockingStoresDispSizeMap.begin()->first;
639 unsigned PrevSize = BlockingStoresDispSizeMap.begin()->second;
640 SmallVector<int64_t, 2> ForRemoval;
641 for (auto DispSizePair = std::next(BlockingStoresDispSizeMap.begin());
642 DispSizePair != BlockingStoresDispSizeMap.end(); ++DispSizePair) {
643 int64_t CurrDisp = DispSizePair->first;
644 unsigned CurrSize = DispSizePair->second;
645 if (CurrDisp + CurrSize <= PrevDisp + PrevSize) {
646 ForRemoval.push_back(PrevDisp);
647 }
648 PrevDisp = CurrDisp;
649 PrevSize = CurrSize;
650 }
651 for (auto Disp : ForRemoval)
652 BlockingStoresDispSizeMap.erase(Disp);
653}
654
655bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) {
656 bool Changed = false;
657
658 if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) ||
659 !MF.getSubtarget<X86Subtarget>().is64Bit())
660 return false;
661
662 MRI = &MF.getRegInfo();
663 assert(MRI->isSSA() && "Expected MIR to be in SSA form");
664 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
665 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
666 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
667 DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
668 // Look for a load then a store to XMM/YMM which look like a memcpy
669 findPotentiallylBlockedCopies(MF);
670
671 for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) {
672 MachineInstr *LoadInst = LoadStoreInstPair.first;
673 int64_t LdDispImm = getDispOperand(LoadInst).getImm();
674 DisplacementSizeMap BlockingStoresDispSizeMap;
675
676 SmallVector<MachineInstr *, 2> PotentialBlockers =
677 findPotentialBlockers(LoadInst);
678 for (auto PBInst : PotentialBlockers) {
679 if (!isPotentialBlockingStoreInst(PBInst->getOpcode(),
680 LoadInst->getOpcode()) ||
681 !isRelevantAddressingMode(PBInst))
682 continue;
683 int64_t PBstDispImm = getDispOperand(PBInst).getImm();
684 assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand");
685 unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
686 // This check doesn't cover all cases, but it will suffice for now.
687 // TODO: take branch probability into consideration, if the blocking
688 // store is in an unreached block, breaking the memcopy could lose
689 // performance.
690 if (hasSameBaseOpValue(LoadInst, PBInst) &&
691 isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm,
692 PBstSize))
693 updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm,
694 PBstSize);
695 }
696
697 if (BlockingStoresDispSizeMap.empty())
698 continue;
699
700 // We found a store forward block, break the memcpy's load and store
701 // into smaller copies such that each smaller store that was causing
702 // a store block would now be copied separately.
703 MachineInstr *StoreInst = LoadStoreInstPair.second;
704 DEBUG(dbgs() << "Blocked load and store instructions: \n");
705 DEBUG(LoadInst->dump());
706 DEBUG(StoreInst->dump());
707 DEBUG(dbgs() << "Replaced with:\n");
708 removeRedundantBlockingStores(BlockingStoresDispSizeMap);
709 breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap);
710 updateKillStatus(LoadInst, StoreInst);
711 ForRemoval.push_back(LoadInst);
712 ForRemoval.push_back(StoreInst);
713 }
714 for (auto RemovedInst : ForRemoval) {
715 RemovedInst->eraseFromParent();
716 }
717 ForRemoval.clear();
718 BlockedLoadsStoresPairs.clear();
719 DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);
720
721 return Changed;
722}