blob: 279bec7cf8fedf0c6f94d65013c3c6cb31b4c0e8 [file] [log] [blame]
Jingyue Wu13755602016-03-20 20:59:20 +00001//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// CUDA C/C++ includes memory space designation as variable type qualifers (such
11// as __global__ and __shared__). Knowing the space of a memory access allows
12// CUDA compilers to emit faster PTX loads and stores. For example, a load from
13// shared memory can be translated to `ld.shared` which is roughly 10% faster
14// than a generic `ld` on an NVIDIA Tesla K40c.
15//
16// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17// compilers must infer the memory space of an address expression from
18// type-qualified variables.
19//
20// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22// places only type-qualified variables in specific address spaces, and then
23// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24// (so-called the generic address space) for other instructions to use.
25//
26// For example, the Clang translates the following CUDA code
27// __shared__ float a[10];
28// float v = a[i];
29// to
30// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32// %v = load float, float* %1 ; emits ld.f32
33// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34// redirected to %0 (the generic version of @a).
35//
36// The optimization implemented in this file propagates specific address spaces
37// from type-qualified variable declarations to its users. For example, it
38// optimizes the above IR to
39// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42// codegen is able to emit ld.shared.f32 for %v.
43//
44// Address space inference works in two steps. First, it uses a data-flow
45// analysis to infer as many generic pointers as possible to point to only one
46// specific address space. In the above example, it can prove that %1 only
47// points to addrspace(3). This algorithm was published in
48// CUDA: Compiling and optimizing for a GPU platform
49// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50// ICCS 2012
51//
52// Then, address space inference replaces all refinable generic pointers with
53// equivalent specific pointers.
54//
55// The major challenge of implementing this optimization is handling PHINodes,
56// which may create loops in the data flow graph. This brings two complications.
57//
58// First, the data flow analysis in Step 1 needs to be circular. For example,
59// %generic.input = addrspacecast float addrspace(3)* %input to float*
60// loop:
61// %y = phi [ %generic.input, %y2 ]
62// %y2 = getelementptr %y, 1
63// %v = load %y2
64// br ..., label %loop, ...
65// proving %y specific requires proving both %generic.input and %y2 specific,
66// but proving %y2 specific circles back to %y. To address this complication,
67// the data flow analysis operates on a lattice:
68// uninitialized > specific address spaces > generic.
69// All address expressions (our implementation only considers phi, bitcast,
70// addrspacecast, and getelementptr) start with the uninitialized address space.
71// The monotone transfer function moves the address space of a pointer down a
72// lattice path from uninitialized to specific and then to generic. A join
73// operation of two different specific address spaces pushes the expression down
74// to the generic address space. The analysis completes once it reaches a fixed
75// point.
76//
77// Second, IR rewriting in Step 2 also needs to be circular. For example,
78// converting %y to addrspace(3) requires the compiler to know the converted
79// %y2, but converting %y2 needs the converted %y. To address this complication,
80// we break these cycles using "undef" placeholders. When converting an
81// instruction `I` to a new address space, if its operand `Op` is not converted
82// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83// For instance, our algorithm first converts %y to
84// %y' = phi float addrspace(3)* [ %input, undef ]
85// Then, it converts %y2 to
86// %y2' = getelementptr %y', 1
87// Finally, it fixes the undef in %y' so that
88// %y' = phi float addrspace(3)* [ %input, %y2' ]
89//
Jingyue Wu13755602016-03-20 20:59:20 +000090//===----------------------------------------------------------------------===//
91
Matt Arsenault850657a2017-01-31 01:10:58 +000092#include "llvm/Transforms/Scalar.h"
Jingyue Wu13755602016-03-20 20:59:20 +000093#include "llvm/ADT/DenseSet.h"
94#include "llvm/ADT/Optional.h"
95#include "llvm/ADT/SetVector.h"
Matt Arsenault42b64782017-01-30 23:02:12 +000096#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu13755602016-03-20 20:59:20 +000097#include "llvm/IR/Function.h"
98#include "llvm/IR/InstIterator.h"
99#include "llvm/IR/Instructions.h"
100#include "llvm/IR/Operator.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000101#include "llvm/Support/Debug.h"
102#include "llvm/Support/raw_ostream.h"
103#include "llvm/Transforms/Utils/Local.h"
104#include "llvm/Transforms/Utils/ValueMapper.h"
105
Matt Arsenault850657a2017-01-31 01:10:58 +0000106#define DEBUG_TYPE "infer-address-spaces"
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000107
Jingyue Wu13755602016-03-20 20:59:20 +0000108using namespace llvm;
109
110namespace {
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000111static const unsigned UninitializedAddressSpace = ~0u;
Jingyue Wu13755602016-03-20 20:59:20 +0000112
113using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114
Matt Arsenault850657a2017-01-31 01:10:58 +0000115/// \brief InferAddressSpaces
116class InferAddressSpaces: public FunctionPass {
Matt Arsenault42b64782017-01-30 23:02:12 +0000117 /// Target specific address space which uses of should be replaced if
118 /// possible.
119 unsigned FlatAddrSpace;
120
Jingyue Wu13755602016-03-20 20:59:20 +0000121public:
122 static char ID;
123
Matt Arsenault850657a2017-01-31 01:10:58 +0000124 InferAddressSpaces() : FunctionPass(ID) {}
Jingyue Wu13755602016-03-20 20:59:20 +0000125
Matt Arsenault32b96002017-01-27 17:30:39 +0000126 void getAnalysisUsage(AnalysisUsage &AU) const override {
127 AU.setPreservesCFG();
Matt Arsenault42b64782017-01-30 23:02:12 +0000128 AU.addRequired<TargetTransformInfoWrapperPass>();
Matt Arsenault32b96002017-01-27 17:30:39 +0000129 }
130
Jingyue Wu13755602016-03-20 20:59:20 +0000131 bool runOnFunction(Function &F) override;
132
133private:
134 // Returns the new address space of V if updated; otherwise, returns None.
135 Optional<unsigned>
136 updateAddressSpace(const Value &V,
Matt Arsenault42b64782017-01-30 23:02:12 +0000137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000138
139 // Tries to infer the specific address space of each address expression in
140 // Postorder.
141 void inferAddressSpaces(const std::vector<Value *> &Postorder,
Matt Arsenault42b64782017-01-30 23:02:12 +0000142 ValueToAddrSpaceMapTy *InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000143
Matt Arsenault72f259b2017-01-31 02:17:32 +0000144 bool handleComplexPtrUse(User &U, Value *OldV, Value *NewV) const;
145 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
146
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000147 // Changes the flat address expressions in function F to point to specific
Jingyue Wu13755602016-03-20 20:59:20 +0000148 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000149 // all flat expressions in the use-def graph of function F.
Jingyue Wu13755602016-03-20 20:59:20 +0000150 bool
151 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
152 const ValueToAddrSpaceMapTy &InferredAddrSpace,
Matt Arsenault42b64782017-01-30 23:02:12 +0000153 Function *F) const;
154
155 void appendsFlatAddressExpressionToPostorderStack(
156 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
157 DenseSet<Value *> *Visited) const;
158
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000159 bool rewriteIntrinsicOperands(IntrinsicInst *II,
160 Value *OldV, Value *NewV) const;
161 void collectRewritableIntrinsicOperands(
162 IntrinsicInst *II,
163 std::vector<std::pair<Value *, bool>> *PostorderStack,
164 DenseSet<Value *> *Visited) const;
165
Matt Arsenault42b64782017-01-30 23:02:12 +0000166 std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000167
Matt Arsenault42b64782017-01-30 23:02:12 +0000168 Value *cloneValueWithNewAddressSpace(
169 Value *V, unsigned NewAddrSpace,
170 const ValueToValueMapTy &ValueWithNewAddrSpace,
171 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
172 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000173};
174} // end anonymous namespace
175
Matt Arsenault850657a2017-01-31 01:10:58 +0000176char InferAddressSpaces::ID = 0;
Jingyue Wu13755602016-03-20 20:59:20 +0000177
178namespace llvm {
Matt Arsenault850657a2017-01-31 01:10:58 +0000179void initializeInferAddressSpacesPass(PassRegistry &);
Jingyue Wu13755602016-03-20 20:59:20 +0000180}
Matt Arsenault850657a2017-01-31 01:10:58 +0000181
182INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
Jingyue Wu13755602016-03-20 20:59:20 +0000183 false, false)
184
185// Returns true if V is an address expression.
186// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
187// getelementptr operators.
188static bool isAddressExpression(const Value &V) {
189 if (!isa<Operator>(V))
190 return false;
191
192 switch (cast<Operator>(V).getOpcode()) {
193 case Instruction::PHI:
194 case Instruction::BitCast:
195 case Instruction::AddrSpaceCast:
196 case Instruction::GetElementPtr:
197 return true;
198 default:
199 return false;
200 }
201}
202
203// Returns the pointer operands of V.
204//
205// Precondition: V is an address expression.
206static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
207 assert(isAddressExpression(V));
208 const Operator& Op = cast<Operator>(V);
209 switch (Op.getOpcode()) {
210 case Instruction::PHI: {
211 auto IncomingValues = cast<PHINode>(Op).incoming_values();
212 return SmallVector<Value *, 2>(IncomingValues.begin(),
213 IncomingValues.end());
214 }
215 case Instruction::BitCast:
216 case Instruction::AddrSpaceCast:
217 case Instruction::GetElementPtr:
218 return {Op.getOperand(0)};
219 default:
220 llvm_unreachable("Unexpected instruction type.");
221 }
222}
223
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000224// TODO: Move logic to TTI?
225bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
226 Value *OldV,
227 Value *NewV) const {
228 Module *M = II->getParent()->getParent()->getParent();
229
230 switch (II->getIntrinsicID()) {
231 case Intrinsic::objectsize:
232 case Intrinsic::amdgcn_atomic_inc:
233 case Intrinsic::amdgcn_atomic_dec: {
234 Type *DestTy = II->getType();
235 Type *SrcTy = NewV->getType();
236 Function *NewDecl
237 = Intrinsic::getDeclaration(M, II->getIntrinsicID(), { DestTy, SrcTy });
238 II->setArgOperand(0, NewV);
239 II->setCalledFunction(NewDecl);
240 return true;
241 }
242 default:
243 return false;
244 }
245}
246
247// TODO: Move logic to TTI?
248void InferAddressSpaces::collectRewritableIntrinsicOperands(
249 IntrinsicInst *II,
250 std::vector<std::pair<Value *, bool>> *PostorderStack,
251 DenseSet<Value *> *Visited) const {
252 switch (II->getIntrinsicID()) {
253 case Intrinsic::objectsize:
254 case Intrinsic::amdgcn_atomic_inc:
255 case Intrinsic::amdgcn_atomic_dec:
256 appendsFlatAddressExpressionToPostorderStack(
257 II->getArgOperand(0), PostorderStack, Visited);
258 break;
259 default:
260 break;
261 }
262}
263
264// Returns all flat address expressions in function F. The elements are
Matt Arsenault42b64782017-01-30 23:02:12 +0000265// If V is an unvisited flat address expression, appends V to PostorderStack
Jingyue Wu13755602016-03-20 20:59:20 +0000266// and marks it as visited.
Matt Arsenault850657a2017-01-31 01:10:58 +0000267void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
268 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
269 DenseSet<Value *> *Visited) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000270 assert(V->getType()->isPointerTy());
271 if (isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000272 V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000273 if (Visited->insert(V).second)
274 PostorderStack->push_back(std::make_pair(V, false));
275 }
276}
277
Matt Arsenault42b64782017-01-30 23:02:12 +0000278// Returns all flat address expressions in function F. The elements are ordered
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000279// ordered in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000280std::vector<Value *>
Matt Arsenault850657a2017-01-31 01:10:58 +0000281InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000282 // This function implements a non-recursive postorder traversal of a partial
283 // use-def graph of function F.
284 std::vector<std::pair<Value*, bool>> PostorderStack;
285 // The set of visited expressions.
286 DenseSet<Value*> Visited;
Matt Arsenault6c907a92017-01-31 01:40:38 +0000287
288 auto PushPtrOperand = [&](Value *Ptr) {
289 appendsFlatAddressExpressionToPostorderStack(
290 Ptr, &PostorderStack, &Visited);
291 };
292
Jingyue Wu13755602016-03-20 20:59:20 +0000293 // We only explore address expressions that are reachable from loads and
294 // stores for now because we aim at generating faster loads and stores.
295 for (Instruction &I : instructions(F)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000296 if (auto *LI = dyn_cast<LoadInst>(&I))
297 PushPtrOperand(LI->getPointerOperand());
298 else if (auto *SI = dyn_cast<StoreInst>(&I))
299 PushPtrOperand(SI->getPointerOperand());
300 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
301 PushPtrOperand(RMW->getPointerOperand());
302 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
303 PushPtrOperand(CmpX->getPointerOperand());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000304 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
305 // For memset/memcpy/memmove, any pointer operand can be replaced.
306 PushPtrOperand(MI->getRawDest());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000307
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000308 // Handle 2nd operand for memcpy/memmove.
309 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
310 PushPtrOperand(MTI->getRawSource());
311 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
312 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
Matt Arsenault72f259b2017-01-31 02:17:32 +0000313 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
314 // FIXME: Handle vectors of pointers
315 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
316 PushPtrOperand(Cmp->getOperand(0));
317 PushPtrOperand(Cmp->getOperand(1));
318 }
319 }
Jingyue Wu13755602016-03-20 20:59:20 +0000320 }
321
322 std::vector<Value *> Postorder; // The resultant postorder.
323 while (!PostorderStack.empty()) {
324 // If the operands of the expression on the top are already explored,
325 // adds that expression to the resultant postorder.
326 if (PostorderStack.back().second) {
327 Postorder.push_back(PostorderStack.back().first);
328 PostorderStack.pop_back();
329 continue;
330 }
331 // Otherwise, adds its operands to the stack and explores them.
332 PostorderStack.back().second = true;
333 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
Matt Arsenault42b64782017-01-30 23:02:12 +0000334 appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault850657a2017-01-31 01:10:58 +0000335 PtrOperand, &PostorderStack, &Visited);
Jingyue Wu13755602016-03-20 20:59:20 +0000336 }
337 }
338 return Postorder;
339}
340
341// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
342// of OperandUse.get() in the new address space. If the clone is not ready yet,
343// returns an undef in the new address space as a placeholder.
344static Value *operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000345 const Use &OperandUse, unsigned NewAddrSpace,
346 const ValueToValueMapTy &ValueWithNewAddrSpace,
347 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000348 Value *Operand = OperandUse.get();
349 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
350 return NewOperand;
351
352 UndefUsesToFix->push_back(&OperandUse);
353 return UndefValue::get(
Matt Arsenault850657a2017-01-31 01:10:58 +0000354 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
Jingyue Wu13755602016-03-20 20:59:20 +0000355}
356
357// Returns a clone of `I` with its operands converted to those specified in
358// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
359// operand whose address space needs to be modified might not exist in
360// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
361// adds that operand use to UndefUsesToFix so that caller can fix them later.
362//
363// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
364// from a pointer whose type already matches. Therefore, this function returns a
365// Value* instead of an Instruction*.
366static Value *cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000367 Instruction *I, unsigned NewAddrSpace,
368 const ValueToValueMapTy &ValueWithNewAddrSpace,
369 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000370 Type *NewPtrType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000371 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000372
373 if (I->getOpcode() == Instruction::AddrSpaceCast) {
374 Value *Src = I->getOperand(0);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000375 // Because `I` is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000376 // Therefore, the inferred address space must be the source space, according
377 // to our algorithm.
378 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
379 if (Src->getType() != NewPtrType)
380 return new BitCastInst(Src, NewPtrType);
381 return Src;
382 }
383
384 // Computes the converted pointer operands.
385 SmallVector<Value *, 4> NewPointerOperands;
386 for (const Use &OperandUse : I->operands()) {
387 if (!OperandUse.get()->getType()->isPointerTy())
388 NewPointerOperands.push_back(nullptr);
389 else
390 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000391 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
Jingyue Wu13755602016-03-20 20:59:20 +0000392 }
393
394 switch (I->getOpcode()) {
395 case Instruction::BitCast:
396 return new BitCastInst(NewPointerOperands[0], NewPtrType);
397 case Instruction::PHI: {
398 assert(I->getType()->isPointerTy());
399 PHINode *PHI = cast<PHINode>(I);
400 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
401 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
402 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
403 NewPHI->addIncoming(NewPointerOperands[OperandNo],
404 PHI->getIncomingBlock(Index));
405 }
406 return NewPHI;
407 }
408 case Instruction::GetElementPtr: {
409 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
410 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
Matt Arsenault850657a2017-01-31 01:10:58 +0000411 GEP->getSourceElementType(), NewPointerOperands[0],
412 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
Jingyue Wu13755602016-03-20 20:59:20 +0000413 NewGEP->setIsInBounds(GEP->isInBounds());
414 return NewGEP;
415 }
416 default:
417 llvm_unreachable("Unexpected opcode");
418 }
419}
420
421// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
422// constant expression `CE` with its operands replaced as specified in
423// ValueWithNewAddrSpace.
424static Value *cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000425 ConstantExpr *CE, unsigned NewAddrSpace,
426 const ValueToValueMapTy &ValueWithNewAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000427 Type *TargetType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000428 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000429
430 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000431 // Because CE is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000432 // Therefore, the inferred address space must be the source space according
433 // to our algorithm.
434 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
435 NewAddrSpace);
436 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
437 }
438
439 // Computes the operands of the new constant expression.
440 SmallVector<Constant *, 4> NewOperands;
441 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
442 Constant *Operand = CE->getOperand(Index);
443 // If the address space of `Operand` needs to be modified, the new operand
444 // with the new address space should already be in ValueWithNewAddrSpace
445 // because (1) the constant expressions we consider (i.e. addrspacecast,
446 // bitcast, and getelementptr) do not incur cycles in the data flow graph
447 // and (2) this function is called on constant expressions in postorder.
448 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
449 NewOperands.push_back(cast<Constant>(NewOperand));
450 } else {
451 // Otherwise, reuses the old operand.
452 NewOperands.push_back(Operand);
453 }
454 }
455
456 if (CE->getOpcode() == Instruction::GetElementPtr) {
457 // Needs to specify the source type while constructing a getelementptr
458 // constant expression.
459 return CE->getWithOperands(
Matt Arsenault850657a2017-01-31 01:10:58 +0000460 NewOperands, TargetType, /*OnlyIfReduced=*/false,
461 NewOperands[0]->getType()->getPointerElementType());
Jingyue Wu13755602016-03-20 20:59:20 +0000462 }
463
464 return CE->getWithOperands(NewOperands, TargetType);
465}
466
467// Returns a clone of the value `V`, with its operands replaced as specified in
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000468// ValueWithNewAddrSpace. This function is called on every flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000469// expression whose address space needs to be modified, in postorder.
470//
471// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Matt Arsenault850657a2017-01-31 01:10:58 +0000472Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Matt Arsenault42b64782017-01-30 23:02:12 +0000473 Value *V, unsigned NewAddrSpace,
474 const ValueToValueMapTy &ValueWithNewAddrSpace,
475 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000476 // All values in Postorder are flat address expressions.
Jingyue Wu13755602016-03-20 20:59:20 +0000477 assert(isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000478 V->getType()->getPointerAddressSpace() == FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000479
480 if (Instruction *I = dyn_cast<Instruction>(V)) {
481 Value *NewV = cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000482 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000483 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
484 if (NewI->getParent() == nullptr) {
485 NewI->insertBefore(I);
486 NewI->takeName(I);
487 }
488 }
489 return NewV;
490 }
491
492 return cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000493 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000494}
495
496// Defines the join operation on the address space lattice (see the file header
497// comments).
Matt Arsenault850657a2017-01-31 01:10:58 +0000498unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
499 unsigned AS2) const {
Matt Arsenault42b64782017-01-30 23:02:12 +0000500 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
501 return FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000502
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000503 if (AS1 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000504 return AS2;
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000505 if (AS2 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000506 return AS1;
507
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000508 // The join of two different specific address spaces is flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000509 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000510}
511
Matt Arsenault850657a2017-01-31 01:10:58 +0000512bool InferAddressSpaces::runOnFunction(Function &F) {
Andrew Kaylor87b10dd2016-04-26 23:44:31 +0000513 if (skipFunction(F))
514 return false;
515
Matt Arsenault42b64782017-01-30 23:02:12 +0000516 const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
517 FlatAddrSpace = TTI.getFlatAddressSpace();
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000518 if (FlatAddrSpace == UninitializedAddressSpace)
Matt Arsenault42b64782017-01-30 23:02:12 +0000519 return false;
520
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000521 // Collects all flat address expressions in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000522 std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
Jingyue Wu13755602016-03-20 20:59:20 +0000523
524 // Runs a data-flow analysis to refine the address spaces of every expression
525 // in Postorder.
526 ValueToAddrSpaceMapTy InferredAddrSpace;
527 inferAddressSpaces(Postorder, &InferredAddrSpace);
528
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000529 // Changes the address spaces of the flat address expressions who are inferred
530 // to point to a specific address space.
Jingyue Wu13755602016-03-20 20:59:20 +0000531 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
532}
533
Matt Arsenault850657a2017-01-31 01:10:58 +0000534void InferAddressSpaces::inferAddressSpaces(
535 const std::vector<Value *> &Postorder,
536 ValueToAddrSpaceMapTy *InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000537 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
538 // Initially, all expressions are in the uninitialized address space.
539 for (Value *V : Postorder)
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000540 (*InferredAddrSpace)[V] = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000541
542 while (!Worklist.empty()) {
543 Value* V = Worklist.pop_back_val();
544
545 // Tries to update the address space of the stack top according to the
546 // address spaces of its operands.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000547 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000548 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
549 if (!NewAS.hasValue())
550 continue;
551 // If any updates are made, grabs its users to the worklist because
552 // their address spaces can also be possibly updated.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000553 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000554 (*InferredAddrSpace)[V] = NewAS.getValue();
555
556 for (Value *User : V->users()) {
557 // Skip if User is already in the worklist.
558 if (Worklist.count(User))
559 continue;
560
561 auto Pos = InferredAddrSpace->find(User);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000562 // Our algorithm only updates the address spaces of flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000563 // expressions, which are those in InferredAddrSpace.
564 if (Pos == InferredAddrSpace->end())
565 continue;
566
567 // Function updateAddressSpace moves the address space down a lattice
Matt Arsenault850657a2017-01-31 01:10:58 +0000568 // path. Therefore, nothing to do if User is already inferred as flat (the
569 // bottom element in the lattice).
Matt Arsenault42b64782017-01-30 23:02:12 +0000570 if (Pos->second == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000571 continue;
572
573 Worklist.insert(User);
574 }
575 }
576}
577
Matt Arsenault850657a2017-01-31 01:10:58 +0000578Optional<unsigned> InferAddressSpaces::updateAddressSpace(
579 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000580 assert(InferredAddrSpace.count(&V));
581
582 // The new inferred address space equals the join of the address spaces
583 // of all its pointer operands.
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000584 unsigned NewAS = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000585 for (Value *PtrOperand : getPointerOperands(V)) {
586 unsigned OperandAS;
587 if (InferredAddrSpace.count(PtrOperand))
588 OperandAS = InferredAddrSpace.lookup(PtrOperand);
589 else
590 OperandAS = PtrOperand->getType()->getPointerAddressSpace();
591 NewAS = joinAddressSpaces(NewAS, OperandAS);
Matt Arsenault850657a2017-01-31 01:10:58 +0000592
593 // join(flat, *) = flat. So we can break if NewAS is already flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000594 if (NewAS == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000595 break;
596 }
597
598 unsigned OldAS = InferredAddrSpace.lookup(&V);
Matt Arsenault42b64782017-01-30 23:02:12 +0000599 assert(OldAS != FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000600 if (OldAS == NewAS)
601 return None;
602 return NewAS;
603}
604
Matt Arsenault6c907a92017-01-31 01:40:38 +0000605/// \p returns true if \p U is the pointer operand of a memory instruction with
606/// a single pointer operand that can have its address space changed by simply
607/// mutating the use to a new value.
608static bool isSimplePointerUseValidToReplace(Use &U) {
609 User *Inst = U.getUser();
610 unsigned OpNo = U.getOperandNo();
611
612 if (auto *LI = dyn_cast<LoadInst>(Inst))
613 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
614
615 if (auto *SI = dyn_cast<StoreInst>(Inst))
616 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
617
618 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
619 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
620
621 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
622 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
623 !CmpX->isVolatile();
624 }
625
626 return false;
627}
628
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000629/// Update memory intrinsic uses that require more complex processing than
630/// simple memory instructions. Thse require re-mangling and may have multiple
631/// pointer operands.
632static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI,
633 Value *OldV, Value *NewV) {
634 IRBuilder<> B(MI);
635 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
636 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
637 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
638
639 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
640 B.CreateMemSet(NewV, MSI->getValue(),
641 MSI->getLength(), MSI->getAlignment(),
642 false, // isVolatile
643 TBAA, ScopeMD, NoAliasMD);
644 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
645 Value *Src = MTI->getRawSource();
646 Value *Dest = MTI->getRawDest();
647
648 // Be careful in case this is a self-to-self copy.
649 if (Src == OldV)
650 Src = NewV;
651
652 if (Dest == OldV)
653 Dest = NewV;
654
655 if (isa<MemCpyInst>(MTI)) {
656 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
657 B.CreateMemCpy(Dest, Src, MTI->getLength(),
658 MTI->getAlignment(),
659 false, // isVolatile
660 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
661 } else {
662 assert(isa<MemMoveInst>(MTI));
663 B.CreateMemMove(Dest, Src, MTI->getLength(),
664 MTI->getAlignment(),
665 false, // isVolatile
666 TBAA, ScopeMD, NoAliasMD);
667 }
668 } else
669 llvm_unreachable("unhandled MemIntrinsic");
670
671 MI->eraseFromParent();
672 return true;
673}
674
Matt Arsenault72f259b2017-01-31 02:17:32 +0000675// \p returns true if it is OK to change the address space of constant \p C with
676// a ConstantExpr addrspacecast.
677bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
678 if (C->getType()->getPointerAddressSpace() == NewAS)
679 return true;
680
681 if (isa<UndefValue>(C) || isa<ConstantPointerNull>(C))
682 return true;
683
684 if (auto *Op = dyn_cast<Operator>(C)) {
685 // If we already have a constant addrspacecast, it should be safe to cast it
686 // off.
687 if (Op->getOpcode() == Instruction::AddrSpaceCast)
688 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
689
690 if (Op->getOpcode() == Instruction::IntToPtr &&
691 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
692 return true;
693 }
694
695 return false;
696}
697
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000698static Value::use_iterator skipToNextUser(Value::use_iterator I,
699 Value::use_iterator End) {
700 User *CurUser = I->getUser();
701 ++I;
702
703 while (I != End && I->getUser() == CurUser)
704 ++I;
705
706 return I;
707}
708
Matt Arsenault850657a2017-01-31 01:10:58 +0000709bool InferAddressSpaces::rewriteWithNewAddressSpaces(
710 const std::vector<Value *> &Postorder,
711 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000712 // For each address expression to be modified, creates a clone of it with its
713 // pointer operands converted to the new address space. Since the pointer
714 // operands are converted, the clone is naturally in the new address space by
715 // construction.
716 ValueToValueMapTy ValueWithNewAddrSpace;
717 SmallVector<const Use *, 32> UndefUsesToFix;
718 for (Value* V : Postorder) {
719 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
720 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
721 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000722 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000723 }
724 }
725
726 if (ValueWithNewAddrSpace.empty())
727 return false;
728
729 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
730 for (const Use* UndefUse : UndefUsesToFix) {
731 User *V = UndefUse->getUser();
732 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
733 unsigned OperandNo = UndefUse->getOperandNo();
734 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
735 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
736 }
737
738 // Replaces the uses of the old address expressions with the new ones.
739 for (Value *V : Postorder) {
740 Value *NewV = ValueWithNewAddrSpace.lookup(V);
741 if (NewV == nullptr)
742 continue;
743
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000744 DEBUG(dbgs() << "Replacing the uses of " << *V
745 << "\n with\n " << *NewV << '\n');
746
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000747 Value::use_iterator I, E, Next;
748 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
749 Use &U = *I;
750
751 // Some users may see the same pointer operand in multiple operands. Skip
752 // to the next instruction.
753 I = skipToNextUser(I, E);
754
755 if (isSimplePointerUseValidToReplace(U)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000756 // If V is used as the pointer operand of a compatible memory operation,
757 // sets the pointer operand to NewV. This replacement does not change
758 // the element type, so the resultant load/store is still valid.
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000759 U.set(NewV);
760 continue;
761 }
762
763 User *CurUser = U.getUser();
764 // Handle more complex cases like intrinsic that need to be remangled.
765 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
766 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
767 continue;
768 }
769
770 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
771 if (rewriteIntrinsicOperands(II, V, NewV))
772 continue;
773 }
774
775 if (isa<Instruction>(CurUser)) {
Matt Arsenault72f259b2017-01-31 02:17:32 +0000776 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
777 // If we can infer that both pointers are in the same addrspace,
778 // transform e.g.
779 // %cmp = icmp eq float* %p, %q
780 // into
781 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
782
783 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
784 int SrcIdx = U.getOperandNo();
785 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
786 Value *OtherSrc = Cmp->getOperand(OtherIdx);
787
788 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
789 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
790 Cmp->setOperand(OtherIdx, OtherNewV);
791 Cmp->setOperand(SrcIdx, NewV);
792 continue;
793 }
794 }
795
796 // Even if the type mismatches, we can cast the constant.
797 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
798 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
799 Cmp->setOperand(SrcIdx, NewV);
800 Cmp->setOperand(OtherIdx,
801 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
802 continue;
803 }
804 }
805 }
806
Matt Arsenault850657a2017-01-31 01:10:58 +0000807 // Otherwise, replaces the use with flat(NewV).
Jingyue Wu13755602016-03-20 20:59:20 +0000808 if (Instruction *I = dyn_cast<Instruction>(V)) {
809 BasicBlock::iterator InsertPos = std::next(I->getIterator());
810 while (isa<PHINode>(InsertPos))
811 ++InsertPos;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000812 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
Jingyue Wu13755602016-03-20 20:59:20 +0000813 } else {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000814 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
815 V->getType()));
Jingyue Wu13755602016-03-20 20:59:20 +0000816 }
817 }
818 }
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000819
Jingyue Wu13755602016-03-20 20:59:20 +0000820 if (V->use_empty())
821 RecursivelyDeleteTriviallyDeadInstructions(V);
822 }
823
824 return true;
825}
826
Matt Arsenault850657a2017-01-31 01:10:58 +0000827FunctionPass *llvm::createInferAddressSpacesPass() {
828 return new InferAddressSpaces();
Jingyue Wu13755602016-03-20 20:59:20 +0000829}