blob: 867bed8d84a2c39bfff6e5a4bd80f8b327a30b77 [file] [log] [blame]
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// The InductiveRangeCheckElimination pass splits a loop's iteration space into
10// three disjoint ranges. It does that in a way such that the loop running in
11// the middle loop provably does not need range checks. As an example, it will
12// convert
13//
14// len = < known positive >
15// for (i = 0; i < n; i++) {
16// if (0 <= i && i < len) {
17// do_something();
18// } else {
19// throw_out_of_bounds();
20// }
21// }
22//
23// to
24//
25// len = < known positive >
26// limit = smin(n, len)
27// // no first segment
28// for (i = 0; i < limit; i++) {
29// if (0 <= i && i < len) { // this check is fully redundant
30// do_something();
31// } else {
32// throw_out_of_bounds();
33// }
34// }
35// for (i = limit; i < n; i++) {
36// if (0 <= i && i < len) {
37// do_something();
38// } else {
39// throw_out_of_bounds();
40// }
41// }
42//===----------------------------------------------------------------------===//
43
44#include "llvm/ADT/Optional.h"
45
Sanjoy Dasdcf26512015-01-27 21:38:12 +000046#include "llvm/Analysis/BranchProbabilityInfo.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000047#include "llvm/Analysis/InstructionSimplify.h"
48#include "llvm/Analysis/LoopInfo.h"
49#include "llvm/Analysis/LoopPass.h"
50#include "llvm/Analysis/ScalarEvolution.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/ScalarEvolutionExpressions.h"
53#include "llvm/Analysis/ValueTracking.h"
54
55#include "llvm/IR/Dominators.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/Instructions.h"
58#include "llvm/IR/IRBuilder.h"
59#include "llvm/IR/Module.h"
60#include "llvm/IR/PatternMatch.h"
61#include "llvm/IR/ValueHandle.h"
62#include "llvm/IR/Verifier.h"
63
64#include "llvm/Support/Debug.h"
65
66#include "llvm/Transforms/Scalar.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Cloning.h"
69#include "llvm/Transforms/Utils/LoopUtils.h"
70#include "llvm/Transforms/Utils/SimplifyIndVar.h"
71#include "llvm/Transforms/Utils/UnrollLoop.h"
72
73#include "llvm/Pass.h"
74
75#include <array>
76
77using namespace llvm;
78
Benjamin Kramer970eac42015-02-06 17:51:54 +000079static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
80 cl::init(64));
Sanjoy Dasa1837a32015-01-16 01:03:22 +000081
Benjamin Kramer970eac42015-02-06 17:51:54 +000082static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
83 cl::init(false));
Sanjoy Dasa1837a32015-01-16 01:03:22 +000084
85#define DEBUG_TYPE "irce"
86
87namespace {
88
89/// An inductive range check is conditional branch in a loop with
90///
91/// 1. a very cold successor (i.e. the branch jumps to that successor very
92/// rarely)
93///
94/// and
95///
96/// 2. a condition that is provably true for some range of values taken by the
97/// containing loop's induction variable.
98///
99/// Currently all inductive range checks are branches conditional on an
100/// expression of the form
101///
102/// 0 <= (Offset + Scale * I) < Length
103///
104/// where `I' is the canonical induction variable of a loop to which Offset and
105/// Scale are loop invariant, and Length is >= 0. Currently the 'false' branch
106/// is considered cold, looking at profiling data to verify that is a TODO.
107
108class InductiveRangeCheck {
109 const SCEV *Offset;
110 const SCEV *Scale;
111 Value *Length;
112 BranchInst *Branch;
113
114 InductiveRangeCheck() :
115 Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
116
117public:
118 const SCEV *getOffset() const { return Offset; }
119 const SCEV *getScale() const { return Scale; }
120 Value *getLength() const { return Length; }
121
122 void print(raw_ostream &OS) const {
123 OS << "InductiveRangeCheck:\n";
124 OS << " Offset: ";
125 Offset->print(OS);
126 OS << " Scale: ";
127 Scale->print(OS);
128 OS << " Length: ";
129 Length->print(OS);
130 OS << " Branch: ";
131 getBranch()->print(OS);
132 }
133
134#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
135 void dump() {
136 print(dbgs());
137 }
138#endif
139
140 BranchInst *getBranch() const { return Branch; }
141
Sanjoy Das351db052015-01-22 09:32:02 +0000142 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
143 /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
144
145 class Range {
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000146 const SCEV *Begin;
147 const SCEV *End;
Sanjoy Das351db052015-01-22 09:32:02 +0000148
149 public:
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000150 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
Sanjoy Das351db052015-01-22 09:32:02 +0000151 assert(Begin->getType() == End->getType() && "ill-typed range!");
152 }
153
154 Type *getType() const { return Begin->getType(); }
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000155 const SCEV *getBegin() const { return Begin; }
156 const SCEV *getEnd() const { return End; }
Sanjoy Das351db052015-01-22 09:32:02 +0000157 };
158
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000159 typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
160
161 /// This is the value the condition of the branch needs to evaluate to for the
162 /// branch to take the hot successor (see (1) above).
163 bool getPassingDirection() { return true; }
164
Sanjoy Das95c476d2015-02-21 22:20:22 +0000165 /// Computes a range for the induction variable (IndVar) in which the range
166 /// check is redundant and can be constant-folded away. The induction
167 /// variable is not required to be the canonical {0,+,1} induction variable.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000168 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
Sanjoy Das95c476d2015-02-21 22:20:22 +0000169 const SCEVAddRecExpr *IndVar,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000170 IRBuilder<> &B) const;
171
172 /// Create an inductive range check out of BI if possible, else return
173 /// nullptr.
174 static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000175 Loop *L, ScalarEvolution &SE,
176 BranchProbabilityInfo &BPI);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000177};
178
179class InductiveRangeCheckElimination : public LoopPass {
180 InductiveRangeCheck::AllocatorTy Allocator;
181
182public:
183 static char ID;
184 InductiveRangeCheckElimination() : LoopPass(ID) {
185 initializeInductiveRangeCheckEliminationPass(
186 *PassRegistry::getPassRegistry());
187 }
188
189 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000190 AU.addRequired<LoopInfoWrapperPass>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000191 AU.addRequiredID(LoopSimplifyID);
192 AU.addRequiredID(LCSSAID);
193 AU.addRequired<ScalarEvolution>();
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000194 AU.addRequired<BranchProbabilityInfo>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000195 }
196
197 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
198};
199
200char InductiveRangeCheckElimination::ID = 0;
201}
202
203INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
204 "Inductive range check elimination", false, false)
205
206static bool IsLowerBoundCheck(Value *Check, Value *&IndexV) {
207 using namespace llvm::PatternMatch;
208
209 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
210 Value *LHS = nullptr, *RHS = nullptr;
211
212 if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
213 return false;
214
215 switch (Pred) {
216 default:
217 return false;
218
219 case ICmpInst::ICMP_SLE:
220 std::swap(LHS, RHS);
221 // fallthrough
222 case ICmpInst::ICMP_SGE:
223 if (!match(RHS, m_ConstantInt<0>()))
224 return false;
225 IndexV = LHS;
226 return true;
227
228 case ICmpInst::ICMP_SLT:
229 std::swap(LHS, RHS);
230 // fallthrough
231 case ICmpInst::ICMP_SGT:
232 if (!match(RHS, m_ConstantInt<-1>()))
233 return false;
234 IndexV = LHS;
235 return true;
236 }
237}
238
239static bool IsUpperBoundCheck(Value *Check, Value *Index, Value *&UpperLimit) {
240 using namespace llvm::PatternMatch;
241
242 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
243 Value *LHS = nullptr, *RHS = nullptr;
244
245 if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
246 return false;
247
248 switch (Pred) {
249 default:
250 return false;
251
252 case ICmpInst::ICMP_SGT:
253 std::swap(LHS, RHS);
254 // fallthrough
255 case ICmpInst::ICMP_SLT:
256 if (LHS != Index)
257 return false;
258 UpperLimit = RHS;
259 return true;
260
261 case ICmpInst::ICMP_UGT:
262 std::swap(LHS, RHS);
263 // fallthrough
264 case ICmpInst::ICMP_ULT:
265 if (LHS != Index)
266 return false;
267 UpperLimit = RHS;
268 return true;
269 }
270}
271
272/// Split a condition into something semantically equivalent to (0 <= I <
273/// Limit), both comparisons signed and Len loop invariant on L and positive.
274/// On success, return true and set Index to I and UpperLimit to Limit. Return
275/// false on failure (we may still write to UpperLimit and Index on failure).
276/// It does not try to interpret I as a loop index.
277///
278static bool SplitRangeCheckCondition(Loop *L, ScalarEvolution &SE,
279 Value *Condition, const SCEV *&Index,
280 Value *&UpperLimit) {
281
282 // TODO: currently this catches some silly cases like comparing "%idx slt 1".
283 // Our transformations are still correct, but less likely to be profitable in
284 // those cases. We have to come up with some heuristics that pick out the
285 // range checks that are more profitable to clone a loop for. This function
286 // in general can be made more robust.
287
288 using namespace llvm::PatternMatch;
289
290 Value *A = nullptr;
291 Value *B = nullptr;
292 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
293
294 // In these early checks we assume that the matched UpperLimit is positive.
295 // We'll verify that fact later, before returning true.
296
297 if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
298 Value *IndexV = nullptr;
299 Value *ExpectedUpperBoundCheck = nullptr;
300
301 if (IsLowerBoundCheck(A, IndexV))
302 ExpectedUpperBoundCheck = B;
303 else if (IsLowerBoundCheck(B, IndexV))
304 ExpectedUpperBoundCheck = A;
305 else
306 return false;
307
308 if (!IsUpperBoundCheck(ExpectedUpperBoundCheck, IndexV, UpperLimit))
309 return false;
310
311 Index = SE.getSCEV(IndexV);
312
313 if (isa<SCEVCouldNotCompute>(Index))
314 return false;
315
316 } else if (match(Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
317 switch (Pred) {
318 default:
319 return false;
320
321 case ICmpInst::ICMP_SGT:
322 std::swap(A, B);
323 // fall through
324 case ICmpInst::ICMP_SLT:
325 UpperLimit = B;
326 Index = SE.getSCEV(A);
327 if (isa<SCEVCouldNotCompute>(Index) || !SE.isKnownNonNegative(Index))
328 return false;
329 break;
330
331 case ICmpInst::ICMP_UGT:
332 std::swap(A, B);
333 // fall through
334 case ICmpInst::ICMP_ULT:
335 UpperLimit = B;
336 Index = SE.getSCEV(A);
337 if (isa<SCEVCouldNotCompute>(Index))
338 return false;
339 break;
340 }
341 } else {
342 return false;
343 }
344
345 const SCEV *UpperLimitSCEV = SE.getSCEV(UpperLimit);
346 if (isa<SCEVCouldNotCompute>(UpperLimitSCEV) ||
347 !SE.isKnownNonNegative(UpperLimitSCEV))
348 return false;
349
350 if (SE.getLoopDisposition(UpperLimitSCEV, L) !=
351 ScalarEvolution::LoopInvariant) {
352 DEBUG(dbgs() << " in function: " << L->getHeader()->getParent()->getName()
353 << " ";
354 dbgs() << " UpperLimit is not loop invariant: "
355 << UpperLimit->getName() << "\n";);
356 return false;
357 }
358
359 return true;
360}
361
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000362
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000363InductiveRangeCheck *
364InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000365 Loop *L, ScalarEvolution &SE,
366 BranchProbabilityInfo &BPI) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000367
368 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
369 return nullptr;
370
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000371 BranchProbability LikelyTaken(15, 16);
372
373 if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
374 return nullptr;
375
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000376 Value *Length = nullptr;
377 const SCEV *IndexSCEV = nullptr;
378
379 if (!SplitRangeCheckCondition(L, SE, BI->getCondition(), IndexSCEV, Length))
380 return nullptr;
381
382 assert(IndexSCEV && Length && "contract with SplitRangeCheckCondition!");
383
384 const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
385 bool IsAffineIndex =
386 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
387
388 if (!IsAffineIndex)
389 return nullptr;
390
391 InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
392 IRC->Length = Length;
393 IRC->Offset = IndexAddRec->getStart();
394 IRC->Scale = IndexAddRec->getStepRecurrence(SE);
395 IRC->Branch = BI;
396 return IRC;
397}
398
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000399namespace {
400
401/// This class is used to constrain loops to run within a given iteration space.
402/// The algorithm this class implements is given a Loop and a range [Begin,
403/// End). The algorithm then tries to break out a "main loop" out of the loop
404/// it is given in a way that the "main loop" runs with the induction variable
405/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
406/// loops to run any remaining iterations. The pre loop runs any iterations in
407/// which the induction variable is < Begin, and the post loop runs any
408/// iterations in which the induction variable is >= End.
409///
410class LoopConstrainer {
411
412 // Keeps track of the structure of a loop. This is similar to llvm::Loop,
413 // except that it is more lightweight and can track the state of a loop
414 // through changing and potentially invalid IR. This structure also
415 // formalizes the kinds of loops we can deal with -- ones that have a single
416 // latch that is also an exiting block *and* have a canonical induction
417 // variable.
418 struct LoopStructure {
419 const char *Tag;
420
421 BasicBlock *Header;
422 BasicBlock *Latch;
423
424 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
425 // successor is `LatchExit', the exit block of the loop.
426 BranchInst *LatchBr;
427 BasicBlock *LatchExit;
428 unsigned LatchBrExitIdx;
429
430 // The canonical induction variable. It's value is `CIVStart` on the 0th
431 // itertion and `CIVNext` for all iterations after that.
432 PHINode *CIV;
433 Value *CIVStart;
434 Value *CIVNext;
435
436 LoopStructure() : Tag(""), Header(nullptr), Latch(nullptr),
437 LatchBr(nullptr), LatchExit(nullptr),
438 LatchBrExitIdx(-1), CIV(nullptr),
439 CIVStart(nullptr), CIVNext(nullptr) { }
440
441 template <typename M> LoopStructure map(M Map) const {
442 LoopStructure Result;
443 Result.Tag = Tag;
444 Result.Header = cast<BasicBlock>(Map(Header));
445 Result.Latch = cast<BasicBlock>(Map(Latch));
446 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
447 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
448 Result.LatchBrExitIdx = LatchBrExitIdx;
449 Result.CIV = cast<PHINode>(Map(CIV));
450 Result.CIVNext = Map(CIVNext);
451 Result.CIVStart = Map(CIVStart);
452 return Result;
453 }
454 };
455
456 // The representation of a clone of the original loop we started out with.
457 struct ClonedLoop {
458 // The cloned blocks
459 std::vector<BasicBlock *> Blocks;
460
461 // `Map` maps values in the clonee into values in the cloned version
462 ValueToValueMapTy Map;
463
464 // An instance of `LoopStructure` for the cloned loop
465 LoopStructure Structure;
466 };
467
468 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
469 // more details on what these fields mean.
470 struct RewrittenRangeInfo {
471 BasicBlock *PseudoExit;
472 BasicBlock *ExitSelector;
473 std::vector<PHINode *> PHIValuesAtPseudoExit;
474
475 RewrittenRangeInfo() : PseudoExit(nullptr), ExitSelector(nullptr) { }
476 };
477
478 // Calculated subranges we restrict the iteration space of the main loop to.
479 // See the implementation of `calculateSubRanges' for more details on how
480 // these fields are computed. `ExitPreLoopAt' is `None' if we don't need a
481 // pre loop. `ExitMainLoopAt' is `None' if we don't need a post loop.
482 struct SubRanges {
483 Optional<Value *> ExitPreLoopAt;
484 Optional<Value *> ExitMainLoopAt;
485 };
486
487 // A utility function that does a `replaceUsesOfWith' on the incoming block
488 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
489 // incoming block list with `ReplaceBy'.
490 static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
491 BasicBlock *ReplaceBy);
492
493 // Try to "parse" `OriginalLoop' and populate the various out parameters.
494 // Returns true on success, false on failure.
495 //
496 bool recognizeLoop(LoopStructure &LoopStructureOut,
497 const SCEV *&LatchCountOut, BasicBlock *&PreHeaderOut,
498 const char *&FailureReasonOut) const;
499
500 // Compute a safe set of limits for the main loop to run in -- effectively the
501 // intersection of `Range' and the iteration space of the original loop.
502 // Return the header count (1 + the latch taken count) in `HeaderCount'.
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000503 // Return None if unable to compute the set of subranges.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000504 //
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000505 Optional<SubRanges> calculateSubRanges(Value *&HeaderCount) const;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000506
507 // Clone `OriginalLoop' and return the result in CLResult. The IR after
508 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
509 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
510 // but there is no such edge.
511 //
512 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
513
514 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
515 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
516 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
517 // `OriginalHeaderCount'.
518 //
519 // If there are iterations left to execute, control is made to jump to
520 // `ContinuationBlock', otherwise they take the normal loop exit. The
521 // returned `RewrittenRangeInfo' object is populated as follows:
522 //
523 // .PseudoExit is a basic block that unconditionally branches to
524 // `ContinuationBlock'.
525 //
526 // .ExitSelector is a basic block that decides, on exit from the loop,
527 // whether to branch to the "true" exit or to `PseudoExit'.
528 //
529 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
530 // for each PHINode in the loop header on taking the pseudo exit.
531 //
532 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
533 // preheader because it is made to branch to the loop header only
534 // conditionally.
535 //
536 RewrittenRangeInfo
537 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
538 Value *ExitLoopAt,
539 BasicBlock *ContinuationBlock) const;
540
541 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
542 // function creates a new preheader for `LS' and returns it.
543 //
544 BasicBlock *createPreheader(const LoopConstrainer::LoopStructure &LS,
545 BasicBlock *OldPreheader, const char *Tag) const;
546
547 // `ContinuationBlockAndPreheader' was the continuation block for some call to
548 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
549 // This function rewrites the PHI nodes in `LS.Header' to start with the
550 // correct value.
551 void rewriteIncomingValuesForPHIs(
552 LoopConstrainer::LoopStructure &LS,
553 BasicBlock *ContinuationBlockAndPreheader,
554 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
555
556 // Even though we do not preserve any passes at this time, we at least need to
557 // keep the parent loop structure consistent. The `LPPassManager' seems to
558 // verify this after running a loop pass. This function adds the list of
Benjamin Kramer39f76ac2015-02-06 14:43:49 +0000559 // blocks denoted by BBs to this loops parent loop if required.
560 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000561
562 // Some global state.
563 Function &F;
564 LLVMContext &Ctx;
565 ScalarEvolution &SE;
566
567 // Information about the original loop we started out with.
568 Loop &OriginalLoop;
569 LoopInfo &OriginalLoopInfo;
570 const SCEV *LatchTakenCount;
571 BasicBlock *OriginalPreheader;
572 Value *OriginalHeaderCount;
573
574 // The preheader of the main loop. This may or may not be different from
575 // `OriginalPreheader'.
576 BasicBlock *MainLoopPreheader;
577
578 // The range we need to run the main loop in.
579 InductiveRangeCheck::Range Range;
580
581 // The structure of the main loop (see comment at the beginning of this class
582 // for a definition)
583 LoopStructure MainLoopStructure;
584
585public:
586 LoopConstrainer(Loop &L, LoopInfo &LI, ScalarEvolution &SE,
587 InductiveRangeCheck::Range R)
588 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), SE(SE),
589 OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
590 OriginalPreheader(nullptr), OriginalHeaderCount(nullptr),
591 MainLoopPreheader(nullptr), Range(R) { }
592
593 // Entry point for the algorithm. Returns true on success.
594 bool run();
595};
596
597}
598
599void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
600 BasicBlock *ReplaceBy) {
601 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
602 if (PN->getIncomingBlock(i) == Block)
603 PN->setIncomingBlock(i, ReplaceBy);
604}
605
606bool LoopConstrainer::recognizeLoop(LoopStructure &LoopStructureOut,
607 const SCEV *&LatchCountOut,
608 BasicBlock *&PreheaderOut,
609 const char *&FailureReason) const {
610 using namespace llvm::PatternMatch;
611
612 assert(OriginalLoop.isLoopSimplifyForm() &&
613 "should follow from addRequired<>");
614
615 BasicBlock *Latch = OriginalLoop.getLoopLatch();
616 if (!OriginalLoop.isLoopExiting(Latch)) {
617 FailureReason = "no loop latch";
618 return false;
619 }
620
621 PHINode *CIV = OriginalLoop.getCanonicalInductionVariable();
Sanjoy Das95c476d2015-02-21 22:20:22 +0000622 assert(CIV && "precondition");
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000623
624 BasicBlock *Header = OriginalLoop.getHeader();
625 BasicBlock *Preheader = OriginalLoop.getLoopPreheader();
626 if (!Preheader) {
627 FailureReason = "no preheader";
628 return false;
629 }
630
631 Value *CIVNext = CIV->getIncomingValueForBlock(Latch);
632 Value *CIVStart = CIV->getIncomingValueForBlock(Preheader);
633
634 const SCEV *LatchCount = SE.getExitCount(&OriginalLoop, Latch);
635 if (isa<SCEVCouldNotCompute>(LatchCount)) {
636 FailureReason = "could not compute latch count";
637 return false;
638 }
639
640 // While SCEV does most of the analysis for us, we still have to
641 // modify the latch; and currently we can only deal with certain
642 // kinds of latches. This can be made more sophisticated as needed.
643
644 BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
645
646 if (!LatchBr || LatchBr->isUnconditional()) {
647 FailureReason = "latch terminator not conditional branch";
648 return false;
649 }
650
651 // Currently we only support a latch condition of the form:
652 //
653 // %condition = icmp slt %civNext, %limit
654 // br i1 %condition, label %header, label %exit
655
656 if (LatchBr->getSuccessor(0) != Header) {
657 FailureReason = "unknown latch form (header not first successor)";
658 return false;
659 }
660
661 Value *CIVComparedTo = nullptr;
662 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
663 if (!(match(LatchBr->getCondition(),
664 m_ICmp(Pred, m_Specific(CIVNext), m_Value(CIVComparedTo))) &&
665 Pred == ICmpInst::ICMP_SLT)) {
666 FailureReason = "unknown latch form (not slt)";
667 return false;
668 }
669
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000670 // IndVarSimplify will sometimes leave behind (in SCEV's cache) backedge-taken
671 // counts that are narrower than the canonical induction variable. These
672 // values are still accurate, and we could probably use them after sign/zero
673 // extension; but for now we just bail out of the transformation to keep
674 // things simple.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000675 const SCEV *CIVComparedToSCEV = SE.getSCEV(CIVComparedTo);
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000676 if (isa<SCEVCouldNotCompute>(CIVComparedToSCEV) ||
677 CIVComparedToSCEV->getType() != LatchCount->getType()) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000678 FailureReason = "could not relate CIV to latch expression";
679 return false;
680 }
681
682 const SCEV *ShouldBeOne = SE.getMinusSCEV(CIVComparedToSCEV, LatchCount);
683 const SCEVConstant *SCEVOne = dyn_cast<SCEVConstant>(ShouldBeOne);
684 if (!SCEVOne || SCEVOne->getValue()->getValue() != 1) {
685 FailureReason = "unexpected header count in latch";
686 return false;
687 }
688
689 unsigned LatchBrExitIdx = 1;
690 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
691
692 assert(SE.getLoopDisposition(LatchCount, &OriginalLoop) ==
693 ScalarEvolution::LoopInvariant &&
694 "loop variant exit count doesn't make sense!");
695
696 assert(!OriginalLoop.contains(LatchExit) && "expected an exit block!");
697
698 LoopStructureOut.Tag = "main";
699 LoopStructureOut.Header = Header;
700 LoopStructureOut.Latch = Latch;
701 LoopStructureOut.LatchBr = LatchBr;
702 LoopStructureOut.LatchExit = LatchExit;
703 LoopStructureOut.LatchBrExitIdx = LatchBrExitIdx;
704 LoopStructureOut.CIV = CIV;
705 LoopStructureOut.CIVNext = CIVNext;
706 LoopStructureOut.CIVStart = CIVStart;
707
708 LatchCountOut = LatchCount;
709 PreheaderOut = Preheader;
710 FailureReason = nullptr;
711
712 return true;
713}
714
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000715Optional<LoopConstrainer::SubRanges>
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000716LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const {
717 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
718
Sanjoy Das351db052015-01-22 09:32:02 +0000719 if (Range.getType() != Ty)
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000720 return None;
721
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000722 SCEVExpander Expander(SE, "irce");
723 Instruction *InsertPt = OriginalPreheader->getTerminator();
724
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000725 LoopConstrainer::SubRanges Result;
726
727 // I think we can be more aggressive here and make this nuw / nsw if the
728 // addition that feeds into the icmp for the latch's terminating branch is nuw
729 // / nsw. In any case, a wrapping 2's complement addition is safe.
730 ConstantInt *One = ConstantInt::get(Ty, 1);
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000731 const SCEV *HeaderCountSCEV = SE.getAddExpr(LatchTakenCount, SE.getSCEV(One));
732 HeaderCountOut = Expander.expandCodeFor(HeaderCountSCEV, Ty, InsertPt);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000733
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000734 const SCEV *Zero = SE.getConstant(Ty, 0);
735
736 // In some cases we can prove that we don't need a pre or post loop
737
738 bool ProvablyNoPreloop =
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000739 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Zero);
740 if (!ProvablyNoPreloop) {
741 const SCEV *ExitPreLoopAtSCEV =
742 SE.getSMinExpr(HeaderCountSCEV, Range.getBegin());
743 Result.ExitPreLoopAt =
744 Expander.expandCodeFor(ExitPreLoopAtSCEV, Ty, InsertPt);
745 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000746
747 bool ProvablyNoPostLoop =
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000748 SE.isKnownPredicate(ICmpInst::ICMP_SLE, HeaderCountSCEV, Range.getEnd());
749 if (!ProvablyNoPostLoop) {
750 const SCEV *ExitMainLoopAtSCEV =
751 SE.getSMinExpr(HeaderCountSCEV, Range.getEnd());
752 Result.ExitMainLoopAt =
753 Expander.expandCodeFor(ExitMainLoopAtSCEV, Ty, InsertPt);
754 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000755
756 return Result;
757}
758
759void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
760 const char *Tag) const {
761 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
762 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
763 Result.Blocks.push_back(Clone);
764 Result.Map[BB] = Clone;
765 }
766
767 auto GetClonedValue = [&Result](Value *V) {
768 assert(V && "null values not in domain!");
769 auto It = Result.Map.find(V);
770 if (It == Result.Map.end())
771 return V;
772 return static_cast<Value *>(It->second);
773 };
774
775 Result.Structure = MainLoopStructure.map(GetClonedValue);
776 Result.Structure.Tag = Tag;
777
778 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
779 BasicBlock *ClonedBB = Result.Blocks[i];
780 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
781
782 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
783
784 for (Instruction &I : *ClonedBB)
785 RemapInstruction(&I, Result.Map,
786 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
787
788 // Exit blocks will now have one more predecessor and their PHI nodes need
789 // to be edited to reflect that. No phi nodes need to be introduced because
790 // the loop is in LCSSA.
791
792 for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
793 SBBI != SBBE; ++SBBI) {
794
795 if (OriginalLoop.contains(*SBBI))
796 continue; // not an exit block
797
798 for (Instruction &I : **SBBI) {
799 if (!isa<PHINode>(&I))
800 break;
801
802 PHINode *PN = cast<PHINode>(&I);
803 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
804 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
805 }
806 }
807 }
808}
809
810LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
811 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitLoopAt,
812 BasicBlock *ContinuationBlock) const {
813
814 // We start with a loop with a single latch:
815 //
816 // +--------------------+
817 // | |
818 // | preheader |
819 // | |
820 // +--------+-----------+
821 // | ----------------\
822 // | / |
823 // +--------v----v------+ |
824 // | | |
825 // | header | |
826 // | | |
827 // +--------------------+ |
828 // |
829 // ..... |
830 // |
831 // +--------------------+ |
832 // | | |
833 // | latch >----------/
834 // | |
835 // +-------v------------+
836 // |
837 // |
838 // | +--------------------+
839 // | | |
840 // +---> original exit |
841 // | |
842 // +--------------------+
843 //
844 // We change the control flow to look like
845 //
846 //
847 // +--------------------+
848 // | |
849 // | preheader >-------------------------+
850 // | | |
851 // +--------v-----------+ |
852 // | /-------------+ |
853 // | / | |
854 // +--------v--v--------+ | |
855 // | | | |
856 // | header | | +--------+ |
857 // | | | | | |
858 // +--------------------+ | | +-----v-----v-----------+
859 // | | | |
860 // | | | .pseudo.exit |
861 // | | | |
862 // | | +-----------v-----------+
863 // | | |
864 // ..... | | |
865 // | | +--------v-------------+
866 // +--------------------+ | | | |
867 // | | | | | ContinuationBlock |
868 // | latch >------+ | | |
869 // | | | +----------------------+
870 // +---------v----------+ |
871 // | |
872 // | |
873 // | +---------------^-----+
874 // | | |
875 // +-----> .exit.selector |
876 // | |
877 // +----------v----------+
878 // |
879 // +--------------------+ |
880 // | | |
881 // | original exit <----+
882 // | |
883 // +--------------------+
884 //
885
886 RewrittenRangeInfo RRI;
887
888 auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
889 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
890 &F, BBInsertLocation);
891 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
892 BBInsertLocation);
893
894 BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
895
896 IRBuilder<> B(PreheaderJump);
897
898 // EnterLoopCond - is it okay to start executing this `LS'?
899 Value *EnterLoopCond = B.CreateICmpSLT(LS.CIVStart, ExitLoopAt);
900 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
901 PreheaderJump->eraseFromParent();
902
903 assert(LS.LatchBrExitIdx == 1 && "generalize this as needed!");
904
905 B.SetInsertPoint(LS.LatchBr);
906
907 // ContinueCond - is it okay to execute the next iteration in `LS'?
908 Value *ContinueCond = B.CreateICmpSLT(LS.CIVNext, ExitLoopAt);
909
910 LS.LatchBr->setCondition(ContinueCond);
911 assert(LS.LatchBr->getSuccessor(LS.LatchBrExitIdx) == LS.LatchExit &&
912 "invariant!");
913 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
914
915 B.SetInsertPoint(RRI.ExitSelector);
916
917 // IterationsLeft - are there any more iterations left, given the original
918 // upper bound on the induction variable? If not, we branch to the "real"
919 // exit.
920 Value *IterationsLeft = B.CreateICmpSLT(LS.CIVNext, OriginalHeaderCount);
921 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
922
923 BranchInst *BranchToContinuation =
924 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
925
926 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
927 // each of the PHI nodes in the loop header. This feeds into the initial
928 // value of the same PHI nodes if/when we continue execution.
929 for (Instruction &I : *LS.Header) {
930 if (!isa<PHINode>(&I))
931 break;
932
933 PHINode *PN = cast<PHINode>(&I);
934
935 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
936 BranchToContinuation);
937
938 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
939 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
940 RRI.ExitSelector);
941 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
942 }
943
944 // The latch exit now has a branch from `RRI.ExitSelector' instead of
945 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
946 for (Instruction &I : *LS.LatchExit) {
947 if (PHINode *PN = dyn_cast<PHINode>(&I))
948 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
949 else
950 break;
951 }
952
953 return RRI;
954}
955
956void LoopConstrainer::rewriteIncomingValuesForPHIs(
957 LoopConstrainer::LoopStructure &LS, BasicBlock *ContinuationBlock,
958 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
959
960 unsigned PHIIndex = 0;
961 for (Instruction &I : *LS.Header) {
962 if (!isa<PHINode>(&I))
963 break;
964
965 PHINode *PN = cast<PHINode>(&I);
966
967 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
968 if (PN->getIncomingBlock(i) == ContinuationBlock)
969 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
970 }
971
972 LS.CIVStart = LS.CIV->getIncomingValueForBlock(ContinuationBlock);
973}
974
975BasicBlock *
976LoopConstrainer::createPreheader(const LoopConstrainer::LoopStructure &LS,
977 BasicBlock *OldPreheader,
978 const char *Tag) const {
979
980 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
981 BranchInst::Create(LS.Header, Preheader);
982
983 for (Instruction &I : *LS.Header) {
984 if (!isa<PHINode>(&I))
985 break;
986
987 PHINode *PN = cast<PHINode>(&I);
988 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
989 replacePHIBlock(PN, OldPreheader, Preheader);
990 }
991
992 return Preheader;
993}
994
Benjamin Kramer39f76ac2015-02-06 14:43:49 +0000995void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000996 Loop *ParentLoop = OriginalLoop.getParentLoop();
997 if (!ParentLoop)
998 return;
999
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001000 for (BasicBlock *BB : BBs)
1001 ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001002}
1003
1004bool LoopConstrainer::run() {
1005 BasicBlock *Preheader = nullptr;
1006 const char *CouldNotProceedBecause = nullptr;
1007 if (!recognizeLoop(MainLoopStructure, LatchTakenCount, Preheader,
1008 CouldNotProceedBecause)) {
1009 DEBUG(dbgs() << "irce: could not recognize loop, " << CouldNotProceedBecause
1010 << "\n";);
1011 return false;
1012 }
1013
1014 OriginalPreheader = Preheader;
1015 MainLoopPreheader = Preheader;
1016
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001017 Optional<SubRanges> MaybeSR = calculateSubRanges(OriginalHeaderCount);
1018 if (!MaybeSR.hasValue()) {
1019 DEBUG(dbgs() << "irce: could not compute subranges\n");
1020 return false;
1021 }
1022 SubRanges SR = MaybeSR.getValue();
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001023
1024 // It would have been better to make `PreLoop' and `PostLoop'
1025 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1026 // constructor.
1027 ClonedLoop PreLoop, PostLoop;
1028 bool NeedsPreLoop = SR.ExitPreLoopAt.hasValue();
1029 bool NeedsPostLoop = SR.ExitMainLoopAt.hasValue();
1030
1031 // We clone these ahead of time so that we don't have to deal with changing
1032 // and temporarily invalid IR as we transform the loops.
1033 if (NeedsPreLoop)
1034 cloneLoop(PreLoop, "preloop");
1035 if (NeedsPostLoop)
1036 cloneLoop(PostLoop, "postloop");
1037
1038 RewrittenRangeInfo PreLoopRRI;
1039
1040 if (NeedsPreLoop) {
1041 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1042 PreLoop.Structure.Header);
1043
1044 MainLoopPreheader =
1045 createPreheader(MainLoopStructure, Preheader, "mainloop");
1046 PreLoopRRI =
1047 changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1048 SR.ExitPreLoopAt.getValue(), MainLoopPreheader);
1049 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1050 PreLoopRRI);
1051 }
1052
1053 BasicBlock *PostLoopPreheader = nullptr;
1054 RewrittenRangeInfo PostLoopRRI;
1055
1056 if (NeedsPostLoop) {
1057 PostLoopPreheader =
1058 createPreheader(PostLoop.Structure, Preheader, "postloop");
1059 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1060 SR.ExitMainLoopAt.getValue(),
1061 PostLoopPreheader);
1062 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1063 PostLoopRRI);
1064 }
1065
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001066 BasicBlock *NewMainLoopPreheader =
1067 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1068 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1069 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1070 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001071
1072 // Some of the above may be nullptr, filter them out before passing to
1073 // addToParentLoopIfNeeded.
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001074 auto NewBlocksEnd =
1075 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001076
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001077 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1078 addToParentLoopIfNeeded(PreLoop.Blocks);
1079 addToParentLoopIfNeeded(PostLoop.Blocks);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001080
1081 return true;
1082}
1083
Sanjoy Das95c476d2015-02-21 22:20:22 +00001084/// Computes and returns a range of values for the induction variable (IndVar)
1085/// in which the range check can be safely elided. If it cannot compute such a
1086/// range, returns None.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001087Optional<InductiveRangeCheck::Range>
1088InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
Sanjoy Das95c476d2015-02-21 22:20:22 +00001089 const SCEVAddRecExpr *IndVar,
1090 IRBuilder<> &) const {
1091 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1092 // variable, that may or may not exist as a real llvm::Value in the loop) and
1093 // this inductive range check is a range check on the "C + D * I" ("C" is
1094 // getOffset() and "D" is getScale()). We rewrite the value being range
1095 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1096 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1097 // can be generalized as needed.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001098 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001099 // The actual inequalities we solve are of the form
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001100 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001101 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1102 //
1103 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions
1104 // and subtractions are twos-complement wrapping and comparisons are signed.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001105 //
1106 // Proof:
1107 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001108 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1109 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows
1110 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have
1111 // overflown.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001112 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001113 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t.
1114 // Hence 0 <= (IndVar + M) < L
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001115
Sanjoy Das95c476d2015-02-21 22:20:22 +00001116 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1117 // 127, IndVar = 126 and L = -2 in an i8 world.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001118
Sanjoy Das95c476d2015-02-21 22:20:22 +00001119 if (!IndVar->isAffine())
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001120 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001121
Sanjoy Das95c476d2015-02-21 22:20:22 +00001122 const SCEV *A = IndVar->getStart();
1123 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1124 if (!B)
1125 return None;
1126
1127 const SCEV *C = getOffset();
1128 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1129 if (D != B)
1130 return None;
1131
1132 ConstantInt *ConstD = D->getValue();
1133 if (!(ConstD->isMinusOne() || ConstD->isOne()))
1134 return None;
1135
1136 const SCEV *M = SE.getMinusSCEV(C, A);
1137
1138 const SCEV *Begin = SE.getNegativeSCEV(M);
1139 const SCEV *End = SE.getMinusSCEV(SE.getSCEV(getLength()), M);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001140
Sanjoy Das351db052015-01-22 09:32:02 +00001141 return InductiveRangeCheck::Range(Begin, End);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001142}
1143
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001144static Optional<InductiveRangeCheck::Range>
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001145IntersectRange(ScalarEvolution &SE,
1146 const Optional<InductiveRangeCheck::Range> &R1,
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001147 const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
1148 if (!R1.hasValue())
1149 return R2;
1150 auto &R1Value = R1.getValue();
1151
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001152 // TODO: we could widen the smaller range and have this work; but for now we
1153 // bail out to keep things simple.
Sanjoy Das351db052015-01-22 09:32:02 +00001154 if (R1Value.getType() != R2.getType())
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001155 return None;
1156
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001157 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1158 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1159
1160 return InductiveRangeCheck::Range(NewBegin, NewEnd);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001161}
1162
1163bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1164 if (L->getBlocks().size() >= LoopSizeCutoff) {
1165 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1166 return false;
1167 }
1168
1169 BasicBlock *Preheader = L->getLoopPreheader();
1170 if (!Preheader) {
1171 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1172 return false;
1173 }
1174
1175 LLVMContext &Context = Preheader->getContext();
1176 InductiveRangeCheck::AllocatorTy IRCAlloc;
1177 SmallVector<InductiveRangeCheck *, 16> RangeChecks;
1178 ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
Sanjoy Dasdcf26512015-01-27 21:38:12 +00001179 BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001180
Sanjoy Das95c476d2015-02-21 22:20:22 +00001181 PHINode *CIV = L->getCanonicalInductionVariable();
1182 if (!CIV) {
1183 DEBUG(dbgs() << "irce: loop has no canonical induction variable\n");
1184 return false;
1185 }
1186 const SCEVAddRecExpr *IndVar = cast<SCEVAddRecExpr>(SE.getSCEV(CIV));
1187
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001188 for (auto BBI : L->getBlocks())
1189 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1190 if (InductiveRangeCheck *IRC =
Sanjoy Dasdcf26512015-01-27 21:38:12 +00001191 InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001192 RangeChecks.push_back(IRC);
1193
1194 if (RangeChecks.empty())
1195 return false;
1196
1197 DEBUG(dbgs() << "irce: looking at loop "; L->print(dbgs());
1198 dbgs() << "irce: loop has " << RangeChecks.size()
1199 << " inductive range checks: \n";
1200 for (InductiveRangeCheck *IRC : RangeChecks)
1201 IRC->print(dbgs());
1202 );
1203
1204 Optional<InductiveRangeCheck::Range> SafeIterRange;
1205 Instruction *ExprInsertPt = Preheader->getTerminator();
1206
1207 SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
1208
1209 IRBuilder<> B(ExprInsertPt);
1210 for (InductiveRangeCheck *IRC : RangeChecks) {
Sanjoy Das95c476d2015-02-21 22:20:22 +00001211 auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001212 if (Result.hasValue()) {
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001213 auto MaybeSafeIterRange =
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001214 IntersectRange(SE, SafeIterRange, Result.getValue(), B);
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001215 if (MaybeSafeIterRange.hasValue()) {
1216 RangeChecksToEliminate.push_back(IRC);
1217 SafeIterRange = MaybeSafeIterRange.getValue();
1218 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001219 }
1220 }
1221
1222 if (!SafeIterRange.hasValue())
1223 return false;
1224
Chandler Carruth4f8f3072015-01-17 14:16:18 +00001225 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), SE,
1226 SafeIterRange.getValue());
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001227 bool Changed = LC.run();
1228
1229 if (Changed) {
1230 auto PrintConstrainedLoopInfo = [L]() {
1231 dbgs() << "irce: in function ";
1232 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1233 dbgs() << "constrained ";
1234 L->print(dbgs());
1235 };
1236
1237 DEBUG(PrintConstrainedLoopInfo());
1238
1239 if (PrintChangedLoops)
1240 PrintConstrainedLoopInfo();
1241
1242 // Optimize away the now-redundant range checks.
1243
1244 for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
1245 ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
1246 ? ConstantInt::getTrue(Context)
1247 : ConstantInt::getFalse(Context);
1248 IRC->getBranch()->setCondition(FoldedRangeCheck);
1249 }
1250 }
1251
1252 return Changed;
1253}
1254
1255Pass *llvm::createInductiveRangeCheckEliminationPass() {
1256 return new InductiveRangeCheckElimination;
1257}