blob: 50b90b1fdcd2f76539b9ada2acbada3e3eb055de [file] [log] [blame]
Chris Lattnercab0b442003-01-13 20:01:16 +00001//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner5ab42e52003-05-07 20:08:36 +000010// This file implements the LiveVariable analysis pass. For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form. This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function. It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block). If a physical
24// register is not register allocatable, it is not tracked. This is useful for
25// things like the stack pointer and condition codes.
26//
Chris Lattnercab0b442003-01-13 20:01:16 +000027//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
Chris Lattnerb4d58d72003-01-14 22:00:31 +000031#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnercab0b442003-01-13 20:01:16 +000032#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CFG.h"
34#include "Support/DepthFirstIterator.h"
35
36static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
37
Chris Lattner584bae42003-05-12 14:24:00 +000038const std::pair<MachineBasicBlock*, unsigned> &
39LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{
40 return BBMap.find(MBB->getBasicBlock())->second;
41}
42
43LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
44 assert(RegIdx >= MRegisterInfo::FirstVirtualRegister &&
45 "getVarInfo: not a virtual register!");
46 RegIdx -= MRegisterInfo::FirstVirtualRegister;
47 if (RegIdx >= VirtRegInfo.size()) {
48 if (RegIdx >= 2*VirtRegInfo.size())
49 VirtRegInfo.resize(RegIdx*2);
50 else
51 VirtRegInfo.resize(2*VirtRegInfo.size());
52 }
53 return VirtRegInfo[RegIdx];
54}
55
56
57
Chris Lattnercab0b442003-01-13 20:01:16 +000058void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
59 const BasicBlock *BB) {
60 const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second;
61 MachineBasicBlock *MBB = Info.first;
62 unsigned BBNum = Info.second;
63
64 // Check to see if this basic block is one of the killing blocks. If so,
65 // remove it...
66 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
67 if (VRInfo.Kills[i].first == MBB) {
68 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
69 break;
70 }
71
72 if (MBB == VRInfo.DefBlock) return; // Terminate recursion
73
74 if (VRInfo.AliveBlocks.size() <= BBNum)
75 VRInfo.AliveBlocks.resize(BBNum+1); // Make space...
76
77 if (VRInfo.AliveBlocks[BBNum])
78 return; // We already know the block is live
79
80 // Mark the variable known alive in this bb
81 VRInfo.AliveBlocks[BBNum] = true;
82
83 for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
84 MarkVirtRegAliveInBlock(VRInfo, *PI);
85}
86
87void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
88 MachineInstr *MI) {
89 // Check to see if this basic block is already a kill block...
90 if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
91 // Yes, this register is killed in this basic block already. Increase the
92 // live range by updating the kill instruction.
93 VRInfo.Kills.back().second = MI;
94 return;
95 }
96
97#ifndef NDEBUG
98 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
99 assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
100#endif
101
102 assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
103
104 // Add a new kill entry for this basic block.
105 VRInfo.Kills.push_back(std::make_pair(MBB, MI));
106
107 // Update all dominating blocks to mark them known live.
108 const BasicBlock *BB = MBB->getBasicBlock();
109 for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB);
110 PI != E; ++PI)
111 MarkVirtRegAliveInBlock(VRInfo, *PI);
112}
113
114void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
115 if (PhysRegInfo[Reg]) {
116 PhysRegInfo[Reg] = MI;
117 PhysRegUsed[Reg] = true;
Alkis Evlogimenos5f1f3372003-10-08 05:20:08 +0000118 } else {
119 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
120 *AliasSet; ++AliasSet) {
121 if (MachineInstr *LastUse = PhysRegInfo[*AliasSet]) {
122 PhysRegInfo[*AliasSet] = MI;
123 PhysRegUsed[*AliasSet] = true;
Chris Lattnercab0b442003-01-13 20:01:16 +0000124 }
Alkis Evlogimenos5f1f3372003-10-08 05:20:08 +0000125 }
Chris Lattnercab0b442003-01-13 20:01:16 +0000126 }
127}
128
129void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
130 // Does this kill a previous version of this register?
131 if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
132 if (PhysRegUsed[Reg])
133 RegistersKilled.insert(std::make_pair(LastUse, Reg));
134 else
135 RegistersDead.insert(std::make_pair(LastUse, Reg));
Alkis Evlogimenos5f1f3372003-10-08 05:20:08 +0000136 } else {
137 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
138 *AliasSet; ++AliasSet) {
139 if (MachineInstr *LastUse = PhysRegInfo[*AliasSet]) {
140 if (PhysRegUsed[*AliasSet])
141 RegistersKilled.insert(std::make_pair(LastUse, *AliasSet));
Chris Lattnercab0b442003-01-13 20:01:16 +0000142 else
Alkis Evlogimenos5f1f3372003-10-08 05:20:08 +0000143 RegistersDead.insert(std::make_pair(LastUse, *AliasSet));
144 PhysRegInfo[*AliasSet] = 0; // Kill the aliased register
Chris Lattnercab0b442003-01-13 20:01:16 +0000145 }
Alkis Evlogimenos5f1f3372003-10-08 05:20:08 +0000146 }
Chris Lattnercab0b442003-01-13 20:01:16 +0000147 }
148 PhysRegInfo[Reg] = MI;
149 PhysRegUsed[Reg] = false;
150}
151
152bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner5ab42e52003-05-07 20:08:36 +0000153 // First time though, initialize AllocatablePhysicalRegisters for the target
154 if (AllocatablePhysicalRegisters.empty()) {
155 const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
156 assert(&MRI && "Target doesn't have register information?");
157
158 // Make space, initializing to false...
159 AllocatablePhysicalRegisters.resize(MRegisterInfo::FirstVirtualRegister);
160
161 // Loop over all of the register classes...
162 for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(),
163 E = MRI.regclass_end(); RCI != E; ++RCI)
164 // Loop over all of the allocatable registers in the function...
165 for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
166 E = (*RCI)->allocation_order_end(MF); I != E; ++I)
167 AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable!
168 }
169
Chris Lattnercab0b442003-01-13 20:01:16 +0000170 // Build BBMap...
171 unsigned BBNum = 0;
172 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
173 BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++);
174
175 // PhysRegInfo - Keep track of which instruction was the last use of a
176 // physical register. This is a purely local property, because all physical
177 // register references as presumed dead across basic blocks.
178 //
179 MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister];
180 bool PhysRegUsedA[MRegisterInfo::FirstVirtualRegister];
181 std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister,
182 (MachineInstr*)0);
183 PhysRegInfo = PhysRegInfoA;
184 PhysRegUsed = PhysRegUsedA;
185
186 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
187 RegInfo = MF.getTarget().getRegisterInfo();
188
189 /// Get some space for a respectable number of registers...
190 VirtRegInfo.resize(64);
191
192 // Calculate live variable information in depth first order on the CFG of the
193 // function. This guarantees that we will see the definition of a virtual
194 // register before its uses due to dominance properties of SSA (except for PHI
195 // nodes, which are treated as a special case).
196 //
197 const BasicBlock *Entry = MF.getFunction()->begin();
198 for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
199 DFI != E; ++DFI) {
200 const BasicBlock *BB = *DFI;
201 std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second;
202 MachineBasicBlock *MBB = BBRec.first;
203 unsigned BBNum = BBRec.second;
204
205 // Loop over all of the instructions, processing them.
206 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
207 I != E; ++I) {
208 MachineInstr *MI = *I;
209 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
210
211 // Process all of the operands of the instruction...
212 unsigned NumOperandsToProcess = MI->getNumOperands();
213
214 // Unless it is a PHI node. In this case, ONLY process the DEF, not any
215 // of the uses. They will be handled in other basic blocks.
216 if (MI->getOpcode() == TargetInstrInfo::PHI)
217 NumOperandsToProcess = 1;
218
219 // Loop over implicit uses, using them.
Alkis Evlogimenos5f1f3372003-10-08 05:20:08 +0000220 for (const unsigned *ImplicitUses = MID.ImplicitUses;
221 *ImplicitUses; ++ImplicitUses)
222 HandlePhysRegUse(*ImplicitUses, MI);
Chris Lattnercab0b442003-01-13 20:01:16 +0000223
224 // Process all explicit uses...
225 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
226 MachineOperand &MO = MI->getOperand(i);
227 if (MO.opIsUse() || MO.opIsDefAndUse()) {
228 if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) {
Chris Lattner584bae42003-05-12 14:24:00 +0000229 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
Chris Lattner5ab42e52003-05-07 20:08:36 +0000230 } else if (MO.isPhysicalRegister() &&
231 AllocatablePhysicalRegisters[MO.getReg()]) {
Chris Lattnercab0b442003-01-13 20:01:16 +0000232 HandlePhysRegUse(MO.getReg(), MI);
233 }
234 }
235 }
236
237 // Loop over implicit defs, defining them.
238 if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
239 for (unsigned i = 0; ImplicitDefs[i]; ++i)
240 HandlePhysRegDef(ImplicitDefs[i], MI);
241
242 // Process all explicit defs...
243 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
244 MachineOperand &MO = MI->getOperand(i);
Vikram S. Adve7366fa12003-05-27 00:05:23 +0000245 if (MO.opIsDefOnly() || MO.opIsDefAndUse()) {
Chris Lattnercab0b442003-01-13 20:01:16 +0000246 if (MO.isVirtualRegister()) {
Chris Lattner584bae42003-05-12 14:24:00 +0000247 VarInfo &VRInfo = getVarInfo(MO.getReg());
Chris Lattnercab0b442003-01-13 20:01:16 +0000248
249 assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
250 VRInfo.DefBlock = MBB; // Created here...
251 VRInfo.DefInst = MI;
252 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
Chris Lattner5ab42e52003-05-07 20:08:36 +0000253 } else if (MO.isPhysicalRegister() &&
254 AllocatablePhysicalRegisters[MO.getReg()]) {
Chris Lattnercab0b442003-01-13 20:01:16 +0000255 HandlePhysRegDef(MO.getReg(), MI);
256 }
257 }
258 }
259 }
260
261 // Handle any virtual assignments from PHI nodes which might be at the
262 // bottom of this basic block. We check all of our successor blocks to see
263 // if they have PHI nodes, and if so, we simulate an assignment at the end
264 // of the current block.
Chris Lattnerf641fd02003-05-01 21:18:47 +0000265 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB);
266 SI != E; ++SI) {
267 MachineBasicBlock *Succ = BBMap.find(*SI)->second.first;
Chris Lattnercab0b442003-01-13 20:01:16 +0000268
269 // PHI nodes are guaranteed to be at the top of the block...
270 for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end();
271 I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) {
Chris Lattnerf641fd02003-05-01 21:18:47 +0000272 MachineInstr *MI = *I;
Chris Lattnercab0b442003-01-13 20:01:16 +0000273 for (unsigned i = 1; ; i += 2)
Chris Lattnerf641fd02003-05-01 21:18:47 +0000274 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
275 MachineOperand &MO = MI->getOperand(i);
Chris Lattnercab0b442003-01-13 20:01:16 +0000276 if (!MO.getVRegValueOrNull()) {
Chris Lattner584bae42003-05-12 14:24:00 +0000277 VarInfo &VRInfo = getVarInfo(MO.getReg());
Chris Lattnercab0b442003-01-13 20:01:16 +0000278
279 // Only mark it alive only in the block we are representing...
280 MarkVirtRegAliveInBlock(VRInfo, BB);
281 break; // Found the PHI entry for this block...
282 }
283 }
284 }
285 }
286
287 // Loop over PhysRegInfo, killing any registers that are available at the
288 // end of the basic block. This also resets the PhysRegInfo map.
289 for (unsigned i = 0, e = MRegisterInfo::FirstVirtualRegister; i != e; ++i)
290 if (PhysRegInfo[i])
291 HandlePhysRegDef(i, 0);
292 }
293
Chris Lattnercab0b442003-01-13 20:01:16 +0000294 // Convert the information we have gathered into VirtRegInfo and transform it
295 // into a form usable by RegistersKilled.
296 //
297 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
298 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
299 if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
300 RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
301 i + MRegisterInfo::FirstVirtualRegister));
302
303 else
304 RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
305 i + MRegisterInfo::FirstVirtualRegister));
306 }
307
308 return false;
309}