blob: 0891adc0e30d62b3c59888f98a0214c6ccefb295 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
Richard Sandiford97846492013-07-09 09:46:39 +000015#include "llvm/Analysis/AliasAnalysis.h"
Ulrich Weigand5f613df2013-05-06 16:15:19 +000016#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22namespace {
23// Used to build addressing modes.
24struct SystemZAddressingMode {
25 // The shape of the address.
26 enum AddrForm {
27 // base+displacement
28 FormBD,
29
30 // base+displacement+index for load and store operands
31 FormBDXNormal,
32
33 // base+displacement+index for load address operands
34 FormBDXLA,
35
36 // base+displacement+index+ADJDYNALLOC
37 FormBDXDynAlloc
38 };
39 AddrForm Form;
40
41 // The type of displacement. The enum names here correspond directly
42 // to the definitions in SystemZOperand.td. We could split them into
43 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44 enum DispRange {
45 Disp12Only,
46 Disp12Pair,
47 Disp20Only,
48 Disp20Only128,
49 Disp20Pair
50 };
51 DispRange DR;
52
53 // The parts of the address. The address is equivalent to:
54 //
55 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56 SDValue Base;
57 int64_t Disp;
58 SDValue Index;
59 bool IncludesDynAlloc;
60
61 SystemZAddressingMode(AddrForm form, DispRange dr)
62 : Form(form), DR(dr), Base(), Disp(0), Index(),
63 IncludesDynAlloc(false) {}
64
65 // True if the address can have an index register.
66 bool hasIndexField() { return Form != FormBD; }
67
68 // True if the address can (and must) include ADJDYNALLOC.
69 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70
71 void dump() {
72 errs() << "SystemZAddressingMode " << this << '\n';
73
74 errs() << " Base ";
75 if (Base.getNode() != 0)
76 Base.getNode()->dump();
77 else
78 errs() << "null\n";
79
80 if (hasIndexField()) {
81 errs() << " Index ";
82 if (Index.getNode() != 0)
83 Index.getNode()->dump();
84 else
85 errs() << "null\n";
86 }
87
88 errs() << " Disp " << Disp;
89 if (IncludesDynAlloc)
90 errs() << " + ADJDYNALLOC";
91 errs() << '\n';
92 }
93};
94
95class SystemZDAGToDAGISel : public SelectionDAGISel {
96 const SystemZTargetLowering &Lowering;
97 const SystemZSubtarget &Subtarget;
98
99 // Used by SystemZOperands.td to create integer constants.
100 inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
101 return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
102 }
103
104 // Try to fold more of the base or index of AM into AM, where IsBase
105 // selects between the base and index.
106 bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
107
108 // Try to describe N in AM, returning true on success.
109 bool selectAddress(SDValue N, SystemZAddressingMode &AM);
110
111 // Extract individual target operands from matched address AM.
112 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
113 SDValue &Base, SDValue &Disp);
114 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
115 SDValue &Base, SDValue &Disp, SDValue &Index);
116
117 // Try to match Addr as a FormBD address with displacement type DR.
118 // Return true on success, storing the base and displacement in
119 // Base and Disp respectively.
120 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
121 SDValue &Base, SDValue &Disp);
122
123 // Try to match Addr as a FormBDX* address of form Form with
124 // displacement type DR. Return true on success, storing the base,
125 // displacement and index in Base, Disp and Index respectively.
126 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
127 SystemZAddressingMode::DispRange DR, SDValue Addr,
128 SDValue &Base, SDValue &Disp, SDValue &Index);
129
130 // PC-relative address matching routines used by SystemZOperands.td.
131 bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
132 if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
133 Target = Addr.getOperand(0);
134 return true;
135 }
136 return false;
137 }
138
139 // BD matching routines used by SystemZOperands.td.
140 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
141 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
142 }
143 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
144 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
145 }
146 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
147 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
148 }
149 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
150 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
151 }
152
153 // BDX matching routines used by SystemZOperands.td.
154 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
155 SDValue &Index) {
156 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
157 SystemZAddressingMode::Disp12Only,
158 Addr, Base, Disp, Index);
159 }
160 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
161 SDValue &Index) {
162 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
163 SystemZAddressingMode::Disp12Pair,
164 Addr, Base, Disp, Index);
165 }
166 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
167 SDValue &Index) {
168 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
169 SystemZAddressingMode::Disp12Only,
170 Addr, Base, Disp, Index);
171 }
172 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
173 SDValue &Index) {
174 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
175 SystemZAddressingMode::Disp20Only,
176 Addr, Base, Disp, Index);
177 }
178 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
179 SDValue &Index) {
180 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
181 SystemZAddressingMode::Disp20Only128,
182 Addr, Base, Disp, Index);
183 }
184 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
185 SDValue &Index) {
186 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
187 SystemZAddressingMode::Disp20Pair,
188 Addr, Base, Disp, Index);
189 }
190 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
191 SDValue &Index) {
192 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
193 SystemZAddressingMode::Disp12Pair,
194 Addr, Base, Disp, Index);
195 }
196 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
197 SDValue &Index) {
198 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
199 SystemZAddressingMode::Disp20Pair,
200 Addr, Base, Disp, Index);
201 }
202
203 // If Op0 is null, then Node is a constant that can be loaded using:
204 //
205 // (Opcode UpperVal LowerVal)
206 //
207 // If Op0 is nonnull, then Node can be implemented using:
208 //
209 // (Opcode (Opcode Op0 UpperVal) LowerVal)
210 SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
211 uint64_t UpperVal, uint64_t LowerVal);
212
Richard Sandiford97846492013-07-09 09:46:39 +0000213 bool storeLoadCanUseMVC(SDNode *N) const;
214
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000215public:
216 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
217 : SelectionDAGISel(TM, OptLevel),
218 Lowering(*TM.getTargetLowering()),
219 Subtarget(*TM.getSubtargetImpl()) { }
220
221 // Override MachineFunctionPass.
222 virtual const char *getPassName() const LLVM_OVERRIDE {
223 return "SystemZ DAG->DAG Pattern Instruction Selection";
224 }
225
226 // Override SelectionDAGISel.
227 virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
228 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
229 char ConstraintCode,
230 std::vector<SDValue> &OutOps)
231 LLVM_OVERRIDE;
232
233 // Include the pieces autogenerated from the target description.
234 #include "SystemZGenDAGISel.inc"
235};
236} // end anonymous namespace
237
238FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
239 CodeGenOpt::Level OptLevel) {
240 return new SystemZDAGToDAGISel(TM, OptLevel);
241}
242
243// Return true if Val should be selected as a displacement for an address
244// with range DR. Here we're interested in the range of both the instruction
245// described by DR and of any pairing instruction.
246static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
247 switch (DR) {
248 case SystemZAddressingMode::Disp12Only:
249 return isUInt<12>(Val);
250
251 case SystemZAddressingMode::Disp12Pair:
252 case SystemZAddressingMode::Disp20Only:
253 case SystemZAddressingMode::Disp20Pair:
254 return isInt<20>(Val);
255
256 case SystemZAddressingMode::Disp20Only128:
257 return isInt<20>(Val) && isInt<20>(Val + 8);
258 }
259 llvm_unreachable("Unhandled displacement range");
260}
261
262// Change the base or index in AM to Value, where IsBase selects
263// between the base and index.
264static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
265 SDValue Value) {
266 if (IsBase)
267 AM.Base = Value;
268 else
269 AM.Index = Value;
270}
271
272// The base or index of AM is equivalent to Value + ADJDYNALLOC,
273// where IsBase selects between the base and index. Try to fold the
274// ADJDYNALLOC into AM.
275static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
276 SDValue Value) {
277 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
278 changeComponent(AM, IsBase, Value);
279 AM.IncludesDynAlloc = true;
280 return true;
281 }
282 return false;
283}
284
285// The base of AM is equivalent to Base + Index. Try to use Index as
286// the index register.
287static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
288 SDValue Index) {
289 if (AM.hasIndexField() && !AM.Index.getNode()) {
290 AM.Base = Base;
291 AM.Index = Index;
292 return true;
293 }
294 return false;
295}
296
297// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
298// between the base and index. Try to fold Op1 into AM's displacement.
299static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
300 SDValue Op0, ConstantSDNode *Op1) {
301 // First try adjusting the displacement.
302 int64_t TestDisp = AM.Disp + Op1->getSExtValue();
303 if (selectDisp(AM.DR, TestDisp)) {
304 changeComponent(AM, IsBase, Op0);
305 AM.Disp = TestDisp;
306 return true;
307 }
308
309 // We could consider forcing the displacement into a register and
310 // using it as an index, but it would need to be carefully tuned.
311 return false;
312}
313
314bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
315 bool IsBase) {
316 SDValue N = IsBase ? AM.Base : AM.Index;
317 unsigned Opcode = N.getOpcode();
318 if (Opcode == ISD::TRUNCATE) {
319 N = N.getOperand(0);
320 Opcode = N.getOpcode();
321 }
322 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
323 SDValue Op0 = N.getOperand(0);
324 SDValue Op1 = N.getOperand(1);
325
326 unsigned Op0Code = Op0->getOpcode();
327 unsigned Op1Code = Op1->getOpcode();
328
329 if (Op0Code == SystemZISD::ADJDYNALLOC)
330 return expandAdjDynAlloc(AM, IsBase, Op1);
331 if (Op1Code == SystemZISD::ADJDYNALLOC)
332 return expandAdjDynAlloc(AM, IsBase, Op0);
333
334 if (Op0Code == ISD::Constant)
335 return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
336 if (Op1Code == ISD::Constant)
337 return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
338
339 if (IsBase && expandIndex(AM, Op0, Op1))
340 return true;
341 }
342 return false;
343}
344
345// Return true if an instruction with displacement range DR should be
346// used for displacement value Val. selectDisp(DR, Val) must already hold.
347static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
348 assert(selectDisp(DR, Val) && "Invalid displacement");
349 switch (DR) {
350 case SystemZAddressingMode::Disp12Only:
351 case SystemZAddressingMode::Disp20Only:
352 case SystemZAddressingMode::Disp20Only128:
353 return true;
354
355 case SystemZAddressingMode::Disp12Pair:
356 // Use the other instruction if the displacement is too large.
357 return isUInt<12>(Val);
358
359 case SystemZAddressingMode::Disp20Pair:
360 // Use the other instruction if the displacement is small enough.
361 return !isUInt<12>(Val);
362 }
363 llvm_unreachable("Unhandled displacement range");
364}
365
366// Return true if Base + Disp + Index should be performed by LA(Y).
367static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
368 // Don't use LA(Y) for constants.
369 if (!Base)
370 return false;
371
372 // Always use LA(Y) for frame addresses, since we know that the destination
373 // register is almost always (perhaps always) going to be different from
374 // the frame register.
375 if (Base->getOpcode() == ISD::FrameIndex)
376 return true;
377
378 if (Disp) {
379 // Always use LA(Y) if there is a base, displacement and index.
380 if (Index)
381 return true;
382
383 // Always use LA if the displacement is small enough. It should always
384 // be no worse than AGHI (and better if it avoids a move).
385 if (isUInt<12>(Disp))
386 return true;
387
388 // For similar reasons, always use LAY if the constant is too big for AGHI.
389 // LAY should be no worse than AGFI.
390 if (!isInt<16>(Disp))
391 return true;
392 } else {
393 // Don't use LA for plain registers.
394 if (!Index)
395 return false;
396
397 // Don't use LA for plain addition if the index operand is only used
398 // once. It should be a natural two-operand addition in that case.
399 if (Index->hasOneUse())
400 return false;
401
402 // Prefer addition if the second operation is sign-extended, in the
403 // hope of using AGF.
404 unsigned IndexOpcode = Index->getOpcode();
405 if (IndexOpcode == ISD::SIGN_EXTEND ||
406 IndexOpcode == ISD::SIGN_EXTEND_INREG)
407 return false;
408 }
409
410 // Don't use LA for two-operand addition if either operand is only
411 // used once. The addition instructions are better in that case.
412 if (Base->hasOneUse())
413 return false;
414
415 return true;
416}
417
418// Return true if Addr is suitable for AM, updating AM if so.
419bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
420 SystemZAddressingMode &AM) {
421 // Start out assuming that the address will need to be loaded separately,
422 // then try to extend it as much as we can.
423 AM.Base = Addr;
424
425 // First try treating the address as a constant.
426 if (Addr.getOpcode() == ISD::Constant &&
427 expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
428 ;
429 else
430 // Otherwise try expanding each component.
431 while (expandAddress(AM, true) ||
432 (AM.Index.getNode() && expandAddress(AM, false)))
433 continue;
434
435 // Reject cases where it isn't profitable to use LA(Y).
436 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
437 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
438 return false;
439
440 // Reject cases where the other instruction in a pair should be used.
441 if (!isValidDisp(AM.DR, AM.Disp))
442 return false;
443
444 // Make sure that ADJDYNALLOC is included where necessary.
445 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
446 return false;
447
448 DEBUG(AM.dump());
449 return true;
450}
451
452// Insert a node into the DAG at least before Pos. This will reposition
453// the node as needed, and will assign it a node ID that is <= Pos's ID.
454// Note that this does *not* preserve the uniqueness of node IDs!
455// The selection DAG must no longer depend on their uniqueness when this
456// function is used.
457static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
458 if (N.getNode()->getNodeId() == -1 ||
459 N.getNode()->getNodeId() > Pos->getNodeId()) {
460 DAG->RepositionNode(Pos, N.getNode());
461 N.getNode()->setNodeId(Pos->getNodeId());
462 }
463}
464
465void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
466 EVT VT, SDValue &Base,
467 SDValue &Disp) {
468 Base = AM.Base;
469 if (!Base.getNode())
470 // Register 0 means "no base". This is mostly useful for shifts.
471 Base = CurDAG->getRegister(0, VT);
472 else if (Base.getOpcode() == ISD::FrameIndex) {
473 // Lower a FrameIndex to a TargetFrameIndex.
474 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
475 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
476 } else if (Base.getValueType() != VT) {
477 // Truncate values from i64 to i32, for shifts.
478 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
479 "Unexpected truncation");
Andrew Trickef9de2a2013-05-25 02:42:55 +0000480 SDLoc DL(Base);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000481 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
482 insertDAGNode(CurDAG, Base.getNode(), Trunc);
483 Base = Trunc;
484 }
485
486 // Lower the displacement to a TargetConstant.
487 Disp = CurDAG->getTargetConstant(AM.Disp, VT);
488}
489
490void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
491 EVT VT, SDValue &Base,
492 SDValue &Disp, SDValue &Index) {
493 getAddressOperands(AM, VT, Base, Disp);
494
495 Index = AM.Index;
496 if (!Index.getNode())
497 // Register 0 means "no index".
498 Index = CurDAG->getRegister(0, VT);
499}
500
501bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
502 SDValue Addr, SDValue &Base,
503 SDValue &Disp) {
504 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
505 if (!selectAddress(Addr, AM))
506 return false;
507
508 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
509 return true;
510}
511
512bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
513 SystemZAddressingMode::DispRange DR,
514 SDValue Addr, SDValue &Base,
515 SDValue &Disp, SDValue &Index) {
516 SystemZAddressingMode AM(Form, DR);
517 if (!selectAddress(Addr, AM))
518 return false;
519
520 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
521 return true;
522}
523
524SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
525 SDValue Op0, uint64_t UpperVal,
526 uint64_t LowerVal) {
527 EVT VT = Node->getValueType(0);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000528 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000529 SDValue Upper = CurDAG->getConstant(UpperVal, VT);
530 if (Op0.getNode())
531 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
532 Upper = SDValue(Select(Upper.getNode()), 0);
533
534 SDValue Lower = CurDAG->getConstant(LowerVal, VT);
535 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
536 return Or.getNode();
537}
538
Richard Sandiford97846492013-07-09 09:46:39 +0000539// N is a (store (load ...), ...) pattern. Return true if it can use MVC.
540bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
541 StoreSDNode *Store = cast<StoreSDNode>(N);
542 LoadSDNode *Load = cast<LoadSDNode>(Store->getValue().getNode());
543
544 // MVC is logically a bytewise copy, so can't be used for volatile accesses.
545 if (Load->isVolatile() || Store->isVolatile())
546 return false;
547
548 // Prefer not to use MVC if either address can use ... RELATIVE LONG
549 // instructions.
550 assert(Load->getMemoryVT() == Store->getMemoryVT() &&
551 "Should already have checked that the types match");
552 uint64_t Size = Load->getMemoryVT().getStoreSize();
553 if (Size > 1 && Size <= 8) {
554 // Prefer LHRL, LRL and LGRL.
555 if (Load->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
556 return false;
557 // Prefer STHRL, STRL and STGRL.
558 if (Store->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
559 return false;
560 }
561
562 // There's no chance of overlap if the load is invariant.
563 if (Load->isInvariant())
564 return true;
565
566 // If both operands are aligned, they must be equal or not overlap.
567 if (Load->getAlignment() >= Size && Store->getAlignment() >= Size)
568 return true;
569
570 // Otherwise we need to check whether there's an alias.
571 const Value *V1 = Load->getSrcValue();
572 const Value *V2 = Store->getSrcValue();
573 if (!V1 || !V2)
574 return false;
575
576 int64_t End1 = Load->getSrcValueOffset() + Size;
577 int64_t End2 = Store->getSrcValueOffset() + Size;
578 return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
579 AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
580}
581
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000582SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
583 // Dump information about the Node being selected
584 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
585
586 // If we have a custom node, we already have selected!
587 if (Node->isMachineOpcode()) {
588 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
589 return 0;
590 }
591
592 unsigned Opcode = Node->getOpcode();
593 switch (Opcode) {
594 case ISD::OR:
595 case ISD::XOR:
596 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
597 // split the operation into two.
598 if (Node->getValueType(0) == MVT::i64)
599 if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
600 uint64_t Val = Op1->getZExtValue();
601 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
602 Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
603 Val - uint32_t(Val), uint32_t(Val));
604 }
605 break;
606
607 case ISD::Constant:
608 // If this is a 64-bit constant that is out of the range of LLILF,
609 // LLIHF and LGFI, split it into two 32-bit pieces.
610 if (Node->getValueType(0) == MVT::i64) {
611 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
612 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
613 Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
614 Val - uint32_t(Val), uint32_t(Val));
615 }
616 break;
617
618 case ISD::ATOMIC_LOAD_SUB:
619 // Try to convert subtractions of constants to additions.
620 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
621 uint64_t Value = -Op2->getZExtValue();
622 EVT VT = Node->getValueType(0);
623 if (VT == MVT::i32 || isInt<32>(Value)) {
624 SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
625 CurDAG->getConstant(int32_t(Value), VT) };
626 Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
627 Node->getVTList(), Ops, array_lengthof(Ops));
628 }
629 }
630 break;
631 }
632
633 // Select the default instruction
634 SDNode *ResNode = SelectCode(Node);
635
636 DEBUG(errs() << "=> ";
637 if (ResNode == NULL || ResNode == Node)
638 Node->dump(CurDAG);
639 else
640 ResNode->dump(CurDAG);
641 errs() << "\n";
642 );
643 return ResNode;
644}
645
646bool SystemZDAGToDAGISel::
647SelectInlineAsmMemoryOperand(const SDValue &Op,
648 char ConstraintCode,
649 std::vector<SDValue> &OutOps) {
650 assert(ConstraintCode == 'm' && "Unexpected constraint code");
651 // Accept addresses with short displacements, which are compatible
652 // with Q, R, S and T. But keep the index operand for future expansion.
653 SDValue Base, Disp, Index;
654 if (!selectBDXAddr(SystemZAddressingMode::FormBD,
655 SystemZAddressingMode::Disp12Only,
656 Op, Base, Disp, Index))
657 return true;
658 OutOps.push_back(Base);
659 OutOps.push_back(Disp);
660 OutOps.push_back(Index);
661 return false;
662}