Mike Aizatsky | b8627a8 | 2016-03-03 23:45:29 +0000 | [diff] [blame] | 1 | //===- FuzzerAdapter.h - Arbitrary function Fuzzer adapter -------*- C++ -*===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // W A R N I N G : E X P E R I M E N T A L. |
| 11 | // |
| 12 | // Defines an adapter to fuzz functions with (almost) arbitrary signatures. |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_FUZZER_ADAPTER_H |
| 16 | #define LLVM_FUZZER_ADAPTER_H |
| 17 | |
| 18 | #include <stddef.h> |
| 19 | #include <stdint.h> |
| 20 | |
| 21 | #include <algorithm> |
Dan Liew | 9551fdd | 2016-05-26 21:54:25 +0000 | [diff] [blame^] | 22 | #include <string> |
Mike Aizatsky | b8627a8 | 2016-03-03 23:45:29 +0000 | [diff] [blame] | 23 | #include <tuple> |
| 24 | #include <vector> |
| 25 | |
| 26 | namespace fuzzer { |
| 27 | |
| 28 | /// Unpacks bytes from \p Data according to \p F argument types |
| 29 | /// and calls the function. |
| 30 | /// Use to automatically adapt LLVMFuzzerTestOneInput interface to |
| 31 | /// a specific function. |
| 32 | /// Supported argument types: primitive types, std::vector<uint8_t>. |
| 33 | template <typename Fn> bool Adapt(Fn F, const uint8_t *Data, size_t Size); |
| 34 | |
| 35 | // The implementation performs several steps: |
| 36 | // - function argument types are obtained (Args...) |
| 37 | // - data is unpacked into std::tuple<Args...> one by one |
| 38 | // - function is called with std::tuple<Args...> containing arguments. |
| 39 | namespace impl { |
| 40 | |
| 41 | // Single argument unpacking. |
| 42 | |
| 43 | template <typename T> |
| 44 | size_t UnpackPrimitive(const uint8_t *Data, size_t Size, T *Value) { |
| 45 | if (Size < sizeof(T)) |
| 46 | return Size; |
| 47 | *Value = *reinterpret_cast<const T *>(Data); |
| 48 | return Size - sizeof(T); |
| 49 | } |
| 50 | |
| 51 | /// Unpacks into a given Value and returns the Size - num_consumed_bytes. |
| 52 | /// Return value equal to Size signals inability to unpack the data (typically |
| 53 | /// because there are not enough bytes). |
| 54 | template <typename T> |
| 55 | size_t UnpackSingle(const uint8_t *Data, size_t Size, T *Value); |
| 56 | |
| 57 | #define UNPACK_SINGLE_PRIMITIVE(Type) \ |
| 58 | template <> \ |
| 59 | size_t UnpackSingle<Type>(const uint8_t *Data, size_t Size, Type *Value) { \ |
| 60 | return UnpackPrimitive(Data, Size, Value); \ |
| 61 | } |
| 62 | |
| 63 | UNPACK_SINGLE_PRIMITIVE(char) |
| 64 | UNPACK_SINGLE_PRIMITIVE(signed char) |
| 65 | UNPACK_SINGLE_PRIMITIVE(unsigned char) |
| 66 | |
| 67 | UNPACK_SINGLE_PRIMITIVE(short int) |
| 68 | UNPACK_SINGLE_PRIMITIVE(unsigned short int) |
| 69 | |
| 70 | UNPACK_SINGLE_PRIMITIVE(int) |
| 71 | UNPACK_SINGLE_PRIMITIVE(unsigned int) |
| 72 | |
| 73 | UNPACK_SINGLE_PRIMITIVE(long int) |
| 74 | UNPACK_SINGLE_PRIMITIVE(unsigned long int) |
| 75 | |
| 76 | UNPACK_SINGLE_PRIMITIVE(bool) |
| 77 | UNPACK_SINGLE_PRIMITIVE(wchar_t) |
| 78 | |
| 79 | UNPACK_SINGLE_PRIMITIVE(float) |
| 80 | UNPACK_SINGLE_PRIMITIVE(double) |
| 81 | UNPACK_SINGLE_PRIMITIVE(long double) |
| 82 | |
| 83 | #undef UNPACK_SINGLE_PRIMITIVE |
| 84 | |
| 85 | template <> |
| 86 | size_t UnpackSingle<std::vector<uint8_t>>(const uint8_t *Data, size_t Size, |
| 87 | std::vector<uint8_t> *Value) { |
| 88 | if (Size < 1) |
| 89 | return Size; |
| 90 | size_t Len = std::min(static_cast<size_t>(*Data), Size - 1); |
| 91 | std::vector<uint8_t> V(Data + 1, Data + 1 + Len); |
| 92 | Value->swap(V); |
| 93 | return Size - Len - 1; |
| 94 | } |
| 95 | |
Mike Aizatsky | 243fe2b | 2016-03-04 23:18:01 +0000 | [diff] [blame] | 96 | template <> |
| 97 | size_t UnpackSingle<std::string>(const uint8_t *Data, size_t Size, |
| 98 | std::string *Value) { |
| 99 | if (Size < 1) |
| 100 | return Size; |
| 101 | size_t Len = std::min(static_cast<size_t>(*Data), Size - 1); |
| 102 | std::string S(Data + 1, Data + 1 + Len); |
| 103 | Value->swap(S); |
| 104 | return Size - Len - 1; |
| 105 | } |
| 106 | |
Mike Aizatsky | b8627a8 | 2016-03-03 23:45:29 +0000 | [diff] [blame] | 107 | // Unpacking into arbitrary tuple. |
| 108 | |
| 109 | // Recursion guard. |
| 110 | template <int N, typename TupleT> |
| 111 | typename std::enable_if<N == std::tuple_size<TupleT>::value, bool>::type |
| 112 | UnpackImpl(const uint8_t *Data, size_t Size, TupleT *Tuple) { |
| 113 | return true; |
| 114 | } |
| 115 | |
| 116 | // Unpack tuple elements starting from Nth. |
| 117 | template <int N, typename TupleT> |
| 118 | typename std::enable_if<N < std::tuple_size<TupleT>::value, bool>::type |
| 119 | UnpackImpl(const uint8_t *Data, size_t Size, TupleT *Tuple) { |
| 120 | size_t NewSize = UnpackSingle(Data, Size, &std::get<N>(*Tuple)); |
| 121 | if (NewSize == Size) { |
| 122 | return false; |
| 123 | } |
| 124 | |
| 125 | return UnpackImpl<N + 1, TupleT>(Data + (Size - NewSize), NewSize, Tuple); |
| 126 | } |
| 127 | |
| 128 | // Unpacks into arbitrary tuple and returns true if successful. |
| 129 | template <typename... Args> |
| 130 | bool Unpack(const uint8_t *Data, size_t Size, std::tuple<Args...> *Tuple) { |
| 131 | return UnpackImpl<0, std::tuple<Args...>>(Data, Size, Tuple); |
| 132 | } |
| 133 | |
| 134 | // Helper integer sequence templates. |
| 135 | |
| 136 | template <int...> struct Seq {}; |
| 137 | |
| 138 | template <int N, int... S> struct GenSeq : GenSeq<N - 1, N - 1, S...> {}; |
| 139 | |
| 140 | // GenSeq<N>::type is Seq<0, 1, ..., N-1> |
| 141 | template <int... S> struct GenSeq<0, S...> { typedef Seq<S...> type; }; |
| 142 | |
| 143 | // Function signature introspection. |
| 144 | |
| 145 | template <typename T> struct FnTraits {}; |
| 146 | |
| 147 | template <typename ReturnType, typename... Args> |
| 148 | struct FnTraits<ReturnType (*)(Args...)> { |
| 149 | enum { Arity = sizeof...(Args) }; |
| 150 | typedef std::tuple<Args...> ArgsTupleT; |
| 151 | }; |
| 152 | |
| 153 | // Calling a function with arguments in a tuple. |
| 154 | |
| 155 | template <typename Fn, int... S> |
| 156 | void ApplyImpl(Fn F, const typename FnTraits<Fn>::ArgsTupleT &Params, |
| 157 | Seq<S...>) { |
| 158 | F(std::get<S>(Params)...); |
| 159 | } |
| 160 | |
| 161 | template <typename Fn> |
| 162 | void Apply(Fn F, const typename FnTraits<Fn>::ArgsTupleT &Params) { |
| 163 | // S is Seq<0, ..., Arity-1> |
| 164 | auto S = typename GenSeq<FnTraits<Fn>::Arity>::type(); |
| 165 | ApplyImpl(F, Params, S); |
| 166 | } |
| 167 | |
| 168 | // Unpacking data into arguments tuple of correct type and calling the function. |
| 169 | template <typename Fn> |
| 170 | bool UnpackAndApply(Fn F, const uint8_t *Data, size_t Size) { |
| 171 | typename FnTraits<Fn>::ArgsTupleT Tuple; |
| 172 | if (!Unpack(Data, Size, &Tuple)) |
| 173 | return false; |
| 174 | |
| 175 | Apply(F, Tuple); |
| 176 | return true; |
| 177 | } |
| 178 | |
| 179 | } // namespace impl |
| 180 | |
| 181 | template <typename Fn> bool Adapt(Fn F, const uint8_t *Data, size_t Size) { |
| 182 | return impl::UnpackAndApply(F, Data, Size); |
| 183 | } |
| 184 | |
| 185 | } // namespace fuzzer |
| 186 | |
| 187 | #endif |