Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 1 | //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the LatencyPriorityQueue class, which is a |
| 11 | // SchedulingPriorityQueue that schedules using latency information to |
| 12 | // reduce the length of the critical path through the basic block. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
Dan Gohman | 60cb69e | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 16 | #include "llvm/CodeGen/LatencyPriorityQueue.h" |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 17 | #include "llvm/Support/Debug.h" |
Andrew Trick | 10ffc2b | 2010-12-24 05:03:26 +0000 | [diff] [blame] | 18 | #include "llvm/Support/raw_ostream.h" |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 19 | using namespace llvm; |
| 20 | |
Chandler Carruth | 1b9dde0 | 2014-04-22 02:02:50 +0000 | [diff] [blame] | 21 | #define DEBUG_TYPE "scheduler" |
| 22 | |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 23 | bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { |
Dan Gohman | b9a0121 | 2008-12-16 03:35:01 +0000 | [diff] [blame] | 24 | // The isScheduleHigh flag allows nodes with wraparound dependencies that |
| 25 | // cannot easily be modeled as edges with latencies to be scheduled as |
| 26 | // soon as possible in a top-down schedule. |
| 27 | if (LHS->isScheduleHigh && !RHS->isScheduleHigh) |
| 28 | return false; |
| 29 | if (!LHS->isScheduleHigh && RHS->isScheduleHigh) |
| 30 | return true; |
| 31 | |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 32 | unsigned LHSNum = LHS->NodeNum; |
| 33 | unsigned RHSNum = RHS->NodeNum; |
| 34 | |
| 35 | // The most important heuristic is scheduling the critical path. |
| 36 | unsigned LHSLatency = PQ->getLatency(LHSNum); |
| 37 | unsigned RHSLatency = PQ->getLatency(RHSNum); |
| 38 | if (LHSLatency < RHSLatency) return true; |
| 39 | if (LHSLatency > RHSLatency) return false; |
Andrew Trick | c416ba6 | 2010-12-24 04:28:06 +0000 | [diff] [blame] | 40 | |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 41 | // After that, if two nodes have identical latencies, look to see if one will |
| 42 | // unblock more other nodes than the other. |
| 43 | unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); |
| 44 | unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); |
| 45 | if (LHSBlocked < RHSBlocked) return true; |
| 46 | if (LHSBlocked > RHSBlocked) return false; |
Andrew Trick | c416ba6 | 2010-12-24 04:28:06 +0000 | [diff] [blame] | 47 | |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 48 | // Finally, just to provide a stable ordering, use the node number as a |
| 49 | // deciding factor. |
Andrew Trick | 46cc9a4 | 2012-02-22 06:08:11 +0000 | [diff] [blame] | 50 | return RHSNum < LHSNum; |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 51 | } |
| 52 | |
| 53 | |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 54 | /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor |
| 55 | /// of SU, return it, otherwise return null. |
| 56 | SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) { |
Craig Topper | c0196b1 | 2014-04-14 00:51:57 +0000 | [diff] [blame] | 57 | SUnit *OnlyAvailablePred = nullptr; |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 58 | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 59 | I != E; ++I) { |
Dan Gohman | 2d17089 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 60 | SUnit &Pred = *I->getSUnit(); |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 61 | if (!Pred.isScheduled) { |
| 62 | // We found an available, but not scheduled, predecessor. If it's the |
| 63 | // only one we have found, keep track of it... otherwise give up. |
| 64 | if (OnlyAvailablePred && OnlyAvailablePred != &Pred) |
Craig Topper | c0196b1 | 2014-04-14 00:51:57 +0000 | [diff] [blame] | 65 | return nullptr; |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 66 | OnlyAvailablePred = &Pred; |
| 67 | } |
| 68 | } |
Andrew Trick | c416ba6 | 2010-12-24 04:28:06 +0000 | [diff] [blame] | 69 | |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 70 | return OnlyAvailablePred; |
| 71 | } |
| 72 | |
Dan Gohman | 7c00576 | 2010-05-26 01:10:55 +0000 | [diff] [blame] | 73 | void LatencyPriorityQueue::push(SUnit *SU) { |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 74 | // Look at all of the successors of this node. Count the number of nodes that |
| 75 | // this node is the sole unscheduled node for. |
| 76 | unsigned NumNodesBlocking = 0; |
| 77 | for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
David Goodwin | 8501dbbe | 2009-11-03 20:57:50 +0000 | [diff] [blame] | 78 | I != E; ++I) { |
Dan Gohman | 2d17089 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 79 | if (getSingleUnscheduledPred(I->getSUnit()) == SU) |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 80 | ++NumNodesBlocking; |
David Goodwin | 8501dbbe | 2009-11-03 20:57:50 +0000 | [diff] [blame] | 81 | } |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 82 | NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; |
Andrew Trick | c416ba6 | 2010-12-24 04:28:06 +0000 | [diff] [blame] | 83 | |
Dan Gohman | 52c2738 | 2010-05-26 18:52:00 +0000 | [diff] [blame] | 84 | Queue.push_back(SU); |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 85 | } |
| 86 | |
| 87 | |
Andrew Trick | 52226d4 | 2012-03-07 23:00:49 +0000 | [diff] [blame] | 88 | // scheduledNode - As nodes are scheduled, we look to see if there are any |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 89 | // successor nodes that have a single unscheduled predecessor. If so, that |
| 90 | // single predecessor has a higher priority, since scheduling it will make |
| 91 | // the node available. |
Andrew Trick | 52226d4 | 2012-03-07 23:00:49 +0000 | [diff] [blame] | 92 | void LatencyPriorityQueue::scheduledNode(SUnit *SU) { |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 93 | for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
David Goodwin | 8501dbbe | 2009-11-03 20:57:50 +0000 | [diff] [blame] | 94 | I != E; ++I) { |
Dan Gohman | 2d17089 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 95 | AdjustPriorityOfUnscheduledPreds(I->getSUnit()); |
David Goodwin | 8501dbbe | 2009-11-03 20:57:50 +0000 | [diff] [blame] | 96 | } |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 97 | } |
| 98 | |
| 99 | /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just |
| 100 | /// scheduled. If SU is not itself available, then there is at least one |
| 101 | /// predecessor node that has not been scheduled yet. If SU has exactly ONE |
| 102 | /// unscheduled predecessor, we want to increase its priority: it getting |
| 103 | /// scheduled will make this node available, so it is better than some other |
| 104 | /// node of the same priority that will not make a node available. |
| 105 | void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { |
Dan Gohman | 17c226b | 2008-11-17 16:37:30 +0000 | [diff] [blame] | 106 | if (SU->isAvailable) return; // All preds scheduled. |
Andrew Trick | c416ba6 | 2010-12-24 04:28:06 +0000 | [diff] [blame] | 107 | |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 108 | SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); |
Craig Topper | c0196b1 | 2014-04-14 00:51:57 +0000 | [diff] [blame] | 109 | if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return; |
Andrew Trick | c416ba6 | 2010-12-24 04:28:06 +0000 | [diff] [blame] | 110 | |
Dan Gohman | d2760c0 | 2008-11-15 00:23:40 +0000 | [diff] [blame] | 111 | // Okay, we found a single predecessor that is available, but not scheduled. |
| 112 | // Since it is available, it must be in the priority queue. First remove it. |
| 113 | remove(OnlyAvailablePred); |
| 114 | |
| 115 | // Reinsert the node into the priority queue, which recomputes its |
| 116 | // NumNodesSolelyBlocking value. |
| 117 | push(OnlyAvailablePred); |
| 118 | } |
Dan Gohman | 52c2738 | 2010-05-26 18:52:00 +0000 | [diff] [blame] | 119 | |
| 120 | SUnit *LatencyPriorityQueue::pop() { |
Craig Topper | c0196b1 | 2014-04-14 00:51:57 +0000 | [diff] [blame] | 121 | if (empty()) return nullptr; |
Dan Gohman | 52c2738 | 2010-05-26 18:52:00 +0000 | [diff] [blame] | 122 | std::vector<SUnit *>::iterator Best = Queue.begin(); |
Benjamin Kramer | b6d0bd4 | 2014-03-02 12:27:27 +0000 | [diff] [blame] | 123 | for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()), |
Dan Gohman | 52c2738 | 2010-05-26 18:52:00 +0000 | [diff] [blame] | 124 | E = Queue.end(); I != E; ++I) |
| 125 | if (Picker(*Best, *I)) |
| 126 | Best = I; |
| 127 | SUnit *V = *Best; |
Benjamin Kramer | b6d0bd4 | 2014-03-02 12:27:27 +0000 | [diff] [blame] | 128 | if (Best != std::prev(Queue.end())) |
Dan Gohman | 52c2738 | 2010-05-26 18:52:00 +0000 | [diff] [blame] | 129 | std::swap(*Best, Queue.back()); |
| 130 | Queue.pop_back(); |
| 131 | return V; |
| 132 | } |
| 133 | |
| 134 | void LatencyPriorityQueue::remove(SUnit *SU) { |
| 135 | assert(!Queue.empty() && "Queue is empty!"); |
David Majnemer | 0d955d0 | 2016-08-11 22:21:41 +0000 | [diff] [blame] | 136 | std::vector<SUnit *>::iterator I = find(Queue, SU); |
Benjamin Kramer | b6d0bd4 | 2014-03-02 12:27:27 +0000 | [diff] [blame] | 137 | if (I != std::prev(Queue.end())) |
Dan Gohman | 52c2738 | 2010-05-26 18:52:00 +0000 | [diff] [blame] | 138 | std::swap(*I, Queue.back()); |
| 139 | Queue.pop_back(); |
| 140 | } |