blob: 4759a91484bda75a68a32a82068809ccbce2f5a1 [file] [log] [blame]
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001//===--- HexagonBitTracker.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/CodeGen/MachineRegisterInfo.h"
11#include "llvm/IR/Module.h"
12#include "llvm/Support/Debug.h"
13#include "llvm/Support/raw_ostream.h"
14
15#include "Hexagon.h"
16#include "HexagonInstrInfo.h"
17#include "HexagonRegisterInfo.h"
18#include "HexagonTargetMachine.h"
19#include "HexagonBitTracker.h"
20
21using namespace llvm;
22
23typedef BitTracker BT;
24
Benjamin Kramerd8861512015-07-13 20:38:16 +000025HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
26 MachineRegisterInfo &mri,
27 const HexagonInstrInfo &tii,
28 MachineFunction &mf)
Matthias Braun941a7052016-07-28 18:40:00 +000029 : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000030 // Populate the VRX map (VR to extension-type).
31 // Go over all the formal parameters of the function. If a given parameter
32 // P is sign- or zero-extended, locate the virtual register holding that
33 // parameter and create an entry in the VRX map indicating the type of ex-
34 // tension (and the source type).
35 // This is a bit complicated to do accurately, since the memory layout in-
36 // formation is necessary to precisely determine whether an aggregate para-
37 // meter will be passed in a register or in memory. What is given in MRI
38 // is the association between the physical register that is live-in (i.e.
39 // holds an argument), and the virtual register that this value will be
40 // copied into. This, by itself, is not sufficient to map back the virtual
41 // register to a formal parameter from Function (since consecutive live-ins
42 // from MRI may not correspond to consecutive formal parameters from Func-
43 // tion). To avoid the complications with in-memory arguments, only consi-
44 // der the initial sequence of formal parameters that are known to be
45 // passed via registers.
46 unsigned AttrIdx = 0;
47 unsigned InVirtReg, InPhysReg = 0;
48 const Function &F = *MF.getFunction();
49 typedef Function::const_arg_iterator arg_iterator;
50 for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
51 AttrIdx++;
52 const Argument &Arg = *I;
53 Type *ATy = Arg.getType();
54 unsigned Width = 0;
55 if (ATy->isIntegerTy())
56 Width = ATy->getIntegerBitWidth();
57 else if (ATy->isPointerTy())
58 Width = 32;
59 // If pointer size is not set through target data, it will default to
60 // Module::AnyPointerSize.
61 if (Width == 0 || Width > 64)
62 break;
63 InPhysReg = getNextPhysReg(InPhysReg, Width);
64 if (!InPhysReg)
65 break;
66 InVirtReg = getVirtRegFor(InPhysReg);
67 if (!InVirtReg)
68 continue;
69 AttributeSet Attrs = F.getAttributes();
70 if (Attrs.hasAttribute(AttrIdx, Attribute::SExt))
71 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
72 else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt))
73 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
74 }
75}
76
77
78BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
79 if (Sub == 0)
80 return MachineEvaluator::mask(Reg, 0);
81 using namespace Hexagon;
82 const TargetRegisterClass *RC = MRI.getRegClass(Reg);
83 unsigned ID = RC->getID();
84 uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
85 switch (ID) {
86 case DoubleRegsRegClassID:
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +000087 case VecDblRegsRegClassID:
88 case VecDblRegs128BRegClassID:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000089 return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1)
90 : BT::BitMask(RW, 2*RW-1);
91 default:
92 break;
93 }
94#ifndef NDEBUG
95 dbgs() << PrintReg(Reg, &TRI, Sub) << '\n';
96#endif
97 llvm_unreachable("Unexpected register/subregister");
98}
99
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000100namespace {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000101class RegisterRefs {
102 std::vector<BT::RegisterRef> Vector;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000103
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000104public:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000105 RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000106 for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000107 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000108 if (MO.isReg())
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000109 Vector[i] = BT::RegisterRef(MO);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000110 // For indices that don't correspond to registers, the entry will
111 // remain constructed via the default constructor.
112 }
113 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000114
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000115 size_t size() const { return Vector.size(); }
116 const BT::RegisterRef &operator[](unsigned n) const {
117 // The main purpose of this operator is to assert with bad argument.
118 assert(n < Vector.size());
119 return Vector[n];
120 }
121};
122}
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000123
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000124bool HexagonEvaluator::evaluate(const MachineInstr &MI,
125 const CellMapType &Inputs,
126 CellMapType &Outputs) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000127 unsigned NumDefs = 0;
128
129 // Sanity verification: there should not be any defs with subregisters.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000130 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
131 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000132 if (!MO.isReg() || !MO.isDef())
133 continue;
134 NumDefs++;
135 assert(MO.getSubReg() == 0);
136 }
137
138 if (NumDefs == 0)
139 return false;
140
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000141 using namespace Hexagon;
142 unsigned Opc = MI.getOpcode();
143
144 if (MI.mayLoad()) {
145 switch (Opc) {
146 // These instructions may be marked as mayLoad, but they are generating
147 // immediate values, so skip them.
148 case CONST32:
149 case CONST32_Int_Real:
150 case CONST64_Int_Real:
151 break;
152 default:
153 return evaluateLoad(MI, Inputs, Outputs);
154 }
155 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000156
157 // Check COPY instructions that copy formal parameters into virtual
158 // registers. Such parameters can be sign- or zero-extended at the
159 // call site, and we should take advantage of this knowledge. The MRI
160 // keeps a list of pairs of live-in physical and virtual registers,
161 // which provides information about which virtual registers will hold
162 // the argument values. The function will still contain instructions
163 // defining those virtual registers, and in practice those are COPY
164 // instructions from a physical to a virtual register. In such cases,
165 // applying the argument extension to the virtual register can be seen
166 // as simply mirroring the extension that had already been applied to
167 // the physical register at the call site. If the defining instruction
168 // was not a COPY, it would not be clear how to mirror that extension
169 // on the callee's side. For that reason, only check COPY instructions
170 // for potential extensions.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000171 if (MI.isCopy()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000172 if (evaluateFormalCopy(MI, Inputs, Outputs))
173 return true;
174 }
175
176 // Beyond this point, if any operand is a global, skip that instruction.
177 // The reason is that certain instructions that can take an immediate
178 // operand can also have a global symbol in that operand. To avoid
179 // checking what kind of operand a given instruction has individually
180 // for each instruction, do it here. Global symbols as operands gene-
181 // rally do not provide any useful information.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000182 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
183 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000184 if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
185 MO.isCPI())
186 return false;
187 }
188
189 RegisterRefs Reg(MI);
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000190#define op(i) MI.getOperand(i)
191#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
192#define im(i) MI.getOperand(i).getImm()
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000193
194 // If the instruction has no register operands, skip it.
195 if (Reg.size() == 0)
196 return false;
197
198 // Record result for register in operand 0.
199 auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
200 -> bool {
201 putCell(Reg[0], Val, Outputs);
202 return true;
203 };
204 // Get the cell corresponding to the N-th operand.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000205 auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
206 uint16_t W) -> BT::RegisterCell {
207 const MachineOperand &Op = MI.getOperand(N);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000208 if (Op.isImm())
209 return eIMM(Op.getImm(), W);
210 if (!Op.isReg())
211 return RegisterCell::self(0, W);
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000212 assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000213 return rc(N);
214 };
215 // Extract RW low bits of the cell.
216 auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
217 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000218 assert(RW <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000219 return eXTR(RC, 0, RW);
220 };
221 // Extract RW high bits of the cell.
222 auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
223 -> BT::RegisterCell {
224 uint16_t W = RC.width();
225 assert(RW <= W);
226 return eXTR(RC, W-RW, W);
227 };
228 // Extract N-th halfword (counting from the least significant position).
229 auto half = [this] (const BT::RegisterCell &RC, unsigned N)
230 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000231 assert(N*16+16 <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000232 return eXTR(RC, N*16, N*16+16);
233 };
234 // Shuffle bits (pick even/odd from cells and merge into result).
235 auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
236 uint16_t BW, bool Odd) -> BT::RegisterCell {
237 uint16_t I = Odd, Ws = Rs.width();
238 assert(Ws == Rt.width());
239 RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
240 I += 2;
241 while (I*BW < Ws) {
242 RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
243 I += 2;
244 }
245 return RC;
246 };
247
248 // The bitwidth of the 0th operand. In most (if not all) of the
249 // instructions below, the 0th operand is the defined register.
250 // Pre-compute the bitwidth here, because it is needed in many cases
251 // cases below.
252 uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
253
254 switch (Opc) {
255 // Transfer immediate:
256
257 case A2_tfrsi:
258 case A2_tfrpi:
259 case CONST32:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000260 case CONST32_Int_Real:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000261 case CONST64_Int_Real:
262 return rr0(eIMM(im(1), W0), Outputs);
263 case TFR_PdFalse:
264 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
265 case TFR_PdTrue:
266 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
267 case TFR_FI: {
268 int FI = op(1).getIndex();
269 int Off = op(2).getImm();
270 unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
271 unsigned L = Log2_32(A);
272 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
273 RC.fill(0, L, BT::BitValue::Zero);
274 return rr0(RC, Outputs);
275 }
276
277 // Transfer register:
278
279 case A2_tfr:
280 case A2_tfrp:
281 case C2_pxfer_map:
282 return rr0(rc(1), Outputs);
283 case C2_tfrpr: {
284 uint16_t RW = W0;
285 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
286 assert(PW <= RW);
287 RegisterCell PC = eXTR(rc(1), 0, PW);
288 RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
289 RC.fill(PW, RW, BT::BitValue::Zero);
290 return rr0(RC, Outputs);
291 }
292 case C2_tfrrp: {
293 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
294 W0 = 8; // XXX Pred size
295 return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
296 }
297
298 // Arithmetic:
299
300 case A2_abs:
301 case A2_absp:
302 // TODO
303 break;
304
305 case A2_addsp: {
306 uint16_t W1 = getRegBitWidth(Reg[1]);
307 assert(W0 == 64 && W1 == 32);
308 RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
309 RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
310 return rr0(RC, Outputs);
311 }
312 case A2_add:
313 case A2_addp:
314 return rr0(eADD(rc(1), rc(2)), Outputs);
315 case A2_addi:
316 return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
317 case S4_addi_asl_ri: {
318 RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
319 return rr0(RC, Outputs);
320 }
321 case S4_addi_lsr_ri: {
322 RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
323 return rr0(RC, Outputs);
324 }
325 case S4_addaddi: {
326 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
327 return rr0(RC, Outputs);
328 }
329 case M4_mpyri_addi: {
330 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
331 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
332 return rr0(RC, Outputs);
333 }
334 case M4_mpyrr_addi: {
335 RegisterCell M = eMLS(rc(2), rc(3));
336 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
337 return rr0(RC, Outputs);
338 }
339 case M4_mpyri_addr_u2: {
340 RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
341 RegisterCell RC = eADD(rc(1), lo(M, W0));
342 return rr0(RC, Outputs);
343 }
344 case M4_mpyri_addr: {
345 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
346 RegisterCell RC = eADD(rc(1), lo(M, W0));
347 return rr0(RC, Outputs);
348 }
349 case M4_mpyrr_addr: {
350 RegisterCell M = eMLS(rc(2), rc(3));
351 RegisterCell RC = eADD(rc(1), lo(M, W0));
352 return rr0(RC, Outputs);
353 }
354 case S4_subaddi: {
355 RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
356 return rr0(RC, Outputs);
357 }
358 case M2_accii: {
359 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
360 return rr0(RC, Outputs);
361 }
362 case M2_acci: {
363 RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
364 return rr0(RC, Outputs);
365 }
366 case M2_subacc: {
367 RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
368 return rr0(RC, Outputs);
369 }
370 case S2_addasl_rrri: {
371 RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
372 return rr0(RC, Outputs);
373 }
374 case C4_addipc: {
375 RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
376 RPC.fill(0, 2, BT::BitValue::Zero);
377 return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
378 }
379 case A2_sub:
380 case A2_subp:
381 return rr0(eSUB(rc(1), rc(2)), Outputs);
382 case A2_subri:
383 return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
384 case S4_subi_asl_ri: {
385 RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
386 return rr0(RC, Outputs);
387 }
388 case S4_subi_lsr_ri: {
389 RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
390 return rr0(RC, Outputs);
391 }
392 case M2_naccii: {
393 RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
394 return rr0(RC, Outputs);
395 }
396 case M2_nacci: {
397 RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
398 return rr0(RC, Outputs);
399 }
400 // 32-bit negation is done by "Rd = A2_subri 0, Rs"
401 case A2_negp:
402 return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
403
404 case M2_mpy_up: {
405 RegisterCell M = eMLS(rc(1), rc(2));
406 return rr0(hi(M, W0), Outputs);
407 }
408 case M2_dpmpyss_s0:
409 return rr0(eMLS(rc(1), rc(2)), Outputs);
410 case M2_dpmpyss_acc_s0:
411 return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
412 case M2_dpmpyss_nac_s0:
413 return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
414 case M2_mpyi: {
415 RegisterCell M = eMLS(rc(1), rc(2));
416 return rr0(lo(M, W0), Outputs);
417 }
418 case M2_macsip: {
419 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
420 RegisterCell RC = eADD(rc(1), lo(M, W0));
421 return rr0(RC, Outputs);
422 }
423 case M2_macsin: {
424 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
425 RegisterCell RC = eSUB(rc(1), lo(M, W0));
426 return rr0(RC, Outputs);
427 }
428 case M2_maci: {
429 RegisterCell M = eMLS(rc(2), rc(3));
430 RegisterCell RC = eADD(rc(1), lo(M, W0));
431 return rr0(RC, Outputs);
432 }
433 case M2_mpysmi: {
434 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
435 return rr0(lo(M, 32), Outputs);
436 }
437 case M2_mpysin: {
438 RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
439 return rr0(lo(M, 32), Outputs);
440 }
441 case M2_mpysip: {
442 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
443 return rr0(lo(M, 32), Outputs);
444 }
445 case M2_mpyu_up: {
446 RegisterCell M = eMLU(rc(1), rc(2));
447 return rr0(hi(M, W0), Outputs);
448 }
449 case M2_dpmpyuu_s0:
450 return rr0(eMLU(rc(1), rc(2)), Outputs);
451 case M2_dpmpyuu_acc_s0:
452 return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
453 case M2_dpmpyuu_nac_s0:
454 return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
455 //case M2_mpysu_up:
456
457 // Logical/bitwise:
458
459 case A2_andir:
460 return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
461 case A2_and:
462 case A2_andp:
463 return rr0(eAND(rc(1), rc(2)), Outputs);
464 case A4_andn:
465 case A4_andnp:
466 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
467 case S4_andi_asl_ri: {
468 RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
469 return rr0(RC, Outputs);
470 }
471 case S4_andi_lsr_ri: {
472 RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
473 return rr0(RC, Outputs);
474 }
475 case M4_and_and:
476 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
477 case M4_and_andn:
478 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
479 case M4_and_or:
480 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
481 case M4_and_xor:
482 return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
483 case A2_orir:
484 return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
485 case A2_or:
486 case A2_orp:
487 return rr0(eORL(rc(1), rc(2)), Outputs);
488 case A4_orn:
489 case A4_ornp:
490 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
491 case S4_ori_asl_ri: {
492 RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
493 return rr0(RC, Outputs);
494 }
495 case S4_ori_lsr_ri: {
496 RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
497 return rr0(RC, Outputs);
498 }
499 case M4_or_and:
500 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
501 case M4_or_andn:
502 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
503 case S4_or_andi:
504 case S4_or_andix: {
505 RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
506 return rr0(RC, Outputs);
507 }
508 case S4_or_ori: {
509 RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
510 return rr0(RC, Outputs);
511 }
512 case M4_or_or:
513 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
514 case M4_or_xor:
515 return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
516 case A2_xor:
517 case A2_xorp:
518 return rr0(eXOR(rc(1), rc(2)), Outputs);
519 case M4_xor_and:
520 return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
521 case M4_xor_andn:
522 return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
523 case M4_xor_or:
524 return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
525 case M4_xor_xacc:
526 return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
527 case A2_not:
528 case A2_notp:
529 return rr0(eNOT(rc(1)), Outputs);
530
531 case S2_asl_i_r:
532 case S2_asl_i_p:
533 return rr0(eASL(rc(1), im(2)), Outputs);
534 case A2_aslh:
535 return rr0(eASL(rc(1), 16), Outputs);
536 case S2_asl_i_r_acc:
537 case S2_asl_i_p_acc:
538 return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
539 case S2_asl_i_r_nac:
540 case S2_asl_i_p_nac:
541 return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
542 case S2_asl_i_r_and:
543 case S2_asl_i_p_and:
544 return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
545 case S2_asl_i_r_or:
546 case S2_asl_i_p_or:
547 return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
548 case S2_asl_i_r_xacc:
549 case S2_asl_i_p_xacc:
550 return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
551 case S2_asl_i_vh:
552 case S2_asl_i_vw:
553 // TODO
554 break;
555
556 case S2_asr_i_r:
557 case S2_asr_i_p:
558 return rr0(eASR(rc(1), im(2)), Outputs);
559 case A2_asrh:
560 return rr0(eASR(rc(1), 16), Outputs);
561 case S2_asr_i_r_acc:
562 case S2_asr_i_p_acc:
563 return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
564 case S2_asr_i_r_nac:
565 case S2_asr_i_p_nac:
566 return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
567 case S2_asr_i_r_and:
568 case S2_asr_i_p_and:
569 return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
570 case S2_asr_i_r_or:
571 case S2_asr_i_p_or:
572 return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
573 case S2_asr_i_r_rnd: {
574 // The input is first sign-extended to 64 bits, then the output
575 // is truncated back to 32 bits.
576 assert(W0 == 32);
577 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
578 RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
579 return rr0(eXTR(RC, 0, W0), Outputs);
580 }
581 case S2_asr_i_r_rnd_goodsyntax: {
582 int64_t S = im(2);
583 if (S == 0)
584 return rr0(rc(1), Outputs);
585 // Result: S2_asr_i_r_rnd Rs, u5-1
586 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
587 RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
588 return rr0(eXTR(RC, 0, W0), Outputs);
589 }
590 case S2_asr_r_vh:
591 case S2_asr_i_vw:
592 case S2_asr_i_svw_trun:
593 // TODO
594 break;
595
596 case S2_lsr_i_r:
597 case S2_lsr_i_p:
598 return rr0(eLSR(rc(1), im(2)), Outputs);
599 case S2_lsr_i_r_acc:
600 case S2_lsr_i_p_acc:
601 return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
602 case S2_lsr_i_r_nac:
603 case S2_lsr_i_p_nac:
604 return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
605 case S2_lsr_i_r_and:
606 case S2_lsr_i_p_and:
607 return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
608 case S2_lsr_i_r_or:
609 case S2_lsr_i_p_or:
610 return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
611 case S2_lsr_i_r_xacc:
612 case S2_lsr_i_p_xacc:
613 return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
614
615 case S2_clrbit_i: {
616 RegisterCell RC = rc(1);
617 RC[im(2)] = BT::BitValue::Zero;
618 return rr0(RC, Outputs);
619 }
620 case S2_setbit_i: {
621 RegisterCell RC = rc(1);
622 RC[im(2)] = BT::BitValue::One;
623 return rr0(RC, Outputs);
624 }
625 case S2_togglebit_i: {
626 RegisterCell RC = rc(1);
627 uint16_t BX = im(2);
628 RC[BX] = RC[BX].is(0) ? BT::BitValue::One
629 : RC[BX].is(1) ? BT::BitValue::Zero
630 : BT::BitValue::self();
631 return rr0(RC, Outputs);
632 }
633
634 case A4_bitspliti: {
635 uint16_t W1 = getRegBitWidth(Reg[1]);
636 uint16_t BX = im(2);
637 // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
638 const BT::BitValue Zero = BT::BitValue::Zero;
639 RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
640 .fill(W1+(W1-BX), W0, Zero);
641 RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
642 RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
643 return rr0(RC, Outputs);
644 }
645 case S4_extract:
646 case S4_extractp:
647 case S2_extractu:
648 case S2_extractup: {
649 uint16_t Wd = im(2), Of = im(3);
650 assert(Wd <= W0);
651 if (Wd == 0)
652 return rr0(eIMM(0, W0), Outputs);
653 // If the width extends beyond the register size, pad the register
654 // with 0 bits.
655 RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
656 RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
657 // Ext is short, need to extend it with 0s or sign bit.
658 RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
659 if (Opc == S2_extractu || Opc == S2_extractup)
660 return rr0(eZXT(RC, Wd), Outputs);
661 return rr0(eSXT(RC, Wd), Outputs);
662 }
663 case S2_insert:
664 case S2_insertp: {
665 uint16_t Wd = im(3), Of = im(4);
666 assert(Wd < W0 && Of < W0);
667 // If Wd+Of exceeds W0, the inserted bits are truncated.
668 if (Wd+Of > W0)
669 Wd = W0-Of;
670 if (Wd == 0)
671 return rr0(rc(1), Outputs);
672 return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
673 }
674
675 // Bit permutations:
676
677 case A2_combineii:
678 case A4_combineii:
679 case A4_combineir:
680 case A4_combineri:
681 case A2_combinew:
682 assert(W0 % 2 == 0);
683 return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
684 case A2_combine_ll:
685 case A2_combine_lh:
686 case A2_combine_hl:
687 case A2_combine_hh: {
688 assert(W0 == 32);
689 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
690 // Low half in the output is 0 for _ll and _hl, 1 otherwise:
691 unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
692 // High half in the output is 0 for _ll and _lh, 1 otherwise:
693 unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
694 RegisterCell R1 = rc(1);
695 RegisterCell R2 = rc(2);
696 RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
697 return rr0(RC, Outputs);
698 }
699 case S2_packhl: {
700 assert(W0 == 64);
701 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
702 RegisterCell R1 = rc(1);
703 RegisterCell R2 = rc(2);
704 RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
705 .cat(half(R1, 1));
706 return rr0(RC, Outputs);
707 }
708 case S2_shuffeb: {
709 RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
710 return rr0(RC, Outputs);
711 }
712 case S2_shuffeh: {
713 RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
714 return rr0(RC, Outputs);
715 }
716 case S2_shuffob: {
717 RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
718 return rr0(RC, Outputs);
719 }
720 case S2_shuffoh: {
721 RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
722 return rr0(RC, Outputs);
723 }
724 case C2_mask: {
725 uint16_t WR = W0;
726 uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
727 assert(WR == 64 && WP == 8);
728 RegisterCell R1 = rc(1);
729 RegisterCell RC(WR);
730 for (uint16_t i = 0; i < WP; ++i) {
731 const BT::BitValue &V = R1[i];
732 BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
733 RC.fill(i*8, i*8+8, F);
734 }
735 return rr0(RC, Outputs);
736 }
737
738 // Mux:
739
740 case C2_muxii:
741 case C2_muxir:
742 case C2_muxri:
743 case C2_mux: {
744 BT::BitValue PC0 = rc(1)[0];
745 RegisterCell R2 = cop(2, W0);
746 RegisterCell R3 = cop(3, W0);
747 if (PC0.is(0) || PC0.is(1))
748 return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
749 R2.meet(R3, Reg[0].Reg);
750 return rr0(R2, Outputs);
751 }
752 case C2_vmux:
753 // TODO
754 break;
755
756 // Sign- and zero-extension:
757
758 case A2_sxtb:
759 return rr0(eSXT(rc(1), 8), Outputs);
760 case A2_sxth:
761 return rr0(eSXT(rc(1), 16), Outputs);
762 case A2_sxtw: {
763 uint16_t W1 = getRegBitWidth(Reg[1]);
764 assert(W0 == 64 && W1 == 32);
765 RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
766 return rr0(RC, Outputs);
767 }
768 case A2_zxtb:
769 return rr0(eZXT(rc(1), 8), Outputs);
770 case A2_zxth:
771 return rr0(eZXT(rc(1), 16), Outputs);
772
773 // Bit count:
774
775 case S2_cl0:
776 case S2_cl0p:
777 // Always produce a 32-bit result.
778 return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs);
779 case S2_cl1:
780 case S2_cl1p:
781 return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs);
782 case S2_clb:
783 case S2_clbp: {
784 uint16_t W1 = getRegBitWidth(Reg[1]);
785 RegisterCell R1 = rc(1);
786 BT::BitValue TV = R1[W1-1];
787 if (TV.is(0) || TV.is(1))
788 return rr0(eCLB(R1, TV, 32), Outputs);
789 break;
790 }
791 case S2_ct0:
792 case S2_ct0p:
793 return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs);
794 case S2_ct1:
795 case S2_ct1p:
796 return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs);
797 case S5_popcountp:
798 // TODO
799 break;
800
801 case C2_all8: {
802 RegisterCell P1 = rc(1);
803 bool Has0 = false, All1 = true;
804 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
805 if (!P1[i].is(1))
806 All1 = false;
807 if (!P1[i].is(0))
808 continue;
809 Has0 = true;
810 break;
811 }
812 if (!Has0 && !All1)
813 break;
814 RegisterCell RC(W0);
815 RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
816 return rr0(RC, Outputs);
817 }
818 case C2_any8: {
819 RegisterCell P1 = rc(1);
820 bool Has1 = false, All0 = true;
821 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
822 if (!P1[i].is(0))
823 All0 = false;
824 if (!P1[i].is(1))
825 continue;
826 Has1 = true;
827 break;
828 }
829 if (!Has1 && !All0)
830 break;
831 RegisterCell RC(W0);
832 RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
833 return rr0(RC, Outputs);
834 }
835 case C2_and:
836 return rr0(eAND(rc(1), rc(2)), Outputs);
837 case C2_andn:
838 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
839 case C2_not:
840 return rr0(eNOT(rc(1)), Outputs);
841 case C2_or:
842 return rr0(eORL(rc(1), rc(2)), Outputs);
843 case C2_orn:
844 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
845 case C2_xor:
846 return rr0(eXOR(rc(1), rc(2)), Outputs);
847 case C4_and_and:
848 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
849 case C4_and_andn:
850 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
851 case C4_and_or:
852 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
853 case C4_and_orn:
854 return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
855 case C4_or_and:
856 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
857 case C4_or_andn:
858 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
859 case C4_or_or:
860 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
861 case C4_or_orn:
862 return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
863 case C2_bitsclr:
864 case C2_bitsclri:
865 case C2_bitsset:
866 case C4_nbitsclr:
867 case C4_nbitsclri:
868 case C4_nbitsset:
869 // TODO
870 break;
871 case S2_tstbit_i:
872 case S4_ntstbit_i: {
873 BT::BitValue V = rc(1)[im(2)];
874 if (V.is(0) || V.is(1)) {
875 // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
876 bool TV = (Opc == S2_tstbit_i);
877 BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
878 return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
879 }
880 break;
881 }
882
883 default:
884 return MachineEvaluator::evaluate(MI, Inputs, Outputs);
885 }
886 #undef im
887 #undef rc
888 #undef op
889 return false;
890}
891
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000892bool HexagonEvaluator::evaluate(const MachineInstr &BI,
893 const CellMapType &Inputs,
894 BranchTargetList &Targets,
895 bool &FallsThru) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000896 // We need to evaluate one branch at a time. TII::AnalyzeBranch checks
897 // all the branches in a basic block at once, so we cannot use it.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000898 unsigned Opc = BI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000899 bool SimpleBranch = false;
900 bool Negated = false;
901 switch (Opc) {
902 case Hexagon::J2_jumpf:
903 case Hexagon::J2_jumpfnew:
904 case Hexagon::J2_jumpfnewpt:
905 Negated = true;
906 case Hexagon::J2_jumpt:
907 case Hexagon::J2_jumptnew:
908 case Hexagon::J2_jumptnewpt:
909 // Simple branch: if([!]Pn) jump ...
910 // i.e. Op0 = predicate, Op1 = branch target.
911 SimpleBranch = true;
912 break;
913 case Hexagon::J2_jump:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000914 Targets.insert(BI.getOperand(0).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000915 FallsThru = false;
916 return true;
917 default:
918 // If the branch is of unknown type, assume that all successors are
919 // executable.
920 return false;
921 }
922
923 if (!SimpleBranch)
924 return false;
925
926 // BI is a conditional branch if we got here.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000927 RegisterRef PR = BI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000928 RegisterCell PC = getCell(PR, Inputs);
929 const BT::BitValue &Test = PC[0];
930
931 // If the condition is neither true nor false, then it's unknown.
932 if (!Test.is(0) && !Test.is(1))
933 return false;
934
935 // "Test.is(!Negated)" means "branch condition is true".
936 if (!Test.is(!Negated)) {
937 // Condition known to be false.
938 FallsThru = true;
939 return true;
940 }
941
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000942 Targets.insert(BI.getOperand(1).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000943 FallsThru = false;
944 return true;
945}
946
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000947bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
948 const CellMapType &Inputs,
949 CellMapType &Outputs) const {
950 if (TII.isPredicated(MI))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000951 return false;
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000952 assert(MI.mayLoad() && "A load that mayn't?");
953 unsigned Opc = MI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000954
955 uint16_t BitNum;
956 bool SignEx;
957 using namespace Hexagon;
958
959 switch (Opc) {
960 default:
961 return false;
962
963#if 0
964 // memb_fifo
965 case L2_loadalignb_pbr:
966 case L2_loadalignb_pcr:
967 case L2_loadalignb_pi:
968 // memh_fifo
969 case L2_loadalignh_pbr:
970 case L2_loadalignh_pcr:
971 case L2_loadalignh_pi:
972 // membh
973 case L2_loadbsw2_pbr:
974 case L2_loadbsw2_pci:
975 case L2_loadbsw2_pcr:
976 case L2_loadbsw2_pi:
977 case L2_loadbsw4_pbr:
978 case L2_loadbsw4_pci:
979 case L2_loadbsw4_pcr:
980 case L2_loadbsw4_pi:
981 // memubh
982 case L2_loadbzw2_pbr:
983 case L2_loadbzw2_pci:
984 case L2_loadbzw2_pcr:
985 case L2_loadbzw2_pi:
986 case L2_loadbzw4_pbr:
987 case L2_loadbzw4_pci:
988 case L2_loadbzw4_pcr:
989 case L2_loadbzw4_pi:
990#endif
991
992 case L2_loadrbgp:
993 case L2_loadrb_io:
994 case L2_loadrb_pbr:
995 case L2_loadrb_pci:
996 case L2_loadrb_pcr:
997 case L2_loadrb_pi:
998 case L4_loadrb_abs:
999 case L4_loadrb_ap:
1000 case L4_loadrb_rr:
1001 case L4_loadrb_ur:
1002 BitNum = 8;
1003 SignEx = true;
1004 break;
1005
1006 case L2_loadrubgp:
1007 case L2_loadrub_io:
1008 case L2_loadrub_pbr:
1009 case L2_loadrub_pci:
1010 case L2_loadrub_pcr:
1011 case L2_loadrub_pi:
1012 case L4_loadrub_abs:
1013 case L4_loadrub_ap:
1014 case L4_loadrub_rr:
1015 case L4_loadrub_ur:
1016 BitNum = 8;
1017 SignEx = false;
1018 break;
1019
1020 case L2_loadrhgp:
1021 case L2_loadrh_io:
1022 case L2_loadrh_pbr:
1023 case L2_loadrh_pci:
1024 case L2_loadrh_pcr:
1025 case L2_loadrh_pi:
1026 case L4_loadrh_abs:
1027 case L4_loadrh_ap:
1028 case L4_loadrh_rr:
1029 case L4_loadrh_ur:
1030 BitNum = 16;
1031 SignEx = true;
1032 break;
1033
1034 case L2_loadruhgp:
1035 case L2_loadruh_io:
1036 case L2_loadruh_pbr:
1037 case L2_loadruh_pci:
1038 case L2_loadruh_pcr:
1039 case L2_loadruh_pi:
1040 case L4_loadruh_rr:
1041 case L4_loadruh_abs:
1042 case L4_loadruh_ap:
1043 case L4_loadruh_ur:
1044 BitNum = 16;
1045 SignEx = false;
1046 break;
1047
1048 case L2_loadrigp:
1049 case L2_loadri_io:
1050 case L2_loadri_pbr:
1051 case L2_loadri_pci:
1052 case L2_loadri_pcr:
1053 case L2_loadri_pi:
1054 case L2_loadw_locked:
1055 case L4_loadri_abs:
1056 case L4_loadri_ap:
1057 case L4_loadri_rr:
1058 case L4_loadri_ur:
1059 case LDriw_pred:
1060 BitNum = 32;
1061 SignEx = true;
1062 break;
1063
1064 case L2_loadrdgp:
1065 case L2_loadrd_io:
1066 case L2_loadrd_pbr:
1067 case L2_loadrd_pci:
1068 case L2_loadrd_pcr:
1069 case L2_loadrd_pi:
1070 case L4_loadd_locked:
1071 case L4_loadrd_abs:
1072 case L4_loadrd_ap:
1073 case L4_loadrd_rr:
1074 case L4_loadrd_ur:
1075 BitNum = 64;
1076 SignEx = true;
1077 break;
1078 }
1079
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001080 const MachineOperand &MD = MI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001081 assert(MD.isReg() && MD.isDef());
1082 RegisterRef RD = MD;
1083
1084 uint16_t W = getRegBitWidth(RD);
1085 assert(W >= BitNum && BitNum > 0);
1086 RegisterCell Res(W);
1087
1088 for (uint16_t i = 0; i < BitNum; ++i)
1089 Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1090
1091 if (SignEx) {
1092 const BT::BitValue &Sign = Res[BitNum-1];
1093 for (uint16_t i = BitNum; i < W; ++i)
1094 Res[i] = BT::BitValue::ref(Sign);
1095 } else {
1096 for (uint16_t i = BitNum; i < W; ++i)
1097 Res[i] = BT::BitValue::Zero;
1098 }
1099
1100 putCell(RD, Res, Outputs);
1101 return true;
1102}
1103
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001104bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1105 const CellMapType &Inputs,
1106 CellMapType &Outputs) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001107 // If MI defines a formal parameter, but is not a copy (loads are handled
1108 // in evaluateLoad), then it's not clear what to do.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001109 assert(MI.isCopy());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001110
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001111 RegisterRef RD = MI.getOperand(0);
1112 RegisterRef RS = MI.getOperand(1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001113 assert(RD.Sub == 0);
1114 if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1115 return false;
1116 RegExtMap::const_iterator F = VRX.find(RD.Reg);
1117 if (F == VRX.end())
1118 return false;
1119
1120 uint16_t EW = F->second.Width;
1121 // Store RD's cell into the map. This will associate the cell with a virtual
1122 // register, and make zero-/sign-extends possible (otherwise we would be ex-
1123 // tending "self" bit values, which will have no effect, since "self" values
1124 // cannot be references to anything).
1125 putCell(RD, getCell(RS, Inputs), Outputs);
1126
1127 RegisterCell Res;
1128 // Read RD's cell from the outputs instead of RS's cell from the inputs:
1129 if (F->second.Type == ExtType::SExt)
1130 Res = eSXT(getCell(RD, Outputs), EW);
1131 else if (F->second.Type == ExtType::ZExt)
1132 Res = eZXT(getCell(RD, Outputs), EW);
1133
1134 putCell(RD, Res, Outputs);
1135 return true;
1136}
1137
1138
1139unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1140 using namespace Hexagon;
1141 bool Is64 = DoubleRegsRegClass.contains(PReg);
1142 assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1143
1144 static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1145 static const unsigned Phys64[] = { D0, D1, D2 };
1146 const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1147 const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1148
1149 // Return the first parameter register of the required width.
1150 if (PReg == 0)
1151 return (Width <= 32) ? Phys32[0] : Phys64[0];
1152
1153 // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1154 // next register.
1155 unsigned Idx32 = 0, Idx64 = 0;
1156 if (!Is64) {
1157 while (Idx32 < Num32) {
1158 if (Phys32[Idx32] == PReg)
1159 break;
1160 Idx32++;
1161 }
1162 Idx64 = Idx32/2;
1163 } else {
1164 while (Idx64 < Num64) {
1165 if (Phys64[Idx64] == PReg)
1166 break;
1167 Idx64++;
1168 }
1169 Idx32 = Idx64*2+1;
1170 }
1171
1172 if (Width <= 32)
1173 return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1174 return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1175}
1176
1177
1178unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1179 typedef MachineRegisterInfo::livein_iterator iterator;
1180 for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1181 if (I->first == PReg)
1182 return I->second;
1183 }
1184 return 0;
1185}