Dylan McKay | 7549b0a | 2016-11-02 06:47:40 +0000 | [diff] [blame] | 1 | //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the interfaces that AVR uses to lower LLVM code into a |
| 11 | // selection DAG. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "AVRISelLowering.h" |
| 16 | |
| 17 | #include "llvm/CodeGen/CallingConvLower.h" |
| 18 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 19 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 20 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 21 | #include "llvm/CodeGen/SelectionDAG.h" |
| 22 | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| 23 | #include "llvm/IR/Function.h" |
| 24 | #include "llvm/Support/ErrorHandling.h" |
| 25 | |
| 26 | #include "AVR.h" |
| 27 | #include "AVRMachineFunctionInfo.h" |
| 28 | #include "AVRTargetMachine.h" |
| 29 | #include "MCTargetDesc/AVRMCTargetDesc.h" |
| 30 | |
| 31 | namespace llvm { |
| 32 | |
| 33 | AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm) |
| 34 | : TargetLowering(tm) { |
| 35 | // Set up the register classes. |
| 36 | addRegisterClass(MVT::i8, &AVR::GPR8RegClass); |
| 37 | addRegisterClass(MVT::i16, &AVR::DREGSRegClass); |
| 38 | |
| 39 | // Compute derived properties from the register classes. |
| 40 | computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo()); |
| 41 | |
| 42 | setBooleanContents(ZeroOrOneBooleanContent); |
| 43 | setBooleanVectorContents(ZeroOrOneBooleanContent); |
| 44 | setSchedulingPreference(Sched::RegPressure); |
| 45 | setStackPointerRegisterToSaveRestore(AVR::SP); |
| 46 | |
| 47 | setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); |
| 48 | setOperationAction(ISD::BlockAddress, MVT::i16, Custom); |
| 49 | |
| 50 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); |
| 51 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); |
| 52 | |
| 53 | for (MVT VT : MVT::integer_valuetypes()) { |
| 54 | for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { |
| 55 | setLoadExtAction(N, VT, MVT::i1, Promote); |
| 56 | setLoadExtAction(N, VT, MVT::i8, Expand); |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | setTruncStoreAction(MVT::i16, MVT::i8, Expand); |
| 61 | |
| 62 | // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types |
| 63 | // revert into a sub since we don't have an add with immediate instruction. |
| 64 | setOperationAction(ISD::ADD, MVT::i32, Custom); |
| 65 | setOperationAction(ISD::ADD, MVT::i64, Custom); |
| 66 | |
| 67 | // our shift instructions are only able to shift 1 bit at a time, so handle |
| 68 | // this in a custom way. |
| 69 | setOperationAction(ISD::SRA, MVT::i8, Custom); |
| 70 | setOperationAction(ISD::SHL, MVT::i8, Custom); |
| 71 | setOperationAction(ISD::SRL, MVT::i8, Custom); |
| 72 | setOperationAction(ISD::SRA, MVT::i16, Custom); |
| 73 | setOperationAction(ISD::SHL, MVT::i16, Custom); |
| 74 | setOperationAction(ISD::SRL, MVT::i16, Custom); |
| 75 | setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); |
| 76 | setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); |
| 77 | setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); |
| 78 | |
| 79 | setOperationAction(ISD::BR_CC, MVT::i8, Custom); |
| 80 | setOperationAction(ISD::BR_CC, MVT::i16, Custom); |
| 81 | setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| 82 | setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| 83 | setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| 84 | |
| 85 | setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); |
| 86 | setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); |
| 87 | setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| 88 | setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); |
| 89 | setOperationAction(ISD::SETCC, MVT::i8, Custom); |
| 90 | setOperationAction(ISD::SETCC, MVT::i16, Custom); |
| 91 | setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| 92 | setOperationAction(ISD::SETCC, MVT::i64, Custom); |
| 93 | setOperationAction(ISD::SELECT, MVT::i8, Expand); |
| 94 | setOperationAction(ISD::SELECT, MVT::i16, Expand); |
| 95 | |
| 96 | setOperationAction(ISD::BSWAP, MVT::i16, Expand); |
| 97 | |
| 98 | // Add support for postincrement and predecrement load/stores. |
| 99 | setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); |
| 100 | setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); |
| 101 | setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal); |
| 102 | setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal); |
| 103 | setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal); |
| 104 | setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal); |
| 105 | setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal); |
| 106 | setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal); |
| 107 | |
| 108 | setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| 109 | |
| 110 | setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| 111 | setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| 112 | setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| 113 | setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| 114 | |
| 115 | // Atomic operations which must be lowered to rtlib calls |
| 116 | for (MVT VT : MVT::integer_valuetypes()) { |
| 117 | setOperationAction(ISD::ATOMIC_SWAP, VT, Expand); |
| 118 | setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand); |
| 119 | setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); |
| 120 | setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); |
| 121 | setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); |
| 122 | setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); |
| 123 | setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); |
| 124 | } |
| 125 | |
| 126 | // Division/remainder |
| 127 | setOperationAction(ISD::UDIV, MVT::i8, Expand); |
| 128 | setOperationAction(ISD::UDIV, MVT::i16, Expand); |
| 129 | setOperationAction(ISD::UREM, MVT::i8, Expand); |
| 130 | setOperationAction(ISD::UREM, MVT::i16, Expand); |
| 131 | setOperationAction(ISD::SDIV, MVT::i8, Expand); |
| 132 | setOperationAction(ISD::SDIV, MVT::i16, Expand); |
| 133 | setOperationAction(ISD::SREM, MVT::i8, Expand); |
| 134 | setOperationAction(ISD::SREM, MVT::i16, Expand); |
| 135 | |
| 136 | // Make division and modulus custom |
| 137 | for (MVT VT : MVT::integer_valuetypes()) { |
| 138 | setOperationAction(ISD::UDIVREM, VT, Custom); |
| 139 | setOperationAction(ISD::SDIVREM, VT, Custom); |
| 140 | } |
| 141 | |
| 142 | // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co. |
| 143 | setOperationAction(ISD::MUL, MVT::i8, Expand); |
| 144 | setOperationAction(ISD::MUL, MVT::i16, Expand); |
| 145 | |
| 146 | // Expand 16 bit multiplications. |
| 147 | setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); |
| 148 | setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); |
| 149 | |
| 150 | for (MVT VT : MVT::integer_valuetypes()) { |
| 151 | setOperationAction(ISD::MULHS, VT, Expand); |
| 152 | setOperationAction(ISD::MULHU, VT, Expand); |
| 153 | } |
| 154 | |
| 155 | for (MVT VT : MVT::integer_valuetypes()) { |
| 156 | setOperationAction(ISD::CTPOP, VT, Expand); |
| 157 | setOperationAction(ISD::CTLZ, VT, Expand); |
| 158 | setOperationAction(ISD::CTTZ, VT, Expand); |
| 159 | } |
| 160 | |
| 161 | for (MVT VT : MVT::integer_valuetypes()) { |
| 162 | setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| 163 | // TODO: The generated code is pretty poor. Investigate using the |
| 164 | // same "shift and subtract with carry" trick that we do for |
| 165 | // extending 8-bit to 16-bit. This may require infrastructure |
| 166 | // improvements in how we treat 16-bit "registers" to be feasible. |
| 167 | } |
| 168 | |
| 169 | // Division rtlib functions (not supported) |
| 170 | setLibcallName(RTLIB::SDIV_I8, nullptr); |
| 171 | setLibcallName(RTLIB::SDIV_I16, nullptr); |
| 172 | setLibcallName(RTLIB::SDIV_I32, nullptr); |
| 173 | setLibcallName(RTLIB::SDIV_I64, nullptr); |
| 174 | setLibcallName(RTLIB::SDIV_I128, nullptr); |
| 175 | setLibcallName(RTLIB::UDIV_I8, nullptr); |
| 176 | setLibcallName(RTLIB::UDIV_I16, nullptr); |
| 177 | setLibcallName(RTLIB::UDIV_I32, nullptr); |
| 178 | setLibcallName(RTLIB::UDIV_I64, nullptr); |
| 179 | setLibcallName(RTLIB::UDIV_I128, nullptr); |
| 180 | |
| 181 | // Modulus rtlib functions (not supported) |
| 182 | setLibcallName(RTLIB::SREM_I8, nullptr); |
| 183 | setLibcallName(RTLIB::SREM_I16, nullptr); |
| 184 | setLibcallName(RTLIB::SREM_I32, nullptr); |
| 185 | setLibcallName(RTLIB::SREM_I64, nullptr); |
| 186 | setLibcallName(RTLIB::SREM_I128, nullptr); |
| 187 | setLibcallName(RTLIB::UREM_I8, nullptr); |
| 188 | setLibcallName(RTLIB::UREM_I16, nullptr); |
| 189 | setLibcallName(RTLIB::UREM_I32, nullptr); |
| 190 | setLibcallName(RTLIB::UREM_I64, nullptr); |
| 191 | setLibcallName(RTLIB::UREM_I128, nullptr); |
| 192 | |
| 193 | // Division and modulus rtlib functions |
| 194 | setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4"); |
| 195 | setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4"); |
| 196 | setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); |
| 197 | setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4"); |
| 198 | setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4"); |
| 199 | setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4"); |
| 200 | setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4"); |
| 201 | setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); |
| 202 | setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4"); |
| 203 | setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4"); |
| 204 | |
| 205 | // Several of the runtime library functions use a special calling conv |
| 206 | setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN); |
| 207 | setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN); |
| 208 | setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN); |
| 209 | setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN); |
| 210 | |
| 211 | // Trigonometric rtlib functions |
| 212 | setLibcallName(RTLIB::SIN_F32, "sin"); |
| 213 | setLibcallName(RTLIB::COS_F32, "cos"); |
| 214 | |
| 215 | setMinFunctionAlignment(1); |
| 216 | setMinimumJumpTableEntries(INT_MAX); |
| 217 | } |
| 218 | |
| 219 | const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 220 | #define NODE(name) \ |
| 221 | case AVRISD::name: \ |
| 222 | return #name |
| 223 | |
| 224 | switch (Opcode) { |
| 225 | default: |
| 226 | return nullptr; |
| 227 | NODE(RET_FLAG); |
| 228 | NODE(RETI_FLAG); |
| 229 | NODE(CALL); |
| 230 | NODE(WRAPPER); |
| 231 | NODE(LSL); |
| 232 | NODE(LSR); |
| 233 | NODE(ROL); |
| 234 | NODE(ROR); |
| 235 | NODE(ASR); |
| 236 | NODE(LSLLOOP); |
| 237 | NODE(LSRLOOP); |
| 238 | NODE(ASRLOOP); |
| 239 | NODE(BRCOND); |
| 240 | NODE(CMP); |
| 241 | NODE(CMPC); |
| 242 | NODE(TST); |
| 243 | NODE(SELECT_CC); |
| 244 | #undef NODE |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| 249 | EVT VT) const { |
| 250 | assert(!VT.isVector() && "No AVR SetCC type for vectors!"); |
| 251 | return MVT::i8; |
| 252 | } |
| 253 | |
| 254 | SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const { |
| 255 | //:TODO: this function has to be completely rewritten to produce optimal |
| 256 | // code, for now it's producing very long but correct code. |
| 257 | unsigned Opc8; |
| 258 | const SDNode *N = Op.getNode(); |
| 259 | EVT VT = Op.getValueType(); |
| 260 | SDLoc dl(N); |
| 261 | |
| 262 | // Expand non-constant shifts to loops. |
| 263 | if (!isa<ConstantSDNode>(N->getOperand(1))) { |
| 264 | switch (Op.getOpcode()) { |
| 265 | default: |
| 266 | llvm_unreachable("Invalid shift opcode!"); |
| 267 | case ISD::SHL: |
| 268 | return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0), |
| 269 | N->getOperand(1)); |
| 270 | case ISD::SRL: |
| 271 | return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0), |
| 272 | N->getOperand(1)); |
| 273 | case ISD::SRA: |
| 274 | return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0), |
| 275 | N->getOperand(1)); |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| 280 | SDValue Victim = N->getOperand(0); |
| 281 | |
| 282 | switch (Op.getOpcode()) { |
| 283 | case ISD::SRA: |
| 284 | Opc8 = AVRISD::ASR; |
| 285 | break; |
| 286 | case ISD::ROTL: |
| 287 | Opc8 = AVRISD::ROL; |
| 288 | break; |
| 289 | case ISD::ROTR: |
| 290 | Opc8 = AVRISD::ROR; |
| 291 | break; |
| 292 | case ISD::SRL: |
| 293 | Opc8 = AVRISD::LSR; |
| 294 | break; |
| 295 | case ISD::SHL: |
| 296 | Opc8 = AVRISD::LSL; |
| 297 | break; |
| 298 | default: |
| 299 | llvm_unreachable("Invalid shift opcode"); |
| 300 | } |
| 301 | |
| 302 | while (ShiftAmount--) { |
| 303 | Victim = DAG.getNode(Opc8, dl, VT, Victim); |
| 304 | } |
| 305 | |
| 306 | return Victim; |
| 307 | } |
| 308 | |
| 309 | SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { |
| 310 | unsigned Opcode = Op->getOpcode(); |
| 311 | assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && |
| 312 | "Invalid opcode for Div/Rem lowering"); |
| 313 | bool isSigned = (Opcode == ISD::SDIVREM); |
| 314 | EVT VT = Op->getValueType(0); |
| 315 | Type *Ty = VT.getTypeForEVT(*DAG.getContext()); |
| 316 | |
| 317 | RTLIB::Libcall LC; |
| 318 | switch (VT.getSimpleVT().SimpleTy) { |
| 319 | default: |
| 320 | llvm_unreachable("Unexpected request for libcall!"); |
| 321 | case MVT::i8: |
| 322 | LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; |
| 323 | break; |
| 324 | case MVT::i16: |
| 325 | LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; |
| 326 | break; |
| 327 | case MVT::i32: |
| 328 | LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; |
| 329 | break; |
| 330 | case MVT::i64: |
| 331 | LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; |
| 332 | break; |
| 333 | } |
| 334 | |
| 335 | SDValue InChain = DAG.getEntryNode(); |
| 336 | |
| 337 | TargetLowering::ArgListTy Args; |
| 338 | TargetLowering::ArgListEntry Entry; |
| 339 | for (SDValue const &Value : Op->op_values()) { |
| 340 | Entry.Node = Value; |
| 341 | Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext()); |
| 342 | Entry.isSExt = isSigned; |
| 343 | Entry.isZExt = !isSigned; |
| 344 | Args.push_back(Entry); |
| 345 | } |
| 346 | |
| 347 | SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), |
| 348 | getPointerTy(DAG.getDataLayout())); |
| 349 | |
| 350 | Type *RetTy = (Type *)StructType::get(Ty, Ty, nullptr); |
| 351 | |
| 352 | SDLoc dl(Op); |
| 353 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 354 | CLI.setDebugLoc(dl) |
| 355 | .setChain(InChain) |
| 356 | .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) |
| 357 | .setInRegister() |
| 358 | .setSExtResult(isSigned) |
| 359 | .setZExtResult(!isSigned); |
| 360 | |
| 361 | std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| 362 | return CallInfo.first; |
| 363 | } |
| 364 | |
| 365 | SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op, |
| 366 | SelectionDAG &DAG) const { |
| 367 | auto DL = DAG.getDataLayout(); |
| 368 | |
| 369 | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| 370 | int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); |
| 371 | |
| 372 | // Create the TargetGlobalAddress node, folding in the constant offset. |
| 373 | SDValue Result = |
| 374 | DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset); |
| 375 | return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); |
| 376 | } |
| 377 | |
| 378 | SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op, |
| 379 | SelectionDAG &DAG) const { |
| 380 | auto DL = DAG.getDataLayout(); |
| 381 | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| 382 | |
| 383 | SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL)); |
| 384 | |
| 385 | return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); |
| 386 | } |
| 387 | |
| 388 | /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC. |
| 389 | static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) { |
| 390 | switch (CC) { |
| 391 | default: |
| 392 | llvm_unreachable("Unknown condition code!"); |
| 393 | case ISD::SETEQ: |
| 394 | return AVRCC::COND_EQ; |
| 395 | case ISD::SETNE: |
| 396 | return AVRCC::COND_NE; |
| 397 | case ISD::SETGE: |
| 398 | return AVRCC::COND_GE; |
| 399 | case ISD::SETLT: |
| 400 | return AVRCC::COND_LT; |
| 401 | case ISD::SETUGE: |
| 402 | return AVRCC::COND_SH; |
| 403 | case ISD::SETULT: |
| 404 | return AVRCC::COND_LO; |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for |
| 409 | /// the given operands. |
| 410 | SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 411 | SDValue &AVRcc, SelectionDAG &DAG, |
| 412 | SDLoc DL) const { |
| 413 | SDValue Cmp; |
| 414 | EVT VT = LHS.getValueType(); |
| 415 | bool UseTest = false; |
| 416 | |
| 417 | switch (CC) { |
| 418 | default: |
| 419 | break; |
| 420 | case ISD::SETLE: { |
| 421 | // Swap operands and reverse the branching condition. |
| 422 | std::swap(LHS, RHS); |
| 423 | CC = ISD::SETGE; |
| 424 | break; |
| 425 | } |
| 426 | case ISD::SETGT: { |
| 427 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| 428 | switch (C->getSExtValue()) { |
| 429 | case -1: { |
| 430 | // When doing lhs > -1 use a tst instruction on the top part of lhs |
| 431 | // and use brpl instead of using a chain of cp/cpc. |
| 432 | UseTest = true; |
| 433 | AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8); |
| 434 | break; |
| 435 | } |
| 436 | case 0: { |
| 437 | // Turn lhs > 0 into 0 < lhs since 0 can be materialized with |
| 438 | // __zero_reg__ in lhs. |
| 439 | RHS = LHS; |
| 440 | LHS = DAG.getConstant(0, DL, VT); |
| 441 | CC = ISD::SETLT; |
| 442 | break; |
| 443 | } |
| 444 | default: { |
| 445 | // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows |
| 446 | // us to fold the constant into the cmp instruction. |
| 447 | RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); |
| 448 | CC = ISD::SETGE; |
| 449 | break; |
| 450 | } |
| 451 | } |
| 452 | break; |
| 453 | } |
| 454 | // Swap operands and reverse the branching condition. |
| 455 | std::swap(LHS, RHS); |
| 456 | CC = ISD::SETLT; |
| 457 | break; |
| 458 | } |
| 459 | case ISD::SETLT: { |
| 460 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| 461 | switch (C->getSExtValue()) { |
| 462 | case 1: { |
| 463 | // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with |
| 464 | // __zero_reg__ in lhs. |
| 465 | RHS = LHS; |
| 466 | LHS = DAG.getConstant(0, DL, VT); |
| 467 | CC = ISD::SETGE; |
| 468 | break; |
| 469 | } |
| 470 | case 0: { |
| 471 | // When doing lhs < 0 use a tst instruction on the top part of lhs |
| 472 | // and use brmi instead of using a chain of cp/cpc. |
| 473 | UseTest = true; |
| 474 | AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8); |
| 475 | break; |
| 476 | } |
| 477 | } |
| 478 | } |
| 479 | break; |
| 480 | } |
| 481 | case ISD::SETULE: { |
| 482 | // Swap operands and reverse the branching condition. |
| 483 | std::swap(LHS, RHS); |
| 484 | CC = ISD::SETUGE; |
| 485 | break; |
| 486 | } |
| 487 | case ISD::SETUGT: { |
| 488 | // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to |
| 489 | // fold the constant into the cmp instruction. |
| 490 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| 491 | RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); |
| 492 | CC = ISD::SETUGE; |
| 493 | break; |
| 494 | } |
| 495 | // Swap operands and reverse the branching condition. |
| 496 | std::swap(LHS, RHS); |
| 497 | CC = ISD::SETULT; |
| 498 | break; |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of |
| 503 | // using the default and/or/xor expansion code which is much longer. |
| 504 | if (VT == MVT::i32) { |
| 505 | SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, |
| 506 | DAG.getIntPtrConstant(0, DL)); |
| 507 | SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, |
| 508 | DAG.getIntPtrConstant(1, DL)); |
| 509 | SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, |
| 510 | DAG.getIntPtrConstant(0, DL)); |
| 511 | SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, |
| 512 | DAG.getIntPtrConstant(1, DL)); |
| 513 | |
| 514 | if (UseTest) { |
| 515 | // When using tst we only care about the highest part. |
| 516 | SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi, |
| 517 | DAG.getIntPtrConstant(1, DL)); |
| 518 | Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); |
| 519 | } else { |
| 520 | Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo); |
| 521 | Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp); |
| 522 | } |
| 523 | } else if (VT == MVT::i64) { |
| 524 | SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, |
| 525 | DAG.getIntPtrConstant(0, DL)); |
| 526 | SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, |
| 527 | DAG.getIntPtrConstant(1, DL)); |
| 528 | |
| 529 | SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, |
| 530 | DAG.getIntPtrConstant(0, DL)); |
| 531 | SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, |
| 532 | DAG.getIntPtrConstant(1, DL)); |
| 533 | SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, |
| 534 | DAG.getIntPtrConstant(0, DL)); |
| 535 | SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, |
| 536 | DAG.getIntPtrConstant(1, DL)); |
| 537 | |
| 538 | SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, |
| 539 | DAG.getIntPtrConstant(0, DL)); |
| 540 | SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, |
| 541 | DAG.getIntPtrConstant(1, DL)); |
| 542 | |
| 543 | SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, |
| 544 | DAG.getIntPtrConstant(0, DL)); |
| 545 | SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, |
| 546 | DAG.getIntPtrConstant(1, DL)); |
| 547 | SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, |
| 548 | DAG.getIntPtrConstant(0, DL)); |
| 549 | SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, |
| 550 | DAG.getIntPtrConstant(1, DL)); |
| 551 | |
| 552 | if (UseTest) { |
| 553 | // When using tst we only care about the highest part. |
| 554 | SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3, |
| 555 | DAG.getIntPtrConstant(1, DL)); |
| 556 | Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); |
| 557 | } else { |
| 558 | Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0); |
| 559 | Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp); |
| 560 | Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp); |
| 561 | Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp); |
| 562 | } |
| 563 | } else if (VT == MVT::i8 || VT == MVT::i16) { |
| 564 | if (UseTest) { |
| 565 | // When using tst we only care about the highest part. |
| 566 | Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, |
| 567 | (VT == MVT::i8) |
| 568 | ? LHS |
| 569 | : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, |
| 570 | LHS, DAG.getIntPtrConstant(1, DL))); |
| 571 | } else { |
| 572 | Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS); |
| 573 | } |
| 574 | } else { |
| 575 | llvm_unreachable("Invalid comparison size"); |
| 576 | } |
| 577 | |
| 578 | // When using a test instruction AVRcc is already set. |
| 579 | if (!UseTest) { |
| 580 | AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8); |
| 581 | } |
| 582 | |
| 583 | return Cmp; |
| 584 | } |
| 585 | |
| 586 | SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| 587 | SDValue Chain = Op.getOperand(0); |
| 588 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| 589 | SDValue LHS = Op.getOperand(2); |
| 590 | SDValue RHS = Op.getOperand(3); |
| 591 | SDValue Dest = Op.getOperand(4); |
| 592 | SDLoc dl(Op); |
| 593 | |
| 594 | SDValue TargetCC; |
| 595 | SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); |
| 596 | |
| 597 | return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC, |
| 598 | Cmp); |
| 599 | } |
| 600 | |
| 601 | SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| 602 | SDValue LHS = Op.getOperand(0); |
| 603 | SDValue RHS = Op.getOperand(1); |
| 604 | SDValue TrueV = Op.getOperand(2); |
| 605 | SDValue FalseV = Op.getOperand(3); |
| 606 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| 607 | SDLoc dl(Op); |
| 608 | |
| 609 | SDValue TargetCC; |
| 610 | SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); |
| 611 | |
| 612 | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| 613 | SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; |
| 614 | |
| 615 | return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops); |
| 616 | } |
| 617 | |
| 618 | SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| 619 | SDValue LHS = Op.getOperand(0); |
| 620 | SDValue RHS = Op.getOperand(1); |
| 621 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| 622 | SDLoc DL(Op); |
| 623 | |
| 624 | SDValue TargetCC; |
| 625 | SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL); |
| 626 | |
| 627 | SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType()); |
| 628 | SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType()); |
| 629 | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| 630 | SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; |
| 631 | |
| 632 | return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops); |
| 633 | } |
| 634 | |
| 635 | SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| 636 | const MachineFunction &MF = DAG.getMachineFunction(); |
| 637 | const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| 638 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| 639 | auto DL = DAG.getDataLayout(); |
| 640 | SDLoc dl(Op); |
| 641 | |
| 642 | // Vastart just stores the address of the VarArgsFrameIndex slot into the |
| 643 | // memory location argument. |
| 644 | SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL)); |
| 645 | |
| 646 | return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), |
| 647 | MachinePointerInfo(SV), 0); |
| 648 | } |
| 649 | |
| 650 | SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| 651 | switch (Op.getOpcode()) { |
| 652 | default: |
| 653 | llvm_unreachable("Don't know how to custom lower this!"); |
| 654 | case ISD::SHL: |
| 655 | case ISD::SRA: |
| 656 | case ISD::SRL: |
| 657 | case ISD::ROTL: |
| 658 | case ISD::ROTR: |
| 659 | return LowerShifts(Op, DAG); |
| 660 | case ISD::GlobalAddress: |
| 661 | return LowerGlobalAddress(Op, DAG); |
| 662 | case ISD::BlockAddress: |
| 663 | return LowerBlockAddress(Op, DAG); |
| 664 | case ISD::BR_CC: |
| 665 | return LowerBR_CC(Op, DAG); |
| 666 | case ISD::SELECT_CC: |
| 667 | return LowerSELECT_CC(Op, DAG); |
| 668 | case ISD::SETCC: |
| 669 | return LowerSETCC(Op, DAG); |
| 670 | case ISD::VASTART: |
| 671 | return LowerVASTART(Op, DAG); |
| 672 | case ISD::SDIVREM: |
| 673 | case ISD::UDIVREM: |
| 674 | return LowerDivRem(Op, DAG); |
| 675 | } |
| 676 | |
| 677 | return SDValue(); |
| 678 | } |
| 679 | |
| 680 | /// Replace a node with an illegal result type |
| 681 | /// with a new node built out of custom code. |
| 682 | void AVRTargetLowering::ReplaceNodeResults(SDNode *N, |
| 683 | SmallVectorImpl<SDValue> &Results, |
| 684 | SelectionDAG &DAG) const { |
| 685 | SDLoc DL(N); |
| 686 | |
| 687 | switch (N->getOpcode()) { |
| 688 | case ISD::ADD: { |
| 689 | // Convert add (x, imm) into sub (x, -imm). |
| 690 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| 691 | SDValue Sub = DAG.getNode( |
| 692 | ISD::SUB, DL, N->getValueType(0), N->getOperand(0), |
| 693 | DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0))); |
| 694 | Results.push_back(Sub); |
| 695 | } |
| 696 | break; |
| 697 | } |
| 698 | default: { |
| 699 | SDValue Res = LowerOperation(SDValue(N, 0), DAG); |
| 700 | |
| 701 | for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) |
| 702 | Results.push_back(Res.getValue(I)); |
| 703 | |
| 704 | break; |
| 705 | } |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | /// Return true if the addressing mode represented |
| 710 | /// by AM is legal for this target, for a load/store of the specified type. |
| 711 | bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| 712 | const AddrMode &AM, Type *Ty, |
| 713 | unsigned AS) const { |
| 714 | int64_t Offs = AM.BaseOffs; |
| 715 | |
| 716 | // Allow absolute addresses. |
| 717 | if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) { |
| 718 | return true; |
| 719 | } |
| 720 | |
| 721 | // Flash memory instructions only allow zero offsets. |
| 722 | if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) { |
| 723 | return false; |
| 724 | } |
| 725 | |
| 726 | // Allow reg+<6bit> offset. |
| 727 | if (Offs < 0) |
| 728 | Offs = -Offs; |
| 729 | if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) { |
| 730 | return true; |
| 731 | } |
| 732 | |
| 733 | return false; |
| 734 | } |
| 735 | |
| 736 | /// Returns true by value, base pointer and |
| 737 | /// offset pointer and addressing mode by reference if the node's address |
| 738 | /// can be legally represented as pre-indexed load / store address. |
| 739 | bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| 740 | SDValue &Offset, |
| 741 | ISD::MemIndexedMode &AM, |
| 742 | SelectionDAG &DAG) const { |
| 743 | EVT VT; |
| 744 | const SDNode *Op; |
| 745 | SDLoc DL(N); |
| 746 | |
| 747 | if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| 748 | VT = LD->getMemoryVT(); |
| 749 | Op = LD->getBasePtr().getNode(); |
| 750 | if (LD->getExtensionType() != ISD::NON_EXTLOAD) |
| 751 | return false; |
| 752 | if (AVR::isProgramMemoryAccess(LD)) { |
| 753 | return false; |
| 754 | } |
| 755 | } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| 756 | VT = ST->getMemoryVT(); |
| 757 | Op = ST->getBasePtr().getNode(); |
| 758 | if (AVR::isProgramMemoryAccess(ST)) { |
| 759 | return false; |
| 760 | } |
| 761 | } else { |
| 762 | return false; |
| 763 | } |
| 764 | |
| 765 | if (VT != MVT::i8 && VT != MVT::i16) { |
| 766 | return false; |
| 767 | } |
| 768 | |
| 769 | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { |
| 770 | return false; |
| 771 | } |
| 772 | |
| 773 | if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { |
| 774 | int RHSC = RHS->getSExtValue(); |
| 775 | if (Op->getOpcode() == ISD::SUB) |
| 776 | RHSC = -RHSC; |
| 777 | |
| 778 | if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) { |
| 779 | return false; |
| 780 | } |
| 781 | |
| 782 | Base = Op->getOperand(0); |
| 783 | Offset = DAG.getConstant(RHSC, DL, MVT::i8); |
| 784 | AM = ISD::PRE_DEC; |
| 785 | |
| 786 | return true; |
| 787 | } |
| 788 | |
| 789 | return false; |
| 790 | } |
| 791 | |
| 792 | /// Returns true by value, base pointer and |
| 793 | /// offset pointer and addressing mode by reference if this node can be |
| 794 | /// combined with a load / store to form a post-indexed load / store. |
| 795 | bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| 796 | SDValue &Base, |
| 797 | SDValue &Offset, |
| 798 | ISD::MemIndexedMode &AM, |
| 799 | SelectionDAG &DAG) const { |
| 800 | EVT VT; |
| 801 | SDLoc DL(N); |
| 802 | |
| 803 | if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| 804 | VT = LD->getMemoryVT(); |
| 805 | if (LD->getExtensionType() != ISD::NON_EXTLOAD) |
| 806 | return false; |
| 807 | } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| 808 | VT = ST->getMemoryVT(); |
| 809 | if (AVR::isProgramMemoryAccess(ST)) { |
| 810 | return false; |
| 811 | } |
| 812 | } else { |
| 813 | return false; |
| 814 | } |
| 815 | |
| 816 | if (VT != MVT::i8 && VT != MVT::i16) { |
| 817 | return false; |
| 818 | } |
| 819 | |
| 820 | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { |
| 821 | return false; |
| 822 | } |
| 823 | |
| 824 | if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { |
| 825 | int RHSC = RHS->getSExtValue(); |
| 826 | if (Op->getOpcode() == ISD::SUB) |
| 827 | RHSC = -RHSC; |
| 828 | if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) { |
| 829 | return false; |
| 830 | } |
| 831 | |
| 832 | Base = Op->getOperand(0); |
| 833 | Offset = DAG.getConstant(RHSC, DL, MVT::i8); |
| 834 | AM = ISD::POST_INC; |
| 835 | |
| 836 | return true; |
| 837 | } |
| 838 | |
| 839 | return false; |
| 840 | } |
| 841 | |
| 842 | bool AVRTargetLowering::isOffsetFoldingLegal( |
| 843 | const GlobalAddressSDNode *GA) const { |
| 844 | return true; |
| 845 | } |
| 846 | |
| 847 | //===----------------------------------------------------------------------===// |
| 848 | // Formal Arguments Calling Convention Implementation |
| 849 | //===----------------------------------------------------------------------===// |
| 850 | |
| 851 | #include "AVRGenCallingConv.inc" |
| 852 | |
| 853 | /// For each argument in a function store the number of pieces it is composed |
| 854 | /// of. |
| 855 | static void parseFunctionArgs(const Function *F, const DataLayout *TD, |
| 856 | SmallVectorImpl<unsigned> &Out) { |
| 857 | for (Argument const &Arg : F->args()) { |
| 858 | unsigned Bytes = (TD->getTypeSizeInBits(Arg.getType()) + 7) / 8; |
| 859 | Out.push_back((Bytes + 1) / 2); |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | /// For external symbols there is no function prototype information so we |
| 864 | /// have to rely directly on argument sizes. |
| 865 | static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In, |
| 866 | SmallVectorImpl<unsigned> &Out) { |
| 867 | for (unsigned i = 0, e = In.size(); i != e;) { |
| 868 | unsigned Size = 0; |
| 869 | unsigned Offset = 0; |
| 870 | while ((i != e) && (In[i].PartOffset == Offset)) { |
| 871 | Offset += In[i].VT.getStoreSize(); |
| 872 | ++i; |
| 873 | ++Size; |
| 874 | } |
| 875 | Out.push_back(Size); |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) { |
| 880 | SDValue Callee = CLI.Callee; |
| 881 | |
| 882 | if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| 883 | return G->getSymbol(); |
| 884 | } |
| 885 | |
| 886 | if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 887 | return G->getGlobal()->getName(); |
| 888 | } |
| 889 | |
| 890 | llvm_unreachable("don't know how to get the name for this callee"); |
| 891 | } |
| 892 | |
| 893 | /// Analyze incoming and outgoing function arguments. We need custom C++ code |
| 894 | /// to handle special constraints in the ABI like reversing the order of the |
| 895 | /// pieces of splitted arguments. In addition, all pieces of a certain argument |
| 896 | /// have to be passed either using registers or the stack but never mixing both. |
| 897 | static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI, |
| 898 | const Function *F, const DataLayout *TD, |
| 899 | const SmallVectorImpl<ISD::OutputArg> *Outs, |
| 900 | const SmallVectorImpl<ISD::InputArg> *Ins, |
| 901 | CallingConv::ID CallConv, |
| 902 | SmallVectorImpl<CCValAssign> &ArgLocs, |
| 903 | CCState &CCInfo, bool IsCall, bool IsVarArg) { |
| 904 | static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20, |
| 905 | AVR::R18, AVR::R16, AVR::R14, |
| 906 | AVR::R12, AVR::R10, AVR::R8}; |
| 907 | static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20, |
| 908 | AVR::R19R18, AVR::R17R16, AVR::R15R14, |
| 909 | AVR::R13R12, AVR::R11R10, AVR::R9R8}; |
| 910 | if (IsVarArg) { |
| 911 | // Variadic functions do not need all the analisys below. |
| 912 | if (IsCall) { |
| 913 | CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg); |
| 914 | } else { |
| 915 | CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg); |
| 916 | } |
| 917 | return; |
| 918 | } |
| 919 | |
| 920 | // Fill in the Args array which will contain original argument sizes. |
| 921 | SmallVector<unsigned, 8> Args; |
| 922 | if (IsCall) { |
| 923 | parseExternFuncCallArgs(*Outs, Args); |
| 924 | } else { |
| 925 | assert(F != nullptr && "function should not be null"); |
| 926 | parseFunctionArgs(F, TD, Args); |
| 927 | } |
| 928 | |
| 929 | unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0; |
| 930 | // Variadic functions always use the stack. |
| 931 | bool UsesStack = false; |
| 932 | for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) { |
| 933 | unsigned Size = Args[i]; |
| 934 | MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT; |
| 935 | |
| 936 | // If we have plenty of regs to pass the whole argument do it. |
| 937 | if (!UsesStack && (Size <= RegsLeft)) { |
| 938 | const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8; |
| 939 | |
| 940 | for (unsigned j = 0; j != Size; ++j) { |
| 941 | unsigned Reg = CCInfo.AllocateReg( |
| 942 | ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8))); |
| 943 | CCInfo.addLoc( |
| 944 | CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full)); |
| 945 | --RegsLeft; |
| 946 | } |
| 947 | |
| 948 | // Reverse the order of the pieces to agree with the "big endian" format |
| 949 | // required in the calling convention ABI. |
| 950 | std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size); |
| 951 | } else { |
| 952 | // Pass the rest of arguments using the stack. |
| 953 | UsesStack = true; |
| 954 | for (unsigned j = 0; j != Size; ++j) { |
| 955 | unsigned Offset = CCInfo.AllocateStack( |
| 956 | TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())), |
| 957 | TD->getABITypeAlignment( |
| 958 | EVT(LocVT).getTypeForEVT(CCInfo.getContext()))); |
| 959 | CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT, |
| 960 | CCValAssign::Full)); |
| 961 | } |
| 962 | } |
| 963 | pos += Size; |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI, |
| 968 | const Function *F, const DataLayout *TD, |
| 969 | const SmallVectorImpl<ISD::OutputArg> *Outs, |
| 970 | const SmallVectorImpl<ISD::InputArg> *Ins, |
| 971 | CallingConv::ID CallConv, |
| 972 | SmallVectorImpl<CCValAssign> &ArgLocs, |
| 973 | CCState &CCInfo, bool IsCall, bool IsVarArg) { |
| 974 | StringRef FuncName = getFunctionName(CLI); |
| 975 | |
| 976 | if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) { |
| 977 | CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV); |
| 978 | } else { |
| 979 | analyzeStandardArguments(&CLI, F, TD, Outs, Ins, |
| 980 | CallConv, ArgLocs, CCInfo, |
| 981 | IsCall, IsVarArg); |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI, |
| 986 | const Function *F, const DataLayout *TD, |
| 987 | const SmallVectorImpl<ISD::OutputArg> *Outs, |
| 988 | const SmallVectorImpl<ISD::InputArg> *Ins, |
| 989 | CallingConv::ID CallConv, |
| 990 | SmallVectorImpl<CCValAssign> &ArgLocs, |
| 991 | CCState &CCInfo, bool IsCall, bool IsVarArg) { |
| 992 | switch (CallConv) { |
| 993 | case CallingConv::AVR_BUILTIN: { |
| 994 | analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins, |
| 995 | CallConv, ArgLocs, CCInfo, |
| 996 | IsCall, IsVarArg); |
| 997 | return; |
| 998 | } |
| 999 | default: { |
| 1000 | analyzeStandardArguments(CLI, F, TD, Outs, Ins, |
| 1001 | CallConv, ArgLocs, CCInfo, |
| 1002 | IsCall, IsVarArg); |
| 1003 | return; |
| 1004 | } |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | SDValue AVRTargetLowering::LowerFormalArguments( |
| 1009 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| 1010 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG, |
| 1011 | SmallVectorImpl<SDValue> &InVals) const { |
| 1012 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1013 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1014 | auto DL = DAG.getDataLayout(); |
| 1015 | |
| 1016 | // Assign locations to all of the incoming arguments. |
| 1017 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1018 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| 1019 | *DAG.getContext()); |
| 1020 | |
| 1021 | analyzeArguments(nullptr, MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo, |
| 1022 | false, isVarArg); |
| 1023 | |
| 1024 | SDValue ArgValue; |
| 1025 | for (CCValAssign &VA : ArgLocs) { |
| 1026 | |
| 1027 | // Arguments stored on registers. |
| 1028 | if (VA.isRegLoc()) { |
| 1029 | EVT RegVT = VA.getLocVT(); |
| 1030 | const TargetRegisterClass *RC; |
| 1031 | if (RegVT == MVT::i8) { |
| 1032 | RC = &AVR::GPR8RegClass; |
| 1033 | } else if (RegVT == MVT::i16) { |
| 1034 | RC = &AVR::DREGSRegClass; |
| 1035 | } else { |
| 1036 | llvm_unreachable("Unknown argument type!"); |
| 1037 | } |
| 1038 | |
| 1039 | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| 1040 | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| 1041 | |
| 1042 | // :NOTE: Clang should not promote any i8 into i16 but for safety the |
| 1043 | // following code will handle zexts or sexts generated by other |
| 1044 | // front ends. Otherwise: |
| 1045 | // If this is an 8 bit value, it is really passed promoted |
| 1046 | // to 16 bits. Insert an assert[sz]ext to capture this, then |
| 1047 | // truncate to the right size. |
| 1048 | switch (VA.getLocInfo()) { |
| 1049 | default: |
| 1050 | llvm_unreachable("Unknown loc info!"); |
| 1051 | case CCValAssign::Full: |
| 1052 | break; |
| 1053 | case CCValAssign::BCvt: |
| 1054 | ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); |
| 1055 | break; |
| 1056 | case CCValAssign::SExt: |
| 1057 | ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| 1058 | DAG.getValueType(VA.getValVT())); |
| 1059 | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| 1060 | break; |
| 1061 | case CCValAssign::ZExt: |
| 1062 | ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| 1063 | DAG.getValueType(VA.getValVT())); |
| 1064 | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| 1065 | break; |
| 1066 | } |
| 1067 | |
| 1068 | InVals.push_back(ArgValue); |
| 1069 | } else { |
| 1070 | // Sanity check. |
| 1071 | assert(VA.isMemLoc()); |
| 1072 | |
| 1073 | EVT LocVT = VA.getLocVT(); |
| 1074 | |
| 1075 | // Create the frame index object for this incoming parameter. |
| 1076 | int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, |
| 1077 | VA.getLocMemOffset(), true); |
| 1078 | |
| 1079 | // Create the SelectionDAG nodes corresponding to a load |
| 1080 | // from this parameter. |
| 1081 | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL)); |
| 1082 | InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN, |
| 1083 | MachinePointerInfo::getFixedStack(MF, FI), |
| 1084 | 0)); |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | // If the function takes variable number of arguments, make a frame index for |
| 1089 | // the start of the first vararg value... for expansion of llvm.va_start. |
| 1090 | if (isVarArg) { |
| 1091 | unsigned StackSize = CCInfo.getNextStackOffset(); |
| 1092 | AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| 1093 | |
| 1094 | AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true)); |
| 1095 | } |
| 1096 | |
| 1097 | return Chain; |
| 1098 | } |
| 1099 | |
| 1100 | //===----------------------------------------------------------------------===// |
| 1101 | // Call Calling Convention Implementation |
| 1102 | //===----------------------------------------------------------------------===// |
| 1103 | |
| 1104 | SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| 1105 | SmallVectorImpl<SDValue> &InVals) const { |
| 1106 | SelectionDAG &DAG = CLI.DAG; |
| 1107 | SDLoc &DL = CLI.DL; |
| 1108 | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| 1109 | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| 1110 | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| 1111 | SDValue Chain = CLI.Chain; |
| 1112 | SDValue Callee = CLI.Callee; |
| 1113 | bool &isTailCall = CLI.IsTailCall; |
| 1114 | CallingConv::ID CallConv = CLI.CallConv; |
| 1115 | bool isVarArg = CLI.IsVarArg; |
| 1116 | |
| 1117 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1118 | |
| 1119 | // AVR does not yet support tail call optimization. |
| 1120 | isTailCall = false; |
| 1121 | |
| 1122 | // Analyze operands of the call, assigning locations to each operand. |
| 1123 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1124 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| 1125 | *DAG.getContext()); |
| 1126 | |
| 1127 | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| 1128 | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| 1129 | // node so that legalize doesn't hack it. |
| 1130 | const Function *F = nullptr; |
| 1131 | if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 1132 | const GlobalValue *GV = G->getGlobal(); |
| 1133 | |
| 1134 | F = cast<Function>(GV); |
| 1135 | Callee = |
| 1136 | DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout())); |
| 1137 | } else if (const ExternalSymbolSDNode *ES = |
| 1138 | dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| 1139 | Callee = DAG.getTargetExternalSymbol(ES->getSymbol(), |
| 1140 | getPointerTy(DAG.getDataLayout())); |
| 1141 | } |
| 1142 | |
| 1143 | analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo, |
| 1144 | true, isVarArg); |
| 1145 | |
| 1146 | // Get a count of how many bytes are to be pushed on the stack. |
| 1147 | unsigned NumBytes = CCInfo.getNextStackOffset(); |
| 1148 | |
| 1149 | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), |
| 1150 | DL); |
| 1151 | |
| 1152 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| 1153 | |
| 1154 | // First, walk the register assignments, inserting copies. |
| 1155 | unsigned AI, AE; |
| 1156 | bool HasStackArgs = false; |
| 1157 | for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) { |
| 1158 | CCValAssign &VA = ArgLocs[AI]; |
| 1159 | EVT RegVT = VA.getLocVT(); |
| 1160 | SDValue Arg = OutVals[AI]; |
| 1161 | |
| 1162 | // Promote the value if needed. With Clang this should not happen. |
| 1163 | switch (VA.getLocInfo()) { |
| 1164 | default: |
| 1165 | llvm_unreachable("Unknown loc info!"); |
| 1166 | case CCValAssign::Full: |
| 1167 | break; |
| 1168 | case CCValAssign::SExt: |
| 1169 | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg); |
| 1170 | break; |
| 1171 | case CCValAssign::ZExt: |
| 1172 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg); |
| 1173 | break; |
| 1174 | case CCValAssign::AExt: |
| 1175 | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg); |
| 1176 | break; |
| 1177 | case CCValAssign::BCvt: |
| 1178 | Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg); |
| 1179 | break; |
| 1180 | } |
| 1181 | |
| 1182 | // Stop when we encounter a stack argument, we need to process them |
| 1183 | // in reverse order in the loop below. |
| 1184 | if (VA.isMemLoc()) { |
| 1185 | HasStackArgs = true; |
| 1186 | break; |
| 1187 | } |
| 1188 | |
| 1189 | // Arguments that can be passed on registers must be kept in the RegsToPass |
| 1190 | // vector. |
| 1191 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| 1192 | } |
| 1193 | |
| 1194 | // Second, stack arguments have to walked in reverse order by inserting |
| 1195 | // chained stores, this ensures their order is not changed by the scheduler |
| 1196 | // and that the push instruction sequence generated is correct, otherwise they |
| 1197 | // can be freely intermixed. |
| 1198 | if (HasStackArgs) { |
| 1199 | for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) { |
| 1200 | unsigned Loc = AI - 1; |
| 1201 | CCValAssign &VA = ArgLocs[Loc]; |
| 1202 | SDValue Arg = OutVals[Loc]; |
| 1203 | |
| 1204 | assert(VA.isMemLoc()); |
| 1205 | |
| 1206 | // SP points to one stack slot further so add one to adjust it. |
| 1207 | SDValue PtrOff = DAG.getNode( |
| 1208 | ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), |
| 1209 | DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())), |
| 1210 | DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL)); |
| 1211 | |
| 1212 | Chain = |
| 1213 | DAG.getStore(Chain, DL, Arg, PtrOff, |
| 1214 | MachinePointerInfo::getStack(MF, VA.getLocMemOffset()), |
| 1215 | 0); |
| 1216 | } |
| 1217 | } |
| 1218 | |
| 1219 | // Build a sequence of copy-to-reg nodes chained together with token chain and |
| 1220 | // flag operands which copy the outgoing args into registers. The InFlag in |
| 1221 | // necessary since all emited instructions must be stuck together. |
| 1222 | SDValue InFlag; |
| 1223 | for (auto Reg : RegsToPass) { |
| 1224 | Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag); |
| 1225 | InFlag = Chain.getValue(1); |
| 1226 | } |
| 1227 | |
| 1228 | // Returns a chain & a flag for retval copy to use. |
| 1229 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| 1230 | SmallVector<SDValue, 8> Ops; |
| 1231 | Ops.push_back(Chain); |
| 1232 | Ops.push_back(Callee); |
| 1233 | |
| 1234 | // Add argument registers to the end of the list so that they are known live |
| 1235 | // into the call. |
| 1236 | for (auto Reg : RegsToPass) { |
| 1237 | Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); |
| 1238 | } |
| 1239 | |
| 1240 | // Add a register mask operand representing the call-preserved registers. |
| 1241 | const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); |
| 1242 | const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo(); |
| 1243 | const uint32_t *Mask = |
| 1244 | TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); |
| 1245 | assert(Mask && "Missing call preserved mask for calling convention"); |
| 1246 | Ops.push_back(DAG.getRegisterMask(Mask)); |
| 1247 | |
| 1248 | if (InFlag.getNode()) { |
| 1249 | Ops.push_back(InFlag); |
| 1250 | } |
| 1251 | |
| 1252 | Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops); |
| 1253 | InFlag = Chain.getValue(1); |
| 1254 | |
| 1255 | // Create the CALLSEQ_END node. |
| 1256 | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), |
| 1257 | DAG.getIntPtrConstant(0, DL, true), InFlag, DL); |
| 1258 | |
| 1259 | if (!Ins.empty()) { |
| 1260 | InFlag = Chain.getValue(1); |
| 1261 | } |
| 1262 | |
| 1263 | // Handle result values, copying them out of physregs into vregs that we |
| 1264 | // return. |
| 1265 | return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG, |
| 1266 | InVals); |
| 1267 | } |
| 1268 | |
| 1269 | /// Lower the result values of a call into the |
| 1270 | /// appropriate copies out of appropriate physical registers. |
| 1271 | /// |
| 1272 | SDValue AVRTargetLowering::LowerCallResult( |
| 1273 | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, |
| 1274 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG, |
| 1275 | SmallVectorImpl<SDValue> &InVals) const { |
| 1276 | |
| 1277 | // Assign locations to each value returned by this call. |
| 1278 | SmallVector<CCValAssign, 16> RVLocs; |
| 1279 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| 1280 | *DAG.getContext()); |
| 1281 | |
| 1282 | // Handle runtime calling convs. |
| 1283 | auto CCFunction = CCAssignFnForReturn(CallConv); |
| 1284 | CCInfo.AnalyzeCallResult(Ins, CCFunction); |
| 1285 | |
| 1286 | if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) { |
| 1287 | // Reverse splitted return values to get the "big endian" format required |
| 1288 | // to agree with the calling convention ABI. |
| 1289 | std::reverse(RVLocs.begin(), RVLocs.end()); |
| 1290 | } |
| 1291 | |
| 1292 | // Copy all of the result registers out of their specified physreg. |
| 1293 | for (CCValAssign const &RVLoc : RVLocs) { |
| 1294 | Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(), |
| 1295 | InFlag) |
| 1296 | .getValue(1); |
| 1297 | InFlag = Chain.getValue(2); |
| 1298 | InVals.push_back(Chain.getValue(0)); |
| 1299 | } |
| 1300 | |
| 1301 | return Chain; |
| 1302 | } |
| 1303 | |
| 1304 | //===----------------------------------------------------------------------===// |
| 1305 | // Return Value Calling Convention Implementation |
| 1306 | //===----------------------------------------------------------------------===// |
| 1307 | |
| 1308 | CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { |
| 1309 | switch (CC) { |
| 1310 | case CallingConv::AVR_BUILTIN: |
| 1311 | return RetCC_AVR_BUILTIN; |
| 1312 | default: |
| 1313 | return RetCC_AVR; |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | bool |
| 1318 | AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv, |
| 1319 | MachineFunction &MF, bool isVarArg, |
| 1320 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1321 | LLVMContext &Context) const |
| 1322 | { |
| 1323 | SmallVector<CCValAssign, 16> RVLocs; |
| 1324 | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| 1325 | |
| 1326 | auto CCFunction = CCAssignFnForReturn(CallConv); |
| 1327 | return CCInfo.CheckReturn(Outs, CCFunction); |
| 1328 | } |
| 1329 | |
| 1330 | SDValue |
| 1331 | AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| 1332 | bool isVarArg, |
| 1333 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1334 | const SmallVectorImpl<SDValue> &OutVals, |
| 1335 | const SDLoc &dl, SelectionDAG &DAG) const { |
| 1336 | // CCValAssign - represent the assignment of the return value to locations. |
| 1337 | SmallVector<CCValAssign, 16> RVLocs; |
| 1338 | |
| 1339 | // CCState - Info about the registers and stack slot. |
| 1340 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| 1341 | *DAG.getContext()); |
| 1342 | |
| 1343 | // Analyze return values. |
| 1344 | auto CCFunction = CCAssignFnForReturn(CallConv); |
| 1345 | CCInfo.AnalyzeReturn(Outs, CCFunction); |
| 1346 | |
| 1347 | // If this is the first return lowered for this function, add the regs to |
| 1348 | // the liveout set for the function. |
| 1349 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1350 | unsigned e = RVLocs.size(); |
| 1351 | |
| 1352 | // Reverse splitted return values to get the "big endian" format required |
| 1353 | // to agree with the calling convention ABI. |
| 1354 | if (e > 1) { |
| 1355 | std::reverse(RVLocs.begin(), RVLocs.end()); |
| 1356 | } |
| 1357 | |
| 1358 | SDValue Flag; |
| 1359 | SmallVector<SDValue, 4> RetOps(1, Chain); |
| 1360 | // Copy the result values into the output registers. |
| 1361 | for (unsigned i = 0; i != e; ++i) { |
| 1362 | CCValAssign &VA = RVLocs[i]; |
| 1363 | assert(VA.isRegLoc() && "Can only return in registers!"); |
| 1364 | |
| 1365 | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); |
| 1366 | |
| 1367 | // Guarantee that all emitted copies are stuck together with flags. |
| 1368 | Flag = Chain.getValue(1); |
| 1369 | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| 1370 | } |
| 1371 | |
| 1372 | // Don't emit the ret/reti instruction when the naked attribute is present in |
| 1373 | // the function being compiled. |
| 1374 | if (MF.getFunction()->getAttributes().hasAttribute( |
| 1375 | AttributeSet::FunctionIndex, Attribute::Naked)) { |
| 1376 | return Chain; |
| 1377 | } |
| 1378 | |
| 1379 | unsigned RetOpc = |
| 1380 | (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL) |
| 1381 | ? AVRISD::RETI_FLAG |
| 1382 | : AVRISD::RET_FLAG; |
| 1383 | |
| 1384 | RetOps[0] = Chain; // Update chain. |
| 1385 | |
| 1386 | if (Flag.getNode()) { |
| 1387 | RetOps.push_back(Flag); |
| 1388 | } |
| 1389 | |
| 1390 | return DAG.getNode(RetOpc, dl, MVT::Other, RetOps); |
| 1391 | } |
| 1392 | |
| 1393 | //===----------------------------------------------------------------------===// |
| 1394 | // Custom Inserters |
| 1395 | //===----------------------------------------------------------------------===// |
| 1396 | |
| 1397 | MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI, |
| 1398 | MachineBasicBlock *BB) const { |
| 1399 | unsigned Opc; |
| 1400 | const TargetRegisterClass *RC; |
| 1401 | MachineFunction *F = BB->getParent(); |
| 1402 | MachineRegisterInfo &RI = F->getRegInfo(); |
| 1403 | const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); |
| 1404 | const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo(); |
| 1405 | DebugLoc dl = MI.getDebugLoc(); |
| 1406 | |
| 1407 | switch (MI.getOpcode()) { |
| 1408 | default: |
| 1409 | llvm_unreachable("Invalid shift opcode!"); |
| 1410 | case AVR::Lsl8: |
| 1411 | Opc = AVR::LSLRd; |
| 1412 | RC = &AVR::GPR8RegClass; |
| 1413 | break; |
| 1414 | case AVR::Lsl16: |
| 1415 | Opc = AVR::LSLWRd; |
| 1416 | RC = &AVR::DREGSRegClass; |
| 1417 | break; |
| 1418 | case AVR::Asr8: |
| 1419 | Opc = AVR::ASRRd; |
| 1420 | RC = &AVR::GPR8RegClass; |
| 1421 | break; |
| 1422 | case AVR::Asr16: |
| 1423 | Opc = AVR::ASRWRd; |
| 1424 | RC = &AVR::DREGSRegClass; |
| 1425 | break; |
| 1426 | case AVR::Lsr8: |
| 1427 | Opc = AVR::LSRRd; |
| 1428 | RC = &AVR::GPR8RegClass; |
| 1429 | break; |
| 1430 | case AVR::Lsr16: |
| 1431 | Opc = AVR::LSRWRd; |
| 1432 | RC = &AVR::DREGSRegClass; |
| 1433 | break; |
| 1434 | } |
| 1435 | |
| 1436 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 1437 | MachineFunction::iterator I = BB->getParent()->begin(); |
| 1438 | ++I; |
| 1439 | |
| 1440 | // Create loop block. |
| 1441 | MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); |
| 1442 | MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); |
| 1443 | |
| 1444 | F->insert(I, LoopBB); |
| 1445 | F->insert(I, RemBB); |
| 1446 | |
| 1447 | // Update machine-CFG edges by transferring all successors of the current |
| 1448 | // block to the block containing instructions after shift. |
| 1449 | RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), |
| 1450 | BB->end()); |
| 1451 | RemBB->transferSuccessorsAndUpdatePHIs(BB); |
| 1452 | |
| 1453 | // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB. |
| 1454 | BB->addSuccessor(LoopBB); |
| 1455 | BB->addSuccessor(RemBB); |
| 1456 | LoopBB->addSuccessor(RemBB); |
| 1457 | LoopBB->addSuccessor(LoopBB); |
| 1458 | |
| 1459 | unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass); |
| 1460 | unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass); |
| 1461 | unsigned ShiftReg = RI.createVirtualRegister(RC); |
| 1462 | unsigned ShiftReg2 = RI.createVirtualRegister(RC); |
| 1463 | unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg(); |
| 1464 | unsigned SrcReg = MI.getOperand(1).getReg(); |
| 1465 | unsigned DstReg = MI.getOperand(0).getReg(); |
| 1466 | |
| 1467 | // BB: |
| 1468 | // cp 0, N |
| 1469 | // breq RemBB |
| 1470 | BuildMI(BB, dl, TII.get(AVR::CPRdRr)).addReg(ShiftAmtSrcReg).addReg(AVR::R0); |
| 1471 | BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB); |
| 1472 | |
| 1473 | // LoopBB: |
| 1474 | // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] |
| 1475 | // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] |
| 1476 | // ShiftReg2 = shift ShiftReg |
| 1477 | // ShiftAmt2 = ShiftAmt - 1; |
| 1478 | BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg) |
| 1479 | .addReg(SrcReg) |
| 1480 | .addMBB(BB) |
| 1481 | .addReg(ShiftReg2) |
| 1482 | .addMBB(LoopBB); |
| 1483 | BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg) |
| 1484 | .addReg(ShiftAmtSrcReg) |
| 1485 | .addMBB(BB) |
| 1486 | .addReg(ShiftAmtReg2) |
| 1487 | .addMBB(LoopBB); |
| 1488 | BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg); |
| 1489 | BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2) |
| 1490 | .addReg(ShiftAmtReg) |
| 1491 | .addImm(1); |
| 1492 | BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB); |
| 1493 | |
| 1494 | // RemBB: |
| 1495 | // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] |
| 1496 | BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg) |
| 1497 | .addReg(SrcReg) |
| 1498 | .addMBB(BB) |
| 1499 | .addReg(ShiftReg2) |
| 1500 | .addMBB(LoopBB); |
| 1501 | |
| 1502 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 1503 | return RemBB; |
| 1504 | } |
| 1505 | |
| 1506 | static bool isCopyMulResult(MachineBasicBlock::iterator const &I) { |
| 1507 | if (I->getOpcode() == AVR::COPY) { |
| 1508 | unsigned SrcReg = I->getOperand(1).getReg(); |
| 1509 | return (SrcReg == AVR::R0 || SrcReg == AVR::R1); |
| 1510 | } |
| 1511 | |
| 1512 | return false; |
| 1513 | } |
| 1514 | |
| 1515 | // The mul instructions wreak havock on our zero_reg R1. We need to clear it |
| 1516 | // after the result has been evacuated. This is probably not the best way to do |
| 1517 | // it, but it works for now. |
| 1518 | MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI, |
| 1519 | MachineBasicBlock *BB) const { |
| 1520 | const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); |
| 1521 | const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo(); |
| 1522 | MachineBasicBlock::iterator I(MI); |
| 1523 | ++I; // in any case insert *after* the mul instruction |
| 1524 | if (isCopyMulResult(I)) |
| 1525 | ++I; |
| 1526 | if (isCopyMulResult(I)) |
| 1527 | ++I; |
| 1528 | BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1) |
| 1529 | .addReg(AVR::R1) |
| 1530 | .addReg(AVR::R1); |
| 1531 | return BB; |
| 1532 | } |
| 1533 | |
| 1534 | MachineBasicBlock * |
| 1535 | AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| 1536 | MachineBasicBlock *MBB) const { |
| 1537 | int Opc = MI.getOpcode(); |
| 1538 | |
| 1539 | // Pseudo shift instructions with a non constant shift amount are expanded |
| 1540 | // into a loop. |
| 1541 | switch (Opc) { |
| 1542 | case AVR::Lsl8: |
| 1543 | case AVR::Lsl16: |
| 1544 | case AVR::Lsr8: |
| 1545 | case AVR::Lsr16: |
| 1546 | case AVR::Asr8: |
| 1547 | case AVR::Asr16: |
| 1548 | return insertShift(MI, MBB); |
| 1549 | case AVR::MULRdRr: |
| 1550 | case AVR::MULSRdRr: |
| 1551 | return insertMul(MI, MBB); |
| 1552 | } |
| 1553 | |
| 1554 | assert((Opc == AVR::Select16 || Opc == AVR::Select8) && |
| 1555 | "Unexpected instr type to insert"); |
| 1556 | |
| 1557 | const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent() |
| 1558 | ->getParent() |
| 1559 | ->getSubtarget() |
| 1560 | .getInstrInfo(); |
| 1561 | DebugLoc dl = MI.getDebugLoc(); |
| 1562 | |
| 1563 | // To "insert" a SELECT instruction, we insert the diamond |
| 1564 | // control-flow pattern. The incoming instruction knows the |
| 1565 | // destination vreg to set, the condition code register to branch |
| 1566 | // on, the true/false values to select between, and a branch opcode |
| 1567 | // to use. |
| 1568 | |
| 1569 | MachineFunction *MF = MBB->getParent(); |
| 1570 | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| 1571 | MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 1572 | MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 1573 | |
| 1574 | MachineFunction::iterator I = MBB->getParent()->begin(); |
| 1575 | ++I; |
| 1576 | MF->insert(I, trueMBB); |
| 1577 | MF->insert(I, falseMBB); |
| 1578 | |
| 1579 | // Transfer remaining instructions and all successors of the current |
| 1580 | // block to the block which will contain the Phi node for the |
| 1581 | // select. |
| 1582 | trueMBB->splice(trueMBB->begin(), MBB, |
| 1583 | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| 1584 | trueMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| 1585 | |
| 1586 | AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm(); |
| 1587 | BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB); |
| 1588 | BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB); |
| 1589 | MBB->addSuccessor(falseMBB); |
| 1590 | MBB->addSuccessor(trueMBB); |
| 1591 | |
| 1592 | // Unconditionally flow back to the true block |
| 1593 | BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB); |
| 1594 | falseMBB->addSuccessor(trueMBB); |
| 1595 | |
| 1596 | // Set up the Phi node to determine where we came from |
| 1597 | BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg()) |
| 1598 | .addReg(MI.getOperand(1).getReg()) |
| 1599 | .addMBB(MBB) |
| 1600 | .addReg(MI.getOperand(2).getReg()) |
| 1601 | .addMBB(falseMBB) ; |
| 1602 | |
| 1603 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 1604 | return trueMBB; |
| 1605 | } |
| 1606 | |
| 1607 | //===----------------------------------------------------------------------===// |
| 1608 | // Inline Asm Support |
| 1609 | //===----------------------------------------------------------------------===// |
| 1610 | |
| 1611 | AVRTargetLowering::ConstraintType |
| 1612 | AVRTargetLowering::getConstraintType(StringRef Constraint) const { |
| 1613 | if (Constraint.size() == 1) { |
| 1614 | // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html |
| 1615 | switch (Constraint[0]) { |
| 1616 | case 'a': // Simple upper registers |
| 1617 | case 'b': // Base pointer registers pairs |
| 1618 | case 'd': // Upper register |
| 1619 | case 'l': // Lower registers |
| 1620 | case 'e': // Pointer register pairs |
| 1621 | case 'q': // Stack pointer register |
| 1622 | case 'r': // Any register |
| 1623 | case 'w': // Special upper register pairs |
| 1624 | return C_RegisterClass; |
| 1625 | case 't': // Temporary register |
| 1626 | case 'x': case 'X': // Pointer register pair X |
| 1627 | case 'y': case 'Y': // Pointer register pair Y |
| 1628 | case 'z': case 'Z': // Pointer register pair Z |
| 1629 | return C_Register; |
| 1630 | case 'Q': // A memory address based on Y or Z pointer with displacement. |
| 1631 | return C_Memory; |
| 1632 | case 'G': // Floating point constant |
| 1633 | case 'I': // 6-bit positive integer constant |
| 1634 | case 'J': // 6-bit negative integer constant |
| 1635 | case 'K': // Integer constant (Range: 2) |
| 1636 | case 'L': // Integer constant (Range: 0) |
| 1637 | case 'M': // 8-bit integer constant |
| 1638 | case 'N': // Integer constant (Range: -1) |
| 1639 | case 'O': // Integer constant (Range: 8, 16, 24) |
| 1640 | case 'P': // Integer constant (Range: 1) |
| 1641 | case 'R': // Integer constant (Range: -6 to 5)x |
| 1642 | return C_Other; |
| 1643 | default: |
| 1644 | break; |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | return TargetLowering::getConstraintType(Constraint); |
| 1649 | } |
| 1650 | |
| 1651 | unsigned |
| 1652 | AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { |
| 1653 | // Not sure if this is actually the right thing to do, but we got to do |
| 1654 | // *something* [agnat] |
| 1655 | switch (ConstraintCode[0]) { |
| 1656 | case 'Q': |
| 1657 | return InlineAsm::Constraint_Q; |
| 1658 | } |
| 1659 | return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); |
| 1660 | } |
| 1661 | |
| 1662 | AVRTargetLowering::ConstraintWeight |
| 1663 | AVRTargetLowering::getSingleConstraintMatchWeight( |
| 1664 | AsmOperandInfo &info, const char *constraint) const { |
| 1665 | ConstraintWeight weight = CW_Invalid; |
| 1666 | Value *CallOperandVal = info.CallOperandVal; |
| 1667 | |
| 1668 | // If we don't have a value, we can't do a match, |
| 1669 | // but allow it at the lowest weight. |
| 1670 | // (this behaviour has been copied from the ARM backend) |
| 1671 | if (!CallOperandVal) { |
| 1672 | return CW_Default; |
| 1673 | } |
| 1674 | |
| 1675 | // Look at the constraint type. |
| 1676 | switch (*constraint) { |
| 1677 | default: |
| 1678 | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| 1679 | break; |
| 1680 | case 'd': |
| 1681 | case 'r': |
| 1682 | case 'l': |
| 1683 | weight = CW_Register; |
| 1684 | break; |
| 1685 | case 'a': |
| 1686 | case 'b': |
| 1687 | case 'e': |
| 1688 | case 'q': |
| 1689 | case 't': |
| 1690 | case 'w': |
| 1691 | case 'x': case 'X': |
| 1692 | case 'y': case 'Y': |
| 1693 | case 'z': case 'Z': |
| 1694 | weight = CW_SpecificReg; |
| 1695 | break; |
| 1696 | case 'G': |
| 1697 | if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) { |
| 1698 | if (C->isZero()) { |
| 1699 | weight = CW_Constant; |
| 1700 | } |
| 1701 | } |
| 1702 | break; |
| 1703 | case 'I': |
| 1704 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1705 | if (isUInt<6>(C->getZExtValue())) { |
| 1706 | weight = CW_Constant; |
| 1707 | } |
| 1708 | } |
| 1709 | break; |
| 1710 | case 'J': |
| 1711 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1712 | if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) { |
| 1713 | weight = CW_Constant; |
| 1714 | } |
| 1715 | } |
| 1716 | break; |
| 1717 | case 'K': |
| 1718 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1719 | if (C->getZExtValue() == 2) { |
| 1720 | weight = CW_Constant; |
| 1721 | } |
| 1722 | } |
| 1723 | break; |
| 1724 | case 'L': |
| 1725 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1726 | if (C->getZExtValue() == 0) { |
| 1727 | weight = CW_Constant; |
| 1728 | } |
| 1729 | } |
| 1730 | break; |
| 1731 | case 'M': |
| 1732 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1733 | if (isUInt<8>(C->getZExtValue())) { |
| 1734 | weight = CW_Constant; |
| 1735 | } |
| 1736 | } |
| 1737 | break; |
| 1738 | case 'N': |
| 1739 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1740 | if (C->getSExtValue() == -1) { |
| 1741 | weight = CW_Constant; |
| 1742 | } |
| 1743 | } |
| 1744 | break; |
| 1745 | case 'O': |
| 1746 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1747 | if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) || |
| 1748 | (C->getZExtValue() == 24)) { |
| 1749 | weight = CW_Constant; |
| 1750 | } |
| 1751 | } |
| 1752 | break; |
| 1753 | case 'P': |
| 1754 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1755 | if (C->getZExtValue() == 1) { |
| 1756 | weight = CW_Constant; |
| 1757 | } |
| 1758 | } |
| 1759 | break; |
| 1760 | case 'R': |
| 1761 | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| 1762 | if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) { |
| 1763 | weight = CW_Constant; |
| 1764 | } |
| 1765 | } |
| 1766 | break; |
| 1767 | case 'Q': |
| 1768 | weight = CW_Memory; |
| 1769 | break; |
| 1770 | } |
| 1771 | |
| 1772 | return weight; |
| 1773 | } |
| 1774 | |
| 1775 | std::pair<unsigned, const TargetRegisterClass *> |
| 1776 | AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| 1777 | StringRef Constraint, |
| 1778 | MVT VT) const { |
| 1779 | auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine()) |
| 1780 | .getSubtargetImpl(); |
| 1781 | |
| 1782 | // We only support i8 and i16. |
| 1783 | // |
| 1784 | //:FIXME: remove this assert for now since it gets sometimes executed |
| 1785 | // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type."); |
| 1786 | |
| 1787 | if (Constraint.size() == 1) { |
| 1788 | switch (Constraint[0]) { |
| 1789 | case 'a': // Simple upper registers r16..r23. |
| 1790 | return std::make_pair(0U, &AVR::LD8loRegClass); |
| 1791 | case 'b': // Base pointer registers: y, z. |
| 1792 | return std::make_pair(0U, &AVR::PTRDISPREGSRegClass); |
| 1793 | case 'd': // Upper registers r16..r31. |
| 1794 | return std::make_pair(0U, &AVR::LD8RegClass); |
| 1795 | case 'l': // Lower registers r0..r15. |
| 1796 | return std::make_pair(0U, &AVR::GPR8loRegClass); |
| 1797 | case 'e': // Pointer register pairs: x, y, z. |
| 1798 | return std::make_pair(0U, &AVR::PTRREGSRegClass); |
| 1799 | case 'q': // Stack pointer register: SPH:SPL. |
| 1800 | return std::make_pair(0U, &AVR::GPRSPRegClass); |
| 1801 | case 'r': // Any register: r0..r31. |
| 1802 | if (VT == MVT::i8) |
| 1803 | return std::make_pair(0U, &AVR::GPR8RegClass); |
| 1804 | |
| 1805 | assert(VT == MVT::i16 && "inline asm constraint too large"); |
| 1806 | return std::make_pair(0U, &AVR::DREGSRegClass); |
| 1807 | case 't': // Temporary register: r0. |
| 1808 | return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass); |
| 1809 | case 'w': // Special upper register pairs: r24, r26, r28, r30. |
| 1810 | return std::make_pair(0U, &AVR::IWREGSRegClass); |
| 1811 | case 'x': // Pointer register pair X: r27:r26. |
| 1812 | case 'X': |
| 1813 | return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass); |
| 1814 | case 'y': // Pointer register pair Y: r29:r28. |
| 1815 | case 'Y': |
| 1816 | return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass); |
| 1817 | case 'z': // Pointer register pair Z: r31:r30. |
| 1818 | case 'Z': |
| 1819 | return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass); |
| 1820 | default: |
| 1821 | break; |
| 1822 | } |
| 1823 | } |
| 1824 | |
| 1825 | return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(), |
| 1826 | Constraint, VT); |
| 1827 | } |
| 1828 | |
| 1829 | void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| 1830 | std::string &Constraint, |
| 1831 | std::vector<SDValue> &Ops, |
| 1832 | SelectionDAG &DAG) const { |
| 1833 | SDValue Result(0, 0); |
| 1834 | SDLoc DL(Op); |
| 1835 | EVT Ty = Op.getValueType(); |
| 1836 | |
| 1837 | // Currently only support length 1 constraints. |
| 1838 | if (Constraint.length() != 1) { |
| 1839 | return; |
| 1840 | } |
| 1841 | |
| 1842 | char ConstraintLetter = Constraint[0]; |
| 1843 | switch (ConstraintLetter) { |
| 1844 | default: |
| 1845 | break; |
| 1846 | // Deal with integers first: |
| 1847 | case 'I': |
| 1848 | case 'J': |
| 1849 | case 'K': |
| 1850 | case 'L': |
| 1851 | case 'M': |
| 1852 | case 'N': |
| 1853 | case 'O': |
| 1854 | case 'P': |
| 1855 | case 'R': { |
| 1856 | const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| 1857 | if (!C) { |
| 1858 | return; |
| 1859 | } |
| 1860 | |
| 1861 | int64_t CVal64 = C->getSExtValue(); |
| 1862 | uint64_t CUVal64 = C->getZExtValue(); |
| 1863 | switch (ConstraintLetter) { |
| 1864 | case 'I': // 0..63 |
| 1865 | if (!isUInt<6>(CUVal64)) |
| 1866 | return; |
| 1867 | Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| 1868 | break; |
| 1869 | case 'J': // -63..0 |
| 1870 | if (CVal64 < -63 || CVal64 > 0) |
| 1871 | return; |
| 1872 | Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| 1873 | break; |
| 1874 | case 'K': // 2 |
| 1875 | if (CUVal64 != 2) |
| 1876 | return; |
| 1877 | Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| 1878 | break; |
| 1879 | case 'L': // 0 |
| 1880 | if (CUVal64 != 0) |
| 1881 | return; |
| 1882 | Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| 1883 | break; |
| 1884 | case 'M': // 0..255 |
| 1885 | if (!isUInt<8>(CUVal64)) |
| 1886 | return; |
| 1887 | // i8 type may be printed as a negative number, |
| 1888 | // e.g. 254 would be printed as -2, |
| 1889 | // so we force it to i16 at least. |
| 1890 | if (Ty.getSimpleVT() == MVT::i8) { |
| 1891 | Ty = MVT::i16; |
| 1892 | } |
| 1893 | Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| 1894 | break; |
| 1895 | case 'N': // -1 |
| 1896 | if (CVal64 != -1) |
| 1897 | return; |
| 1898 | Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| 1899 | break; |
| 1900 | case 'O': // 8, 16, 24 |
| 1901 | if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24) |
| 1902 | return; |
| 1903 | Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| 1904 | break; |
| 1905 | case 'P': // 1 |
| 1906 | if (CUVal64 != 1) |
| 1907 | return; |
| 1908 | Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| 1909 | break; |
| 1910 | case 'R': // -6..5 |
| 1911 | if (CVal64 < -6 || CVal64 > 5) |
| 1912 | return; |
| 1913 | Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| 1914 | break; |
| 1915 | } |
| 1916 | |
| 1917 | break; |
| 1918 | } |
| 1919 | case 'G': |
| 1920 | const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op); |
| 1921 | if (!FC || !FC->isZero()) |
| 1922 | return; |
| 1923 | // Soften float to i8 0 |
| 1924 | Result = DAG.getTargetConstant(0, DL, MVT::i8); |
| 1925 | break; |
| 1926 | } |
| 1927 | |
| 1928 | if (Result.getNode()) { |
| 1929 | Ops.push_back(Result); |
| 1930 | return; |
| 1931 | } |
| 1932 | |
| 1933 | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| 1934 | } |
| 1935 | |
| 1936 | } // end of namespace llvm |
| 1937 | |