Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1 | //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The implementation for the loop memory dependence that was originally |
| 11 | // developed for the loop vectorizer. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
| 16 | #include "llvm/Analysis/LoopInfo.h" |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 17 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
Benjamin Kramer | 799003b | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 18 | #include "llvm/Analysis/TargetLibraryInfo.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 19 | #include "llvm/Analysis/ValueTracking.h" |
| 20 | #include "llvm/IR/DiagnosticInfo.h" |
| 21 | #include "llvm/IR/Dominators.h" |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 22 | #include "llvm/IR/IRBuilder.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 23 | #include "llvm/Support/Debug.h" |
Benjamin Kramer | 799003b | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 24 | #include "llvm/Support/raw_ostream.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 25 | #include "llvm/Transforms/Utils/VectorUtils.h" |
| 26 | using namespace llvm; |
| 27 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 28 | #define DEBUG_TYPE "loop-accesses" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 29 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 30 | static cl::opt<unsigned, true> |
| 31 | VectorizationFactor("force-vector-width", cl::Hidden, |
| 32 | cl::desc("Sets the SIMD width. Zero is autoselect."), |
| 33 | cl::location(VectorizerParams::VectorizationFactor)); |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 34 | unsigned VectorizerParams::VectorizationFactor; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 35 | |
| 36 | static cl::opt<unsigned, true> |
| 37 | VectorizationInterleave("force-vector-interleave", cl::Hidden, |
| 38 | cl::desc("Sets the vectorization interleave count. " |
| 39 | "Zero is autoselect."), |
| 40 | cl::location( |
| 41 | VectorizerParams::VectorizationInterleave)); |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 42 | unsigned VectorizerParams::VectorizationInterleave; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 43 | |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 44 | static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( |
| 45 | "runtime-memory-check-threshold", cl::Hidden, |
| 46 | cl::desc("When performing memory disambiguation checks at runtime do not " |
| 47 | "generate more than this number of comparisons (default = 8)."), |
| 48 | cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); |
| 49 | unsigned VectorizerParams::RuntimeMemoryCheckThreshold; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 50 | |
| 51 | /// Maximum SIMD width. |
| 52 | const unsigned VectorizerParams::MaxVectorWidth = 64; |
| 53 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 54 | /// \brief We collect interesting dependences up to this threshold. |
| 55 | static cl::opt<unsigned> MaxInterestingDependence( |
| 56 | "max-interesting-dependences", cl::Hidden, |
| 57 | cl::desc("Maximum number of interesting dependences collected by " |
| 58 | "loop-access analysis (default = 100)"), |
| 59 | cl::init(100)); |
| 60 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 61 | bool VectorizerParams::isInterleaveForced() { |
| 62 | return ::VectorizationInterleave.getNumOccurrences() > 0; |
| 63 | } |
| 64 | |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 65 | void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, |
| 66 | const Function *TheFunction, |
| 67 | const Loop *TheLoop, |
| 68 | const char *PassName) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 69 | DebugLoc DL = TheLoop->getStartLoc(); |
Adam Nemet | 3e87634 | 2015-02-19 19:15:13 +0000 | [diff] [blame] | 70 | if (const Instruction *I = Message.getInstr()) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 71 | DL = I->getDebugLoc(); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 72 | emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 73 | *TheFunction, DL, Message.str()); |
| 74 | } |
| 75 | |
| 76 | Value *llvm::stripIntegerCast(Value *V) { |
| 77 | if (CastInst *CI = dyn_cast<CastInst>(V)) |
| 78 | if (CI->getOperand(0)->getType()->isIntegerTy()) |
| 79 | return CI->getOperand(0); |
| 80 | return V; |
| 81 | } |
| 82 | |
| 83 | const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 84 | const ValueToValueMap &PtrToStride, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 85 | Value *Ptr, Value *OrigPtr) { |
| 86 | |
| 87 | const SCEV *OrigSCEV = SE->getSCEV(Ptr); |
| 88 | |
| 89 | // If there is an entry in the map return the SCEV of the pointer with the |
| 90 | // symbolic stride replaced by one. |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 91 | ValueToValueMap::const_iterator SI = |
| 92 | PtrToStride.find(OrigPtr ? OrigPtr : Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 93 | if (SI != PtrToStride.end()) { |
| 94 | Value *StrideVal = SI->second; |
| 95 | |
| 96 | // Strip casts. |
| 97 | StrideVal = stripIntegerCast(StrideVal); |
| 98 | |
| 99 | // Replace symbolic stride by one. |
| 100 | Value *One = ConstantInt::get(StrideVal->getType(), 1); |
| 101 | ValueToValueMap RewriteMap; |
| 102 | RewriteMap[StrideVal] = One; |
| 103 | |
| 104 | const SCEV *ByOne = |
| 105 | SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 106 | DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 107 | << "\n"); |
| 108 | return ByOne; |
| 109 | } |
| 110 | |
| 111 | // Otherwise, just return the SCEV of the original pointer. |
| 112 | return SE->getSCEV(Ptr); |
| 113 | } |
| 114 | |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 115 | void LoopAccessInfo::RuntimePointerCheck::insert( |
| 116 | ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, |
| 117 | unsigned ASId, const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 118 | // Get the stride replaced scev. |
| 119 | const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); |
| 120 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); |
| 121 | assert(AR && "Invalid addrec expression"); |
| 122 | const SCEV *Ex = SE->getBackedgeTakenCount(Lp); |
| 123 | const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); |
| 124 | Pointers.push_back(Ptr); |
| 125 | Starts.push_back(AR->getStart()); |
| 126 | Ends.push_back(ScEnd); |
| 127 | IsWritePtr.push_back(WritePtr); |
| 128 | DependencySetId.push_back(DepSetId); |
| 129 | AliasSetId.push_back(ASId); |
| 130 | } |
| 131 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 132 | bool LoopAccessInfo::RuntimePointerCheck::needsChecking( |
| 133 | unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 134 | // No need to check if two readonly pointers intersect. |
| 135 | if (!IsWritePtr[I] && !IsWritePtr[J]) |
| 136 | return false; |
| 137 | |
| 138 | // Only need to check pointers between two different dependency sets. |
| 139 | if (DependencySetId[I] == DependencySetId[J]) |
| 140 | return false; |
| 141 | |
| 142 | // Only need to check pointers in the same alias set. |
| 143 | if (AliasSetId[I] != AliasSetId[J]) |
| 144 | return false; |
| 145 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 146 | // If PtrPartition is set omit checks between pointers of the same partition. |
| 147 | // Partition number -1 means that the pointer is used in multiple partitions. |
| 148 | // In this case we can't omit the check. |
| 149 | if (PtrPartition && (*PtrPartition)[I] != -1 && |
| 150 | (*PtrPartition)[I] == (*PtrPartition)[J]) |
| 151 | return false; |
| 152 | |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 153 | return true; |
| 154 | } |
| 155 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 156 | void LoopAccessInfo::RuntimePointerCheck::print( |
| 157 | raw_ostream &OS, unsigned Depth, |
| 158 | const SmallVectorImpl<int> *PtrPartition) const { |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 159 | unsigned NumPointers = Pointers.size(); |
| 160 | if (NumPointers == 0) |
| 161 | return; |
| 162 | |
| 163 | OS.indent(Depth) << "Run-time memory checks:\n"; |
| 164 | unsigned N = 0; |
| 165 | for (unsigned I = 0; I < NumPointers; ++I) |
| 166 | for (unsigned J = I + 1; J < NumPointers; ++J) |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 167 | if (needsChecking(I, J, PtrPartition)) { |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 168 | OS.indent(Depth) << N++ << ":\n"; |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 169 | OS.indent(Depth + 2) << *Pointers[I]; |
| 170 | if (PtrPartition) |
| 171 | OS << " (Partition: " << (*PtrPartition)[I] << ")"; |
| 172 | OS << "\n"; |
| 173 | OS.indent(Depth + 2) << *Pointers[J]; |
| 174 | if (PtrPartition) |
| 175 | OS << " (Partition: " << (*PtrPartition)[J] << ")"; |
| 176 | OS << "\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 177 | } |
| 178 | } |
| 179 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 180 | unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks( |
Adam Nemet | 51870d1 | 2015-04-07 03:35:26 +0000 | [diff] [blame] | 181 | const SmallVectorImpl<int> *PtrPartition) const { |
| 182 | unsigned NumPointers = Pointers.size(); |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 183 | unsigned CheckCount = 0; |
Adam Nemet | 51870d1 | 2015-04-07 03:35:26 +0000 | [diff] [blame] | 184 | |
| 185 | for (unsigned I = 0; I < NumPointers; ++I) |
| 186 | for (unsigned J = I + 1; J < NumPointers; ++J) |
| 187 | if (needsChecking(I, J, PtrPartition)) |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 188 | CheckCount++; |
| 189 | return CheckCount; |
| 190 | } |
| 191 | |
| 192 | bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking( |
| 193 | const SmallVectorImpl<int> *PtrPartition) const { |
| 194 | return getNumberOfChecks(PtrPartition) != 0; |
Adam Nemet | 51870d1 | 2015-04-07 03:35:26 +0000 | [diff] [blame] | 195 | } |
| 196 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 197 | namespace { |
| 198 | /// \brief Analyses memory accesses in a loop. |
| 199 | /// |
| 200 | /// Checks whether run time pointer checks are needed and builds sets for data |
| 201 | /// dependence checking. |
| 202 | class AccessAnalysis { |
| 203 | public: |
| 204 | /// \brief Read or write access location. |
| 205 | typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; |
| 206 | typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; |
| 207 | |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 208 | AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 209 | MemoryDepChecker::DepCandidates &DA) |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 210 | : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckNeeded(false) {} |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 211 | |
| 212 | /// \brief Register a load and whether it is only read from. |
| 213 | void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { |
| 214 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
| 215 | AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); |
| 216 | Accesses.insert(MemAccessInfo(Ptr, false)); |
| 217 | if (IsReadOnly) |
| 218 | ReadOnlyPtr.insert(Ptr); |
| 219 | } |
| 220 | |
| 221 | /// \brief Register a store. |
| 222 | void addStore(AliasAnalysis::Location &Loc) { |
| 223 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
| 224 | AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); |
| 225 | Accesses.insert(MemAccessInfo(Ptr, true)); |
| 226 | } |
| 227 | |
| 228 | /// \brief Check whether we can check the pointers at runtime for |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 229 | /// non-intersection. Returns true when we have 0 pointers |
| 230 | /// (a check on 0 pointers for non-intersection will always return true). |
Adam Nemet | 30f16e1 | 2015-02-18 03:42:35 +0000 | [diff] [blame] | 231 | bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 232 | bool &NeedRTCheck, ScalarEvolution *SE, Loop *TheLoop, |
| 233 | const ValueToValueMap &Strides, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 234 | bool ShouldCheckStride = false); |
| 235 | |
| 236 | /// \brief Goes over all memory accesses, checks whether a RT check is needed |
| 237 | /// and builds sets of dependent accesses. |
| 238 | void buildDependenceSets() { |
| 239 | processMemAccesses(); |
| 240 | } |
| 241 | |
| 242 | bool isRTCheckNeeded() { return IsRTCheckNeeded; } |
| 243 | |
| 244 | bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 245 | |
| 246 | /// We decided that no dependence analysis would be used. Reset the state. |
| 247 | void resetDepChecks(MemoryDepChecker &DepChecker) { |
| 248 | CheckDeps.clear(); |
| 249 | DepChecker.clearInterestingDependences(); |
| 250 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 251 | |
| 252 | MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } |
| 253 | |
| 254 | private: |
| 255 | typedef SetVector<MemAccessInfo> PtrAccessSet; |
| 256 | |
| 257 | /// \brief Go over all memory access and check whether runtime pointer checks |
| 258 | /// are needed /// and build sets of dependency check candidates. |
| 259 | void processMemAccesses(); |
| 260 | |
| 261 | /// Set of all accesses. |
| 262 | PtrAccessSet Accesses; |
| 263 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 264 | const DataLayout &DL; |
| 265 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 266 | /// Set of accesses that need a further dependence check. |
| 267 | MemAccessInfoSet CheckDeps; |
| 268 | |
| 269 | /// Set of pointers that are read only. |
| 270 | SmallPtrSet<Value*, 16> ReadOnlyPtr; |
| 271 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 272 | /// An alias set tracker to partition the access set by underlying object and |
| 273 | //intrinsic property (such as TBAA metadata). |
| 274 | AliasSetTracker AST; |
| 275 | |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 276 | LoopInfo *LI; |
| 277 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 278 | /// Sets of potentially dependent accesses - members of one set share an |
| 279 | /// underlying pointer. The set "CheckDeps" identfies which sets really need a |
| 280 | /// dependence check. |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 281 | MemoryDepChecker::DepCandidates &DepCands; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 282 | |
| 283 | bool IsRTCheckNeeded; |
| 284 | }; |
| 285 | |
| 286 | } // end anonymous namespace |
| 287 | |
| 288 | /// \brief Check whether a pointer can participate in a runtime bounds check. |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 289 | static bool hasComputableBounds(ScalarEvolution *SE, |
| 290 | const ValueToValueMap &Strides, Value *Ptr) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 291 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); |
| 292 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
| 293 | if (!AR) |
| 294 | return false; |
| 295 | |
| 296 | return AR->isAffine(); |
| 297 | } |
| 298 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 299 | bool AccessAnalysis::canCheckPtrAtRT( |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 300 | LoopAccessInfo::RuntimePointerCheck &RtCheck, bool &NeedRTCheck, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 301 | ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap, |
| 302 | bool ShouldCheckStride) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 303 | // Find pointers with computable bounds. We are going to use this information |
| 304 | // to place a runtime bound check. |
| 305 | bool CanDoRT = true; |
| 306 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 307 | NeedRTCheck = false; |
| 308 | if (!IsRTCheckNeeded) return true; |
| 309 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 310 | bool IsDepCheckNeeded = isDependencyCheckNeeded(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 311 | |
| 312 | // We assign a consecutive id to access from different alias sets. |
| 313 | // Accesses between different groups doesn't need to be checked. |
| 314 | unsigned ASId = 1; |
| 315 | for (auto &AS : AST) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 316 | // We assign consecutive id to access from different dependence sets. |
| 317 | // Accesses within the same set don't need a runtime check. |
| 318 | unsigned RunningDepId = 1; |
| 319 | DenseMap<Value *, unsigned> DepSetId; |
| 320 | |
| 321 | for (auto A : AS) { |
| 322 | Value *Ptr = A.getValue(); |
| 323 | bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); |
| 324 | MemAccessInfo Access(Ptr, IsWrite); |
| 325 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 326 | if (hasComputableBounds(SE, StridesMap, Ptr) && |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 327 | // When we run after a failing dependency check we have to make sure |
| 328 | // we don't have wrapping pointers. |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 329 | (!ShouldCheckStride || |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 330 | isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 331 | // The id of the dependence set. |
| 332 | unsigned DepId; |
| 333 | |
| 334 | if (IsDepCheckNeeded) { |
| 335 | Value *Leader = DepCands.getLeaderValue(Access).getPointer(); |
| 336 | unsigned &LeaderId = DepSetId[Leader]; |
| 337 | if (!LeaderId) |
| 338 | LeaderId = RunningDepId++; |
| 339 | DepId = LeaderId; |
| 340 | } else |
| 341 | // Each access has its own dependence set. |
| 342 | DepId = RunningDepId++; |
| 343 | |
| 344 | RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); |
| 345 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 346 | DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 347 | } else { |
Adam Nemet | f10ca27 | 2015-05-18 15:36:52 +0000 | [diff] [blame] | 348 | DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 349 | CanDoRT = false; |
| 350 | } |
| 351 | } |
| 352 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 353 | ++ASId; |
| 354 | } |
| 355 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 356 | // We need a runtime check if there are any accesses that need checking. |
| 357 | // However, some accesses cannot be checked (for example because we |
| 358 | // can't determine their bounds). In these cases we would need a check |
| 359 | // but wouldn't be able to add it. |
| 360 | NeedRTCheck = !CanDoRT || RtCheck.needsAnyChecking(nullptr); |
| 361 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 362 | // If the pointers that we would use for the bounds comparison have different |
| 363 | // address spaces, assume the values aren't directly comparable, so we can't |
| 364 | // use them for the runtime check. We also have to assume they could |
| 365 | // overlap. In the future there should be metadata for whether address spaces |
| 366 | // are disjoint. |
| 367 | unsigned NumPointers = RtCheck.Pointers.size(); |
| 368 | for (unsigned i = 0; i < NumPointers; ++i) { |
| 369 | for (unsigned j = i + 1; j < NumPointers; ++j) { |
| 370 | // Only need to check pointers between two different dependency sets. |
| 371 | if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) |
| 372 | continue; |
| 373 | // Only need to check pointers in the same alias set. |
| 374 | if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) |
| 375 | continue; |
| 376 | |
| 377 | Value *PtrI = RtCheck.Pointers[i]; |
| 378 | Value *PtrJ = RtCheck.Pointers[j]; |
| 379 | |
| 380 | unsigned ASi = PtrI->getType()->getPointerAddressSpace(); |
| 381 | unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); |
| 382 | if (ASi != ASj) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 383 | DEBUG(dbgs() << "LAA: Runtime check would require comparison between" |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 384 | " different address spaces\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 385 | return false; |
| 386 | } |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | return CanDoRT; |
| 391 | } |
| 392 | |
| 393 | void AccessAnalysis::processMemAccesses() { |
| 394 | // We process the set twice: first we process read-write pointers, last we |
| 395 | // process read-only pointers. This allows us to skip dependence tests for |
| 396 | // read-only pointers. |
| 397 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 398 | DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 399 | DEBUG(dbgs() << " AST: "; AST.dump()); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 400 | DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 401 | DEBUG({ |
| 402 | for (auto A : Accesses) |
| 403 | dbgs() << "\t" << *A.getPointer() << " (" << |
| 404 | (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? |
| 405 | "read-only" : "read")) << ")\n"; |
| 406 | }); |
| 407 | |
| 408 | // The AliasSetTracker has nicely partitioned our pointers by metadata |
| 409 | // compatibility and potential for underlying-object overlap. As a result, we |
| 410 | // only need to check for potential pointer dependencies within each alias |
| 411 | // set. |
| 412 | for (auto &AS : AST) { |
| 413 | // Note that both the alias-set tracker and the alias sets themselves used |
| 414 | // linked lists internally and so the iteration order here is deterministic |
| 415 | // (matching the original instruction order within each set). |
| 416 | |
| 417 | bool SetHasWrite = false; |
| 418 | |
| 419 | // Map of pointers to last access encountered. |
| 420 | typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; |
| 421 | UnderlyingObjToAccessMap ObjToLastAccess; |
| 422 | |
| 423 | // Set of access to check after all writes have been processed. |
| 424 | PtrAccessSet DeferredAccesses; |
| 425 | |
| 426 | // Iterate over each alias set twice, once to process read/write pointers, |
| 427 | // and then to process read-only pointers. |
| 428 | for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { |
| 429 | bool UseDeferred = SetIteration > 0; |
| 430 | PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; |
| 431 | |
| 432 | for (auto AV : AS) { |
| 433 | Value *Ptr = AV.getValue(); |
| 434 | |
| 435 | // For a single memory access in AliasSetTracker, Accesses may contain |
| 436 | // both read and write, and they both need to be handled for CheckDeps. |
| 437 | for (auto AC : S) { |
| 438 | if (AC.getPointer() != Ptr) |
| 439 | continue; |
| 440 | |
| 441 | bool IsWrite = AC.getInt(); |
| 442 | |
| 443 | // If we're using the deferred access set, then it contains only |
| 444 | // reads. |
| 445 | bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; |
| 446 | if (UseDeferred && !IsReadOnlyPtr) |
| 447 | continue; |
| 448 | // Otherwise, the pointer must be in the PtrAccessSet, either as a |
| 449 | // read or a write. |
| 450 | assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || |
| 451 | S.count(MemAccessInfo(Ptr, false))) && |
| 452 | "Alias-set pointer not in the access set?"); |
| 453 | |
| 454 | MemAccessInfo Access(Ptr, IsWrite); |
| 455 | DepCands.insert(Access); |
| 456 | |
| 457 | // Memorize read-only pointers for later processing and skip them in |
| 458 | // the first round (they need to be checked after we have seen all |
| 459 | // write pointers). Note: we also mark pointer that are not |
| 460 | // consecutive as "read-only" pointers (so that we check |
| 461 | // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". |
| 462 | if (!UseDeferred && IsReadOnlyPtr) { |
| 463 | DeferredAccesses.insert(Access); |
| 464 | continue; |
| 465 | } |
| 466 | |
| 467 | // If this is a write - check other reads and writes for conflicts. If |
| 468 | // this is a read only check other writes for conflicts (but only if |
| 469 | // there is no other write to the ptr - this is an optimization to |
| 470 | // catch "a[i] = a[i] + " without having to do a dependence check). |
| 471 | if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { |
| 472 | CheckDeps.insert(Access); |
| 473 | IsRTCheckNeeded = true; |
| 474 | } |
| 475 | |
| 476 | if (IsWrite) |
| 477 | SetHasWrite = true; |
| 478 | |
| 479 | // Create sets of pointers connected by a shared alias set and |
| 480 | // underlying object. |
| 481 | typedef SmallVector<Value *, 16> ValueVector; |
| 482 | ValueVector TempObjects; |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 483 | |
| 484 | GetUnderlyingObjects(Ptr, TempObjects, DL, LI); |
| 485 | DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 486 | for (Value *UnderlyingObj : TempObjects) { |
| 487 | UnderlyingObjToAccessMap::iterator Prev = |
| 488 | ObjToLastAccess.find(UnderlyingObj); |
| 489 | if (Prev != ObjToLastAccess.end()) |
| 490 | DepCands.unionSets(Access, Prev->second); |
| 491 | |
| 492 | ObjToLastAccess[UnderlyingObj] = Access; |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 493 | DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 494 | } |
| 495 | } |
| 496 | } |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 501 | static bool isInBoundsGep(Value *Ptr) { |
| 502 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) |
| 503 | return GEP->isInBounds(); |
| 504 | return false; |
| 505 | } |
| 506 | |
| 507 | /// \brief Check whether the access through \p Ptr has a constant stride. |
Hao Liu | 32c0539 | 2015-06-08 06:39:56 +0000 | [diff] [blame] | 508 | int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, |
| 509 | const ValueToValueMap &StridesMap) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 510 | const Type *Ty = Ptr->getType(); |
| 511 | assert(Ty->isPointerTy() && "Unexpected non-ptr"); |
| 512 | |
| 513 | // Make sure that the pointer does not point to aggregate types. |
| 514 | const PointerType *PtrTy = cast<PointerType>(Ty); |
| 515 | if (PtrTy->getElementType()->isAggregateType()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 516 | DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" |
| 517 | << *Ptr << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 518 | return 0; |
| 519 | } |
| 520 | |
| 521 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); |
| 522 | |
| 523 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
| 524 | if (!AR) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 525 | DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 526 | << *Ptr << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 527 | return 0; |
| 528 | } |
| 529 | |
| 530 | // The accesss function must stride over the innermost loop. |
| 531 | if (Lp != AR->getLoop()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 532 | DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 533 | *Ptr << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 534 | } |
| 535 | |
| 536 | // The address calculation must not wrap. Otherwise, a dependence could be |
| 537 | // inverted. |
| 538 | // An inbounds getelementptr that is a AddRec with a unit stride |
| 539 | // cannot wrap per definition. The unit stride requirement is checked later. |
| 540 | // An getelementptr without an inbounds attribute and unit stride would have |
| 541 | // to access the pointer value "0" which is undefined behavior in address |
| 542 | // space 0, therefore we can also vectorize this case. |
| 543 | bool IsInBoundsGEP = isInBoundsGep(Ptr); |
| 544 | bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); |
| 545 | bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; |
| 546 | if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 547 | DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 548 | << *Ptr << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | // Check the step is constant. |
| 553 | const SCEV *Step = AR->getStepRecurrence(*SE); |
| 554 | |
| 555 | // Calculate the pointer stride and check if it is consecutive. |
| 556 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); |
| 557 | if (!C) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 558 | DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 559 | " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 560 | return 0; |
| 561 | } |
| 562 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 563 | auto &DL = Lp->getHeader()->getModule()->getDataLayout(); |
| 564 | int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 565 | const APInt &APStepVal = C->getValue()->getValue(); |
| 566 | |
| 567 | // Huge step value - give up. |
| 568 | if (APStepVal.getBitWidth() > 64) |
| 569 | return 0; |
| 570 | |
| 571 | int64_t StepVal = APStepVal.getSExtValue(); |
| 572 | |
| 573 | // Strided access. |
| 574 | int64_t Stride = StepVal / Size; |
| 575 | int64_t Rem = StepVal % Size; |
| 576 | if (Rem) |
| 577 | return 0; |
| 578 | |
| 579 | // If the SCEV could wrap but we have an inbounds gep with a unit stride we |
| 580 | // know we can't "wrap around the address space". In case of address space |
| 581 | // zero we know that this won't happen without triggering undefined behavior. |
| 582 | if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && |
| 583 | Stride != 1 && Stride != -1) |
| 584 | return 0; |
| 585 | |
| 586 | return Stride; |
| 587 | } |
| 588 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 589 | bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { |
| 590 | switch (Type) { |
| 591 | case NoDep: |
| 592 | case Forward: |
| 593 | case BackwardVectorizable: |
| 594 | return true; |
| 595 | |
| 596 | case Unknown: |
| 597 | case ForwardButPreventsForwarding: |
| 598 | case Backward: |
| 599 | case BackwardVectorizableButPreventsForwarding: |
| 600 | return false; |
| 601 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 602 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 603 | } |
| 604 | |
| 605 | bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { |
| 606 | switch (Type) { |
| 607 | case NoDep: |
| 608 | case Forward: |
| 609 | return false; |
| 610 | |
| 611 | case BackwardVectorizable: |
| 612 | case Unknown: |
| 613 | case ForwardButPreventsForwarding: |
| 614 | case Backward: |
| 615 | case BackwardVectorizableButPreventsForwarding: |
| 616 | return true; |
| 617 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 618 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 619 | } |
| 620 | |
| 621 | bool MemoryDepChecker::Dependence::isPossiblyBackward() const { |
| 622 | switch (Type) { |
| 623 | case NoDep: |
| 624 | case Forward: |
| 625 | case ForwardButPreventsForwarding: |
| 626 | return false; |
| 627 | |
| 628 | case Unknown: |
| 629 | case BackwardVectorizable: |
| 630 | case Backward: |
| 631 | case BackwardVectorizableButPreventsForwarding: |
| 632 | return true; |
| 633 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 634 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 635 | } |
| 636 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 637 | bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, |
| 638 | unsigned TypeByteSize) { |
| 639 | // If loads occur at a distance that is not a multiple of a feasible vector |
| 640 | // factor store-load forwarding does not take place. |
| 641 | // Positive dependences might cause troubles because vectorizing them might |
| 642 | // prevent store-load forwarding making vectorized code run a lot slower. |
| 643 | // a[i] = a[i-3] ^ a[i-8]; |
| 644 | // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and |
| 645 | // hence on your typical architecture store-load forwarding does not take |
| 646 | // place. Vectorizing in such cases does not make sense. |
| 647 | // Store-load forwarding distance. |
| 648 | const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; |
| 649 | // Maximum vector factor. |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 650 | unsigned MaxVFWithoutSLForwardIssues = |
| 651 | VectorizerParams::MaxVectorWidth * TypeByteSize; |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 652 | if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 653 | MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; |
| 654 | |
| 655 | for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; |
| 656 | vf *= 2) { |
| 657 | if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { |
| 658 | MaxVFWithoutSLForwardIssues = (vf >>=1); |
| 659 | break; |
| 660 | } |
| 661 | } |
| 662 | |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 663 | if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 664 | DEBUG(dbgs() << "LAA: Distance " << Distance << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 665 | " that could cause a store-load forwarding conflict\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 666 | return true; |
| 667 | } |
| 668 | |
| 669 | if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 670 | MaxVFWithoutSLForwardIssues != |
| 671 | VectorizerParams::MaxVectorWidth * TypeByteSize) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 672 | MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; |
| 673 | return false; |
| 674 | } |
| 675 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 676 | /// \brief Check the dependence for two accesses with the same stride \p Stride. |
| 677 | /// \p Distance is the positive distance and \p TypeByteSize is type size in |
| 678 | /// bytes. |
| 679 | /// |
| 680 | /// \returns true if they are independent. |
| 681 | static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, |
| 682 | unsigned TypeByteSize) { |
| 683 | assert(Stride > 1 && "The stride must be greater than 1"); |
| 684 | assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); |
| 685 | assert(Distance > 0 && "The distance must be non-zero"); |
| 686 | |
| 687 | // Skip if the distance is not multiple of type byte size. |
| 688 | if (Distance % TypeByteSize) |
| 689 | return false; |
| 690 | |
| 691 | unsigned ScaledDist = Distance / TypeByteSize; |
| 692 | |
| 693 | // No dependence if the scaled distance is not multiple of the stride. |
| 694 | // E.g. |
| 695 | // for (i = 0; i < 1024 ; i += 4) |
| 696 | // A[i+2] = A[i] + 1; |
| 697 | // |
| 698 | // Two accesses in memory (scaled distance is 2, stride is 4): |
| 699 | // | A[0] | | | | A[4] | | | | |
| 700 | // | | | A[2] | | | | A[6] | | |
| 701 | // |
| 702 | // E.g. |
| 703 | // for (i = 0; i < 1024 ; i += 3) |
| 704 | // A[i+4] = A[i] + 1; |
| 705 | // |
| 706 | // Two accesses in memory (scaled distance is 4, stride is 3): |
| 707 | // | A[0] | | | A[3] | | | A[6] | | | |
| 708 | // | | | | | A[4] | | | A[7] | | |
| 709 | return ScaledDist % Stride; |
| 710 | } |
| 711 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 712 | MemoryDepChecker::Dependence::DepType |
| 713 | MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, |
| 714 | const MemAccessInfo &B, unsigned BIdx, |
| 715 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 716 | assert (AIdx < BIdx && "Must pass arguments in program order"); |
| 717 | |
| 718 | Value *APtr = A.getPointer(); |
| 719 | Value *BPtr = B.getPointer(); |
| 720 | bool AIsWrite = A.getInt(); |
| 721 | bool BIsWrite = B.getInt(); |
| 722 | |
| 723 | // Two reads are independent. |
| 724 | if (!AIsWrite && !BIsWrite) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 725 | return Dependence::NoDep; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 726 | |
| 727 | // We cannot check pointers in different address spaces. |
| 728 | if (APtr->getType()->getPointerAddressSpace() != |
| 729 | BPtr->getType()->getPointerAddressSpace()) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 730 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 731 | |
| 732 | const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); |
| 733 | const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); |
| 734 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 735 | int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); |
| 736 | int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 737 | |
| 738 | const SCEV *Src = AScev; |
| 739 | const SCEV *Sink = BScev; |
| 740 | |
| 741 | // If the induction step is negative we have to invert source and sink of the |
| 742 | // dependence. |
| 743 | if (StrideAPtr < 0) { |
| 744 | //Src = BScev; |
| 745 | //Sink = AScev; |
| 746 | std::swap(APtr, BPtr); |
| 747 | std::swap(Src, Sink); |
| 748 | std::swap(AIsWrite, BIsWrite); |
| 749 | std::swap(AIdx, BIdx); |
| 750 | std::swap(StrideAPtr, StrideBPtr); |
| 751 | } |
| 752 | |
| 753 | const SCEV *Dist = SE->getMinusSCEV(Sink, Src); |
| 754 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 755 | DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 756 | << "(Induction step: " << StrideAPtr << ")\n"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 757 | DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 758 | << *InstMap[BIdx] << ": " << *Dist << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 759 | |
| 760 | // Need consecutive accesses. We don't want to vectorize |
| 761 | // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in |
| 762 | // the address space. |
| 763 | if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ |
| 764 | DEBUG(dbgs() << "Non-consecutive pointer access\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 765 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 766 | } |
| 767 | |
| 768 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); |
| 769 | if (!C) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 770 | DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 771 | ShouldRetryWithRuntimeCheck = true; |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 772 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 773 | } |
| 774 | |
| 775 | Type *ATy = APtr->getType()->getPointerElementType(); |
| 776 | Type *BTy = BPtr->getType()->getPointerElementType(); |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 777 | auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); |
| 778 | unsigned TypeByteSize = DL.getTypeAllocSize(ATy); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 779 | |
| 780 | // Negative distances are not plausible dependencies. |
| 781 | const APInt &Val = C->getValue()->getValue(); |
| 782 | if (Val.isNegative()) { |
| 783 | bool IsTrueDataDependence = (AIsWrite && !BIsWrite); |
| 784 | if (IsTrueDataDependence && |
| 785 | (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || |
| 786 | ATy != BTy)) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 787 | return Dependence::ForwardButPreventsForwarding; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 788 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 789 | DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 790 | return Dependence::Forward; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 791 | } |
| 792 | |
| 793 | // Write to the same location with the same size. |
| 794 | // Could be improved to assert type sizes are the same (i32 == float, etc). |
| 795 | if (Val == 0) { |
| 796 | if (ATy == BTy) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 797 | return Dependence::NoDep; |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 798 | DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 799 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 800 | } |
| 801 | |
| 802 | assert(Val.isStrictlyPositive() && "Expect a positive value"); |
| 803 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 804 | if (ATy != BTy) { |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 805 | DEBUG(dbgs() << |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 806 | "LAA: ReadWrite-Write positive dependency with different types\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 807 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 808 | } |
| 809 | |
| 810 | unsigned Distance = (unsigned) Val.getZExtValue(); |
| 811 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 812 | unsigned Stride = std::abs(StrideAPtr); |
| 813 | if (Stride > 1 && |
| 814 | areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) |
| 815 | return Dependence::NoDep; |
| 816 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 817 | // Bail out early if passed-in parameters make vectorization not feasible. |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 818 | unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? |
| 819 | VectorizerParams::VectorizationFactor : 1); |
| 820 | unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? |
| 821 | VectorizerParams::VectorizationInterleave : 1); |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 822 | // The minimum number of iterations for a vectorized/unrolled version. |
| 823 | unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 824 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 825 | // It's not vectorizable if the distance is smaller than the minimum distance |
| 826 | // needed for a vectroized/unrolled version. Vectorizing one iteration in |
| 827 | // front needs TypeByteSize * Stride. Vectorizing the last iteration needs |
| 828 | // TypeByteSize (No need to plus the last gap distance). |
| 829 | // |
| 830 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 831 | // foo(int *A) { |
| 832 | // int *B = (int *)((char *)A + 14); |
| 833 | // for (i = 0 ; i < 1024 ; i += 2) |
| 834 | // B[i] = A[i] + 1; |
| 835 | // } |
| 836 | // |
| 837 | // Two accesses in memory (stride is 2): |
| 838 | // | A[0] | | A[2] | | A[4] | | A[6] | | |
| 839 | // | B[0] | | B[2] | | B[4] | |
| 840 | // |
| 841 | // Distance needs for vectorizing iterations except the last iteration: |
| 842 | // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. |
| 843 | // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. |
| 844 | // |
| 845 | // If MinNumIter is 2, it is vectorizable as the minimum distance needed is |
| 846 | // 12, which is less than distance. |
| 847 | // |
| 848 | // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), |
| 849 | // the minimum distance needed is 28, which is greater than distance. It is |
| 850 | // not safe to do vectorization. |
| 851 | unsigned MinDistanceNeeded = |
| 852 | TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; |
| 853 | if (MinDistanceNeeded > Distance) { |
| 854 | DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance |
| 855 | << '\n'); |
| 856 | return Dependence::Backward; |
| 857 | } |
| 858 | |
| 859 | // Unsafe if the minimum distance needed is greater than max safe distance. |
| 860 | if (MinDistanceNeeded > MaxSafeDepDistBytes) { |
| 861 | DEBUG(dbgs() << "LAA: Failure because it needs at least " |
| 862 | << MinDistanceNeeded << " size in bytes"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 863 | return Dependence::Backward; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 864 | } |
| 865 | |
Adam Nemet | 9cc0c39 | 2015-02-26 17:58:48 +0000 | [diff] [blame] | 866 | // Positive distance bigger than max vectorization factor. |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 867 | // FIXME: Should use max factor instead of max distance in bytes, which could |
| 868 | // not handle different types. |
| 869 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 870 | // void foo (int *A, char *B) { |
| 871 | // for (unsigned i = 0; i < 1024; i++) { |
| 872 | // A[i+2] = A[i] + 1; |
| 873 | // B[i+2] = B[i] + 1; |
| 874 | // } |
| 875 | // } |
| 876 | // |
| 877 | // This case is currently unsafe according to the max safe distance. If we |
| 878 | // analyze the two accesses on array B, the max safe dependence distance |
| 879 | // is 2. Then we analyze the accesses on array A, the minimum distance needed |
| 880 | // is 8, which is less than 2 and forbidden vectorization, But actually |
| 881 | // both A and B could be vectorized by 2 iterations. |
| 882 | MaxSafeDepDistBytes = |
| 883 | Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 884 | |
| 885 | bool IsTrueDataDependence = (!AIsWrite && BIsWrite); |
| 886 | if (IsTrueDataDependence && |
| 887 | couldPreventStoreLoadForward(Distance, TypeByteSize)) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 888 | return Dependence::BackwardVectorizableButPreventsForwarding; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 889 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 890 | DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() |
| 891 | << " with max VF = " |
| 892 | << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 893 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 894 | return Dependence::BackwardVectorizable; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 895 | } |
| 896 | |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 897 | bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 898 | MemAccessInfoSet &CheckDeps, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 899 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 900 | |
| 901 | MaxSafeDepDistBytes = -1U; |
| 902 | while (!CheckDeps.empty()) { |
| 903 | MemAccessInfo CurAccess = *CheckDeps.begin(); |
| 904 | |
| 905 | // Get the relevant memory access set. |
| 906 | EquivalenceClasses<MemAccessInfo>::iterator I = |
| 907 | AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); |
| 908 | |
| 909 | // Check accesses within this set. |
| 910 | EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; |
| 911 | AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); |
| 912 | |
| 913 | // Check every access pair. |
| 914 | while (AI != AE) { |
| 915 | CheckDeps.erase(*AI); |
| 916 | EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); |
| 917 | while (OI != AE) { |
| 918 | // Check every accessing instruction pair in program order. |
| 919 | for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), |
| 920 | I1E = Accesses[*AI].end(); I1 != I1E; ++I1) |
| 921 | for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), |
| 922 | I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 923 | auto A = std::make_pair(&*AI, *I1); |
| 924 | auto B = std::make_pair(&*OI, *I2); |
| 925 | |
| 926 | assert(*I1 != *I2); |
| 927 | if (*I1 > *I2) |
| 928 | std::swap(A, B); |
| 929 | |
| 930 | Dependence::DepType Type = |
| 931 | isDependent(*A.first, A.second, *B.first, B.second, Strides); |
| 932 | SafeForVectorization &= Dependence::isSafeForVectorization(Type); |
| 933 | |
| 934 | // Gather dependences unless we accumulated MaxInterestingDependence |
| 935 | // dependences. In that case return as soon as we find the first |
| 936 | // unsafe dependence. This puts a limit on this quadratic |
| 937 | // algorithm. |
| 938 | if (RecordInterestingDependences) { |
| 939 | if (Dependence::isInterestingDependence(Type)) |
| 940 | InterestingDependences.push_back( |
| 941 | Dependence(A.second, B.second, Type)); |
| 942 | |
| 943 | if (InterestingDependences.size() >= MaxInterestingDependence) { |
| 944 | RecordInterestingDependences = false; |
| 945 | InterestingDependences.clear(); |
| 946 | DEBUG(dbgs() << "Too many dependences, stopped recording\n"); |
| 947 | } |
| 948 | } |
| 949 | if (!RecordInterestingDependences && !SafeForVectorization) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 950 | return false; |
| 951 | } |
| 952 | ++OI; |
| 953 | } |
| 954 | AI++; |
| 955 | } |
| 956 | } |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 957 | |
| 958 | DEBUG(dbgs() << "Total Interesting Dependences: " |
| 959 | << InterestingDependences.size() << "\n"); |
| 960 | return SafeForVectorization; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 961 | } |
| 962 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 963 | SmallVector<Instruction *, 4> |
| 964 | MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { |
| 965 | MemAccessInfo Access(Ptr, isWrite); |
| 966 | auto &IndexVector = Accesses.find(Access)->second; |
| 967 | |
| 968 | SmallVector<Instruction *, 4> Insts; |
| 969 | std::transform(IndexVector.begin(), IndexVector.end(), |
| 970 | std::back_inserter(Insts), |
| 971 | [&](unsigned Idx) { return this->InstMap[Idx]; }); |
| 972 | return Insts; |
| 973 | } |
| 974 | |
Adam Nemet | 58913d6 | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 975 | const char *MemoryDepChecker::Dependence::DepName[] = { |
| 976 | "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", |
| 977 | "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; |
| 978 | |
| 979 | void MemoryDepChecker::Dependence::print( |
| 980 | raw_ostream &OS, unsigned Depth, |
| 981 | const SmallVectorImpl<Instruction *> &Instrs) const { |
| 982 | OS.indent(Depth) << DepName[Type] << ":\n"; |
| 983 | OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; |
| 984 | OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; |
| 985 | } |
| 986 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 987 | bool LoopAccessInfo::canAnalyzeLoop() { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 988 | // We need to have a loop header. |
| 989 | DEBUG(dbgs() << "LAA: Found a loop: " << |
| 990 | TheLoop->getHeader()->getName() << '\n'); |
| 991 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 992 | // We can only analyze innermost loops. |
| 993 | if (!TheLoop->empty()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 994 | DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 995 | emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 996 | return false; |
| 997 | } |
| 998 | |
| 999 | // We must have a single backedge. |
| 1000 | if (TheLoop->getNumBackEdges() != 1) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1001 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1002 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1003 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1004 | "loop control flow is not understood by analyzer"); |
| 1005 | return false; |
| 1006 | } |
| 1007 | |
| 1008 | // We must have a single exiting block. |
| 1009 | if (!TheLoop->getExitingBlock()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1010 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1011 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1012 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1013 | "loop control flow is not understood by analyzer"); |
| 1014 | return false; |
| 1015 | } |
| 1016 | |
| 1017 | // We only handle bottom-tested loops, i.e. loop in which the condition is |
| 1018 | // checked at the end of each iteration. With that we can assume that all |
| 1019 | // instructions in the loop are executed the same number of times. |
| 1020 | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1021 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1022 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1023 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1024 | "loop control flow is not understood by analyzer"); |
| 1025 | return false; |
| 1026 | } |
| 1027 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1028 | // ScalarEvolution needs to be able to find the exit count. |
| 1029 | const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); |
| 1030 | if (ExitCount == SE->getCouldNotCompute()) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1031 | emitAnalysis(LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1032 | "could not determine number of loop iterations"); |
| 1033 | DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); |
| 1034 | return false; |
| 1035 | } |
| 1036 | |
| 1037 | return true; |
| 1038 | } |
| 1039 | |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1040 | void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1041 | |
| 1042 | typedef SmallVector<Value*, 16> ValueVector; |
| 1043 | typedef SmallPtrSet<Value*, 16> ValueSet; |
| 1044 | |
| 1045 | // Holds the Load and Store *instructions*. |
| 1046 | ValueVector Loads; |
| 1047 | ValueVector Stores; |
| 1048 | |
| 1049 | // Holds all the different accesses in the loop. |
| 1050 | unsigned NumReads = 0; |
| 1051 | unsigned NumReadWrites = 0; |
| 1052 | |
| 1053 | PtrRtCheck.Pointers.clear(); |
| 1054 | PtrRtCheck.Need = false; |
| 1055 | |
| 1056 | const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1057 | |
| 1058 | // For each block. |
| 1059 | for (Loop::block_iterator bb = TheLoop->block_begin(), |
| 1060 | be = TheLoop->block_end(); bb != be; ++bb) { |
| 1061 | |
| 1062 | // Scan the BB and collect legal loads and stores. |
| 1063 | for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; |
| 1064 | ++it) { |
| 1065 | |
| 1066 | // If this is a load, save it. If this instruction can read from memory |
| 1067 | // but is not a load, then we quit. Notice that we don't handle function |
| 1068 | // calls that read or write. |
| 1069 | if (it->mayReadFromMemory()) { |
| 1070 | // Many math library functions read the rounding mode. We will only |
| 1071 | // vectorize a loop if it contains known function calls that don't set |
| 1072 | // the flag. Therefore, it is safe to ignore this read from memory. |
| 1073 | CallInst *Call = dyn_cast<CallInst>(it); |
| 1074 | if (Call && getIntrinsicIDForCall(Call, TLI)) |
| 1075 | continue; |
| 1076 | |
Michael Zolotukhin | 9b3cf60 | 2015-03-17 19:46:50 +0000 | [diff] [blame] | 1077 | // If the function has an explicit vectorized counterpart, we can safely |
| 1078 | // assume that it can be vectorized. |
| 1079 | if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && |
| 1080 | TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) |
| 1081 | continue; |
| 1082 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1083 | LoadInst *Ld = dyn_cast<LoadInst>(it); |
| 1084 | if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1085 | emitAnalysis(LoopAccessReport(Ld) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1086 | << "read with atomic ordering or volatile read"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1087 | DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1088 | CanVecMem = false; |
| 1089 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1090 | } |
| 1091 | NumLoads++; |
| 1092 | Loads.push_back(Ld); |
| 1093 | DepChecker.addAccess(Ld); |
| 1094 | continue; |
| 1095 | } |
| 1096 | |
| 1097 | // Save 'store' instructions. Abort if other instructions write to memory. |
| 1098 | if (it->mayWriteToMemory()) { |
| 1099 | StoreInst *St = dyn_cast<StoreInst>(it); |
| 1100 | if (!St) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1101 | emitAnalysis(LoopAccessReport(it) << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1102 | "instruction cannot be vectorized"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1103 | CanVecMem = false; |
| 1104 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1105 | } |
| 1106 | if (!St->isSimple() && !IsAnnotatedParallel) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1107 | emitAnalysis(LoopAccessReport(St) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1108 | << "write with atomic ordering or volatile write"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1109 | DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1110 | CanVecMem = false; |
| 1111 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1112 | } |
| 1113 | NumStores++; |
| 1114 | Stores.push_back(St); |
| 1115 | DepChecker.addAccess(St); |
| 1116 | } |
| 1117 | } // Next instr. |
| 1118 | } // Next block. |
| 1119 | |
| 1120 | // Now we have two lists that hold the loads and the stores. |
| 1121 | // Next, we find the pointers that they use. |
| 1122 | |
| 1123 | // Check if we see any stores. If there are no stores, then we don't |
| 1124 | // care if the pointers are *restrict*. |
| 1125 | if (!Stores.size()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1126 | DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1127 | CanVecMem = true; |
| 1128 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1129 | } |
| 1130 | |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1131 | MemoryDepChecker::DepCandidates DependentAccesses; |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1132 | AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1133 | AA, LI, DependentAccesses); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1134 | |
| 1135 | // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects |
| 1136 | // multiple times on the same object. If the ptr is accessed twice, once |
| 1137 | // for read and once for write, it will only appear once (on the write |
| 1138 | // list). This is okay, since we are going to check for conflicts between |
| 1139 | // writes and between reads and writes, but not between reads and reads. |
| 1140 | ValueSet Seen; |
| 1141 | |
| 1142 | ValueVector::iterator I, IE; |
| 1143 | for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { |
| 1144 | StoreInst *ST = cast<StoreInst>(*I); |
| 1145 | Value* Ptr = ST->getPointerOperand(); |
Adam Nemet | ce48250 | 2015-04-08 17:48:40 +0000 | [diff] [blame] | 1146 | // Check for store to loop invariant address. |
| 1147 | StoreToLoopInvariantAddress |= isUniform(Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1148 | // If we did *not* see this pointer before, insert it to the read-write |
| 1149 | // list. At this phase it is only a 'write' list. |
| 1150 | if (Seen.insert(Ptr).second) { |
| 1151 | ++NumReadWrites; |
| 1152 | |
Chandler Carruth | 70c61c1 | 2015-06-04 02:03:15 +0000 | [diff] [blame] | 1153 | AliasAnalysis::Location Loc = MemoryLocation::get(ST); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1154 | // The TBAA metadata could have a control dependency on the predication |
| 1155 | // condition, so we cannot rely on it when determining whether or not we |
| 1156 | // need runtime pointer checks. |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1157 | if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1158 | Loc.AATags.TBAA = nullptr; |
| 1159 | |
| 1160 | Accesses.addStore(Loc); |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | if (IsAnnotatedParallel) { |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1165 | DEBUG(dbgs() |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1166 | << "LAA: A loop annotated parallel, ignore memory dependency " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1167 | << "checks.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1168 | CanVecMem = true; |
| 1169 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1170 | } |
| 1171 | |
| 1172 | for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { |
| 1173 | LoadInst *LD = cast<LoadInst>(*I); |
| 1174 | Value* Ptr = LD->getPointerOperand(); |
| 1175 | // If we did *not* see this pointer before, insert it to the |
| 1176 | // read list. If we *did* see it before, then it is already in |
| 1177 | // the read-write list. This allows us to vectorize expressions |
| 1178 | // such as A[i] += x; Because the address of A[i] is a read-write |
| 1179 | // pointer. This only works if the index of A[i] is consecutive. |
| 1180 | // If the address of i is unknown (for example A[B[i]]) then we may |
| 1181 | // read a few words, modify, and write a few words, and some of the |
| 1182 | // words may be written to the same address. |
| 1183 | bool IsReadOnlyPtr = false; |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1184 | if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1185 | ++NumReads; |
| 1186 | IsReadOnlyPtr = true; |
| 1187 | } |
| 1188 | |
Chandler Carruth | 70c61c1 | 2015-06-04 02:03:15 +0000 | [diff] [blame] | 1189 | AliasAnalysis::Location Loc = MemoryLocation::get(LD); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1190 | // The TBAA metadata could have a control dependency on the predication |
| 1191 | // condition, so we cannot rely on it when determining whether or not we |
| 1192 | // need runtime pointer checks. |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1193 | if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1194 | Loc.AATags.TBAA = nullptr; |
| 1195 | |
| 1196 | Accesses.addLoad(Loc, IsReadOnlyPtr); |
| 1197 | } |
| 1198 | |
| 1199 | // If we write (or read-write) to a single destination and there are no |
| 1200 | // other reads in this loop then is it safe to vectorize. |
| 1201 | if (NumReadWrites == 1 && NumReads == 0) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1202 | DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1203 | CanVecMem = true; |
| 1204 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1205 | } |
| 1206 | |
| 1207 | // Build dependence sets and check whether we need a runtime pointer bounds |
| 1208 | // check. |
| 1209 | Accesses.buildDependenceSets(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1210 | |
| 1211 | // Find pointers with computable bounds. We are going to use this information |
| 1212 | // to place a runtime bound check. |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 1213 | bool NeedRTCheck; |
| 1214 | bool CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, |
| 1215 | NeedRTCheck, SE, |
| 1216 | TheLoop, Strides); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1217 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 1218 | DEBUG(dbgs() << "LAA: We need to do " |
| 1219 | << PtrRtCheck.getNumberOfChecks(nullptr) |
| 1220 | << " pointer comparisons.\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1221 | |
Adam Nemet | 949e91a | 2015-03-10 19:12:41 +0000 | [diff] [blame] | 1222 | // Check that we found the bounds for the pointer. |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1223 | if (CanDoRT) |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1224 | DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1225 | else if (NeedRTCheck) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1226 | emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1227 | DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1228 | "the array bounds.\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1229 | PtrRtCheck.reset(); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1230 | CanVecMem = false; |
| 1231 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1232 | } |
| 1233 | |
| 1234 | PtrRtCheck.Need = NeedRTCheck; |
| 1235 | |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1236 | CanVecMem = true; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1237 | if (Accesses.isDependencyCheckNeeded()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1238 | DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1239 | CanVecMem = DepChecker.areDepsSafe( |
| 1240 | DependentAccesses, Accesses.getDependenciesToCheck(), Strides); |
| 1241 | MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); |
| 1242 | |
| 1243 | if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1244 | DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1245 | NeedRTCheck = true; |
| 1246 | |
| 1247 | // Clear the dependency checks. We assume they are not needed. |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 1248 | Accesses.resetDepChecks(DepChecker); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1249 | |
| 1250 | PtrRtCheck.reset(); |
| 1251 | PtrRtCheck.Need = true; |
| 1252 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 1253 | CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NeedRTCheck, SE, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1254 | TheLoop, Strides, true); |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 1255 | |
Adam Nemet | 949e91a | 2015-03-10 19:12:41 +0000 | [diff] [blame] | 1256 | // Check that we found the bounds for the pointer. |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 1257 | if (NeedRTCheck && !CanDoRT) { |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1258 | emitAnalysis(LoopAccessReport() |
| 1259 | << "cannot check memory dependencies at runtime"); |
| 1260 | DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); |
| 1261 | PtrRtCheck.reset(); |
| 1262 | CanVecMem = false; |
| 1263 | return; |
| 1264 | } |
| 1265 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1266 | CanVecMem = true; |
| 1267 | } |
| 1268 | } |
| 1269 | |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1270 | if (CanVecMem) |
| 1271 | DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" |
| 1272 | << (NeedRTCheck ? "" : " don't") |
| 1273 | << " need a runtime memory check.\n"); |
| 1274 | else { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1275 | emitAnalysis(LoopAccessReport() << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1276 | "unsafe dependent memory operations in loop"); |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1277 | DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); |
| 1278 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1279 | } |
| 1280 | |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1281 | bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, |
| 1282 | DominatorTree *DT) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1283 | assert(TheLoop->contains(BB) && "Unknown block used"); |
| 1284 | |
| 1285 | // Blocks that do not dominate the latch need predication. |
| 1286 | BasicBlock* Latch = TheLoop->getLoopLatch(); |
| 1287 | return !DT->dominates(BB, Latch); |
| 1288 | } |
| 1289 | |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1290 | void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { |
Adam Nemet | c922853 | 2015-02-19 19:14:56 +0000 | [diff] [blame] | 1291 | assert(!Report && "Multiple reports generated"); |
| 1292 | Report = Message; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1293 | } |
| 1294 | |
Adam Nemet | 57ac766 | 2015-02-19 19:15:21 +0000 | [diff] [blame] | 1295 | bool LoopAccessInfo::isUniform(Value *V) const { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1296 | return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); |
| 1297 | } |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1298 | |
| 1299 | // FIXME: this function is currently a duplicate of the one in |
| 1300 | // LoopVectorize.cpp. |
| 1301 | static Instruction *getFirstInst(Instruction *FirstInst, Value *V, |
| 1302 | Instruction *Loc) { |
| 1303 | if (FirstInst) |
| 1304 | return FirstInst; |
| 1305 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 1306 | return I->getParent() == Loc->getParent() ? I : nullptr; |
| 1307 | return nullptr; |
| 1308 | } |
| 1309 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1310 | std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( |
| 1311 | Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1312 | if (!PtrRtCheck.Need) |
Adam Nemet | 90fec84 | 2015-04-02 17:51:57 +0000 | [diff] [blame] | 1313 | return std::make_pair(nullptr, nullptr); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1314 | |
| 1315 | unsigned NumPointers = PtrRtCheck.Pointers.size(); |
| 1316 | SmallVector<TrackingVH<Value> , 2> Starts; |
| 1317 | SmallVector<TrackingVH<Value> , 2> Ends; |
| 1318 | |
| 1319 | LLVMContext &Ctx = Loc->getContext(); |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1320 | SCEVExpander Exp(*SE, DL, "induction"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1321 | Instruction *FirstInst = nullptr; |
| 1322 | |
| 1323 | for (unsigned i = 0; i < NumPointers; ++i) { |
| 1324 | Value *Ptr = PtrRtCheck.Pointers[i]; |
| 1325 | const SCEV *Sc = SE->getSCEV(Ptr); |
| 1326 | |
| 1327 | if (SE->isLoopInvariant(Sc, TheLoop)) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1328 | DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1329 | *Ptr <<"\n"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1330 | Starts.push_back(Ptr); |
| 1331 | Ends.push_back(Ptr); |
| 1332 | } else { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1333 | DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n'); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1334 | unsigned AS = Ptr->getType()->getPointerAddressSpace(); |
| 1335 | |
| 1336 | // Use this type for pointer arithmetic. |
| 1337 | Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); |
| 1338 | |
| 1339 | Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc); |
| 1340 | Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc); |
| 1341 | Starts.push_back(Start); |
| 1342 | Ends.push_back(End); |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | IRBuilder<> ChkBuilder(Loc); |
| 1347 | // Our instructions might fold to a constant. |
| 1348 | Value *MemoryRuntimeCheck = nullptr; |
| 1349 | for (unsigned i = 0; i < NumPointers; ++i) { |
| 1350 | for (unsigned j = i+1; j < NumPointers; ++j) { |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1351 | if (!PtrRtCheck.needsChecking(i, j, PtrPartition)) |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1352 | continue; |
| 1353 | |
| 1354 | unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); |
| 1355 | unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); |
| 1356 | |
| 1357 | assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && |
| 1358 | (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && |
| 1359 | "Trying to bounds check pointers with different address spaces"); |
| 1360 | |
| 1361 | Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); |
| 1362 | Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); |
| 1363 | |
| 1364 | Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); |
| 1365 | Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); |
| 1366 | Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); |
| 1367 | Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); |
| 1368 | |
| 1369 | Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); |
| 1370 | FirstInst = getFirstInst(FirstInst, Cmp0, Loc); |
| 1371 | Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); |
| 1372 | FirstInst = getFirstInst(FirstInst, Cmp1, Loc); |
| 1373 | Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); |
| 1374 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
| 1375 | if (MemoryRuntimeCheck) { |
| 1376 | IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, |
| 1377 | "conflict.rdx"); |
| 1378 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
| 1379 | } |
| 1380 | MemoryRuntimeCheck = IsConflict; |
| 1381 | } |
| 1382 | } |
| 1383 | |
Adam Nemet | 90fec84 | 2015-04-02 17:51:57 +0000 | [diff] [blame] | 1384 | if (!MemoryRuntimeCheck) |
| 1385 | return std::make_pair(nullptr, nullptr); |
| 1386 | |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1387 | // We have to do this trickery because the IRBuilder might fold the check to a |
| 1388 | // constant expression in which case there is no Instruction anchored in a |
| 1389 | // the block. |
| 1390 | Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, |
| 1391 | ConstantInt::getTrue(Ctx)); |
| 1392 | ChkBuilder.Insert(Check, "memcheck.conflict"); |
| 1393 | FirstInst = getFirstInst(FirstInst, Check, Loc); |
| 1394 | return std::make_pair(FirstInst, Check); |
| 1395 | } |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1396 | |
| 1397 | LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1398 | const DataLayout &DL, |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1399 | const TargetLibraryInfo *TLI, AliasAnalysis *AA, |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1400 | DominatorTree *DT, LoopInfo *LI, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1401 | const ValueToValueMap &Strides) |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame^] | 1402 | : DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1403 | TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), |
Adam Nemet | ce48250 | 2015-04-08 17:48:40 +0000 | [diff] [blame] | 1404 | MaxSafeDepDistBytes(-1U), CanVecMem(false), |
| 1405 | StoreToLoopInvariantAddress(false) { |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1406 | if (canAnalyzeLoop()) |
| 1407 | analyzeLoop(Strides); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1408 | } |
| 1409 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1410 | void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { |
| 1411 | if (CanVecMem) { |
Adam Nemet | 26da8e9 | 2015-04-14 01:12:55 +0000 | [diff] [blame] | 1412 | if (PtrRtCheck.Need) |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1413 | OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; |
Adam Nemet | 26da8e9 | 2015-04-14 01:12:55 +0000 | [diff] [blame] | 1414 | else |
| 1415 | OS.indent(Depth) << "Memory dependences are safe\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1416 | } |
| 1417 | |
| 1418 | if (Report) |
| 1419 | OS.indent(Depth) << "Report: " << Report->str() << "\n"; |
| 1420 | |
Adam Nemet | 58913d6 | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 1421 | if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { |
| 1422 | OS.indent(Depth) << "Interesting Dependences:\n"; |
| 1423 | for (auto &Dep : *InterestingDependences) { |
| 1424 | Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); |
| 1425 | OS << "\n"; |
| 1426 | } |
| 1427 | } else |
| 1428 | OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1429 | |
| 1430 | // List the pair of accesses need run-time checks to prove independence. |
| 1431 | PtrRtCheck.print(OS, Depth); |
| 1432 | OS << "\n"; |
Adam Nemet | c338432 | 2015-05-18 15:36:57 +0000 | [diff] [blame] | 1433 | |
| 1434 | OS.indent(Depth) << "Store to invariant address was " |
| 1435 | << (StoreToLoopInvariantAddress ? "" : "not ") |
| 1436 | << "found in loop.\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1437 | } |
| 1438 | |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1439 | const LoopAccessInfo & |
| 1440 | LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1441 | auto &LAI = LoopAccessInfoMap[L]; |
| 1442 | |
| 1443 | #ifndef NDEBUG |
| 1444 | assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && |
| 1445 | "Symbolic strides changed for loop"); |
| 1446 | #endif |
| 1447 | |
| 1448 | if (!LAI) { |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1449 | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1450 | LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, |
| 1451 | Strides); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1452 | #ifndef NDEBUG |
| 1453 | LAI->NumSymbolicStrides = Strides.size(); |
| 1454 | #endif |
| 1455 | } |
| 1456 | return *LAI.get(); |
| 1457 | } |
| 1458 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1459 | void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { |
| 1460 | LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); |
| 1461 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1462 | ValueToValueMap NoSymbolicStrides; |
| 1463 | |
| 1464 | for (Loop *TopLevelLoop : *LI) |
| 1465 | for (Loop *L : depth_first(TopLevelLoop)) { |
| 1466 | OS.indent(2) << L->getHeader()->getName() << ":\n"; |
| 1467 | auto &LAI = LAA.getInfo(L, NoSymbolicStrides); |
| 1468 | LAI.print(OS, 4); |
| 1469 | } |
| 1470 | } |
| 1471 | |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1472 | bool LoopAccessAnalysis::runOnFunction(Function &F) { |
| 1473 | SE = &getAnalysis<ScalarEvolution>(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1474 | auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); |
| 1475 | TLI = TLIP ? &TLIP->getTLI() : nullptr; |
| 1476 | AA = &getAnalysis<AliasAnalysis>(); |
| 1477 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1478 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1479 | |
| 1480 | return false; |
| 1481 | } |
| 1482 | |
| 1483 | void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
| 1484 | AU.addRequired<ScalarEvolution>(); |
| 1485 | AU.addRequired<AliasAnalysis>(); |
| 1486 | AU.addRequired<DominatorTreeWrapperPass>(); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1487 | AU.addRequired<LoopInfoWrapperPass>(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1488 | |
| 1489 | AU.setPreservesAll(); |
| 1490 | } |
| 1491 | |
| 1492 | char LoopAccessAnalysis::ID = 0; |
| 1493 | static const char laa_name[] = "Loop Access Analysis"; |
| 1494 | #define LAA_NAME "loop-accesses" |
| 1495 | |
| 1496 | INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) |
| 1497 | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| 1498 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| 1499 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1500 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1501 | INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) |
| 1502 | |
| 1503 | namespace llvm { |
| 1504 | Pass *createLAAPass() { |
| 1505 | return new LoopAccessAnalysis(); |
| 1506 | } |
| 1507 | } |