blob: dd789fad569c0e6438409e8b360538b3e4296e2f [file] [log] [blame]
Chris Lattner7e044912010-01-04 07:17:19 +00001//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carrutha9174582015-01-22 05:25:13 +000015#include "InstCombineInternal.h"
James Molloy2b21a7c2015-05-20 18:41:25 +000016#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000018#include "llvm/IR/PatternMatch.h"
Chris Lattner7e044912010-01-04 07:17:19 +000019
20using namespace llvm;
Shuxin Yang63e999e2012-12-04 00:04:54 +000021using namespace llvm::PatternMatch;
Chris Lattner7e044912010-01-04 07:17:19 +000022
Chandler Carruth964daaa2014-04-22 02:55:47 +000023#define DEBUG_TYPE "instcombine"
24
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000025/// Check to see if the specified operand of the specified instruction is a
26/// constant integer. If so, check to see if there are any bits set in the
27/// constant that are not demanded. If so, shrink the constant and return true.
Craig Topper4c947752012-12-22 18:09:02 +000028static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Chris Lattner7e044912010-01-04 07:17:19 +000029 APInt Demanded) {
30 assert(I && "No instruction?");
31 assert(OpNo < I->getNumOperands() && "Operand index too large");
32
Sanjay Patelae3b43e2017-02-09 21:43:06 +000033 // The operand must be a constant integer or splat integer.
34 Value *Op = I->getOperand(OpNo);
35 const APInt *C;
36 if (!match(Op, m_APInt(C)))
37 return false;
Chris Lattner7e044912010-01-04 07:17:19 +000038
39 // If there are no bits set that aren't demanded, nothing to do.
Sanjay Patelae3b43e2017-02-09 21:43:06 +000040 Demanded = Demanded.zextOrTrunc(C->getBitWidth());
41 if ((~Demanded & *C) == 0)
Chris Lattner7e044912010-01-04 07:17:19 +000042 return false;
43
44 // This instruction is producing bits that are not demanded. Shrink the RHS.
Sanjay Patelae3b43e2017-02-09 21:43:06 +000045 Demanded &= *C;
46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), Demanded));
David Majnemer42b83a52014-08-22 07:56:32 +000047
Chris Lattner7e044912010-01-04 07:17:19 +000048 return true;
49}
50
51
52
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000053/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54/// the instruction has any properties that allow us to simplify its operands.
Chris Lattner7e044912010-01-04 07:17:19 +000055bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
Craig Topper4c947752012-12-22 18:09:02 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
61 0, &Inst);
Craig Topperf40110f2014-04-25 05:29:35 +000062 if (!V) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000063 if (V == &Inst) return true;
Sanjay Patel4b198802016-02-01 22:23:39 +000064 replaceInstUsesWith(Inst, V);
Chris Lattner7e044912010-01-04 07:17:19 +000065 return true;
66}
67
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000068/// This form of SimplifyDemandedBits simplifies the specified instruction
69/// operand if possible, updating it in place. It returns true if it made any
70/// change and false otherwise.
Craig Topper47596dd2017-03-25 06:52:52 +000071bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72 const APInt &DemandedMask,
Chris Lattner7e044912010-01-04 07:17:19 +000073 APInt &KnownZero, APInt &KnownOne,
74 unsigned Depth) {
Craig Topper47596dd2017-03-25 06:52:52 +000075 Use &U = I->getOperandUse(OpNo);
David Majnemerfe58d132015-04-22 20:59:28 +000076 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
Craig Topper47596dd2017-03-25 06:52:52 +000077 KnownOne, Depth, I);
Craig Topperf40110f2014-04-25 05:29:35 +000078 if (!NewVal) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000079 U = NewVal;
80 return true;
81}
82
83
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000084/// This function attempts to replace V with a simpler value based on the
85/// demanded bits. When this function is called, it is known that only the bits
86/// set in DemandedMask of the result of V are ever used downstream.
87/// Consequently, depending on the mask and V, it may be possible to replace V
88/// with a constant or one of its operands. In such cases, this function does
89/// the replacement and returns true. In all other cases, it returns false after
90/// analyzing the expression and setting KnownOne and known to be one in the
91/// expression. KnownZero contains all the bits that are known to be zero in the
92/// expression. These are provided to potentially allow the caller (which might
93/// recursively be SimplifyDemandedBits itself) to simplify the expression.
94/// KnownOne and KnownZero always follow the invariant that:
95/// KnownOne & KnownZero == 0.
96/// That is, a bit can't be both 1 and 0. Note that the bits in KnownOne and
97/// KnownZero may only be accurate for those bits set in DemandedMask. Note also
98/// that the bitwidth of V, DemandedMask, KnownZero and KnownOne must all be the
99/// same.
Chris Lattner7e044912010-01-04 07:17:19 +0000100///
101/// This returns null if it did not change anything and it permits no
102/// simplification. This returns V itself if it did some simplification of V's
103/// operands based on the information about what bits are demanded. This returns
104/// some other non-null value if it found out that V is equal to another value
105/// in the context where the specified bits are demanded, but not for all users.
106Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
107 APInt &KnownZero, APInt &KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +0000108 unsigned Depth,
109 Instruction *CxtI) {
Craig Toppere73658d2014-04-28 04:05:08 +0000110 assert(V != nullptr && "Null pointer of Value???");
Chris Lattner7e044912010-01-04 07:17:19 +0000111 assert(Depth <= 6 && "Limit Search Depth");
112 uint32_t BitWidth = DemandedMask.getBitWidth();
Chris Lattner229907c2011-07-18 04:54:35 +0000113 Type *VTy = V->getType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000114 assert(
115 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
116 KnownZero.getBitWidth() == BitWidth &&
117 KnownOne.getBitWidth() == BitWidth &&
118 "Value *V, DemandedMask, KnownZero and KnownOne "
119 "must have same BitWidth");
Sanjay Patelae3b43e2017-02-09 21:43:06 +0000120 const APInt *C;
121 if (match(V, m_APInt(C))) {
122 // We know all of the bits for a scalar constant or a splat vector constant!
123 KnownOne = *C & DemandedMask;
Chris Lattner7e044912010-01-04 07:17:19 +0000124 KnownZero = ~KnownOne & DemandedMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000125 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000126 }
127 if (isa<ConstantPointerNull>(V)) {
128 // We know all of the bits for a constant!
Jay Foad25a5e4c2010-12-01 08:53:58 +0000129 KnownOne.clearAllBits();
Chris Lattner7e044912010-01-04 07:17:19 +0000130 KnownZero = DemandedMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000131 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000132 }
133
Jay Foad25a5e4c2010-12-01 08:53:58 +0000134 KnownZero.clearAllBits();
135 KnownOne.clearAllBits();
Chris Lattner7e044912010-01-04 07:17:19 +0000136 if (DemandedMask == 0) { // Not demanding any bits from V.
137 if (isa<UndefValue>(V))
Craig Topperf40110f2014-04-25 05:29:35 +0000138 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000139 return UndefValue::get(VTy);
140 }
Craig Topper4c947752012-12-22 18:09:02 +0000141
Chris Lattner7e044912010-01-04 07:17:19 +0000142 if (Depth == 6) // Limit search depth.
Craig Topperf40110f2014-04-25 05:29:35 +0000143 return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000144
Chris Lattner7e044912010-01-04 07:17:19 +0000145 Instruction *I = dyn_cast<Instruction>(V);
146 if (!I) {
Hal Finkel60db0582014-09-07 18:57:58 +0000147 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000148 return nullptr; // Only analyze instructions.
Chris Lattner7e044912010-01-04 07:17:19 +0000149 }
150
151 // If there are multiple uses of this value and we aren't at the root, then
152 // we can't do any simplifications of the operands, because DemandedMask
153 // only reflects the bits demanded by *one* of the users.
154 if (Depth != 0 && !I->hasOneUse()) {
Craig Topperb0076fe2017-04-12 18:05:21 +0000155 return SimplifyMultipleUseDemandedBits(I, DemandedMask, KnownZero, KnownOne,
156 Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000157 }
Craig Topper4c947752012-12-22 18:09:02 +0000158
Craig Topperb0076fe2017-04-12 18:05:21 +0000159 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
160 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
161
Chris Lattner7e044912010-01-04 07:17:19 +0000162 // If this is the root being simplified, allow it to have multiple uses,
163 // just set the DemandedMask to all bits so that we can try to simplify the
164 // operands. This allows visitTruncInst (for example) to simplify the
165 // operand of a trunc without duplicating all the logic below.
166 if (Depth == 0 && !V->hasOneUse())
Craig Toppere06b6bc2017-04-04 05:03:02 +0000167 DemandedMask.setAllBits();
Craig Topper4c947752012-12-22 18:09:02 +0000168
Chris Lattner7e044912010-01-04 07:17:19 +0000169 switch (I->getOpcode()) {
170 default:
Hal Finkel60db0582014-09-07 18:57:58 +0000171 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000172 break;
173 case Instruction::And:
174 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topper47596dd2017-03-25 06:52:52 +0000175 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnownZero, RHSKnownOne,
176 Depth + 1) ||
177 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnownZero, LHSKnownZero,
178 LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000179 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000180 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
181 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000182
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000183 // If the client is only demanding bits that we know, return the known
184 // constant.
185 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
186 (RHSKnownOne & LHSKnownOne))) == DemandedMask)
187 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
188
Chris Lattner7e044912010-01-04 07:17:19 +0000189 // If all of the demanded bits are known 1 on one side, return the other.
190 // These bits cannot contribute to the result of the 'and'.
Craig Topper4c947752012-12-22 18:09:02 +0000191 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000192 (DemandedMask & ~LHSKnownZero))
193 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000194 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000195 (DemandedMask & ~RHSKnownZero))
196 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000197
Chris Lattner7e044912010-01-04 07:17:19 +0000198 // If all of the demanded bits in the inputs are known zeros, return zero.
199 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
200 return Constant::getNullValue(VTy);
Craig Topper4c947752012-12-22 18:09:02 +0000201
Chris Lattner7e044912010-01-04 07:17:19 +0000202 // If the RHS is a constant, see if we can simplify it.
203 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
204 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000205
Chris Lattner7e044912010-01-04 07:17:19 +0000206 // Output known-1 bits are only known if set in both the LHS & RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000207 KnownOne = RHSKnownOne & LHSKnownOne;
Chris Lattner7e044912010-01-04 07:17:19 +0000208 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000209 KnownZero = RHSKnownZero | LHSKnownZero;
Chris Lattner7e044912010-01-04 07:17:19 +0000210 break;
211 case Instruction::Or:
212 // If either the LHS or the RHS are One, the result is One.
Craig Topper47596dd2017-03-25 06:52:52 +0000213 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnownZero, RHSKnownOne,
214 Depth + 1) ||
215 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnownOne, LHSKnownZero,
216 LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000217 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000218 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
219 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
220
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000221 // If the client is only demanding bits that we know, return the known
222 // constant.
223 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
224 (RHSKnownOne | LHSKnownOne))) == DemandedMask)
225 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
226
Chris Lattner7e044912010-01-04 07:17:19 +0000227 // If all of the demanded bits are known zero on one side, return the other.
228 // These bits cannot contribute to the result of the 'or'.
Craig Topper4c947752012-12-22 18:09:02 +0000229 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000230 (DemandedMask & ~LHSKnownOne))
231 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000232 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000233 (DemandedMask & ~RHSKnownOne))
234 return I->getOperand(1);
235
236 // If all of the potentially set bits on one side are known to be set on
237 // the other side, just use the 'other' side.
Craig Topper4c947752012-12-22 18:09:02 +0000238 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000239 (DemandedMask & (~RHSKnownZero)))
240 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000241 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000242 (DemandedMask & (~LHSKnownZero)))
243 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000244
Chris Lattner7e044912010-01-04 07:17:19 +0000245 // If the RHS is a constant, see if we can simplify it.
246 if (ShrinkDemandedConstant(I, 1, DemandedMask))
247 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000248
Chris Lattner7e044912010-01-04 07:17:19 +0000249 // Output known-0 bits are only known if clear in both the LHS & RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000250 KnownZero = RHSKnownZero & LHSKnownZero;
Chris Lattner7e044912010-01-04 07:17:19 +0000251 // Output known-1 are known to be set if set in either the LHS | RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000252 KnownOne = RHSKnownOne | LHSKnownOne;
Chris Lattner7e044912010-01-04 07:17:19 +0000253 break;
254 case Instruction::Xor: {
Craig Topper47596dd2017-03-25 06:52:52 +0000255 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnownZero, RHSKnownOne,
256 Depth + 1) ||
257 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnownZero, LHSKnownOne,
258 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000259 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000260 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
261 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
262
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000263 // Output known-0 bits are known if clear or set in both the LHS & RHS.
264 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
265 (RHSKnownOne & LHSKnownOne);
266 // Output known-1 are known to be set if set in only one of the LHS, RHS.
267 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
268 (RHSKnownOne & LHSKnownZero);
269
270 // If the client is only demanding bits that we know, return the known
271 // constant.
272 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
273 return Constant::getIntegerValue(VTy, IKnownOne);
274
Chris Lattner7e044912010-01-04 07:17:19 +0000275 // If all of the demanded bits are known zero on one side, return the other.
276 // These bits cannot contribute to the result of the 'xor'.
277 if ((DemandedMask & RHSKnownZero) == DemandedMask)
278 return I->getOperand(0);
279 if ((DemandedMask & LHSKnownZero) == DemandedMask)
280 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000281
Chris Lattner7e044912010-01-04 07:17:19 +0000282 // If all of the demanded bits are known to be zero on one side or the
283 // other, turn this into an *inclusive* or.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000284 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattner7e044912010-01-04 07:17:19 +0000285 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
Craig Topper4c947752012-12-22 18:09:02 +0000286 Instruction *Or =
Chris Lattner7e044912010-01-04 07:17:19 +0000287 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
288 I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000289 return InsertNewInstWith(Or, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000290 }
Craig Topper4c947752012-12-22 18:09:02 +0000291
Chris Lattner7e044912010-01-04 07:17:19 +0000292 // If all of the demanded bits on one side are known, and all of the set
293 // bits on that side are also known to be set on the other side, turn this
294 // into an AND, as we know the bits will be cleared.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000295 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
Craig Topper4c947752012-12-22 18:09:02 +0000296 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
Chris Lattner7e044912010-01-04 07:17:19 +0000297 // all known
298 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
299 Constant *AndC = Constant::getIntegerValue(VTy,
300 ~RHSKnownOne & DemandedMask);
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000301 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000302 return InsertNewInstWith(And, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000303 }
304 }
Craig Topper4c947752012-12-22 18:09:02 +0000305
Chris Lattner7e044912010-01-04 07:17:19 +0000306 // If the RHS is a constant, see if we can simplify it.
307 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
308 if (ShrinkDemandedConstant(I, 1, DemandedMask))
309 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000310
Chris Lattner7e044912010-01-04 07:17:19 +0000311 // If our LHS is an 'and' and if it has one use, and if any of the bits we
312 // are flipping are known to be set, then the xor is just resetting those
313 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
314 // simplifying both of them.
315 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
316 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
317 isa<ConstantInt>(I->getOperand(1)) &&
318 isa<ConstantInt>(LHSInst->getOperand(1)) &&
319 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
320 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
321 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
322 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
Craig Topper4c947752012-12-22 18:09:02 +0000323
Chris Lattner7e044912010-01-04 07:17:19 +0000324 Constant *AndC =
325 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000326 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000327 InsertNewInstWith(NewAnd, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000328
Chris Lattner7e044912010-01-04 07:17:19 +0000329 Constant *XorC =
330 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000331 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000332 return InsertNewInstWith(NewXor, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000333 }
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000334
335 // Output known-0 bits are known if clear or set in both the LHS & RHS.
336 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
337 // Output known-1 are known to be set if set in only one of the LHS, RHS.
338 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
Chris Lattner7e044912010-01-04 07:17:19 +0000339 break;
340 }
341 case Instruction::Select:
James Molloy2b21a7c2015-05-20 18:41:25 +0000342 // If this is a select as part of a min/max pattern, don't simplify any
343 // further in case we break the structure.
344 Value *LHS, *RHS;
James Molloy134bec22015-08-11 09:12:57 +0000345 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
James Molloy2b21a7c2015-05-20 18:41:25 +0000346 return nullptr;
Simon Pilgrim61116dd2015-09-17 20:32:45 +0000347
Craig Topper47596dd2017-03-25 06:52:52 +0000348 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnownZero, RHSKnownOne,
349 Depth + 1) ||
350 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnownZero, LHSKnownOne,
351 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000352 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000353 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
354 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
355
Chris Lattner7e044912010-01-04 07:17:19 +0000356 // If the operands are constants, see if we can simplify them.
357 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
358 ShrinkDemandedConstant(I, 2, DemandedMask))
359 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000360
Chris Lattner7e044912010-01-04 07:17:19 +0000361 // Only known if known in both the LHS and RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000362 KnownOne = RHSKnownOne & LHSKnownOne;
363 KnownZero = RHSKnownZero & LHSKnownZero;
Chris Lattner7e044912010-01-04 07:17:19 +0000364 break;
365 case Instruction::Trunc: {
366 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
Jay Foad583abbc2010-12-07 08:25:19 +0000367 DemandedMask = DemandedMask.zext(truncBf);
368 KnownZero = KnownZero.zext(truncBf);
369 KnownOne = KnownOne.zext(truncBf);
Craig Topper47596dd2017-03-25 06:52:52 +0000370 if (SimplifyDemandedBits(I, 0, DemandedMask, KnownZero, KnownOne,
371 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000372 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000373 DemandedMask = DemandedMask.trunc(BitWidth);
374 KnownZero = KnownZero.trunc(BitWidth);
375 KnownOne = KnownOne.trunc(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000376 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000377 break;
378 }
379 case Instruction::BitCast:
Duncan Sands9dff9be2010-02-15 16:12:20 +0000380 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
Craig Topperf40110f2014-04-25 05:29:35 +0000381 return nullptr; // vector->int or fp->int?
Chris Lattner7e044912010-01-04 07:17:19 +0000382
Chris Lattner229907c2011-07-18 04:54:35 +0000383 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
384 if (VectorType *SrcVTy =
Chris Lattner7e044912010-01-04 07:17:19 +0000385 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
386 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
387 // Don't touch a bitcast between vectors of different element counts.
Craig Topperf40110f2014-04-25 05:29:35 +0000388 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000389 } else
390 // Don't touch a scalar-to-vector bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000391 return nullptr;
Duncan Sands19d0b472010-02-16 11:11:14 +0000392 } else if (I->getOperand(0)->getType()->isVectorTy())
Chris Lattner7e044912010-01-04 07:17:19 +0000393 // Don't touch a vector-to-scalar bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000394 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000395
Craig Topper47596dd2017-03-25 06:52:52 +0000396 if (SimplifyDemandedBits(I, 0, DemandedMask, KnownZero, KnownOne,
397 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000398 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000399 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000400 break;
401 case Instruction::ZExt: {
402 // Compute the bits in the result that are not present in the input.
403 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000404
Jay Foad583abbc2010-12-07 08:25:19 +0000405 DemandedMask = DemandedMask.trunc(SrcBitWidth);
406 KnownZero = KnownZero.trunc(SrcBitWidth);
407 KnownOne = KnownOne.trunc(SrcBitWidth);
Craig Topper47596dd2017-03-25 06:52:52 +0000408 if (SimplifyDemandedBits(I, 0, DemandedMask, KnownZero, KnownOne,
409 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000410 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000411 DemandedMask = DemandedMask.zext(BitWidth);
412 KnownZero = KnownZero.zext(BitWidth);
413 KnownOne = KnownOne.zext(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000414 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000415 // The top bits are known to be zero.
Craig Topper3a86a042017-03-19 05:49:16 +0000416 KnownZero.setBitsFrom(SrcBitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000417 break;
418 }
419 case Instruction::SExt: {
420 // Compute the bits in the result that are not present in the input.
421 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000422
423 APInt InputDemandedBits = DemandedMask &
Chris Lattner7e044912010-01-04 07:17:19 +0000424 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
425
Craig Topper3a86a042017-03-19 05:49:16 +0000426 APInt NewBits(APInt::getBitsSetFrom(BitWidth, SrcBitWidth));
Chris Lattner7e044912010-01-04 07:17:19 +0000427 // If any of the sign extended bits are demanded, we know that the sign
428 // bit is demanded.
429 if ((NewBits & DemandedMask) != 0)
Jay Foad25a5e4c2010-12-01 08:53:58 +0000430 InputDemandedBits.setBit(SrcBitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000431
Jay Foad583abbc2010-12-07 08:25:19 +0000432 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
433 KnownZero = KnownZero.trunc(SrcBitWidth);
434 KnownOne = KnownOne.trunc(SrcBitWidth);
Craig Topper47596dd2017-03-25 06:52:52 +0000435 if (SimplifyDemandedBits(I, 0, InputDemandedBits, KnownZero, KnownOne,
436 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000437 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000438 InputDemandedBits = InputDemandedBits.zext(BitWidth);
439 KnownZero = KnownZero.zext(BitWidth);
440 KnownOne = KnownOne.zext(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000441 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
442
Chris Lattner7e044912010-01-04 07:17:19 +0000443 // If the sign bit of the input is known set or clear, then we know the
444 // top bits of the result.
445
446 // If the input sign bit is known zero, or if the NewBits are not demanded
447 // convert this into a zero extension.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000448 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattner7e044912010-01-04 07:17:19 +0000449 // Convert to ZExt cast
450 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000451 return InsertNewInstWith(NewCast, *I);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000452 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
453 KnownOne |= NewBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000454 }
455 break;
456 }
Matthias Braune48484c2015-04-30 22:05:30 +0000457 case Instruction::Add:
458 case Instruction::Sub: {
459 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
460 /// about the high bits of the operands.
Chris Lattner7e044912010-01-04 07:17:19 +0000461 unsigned NLZ = DemandedMask.countLeadingZeros();
Matthias Braune48484c2015-04-30 22:05:30 +0000462 if (NLZ > 0) {
463 // Right fill the mask of bits for this ADD/SUB to demand the most
Chris Lattner7e044912010-01-04 07:17:19 +0000464 // significant bit and all those below it.
Chris Lattner7e044912010-01-04 07:17:19 +0000465 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Craig Topper07f29152017-03-22 04:03:53 +0000466 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
Craig Topper47596dd2017-03-25 06:52:52 +0000467 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnownZero, LHSKnownOne,
468 Depth + 1) ||
Matthias Braune48484c2015-04-30 22:05:30 +0000469 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
Craig Topper845033a2017-04-12 16:49:59 +0000470 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnownZero, RHSKnownOne,
Craig Topper47596dd2017-03-25 06:52:52 +0000471 Depth + 1)) {
Matthias Braune48484c2015-04-30 22:05:30 +0000472 // Disable the nsw and nuw flags here: We can no longer guarantee that
473 // we won't wrap after simplification. Removing the nsw/nuw flags is
474 // legal here because the top bit is not demanded.
475 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
476 BinOP.setHasNoSignedWrap(false);
477 BinOP.setHasNoUnsignedWrap(false);
Chris Lattner7e044912010-01-04 07:17:19 +0000478 return I;
David Majnemer7d0e99c2015-04-22 22:42:05 +0000479 }
Craig Topper845033a2017-04-12 16:49:59 +0000480
481 // If we are known to be adding/subtracting zeros to every bit below
482 // the highest demanded bit, we just return the other side.
483 if ((DemandedFromOps & RHSKnownZero) == DemandedFromOps)
484 return I->getOperand(0);
485 // We can't do this with the LHS for subtraction.
486 if (I->getOpcode() == Instruction::Add &&
487 (DemandedFromOps & LHSKnownZero) == DemandedFromOps)
488 return I->getOperand(1);
Chris Lattner7e044912010-01-04 07:17:19 +0000489 }
Benjamin Kramer010337c2011-12-24 17:31:38 +0000490
Craig Topper8fbb74b2017-03-24 22:12:10 +0000491 // Otherwise just hand the add/sub off to computeKnownBits to fill in
492 // the known zeros and ones.
493 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000494 break;
Matthias Braune48484c2015-04-30 22:05:30 +0000495 }
Chris Lattner7e044912010-01-04 07:17:19 +0000496 case Instruction::Shl:
497 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Shuxin Yang63e999e2012-12-04 00:04:54 +0000498 {
499 Value *VarX; ConstantInt *C1;
500 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
501 Instruction *Shr = cast<Instruction>(I->getOperand(0));
502 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
503 KnownZero, KnownOne);
504 if (R)
505 return R;
506 }
507 }
508
Chris Lattner768003c2011-02-10 05:09:34 +0000509 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner7e044912010-01-04 07:17:19 +0000510 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000511
Chris Lattner768003c2011-02-10 05:09:34 +0000512 // If the shift is NUW/NSW, then it does demand the high bits.
513 ShlOperator *IOp = cast<ShlOperator>(I);
514 if (IOp->hasNoSignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000515 DemandedMaskIn.setHighBits(ShiftAmt+1);
Chris Lattner768003c2011-02-10 05:09:34 +0000516 else if (IOp->hasNoUnsignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000517 DemandedMaskIn.setHighBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000518
Craig Topper47596dd2017-03-25 06:52:52 +0000519 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, KnownZero, KnownOne,
520 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000521 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000522 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
523 KnownZero <<= ShiftAmt;
524 KnownOne <<= ShiftAmt;
Chris Lattner7e044912010-01-04 07:17:19 +0000525 // low bits known zero.
526 if (ShiftAmt)
Craig Topper3a86a042017-03-19 05:49:16 +0000527 KnownZero.setLowBits(ShiftAmt);
Chris Lattner7e044912010-01-04 07:17:19 +0000528 }
529 break;
530 case Instruction::LShr:
531 // For a logical shift right
532 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000533 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000534
Chris Lattner7e044912010-01-04 07:17:19 +0000535 // Unsigned shift right.
536 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000537
Chris Lattner768003c2011-02-10 05:09:34 +0000538 // If the shift is exact, then it does demand the low bits (and knows that
539 // they are zero).
540 if (cast<LShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000541 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000542
Craig Topper47596dd2017-03-25 06:52:52 +0000543 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, KnownZero, KnownOne,
544 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000545 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000546 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Craig Topper885fa122017-03-31 20:01:16 +0000547 KnownZero = KnownZero.lshr(ShiftAmt);
548 KnownOne = KnownOne.lshr(ShiftAmt);
Craig Topper3a86a042017-03-19 05:49:16 +0000549 if (ShiftAmt)
550 KnownZero.setHighBits(ShiftAmt); // high bits known zero.
Chris Lattner7e044912010-01-04 07:17:19 +0000551 }
552 break;
553 case Instruction::AShr:
554 // If this is an arithmetic shift right and only the low-bit is set, we can
555 // always convert this into a logical shr, even if the shift amount is
556 // variable. The low bit of the shift cannot be an input sign bit unless
557 // the shift amount is >= the size of the datatype, which is undefined.
558 if (DemandedMask == 1) {
559 // Perform the logical shift right.
560 Instruction *NewVal = BinaryOperator::CreateLShr(
561 I->getOperand(0), I->getOperand(1), I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000562 return InsertNewInstWith(NewVal, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000563 }
Chris Lattner7e044912010-01-04 07:17:19 +0000564
565 // If the sign bit is the only bit demanded by this ashr, then there is no
566 // need to do it, the shift doesn't change the high bit.
567 if (DemandedMask.isSignBit())
568 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000569
Chris Lattner7e044912010-01-04 07:17:19 +0000570 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000571 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000572
Chris Lattner7e044912010-01-04 07:17:19 +0000573 // Signed shift right.
574 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
575 // If any of the "high bits" are demanded, we should set the sign bit as
576 // demanded.
577 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
Jay Foad25a5e4c2010-12-01 08:53:58 +0000578 DemandedMaskIn.setBit(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000579
Chris Lattner768003c2011-02-10 05:09:34 +0000580 // If the shift is exact, then it does demand the low bits (and knows that
581 // they are zero).
582 if (cast<AShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000583 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000584
Craig Topper47596dd2017-03-25 06:52:52 +0000585 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, KnownZero, KnownOne,
586 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000587 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000588 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000589 // Compute the new bits that are at the top now.
590 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Craig Topper885fa122017-03-31 20:01:16 +0000591 KnownZero = KnownZero.lshr(ShiftAmt);
592 KnownOne = KnownOne.lshr(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000593
Chris Lattner7e044912010-01-04 07:17:19 +0000594 // Handle the sign bits.
595 APInt SignBit(APInt::getSignBit(BitWidth));
596 // Adjust to where it is now in the mask.
Craig Topper885fa122017-03-31 20:01:16 +0000597 SignBit = SignBit.lshr(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000598
Chris Lattner7e044912010-01-04 07:17:19 +0000599 // If the input sign bit is known to be zero, or if none of the top bits
600 // are demanded, turn this into an unsigned shift right.
Craig Topper4c947752012-12-22 18:09:02 +0000601 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
Chris Lattner7e044912010-01-04 07:17:19 +0000602 (HighBits & ~DemandedMask) == HighBits) {
603 // Perform the logical shift right.
Nick Lewycky0c48afa2012-01-04 09:28:29 +0000604 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
605 SA, I->getName());
606 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000607 return InsertNewInstWith(NewVal, *I);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000608 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
609 KnownOne |= HighBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000610 }
611 }
612 break;
613 case Instruction::SRem:
614 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Eli Friedmana81a82d2011-03-09 01:28:35 +0000615 // X % -1 demands all the bits because we don't want to introduce
616 // INT_MIN % -1 (== undef) by accident.
617 if (Rem->isAllOnesValue())
618 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000619 APInt RA = Rem->getValue().abs();
620 if (RA.isPowerOf2()) {
621 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
622 return I->getOperand(0);
623
624 APInt LowBits = RA - 1;
625 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
Craig Topper47596dd2017-03-25 06:52:52 +0000626 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnownZero, LHSKnownOne,
627 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000628 return I;
629
Duncan Sands3a48b872010-01-28 17:22:42 +0000630 // The low bits of LHS are unchanged by the srem.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000631 KnownZero = LHSKnownZero & LowBits;
632 KnownOne = LHSKnownOne & LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000633
Duncan Sands3a48b872010-01-28 17:22:42 +0000634 // If LHS is non-negative or has all low bits zero, then the upper bits
635 // are all zero.
636 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
637 KnownZero |= ~LowBits;
638
639 // If LHS is negative and not all low bits are zero, then the upper bits
640 // are all one.
641 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
642 KnownOne |= ~LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000643
Craig Topper4c947752012-12-22 18:09:02 +0000644 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000645 }
646 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000647
648 // The sign bit is the LHS's sign bit, except when the result of the
649 // remainder is zero.
650 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +0000651 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000652 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000653 CxtI);
Nick Lewyckye4679792011-03-07 01:50:10 +0000654 // If it's known zero, our sign bit is also zero.
655 if (LHSKnownZero.isNegative())
Craig Topper3a86a042017-03-19 05:49:16 +0000656 KnownZero.setSignBit();
Nick Lewyckye4679792011-03-07 01:50:10 +0000657 }
Chris Lattner7e044912010-01-04 07:17:19 +0000658 break;
659 case Instruction::URem: {
660 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
661 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Craig Topper47596dd2017-03-25 06:52:52 +0000662 if (SimplifyDemandedBits(I, 0, AllOnes, KnownZero2, KnownOne2, Depth + 1) ||
663 SimplifyDemandedBits(I, 1, AllOnes, KnownZero2, KnownOne2, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000664 return I;
665
666 unsigned Leaders = KnownZero2.countLeadingOnes();
Chris Lattner7e044912010-01-04 07:17:19 +0000667 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
668 break;
669 }
670 case Instruction::Call:
671 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
672 switch (II->getIntrinsicID()) {
673 default: break;
674 case Intrinsic::bswap: {
675 // If the only bits demanded come from one byte of the bswap result,
676 // just shift the input byte into position to eliminate the bswap.
677 unsigned NLZ = DemandedMask.countLeadingZeros();
678 unsigned NTZ = DemandedMask.countTrailingZeros();
Craig Topper4c947752012-12-22 18:09:02 +0000679
Chris Lattner7e044912010-01-04 07:17:19 +0000680 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
681 // we need all the bits down to bit 8. Likewise, round NLZ. If we
682 // have 14 leading zeros, round to 8.
683 NLZ &= ~7;
684 NTZ &= ~7;
685 // If we need exactly one byte, we can do this transformation.
686 if (BitWidth-NLZ-NTZ == 8) {
687 unsigned ResultBit = NTZ;
688 unsigned InputBit = BitWidth-NTZ-8;
Craig Topper4c947752012-12-22 18:09:02 +0000689
Chris Lattner7e044912010-01-04 07:17:19 +0000690 // Replace this with either a left or right shift to get the byte into
691 // the right place.
692 Instruction *NewVal;
693 if (InputBit > ResultBit)
Gabor Greif79430172010-06-24 12:35:13 +0000694 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000695 ConstantInt::get(I->getType(), InputBit-ResultBit));
696 else
Gabor Greif79430172010-06-24 12:35:13 +0000697 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000698 ConstantInt::get(I->getType(), ResultBit-InputBit));
699 NewVal->takeName(I);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000700 return InsertNewInstWith(NewVal, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000701 }
Craig Topper4c947752012-12-22 18:09:02 +0000702
Chris Lattner7e044912010-01-04 07:17:19 +0000703 // TODO: Could compute known zero/one bits based on the input.
704 break;
705 }
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000706 case Intrinsic::x86_mmx_pmovmskb:
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000707 case Intrinsic::x86_sse_movmsk_ps:
708 case Intrinsic::x86_sse2_movmsk_pd:
709 case Intrinsic::x86_sse2_pmovmskb_128:
710 case Intrinsic::x86_avx_movmsk_ps_256:
711 case Intrinsic::x86_avx_movmsk_pd_256:
712 case Intrinsic::x86_avx2_pmovmskb: {
713 // MOVMSK copies the vector elements' sign bits to the low bits
714 // and zeros the high bits.
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000715 unsigned ArgWidth;
716 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
717 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
718 } else {
719 auto Arg = II->getArgOperand(0);
720 auto ArgType = cast<VectorType>(Arg->getType());
721 ArgWidth = ArgType->getNumElements();
722 }
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000723
724 // If we don't need any of low bits then return zero,
725 // we know that DemandedMask is non-zero already.
726 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
727 if (DemandedElts == 0)
728 return ConstantInt::getNullValue(VTy);
729
Ahmed Bougacha17482a52016-04-28 14:36:07 +0000730 // We know that the upper bits are set to zero.
Craig Topper3a86a042017-03-19 05:49:16 +0000731 KnownZero.setBitsFrom(ArgWidth);
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000732 return nullptr;
733 }
Chad Rosierb3628842011-05-26 23:13:19 +0000734 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topper3a86a042017-03-19 05:49:16 +0000735 KnownZero.setBitsFrom(32);
Craig Topperf40110f2014-04-25 05:29:35 +0000736 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000737 }
738 }
Hal Finkel60db0582014-09-07 18:57:58 +0000739 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000740 break;
741 }
Craig Topper4c947752012-12-22 18:09:02 +0000742
Chris Lattner7e044912010-01-04 07:17:19 +0000743 // If the client is only demanding bits that we know, return the known
744 // constant.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000745 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
746 return Constant::getIntegerValue(VTy, KnownOne);
Craig Topperf40110f2014-04-25 05:29:35 +0000747 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000748}
749
Craig Topperb0076fe2017-04-12 18:05:21 +0000750/// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
751/// bits. It also tries to handle simplifications that can be done based on
752/// DemandedMask, but without modifying the Instruction.
753Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
754 const APInt &DemandedMask,
755 APInt &KnownZero,
756 APInt &KnownOne,
757 unsigned Depth,
758 Instruction *CxtI) {
759 unsigned BitWidth = DemandedMask.getBitWidth();
760 Type *ITy = I->getType();
761
762 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
763 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
764
765 // Despite the fact that we can't simplify this instruction in all User's
766 // context, we can at least compute the knownzero/knownone bits, and we can
767 // do simplifications that apply to *just* the one user if we know that
768 // this instruction has a simpler value in that context.
769 if (I->getOpcode() == Instruction::And) {
770 // If either the LHS or the RHS are Zero, the result is zero.
771 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
772 CxtI);
773 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
774 CxtI);
775
776 // If all of the demanded bits are known 1 on one side, return the other.
777 // These bits cannot contribute to the result of the 'and' in this
778 // context.
779 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
780 (DemandedMask & ~LHSKnownZero))
781 return I->getOperand(0);
782 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
783 (DemandedMask & ~RHSKnownZero))
784 return I->getOperand(1);
785
786 // If all of the demanded bits in the inputs are known zeros, return zero.
787 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
788 return Constant::getNullValue(ITy);
789
790 } else if (I->getOpcode() == Instruction::Or) {
791 // We can simplify (X|Y) -> X or Y in the user's context if we know that
792 // only bits from X or Y are demanded.
793
794 // If either the LHS or the RHS are One, the result is One.
795 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
796 CxtI);
797 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
798 CxtI);
799
800 // If all of the demanded bits are known zero on one side, return the
801 // other. These bits cannot contribute to the result of the 'or' in this
802 // context.
803 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
804 (DemandedMask & ~LHSKnownOne))
805 return I->getOperand(0);
806 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
807 (DemandedMask & ~RHSKnownOne))
808 return I->getOperand(1);
809
810 // If all of the potentially set bits on one side are known to be set on
811 // the other side, just use the 'other' side.
812 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
813 (DemandedMask & (~RHSKnownZero)))
814 return I->getOperand(0);
815 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
816 (DemandedMask & (~LHSKnownZero)))
817 return I->getOperand(1);
818 } else if (I->getOpcode() == Instruction::Xor) {
819 // We can simplify (X^Y) -> X or Y in the user's context if we know that
820 // only bits from X or Y are demanded.
821
822 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
823 CxtI);
824 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
825 CxtI);
826
827 // If all of the demanded bits are known zero on one side, return the
828 // other.
829 if ((DemandedMask & RHSKnownZero) == DemandedMask)
830 return I->getOperand(0);
831 if ((DemandedMask & LHSKnownZero) == DemandedMask)
832 return I->getOperand(1);
833 }
834
835 // Compute the KnownZero/KnownOne bits to simplify things downstream.
836 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
837 return nullptr;
838}
839
840
Shuxin Yang63e999e2012-12-04 00:04:54 +0000841/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
842/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
843/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
844/// of "C2-C1".
845///
846/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
847/// ..., bn}, without considering the specific value X is holding.
848/// This transformation is legal iff one of following conditions is hold:
849/// 1) All the bit in S are 0, in this case E1 == E2.
850/// 2) We don't care those bits in S, per the input DemandedMask.
851/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
852/// rest bits.
853///
854/// Currently we only test condition 2).
855///
856/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
857/// not successful.
858Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
Benjamin Kramerc321e532016-06-08 19:09:22 +0000859 Instruction *Shl,
860 const APInt &DemandedMask,
861 APInt &KnownZero,
862 APInt &KnownOne) {
Shuxin Yang63e999e2012-12-04 00:04:54 +0000863
Benjamin Kramer010f1082013-08-30 14:35:35 +0000864 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
865 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
866 if (!ShlOp1 || !ShrOp1)
Craig Topperf40110f2014-04-25 05:29:35 +0000867 return nullptr; // Noop.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000868
869 Value *VarX = Shr->getOperand(0);
870 Type *Ty = VarX->getType();
871 unsigned BitWidth = Ty->getIntegerBitWidth();
872 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
Craig Topperf40110f2014-04-25 05:29:35 +0000873 return nullptr; // Undef.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000874
875 unsigned ShlAmt = ShlOp1.getZExtValue();
876 unsigned ShrAmt = ShrOp1.getZExtValue();
Shuxin Yang63e999e2012-12-04 00:04:54 +0000877
878 KnownOne.clearAllBits();
Craig Topper3a86a042017-03-19 05:49:16 +0000879 KnownZero.setLowBits(ShlAmt - 1);
Shuxin Yang63e999e2012-12-04 00:04:54 +0000880 KnownZero &= DemandedMask;
881
Benjamin Kramer010f1082013-08-30 14:35:35 +0000882 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
883 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
Shuxin Yang63e999e2012-12-04 00:04:54 +0000884
885 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
886 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
887 (BitMask1.ashr(ShrAmt) << ShlAmt);
888
889 if (ShrAmt <= ShlAmt) {
890 BitMask2 <<= (ShlAmt - ShrAmt);
891 } else {
892 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
893 BitMask2.ashr(ShrAmt - ShlAmt);
894 }
895
896 // Check if condition-2 (see the comment to this function) is satified.
897 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
898 if (ShrAmt == ShlAmt)
899 return VarX;
900
901 if (!Shr->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +0000902 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000903
904 BinaryOperator *New;
905 if (ShrAmt < ShlAmt) {
906 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
907 New = BinaryOperator::CreateShl(VarX, Amt);
908 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
909 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
910 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
911 } else {
912 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
Shuxin Yang86c0e232012-12-04 03:28:32 +0000913 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
914 BinaryOperator::CreateAShr(VarX, Amt);
Shuxin Yang81b36782012-12-12 00:29:03 +0000915 if (cast<BinaryOperator>(Shr)->isExact())
916 New->setIsExact(true);
Shuxin Yang63e999e2012-12-04 00:04:54 +0000917 }
918
919 return InsertNewInstWith(New, *Shl);
920 }
921
Craig Topperf40110f2014-04-25 05:29:35 +0000922 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000923}
Chris Lattner7e044912010-01-04 07:17:19 +0000924
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +0000925/// The specified value produces a vector with any number of elements.
926/// DemandedElts contains the set of elements that are actually used by the
927/// caller. This method analyzes which elements of the operand are undef and
928/// returns that information in UndefElts.
Chris Lattner7e044912010-01-04 07:17:19 +0000929///
930/// If the information about demanded elements can be used to simplify the
931/// operation, the operation is simplified, then the resultant value is
932/// returned. This returns null if no change was made.
933Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Chris Lattnerb22423c2010-02-08 23:56:03 +0000934 APInt &UndefElts,
Chris Lattner7e044912010-01-04 07:17:19 +0000935 unsigned Depth) {
Sanjay Patel9190b4a2016-04-29 20:54:56 +0000936 unsigned VWidth = V->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +0000937 APInt EltMask(APInt::getAllOnesValue(VWidth));
938 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
939
940 if (isa<UndefValue>(V)) {
941 // If the entire vector is undefined, just return this info.
942 UndefElts = EltMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000943 return nullptr;
Chris Lattnerb22423c2010-02-08 23:56:03 +0000944 }
Craig Topper4c947752012-12-22 18:09:02 +0000945
Chris Lattnerb22423c2010-02-08 23:56:03 +0000946 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000947 UndefElts = EltMask;
948 return UndefValue::get(V->getType());
949 }
950
951 UndefElts = 0;
Craig Topper4c947752012-12-22 18:09:02 +0000952
Chris Lattner67058832012-01-25 06:48:06 +0000953 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
954 if (Constant *C = dyn_cast<Constant>(V)) {
955 // Check if this is identity. If so, return 0 since we are not simplifying
956 // anything.
957 if (DemandedElts.isAllOnesValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000958 return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +0000959
Chris Lattner229907c2011-07-18 04:54:35 +0000960 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner7e044912010-01-04 07:17:19 +0000961 Constant *Undef = UndefValue::get(EltTy);
Craig Topper4c947752012-12-22 18:09:02 +0000962
Chris Lattner67058832012-01-25 06:48:06 +0000963 SmallVector<Constant*, 16> Elts;
964 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7e044912010-01-04 07:17:19 +0000965 if (!DemandedElts[i]) { // If not demanded, set to undef.
966 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000967 UndefElts.setBit(i);
Chris Lattner67058832012-01-25 06:48:06 +0000968 continue;
969 }
Craig Topper4c947752012-12-22 18:09:02 +0000970
Chris Lattner67058832012-01-25 06:48:06 +0000971 Constant *Elt = C->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +0000972 if (!Elt) return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000973
Chris Lattner67058832012-01-25 06:48:06 +0000974 if (isa<UndefValue>(Elt)) { // Already undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000975 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000976 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +0000977 } else { // Otherwise, defined.
Chris Lattner67058832012-01-25 06:48:06 +0000978 Elts.push_back(Elt);
Chris Lattner7e044912010-01-04 07:17:19 +0000979 }
Chris Lattner67058832012-01-25 06:48:06 +0000980 }
Craig Topper4c947752012-12-22 18:09:02 +0000981
Chris Lattner7e044912010-01-04 07:17:19 +0000982 // If we changed the constant, return it.
Chris Lattner47a86bd2012-01-25 06:02:56 +0000983 Constant *NewCV = ConstantVector::get(Elts);
Craig Topperf40110f2014-04-25 05:29:35 +0000984 return NewCV != C ? NewCV : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000985 }
Craig Topper4c947752012-12-22 18:09:02 +0000986
Chris Lattner7e044912010-01-04 07:17:19 +0000987 // Limit search depth.
988 if (Depth == 10)
Craig Topperf40110f2014-04-25 05:29:35 +0000989 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000990
Stuart Hastings5bd18b62011-05-17 22:13:31 +0000991 // If multiple users are using the root value, proceed with
Chris Lattner7e044912010-01-04 07:17:19 +0000992 // simplification conservatively assuming that all elements
993 // are needed.
994 if (!V->hasOneUse()) {
995 // Quit if we find multiple users of a non-root value though.
996 // They'll be handled when it's their turn to be visited by
997 // the main instcombine process.
998 if (Depth != 0)
999 // TODO: Just compute the UndefElts information recursively.
Craig Topperf40110f2014-04-25 05:29:35 +00001000 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001001
1002 // Conservatively assume that all elements are needed.
1003 DemandedElts = EltMask;
1004 }
Craig Topper4c947752012-12-22 18:09:02 +00001005
Chris Lattner7e044912010-01-04 07:17:19 +00001006 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +00001007 if (!I) return nullptr; // Only analyze instructions.
Craig Topper4c947752012-12-22 18:09:02 +00001008
Chris Lattner7e044912010-01-04 07:17:19 +00001009 bool MadeChange = false;
1010 APInt UndefElts2(VWidth, 0);
Craig Topper23ebd952016-12-11 08:54:52 +00001011 APInt UndefElts3(VWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001012 Value *TmpV;
1013 switch (I->getOpcode()) {
1014 default: break;
Craig Topper4c947752012-12-22 18:09:02 +00001015
Chris Lattner7e044912010-01-04 07:17:19 +00001016 case Instruction::InsertElement: {
1017 // If this is a variable index, we don't know which element it overwrites.
1018 // demand exactly the same input as we produce.
1019 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +00001020 if (!Idx) {
Chris Lattner7e044912010-01-04 07:17:19 +00001021 // Note that we can't propagate undef elt info, because we don't know
1022 // which elt is getting updated.
1023 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001024 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001025 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1026 break;
1027 }
Craig Topper4c947752012-12-22 18:09:02 +00001028
Chris Lattner7e044912010-01-04 07:17:19 +00001029 // If this is inserting an element that isn't demanded, remove this
1030 // insertelement.
1031 unsigned IdxNo = Idx->getZExtValue();
1032 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1033 Worklist.Add(I);
1034 return I->getOperand(0);
1035 }
Craig Topper4c947752012-12-22 18:09:02 +00001036
Chris Lattner7e044912010-01-04 07:17:19 +00001037 // Otherwise, the element inserted overwrites whatever was there, so the
1038 // input demanded set is simpler than the output set.
1039 APInt DemandedElts2 = DemandedElts;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001040 DemandedElts2.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001041 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001042 UndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001043 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1044
1045 // The inserted element is defined.
Jay Foad25a5e4c2010-12-01 08:53:58 +00001046 UndefElts.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001047 break;
1048 }
1049 case Instruction::ShuffleVector: {
1050 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Craig Topper2e18bcf2016-12-29 04:24:32 +00001051 unsigned LHSVWidth =
1052 Shuffle->getOperand(0)->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +00001053 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1054 for (unsigned i = 0; i < VWidth; i++) {
1055 if (DemandedElts[i]) {
1056 unsigned MaskVal = Shuffle->getMaskValue(i);
1057 if (MaskVal != -1u) {
1058 assert(MaskVal < LHSVWidth * 2 &&
1059 "shufflevector mask index out of range!");
1060 if (MaskVal < LHSVWidth)
Jay Foad25a5e4c2010-12-01 08:53:58 +00001061 LeftDemanded.setBit(MaskVal);
Chris Lattner7e044912010-01-04 07:17:19 +00001062 else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001063 RightDemanded.setBit(MaskVal - LHSVWidth);
Chris Lattner7e044912010-01-04 07:17:19 +00001064 }
1065 }
1066 }
1067
Alexey Bataevfee90782016-09-23 09:14:08 +00001068 APInt LHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001069 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001070 LHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001071 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1072
Alexey Bataevfee90782016-09-23 09:14:08 +00001073 APInt RHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001074 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001075 RHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001076 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1077
1078 bool NewUndefElts = false;
Alexey Bataev793c9462016-09-26 13:18:59 +00001079 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1080 unsigned RHSIdx = -1u, RHSValIdx = -1u;
Alexey Bataevfee90782016-09-23 09:14:08 +00001081 bool LHSUniform = true;
1082 bool RHSUniform = true;
Chris Lattner7e044912010-01-04 07:17:19 +00001083 for (unsigned i = 0; i < VWidth; i++) {
1084 unsigned MaskVal = Shuffle->getMaskValue(i);
1085 if (MaskVal == -1u) {
Jay Foad25a5e4c2010-12-01 08:53:58 +00001086 UndefElts.setBit(i);
Eli Friedman888bea02011-09-15 01:14:29 +00001087 } else if (!DemandedElts[i]) {
1088 NewUndefElts = true;
1089 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +00001090 } else if (MaskVal < LHSVWidth) {
Alexey Bataevfee90782016-09-23 09:14:08 +00001091 if (LHSUndefElts[MaskVal]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001092 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001093 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001094 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001095 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1096 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001097 LHSUniform = LHSUniform && (MaskVal == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001098 }
1099 } else {
Alexey Bataevfee90782016-09-23 09:14:08 +00001100 if (RHSUndefElts[MaskVal - LHSVWidth]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001101 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001102 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001103 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001104 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1105 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001106 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001107 }
1108 }
1109 }
1110
Alexey Bataevfee90782016-09-23 09:14:08 +00001111 // Try to transform shuffle with constant vector and single element from
1112 // this constant vector to single insertelement instruction.
1113 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1114 // insertelement V, C[ci], ci-n
1115 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1116 Value *Op = nullptr;
1117 Constant *Value = nullptr;
1118 unsigned Idx = -1u;
1119
Craig Topper62f06e22016-12-29 05:38:31 +00001120 // Find constant vector with the single element in shuffle (LHS or RHS).
Alexey Bataevfee90782016-09-23 09:14:08 +00001121 if (LHSIdx < LHSVWidth && RHSUniform) {
1122 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1123 Op = Shuffle->getOperand(1);
Alexey Bataev793c9462016-09-26 13:18:59 +00001124 Value = CV->getOperand(LHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001125 Idx = LHSIdx;
1126 }
1127 }
1128 if (RHSIdx < LHSVWidth && LHSUniform) {
1129 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1130 Op = Shuffle->getOperand(0);
Alexey Bataev793c9462016-09-26 13:18:59 +00001131 Value = CV->getOperand(RHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001132 Idx = RHSIdx;
1133 }
1134 }
1135 // Found constant vector with single element - convert to insertelement.
1136 if (Op && Value) {
1137 Instruction *New = InsertElementInst::Create(
1138 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1139 Shuffle->getName());
1140 InsertNewInstWith(New, *Shuffle);
1141 return New;
1142 }
1143 }
Chris Lattner7e044912010-01-04 07:17:19 +00001144 if (NewUndefElts) {
1145 // Add additional discovered undefs.
Chris Lattner0256be92012-01-27 03:08:05 +00001146 SmallVector<Constant*, 16> Elts;
Chris Lattner7e044912010-01-04 07:17:19 +00001147 for (unsigned i = 0; i < VWidth; ++i) {
1148 if (UndefElts[i])
1149 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1150 else
1151 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1152 Shuffle->getMaskValue(i)));
1153 }
1154 I->setOperand(2, ConstantVector::get(Elts));
1155 MadeChange = true;
1156 }
1157 break;
1158 }
Pete Cooperabc13af2012-07-26 23:10:24 +00001159 case Instruction::Select: {
1160 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1161 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1162 for (unsigned i = 0; i < VWidth; i++) {
Andrea Di Biagio40f59e42015-10-06 10:34:53 +00001163 Constant *CElt = CV->getAggregateElement(i);
1164 // Method isNullValue always returns false when called on a
1165 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1166 // to avoid propagating incorrect information.
1167 if (isa<ConstantExpr>(CElt))
1168 continue;
1169 if (CElt->isNullValue())
Pete Cooperabc13af2012-07-26 23:10:24 +00001170 LeftDemanded.clearBit(i);
1171 else
1172 RightDemanded.clearBit(i);
1173 }
1174 }
1175
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001176 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1177 Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001178 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1179
1180 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001181 UndefElts2, Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001182 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001183
Pete Cooperabc13af2012-07-26 23:10:24 +00001184 // Output elements are undefined if both are undefined.
1185 UndefElts &= UndefElts2;
1186 break;
1187 }
Chris Lattner7e044912010-01-04 07:17:19 +00001188 case Instruction::BitCast: {
1189 // Vector->vector casts only.
Chris Lattner229907c2011-07-18 04:54:35 +00001190 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
Chris Lattner7e044912010-01-04 07:17:19 +00001191 if (!VTy) break;
1192 unsigned InVWidth = VTy->getNumElements();
1193 APInt InputDemandedElts(InVWidth, 0);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001194 UndefElts2 = APInt(InVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001195 unsigned Ratio;
1196
1197 if (VWidth == InVWidth) {
1198 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1199 // elements as are demanded of us.
1200 Ratio = 1;
1201 InputDemandedElts = DemandedElts;
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001202 } else if ((VWidth % InVWidth) == 0) {
1203 // If the number of elements in the output is a multiple of the number of
1204 // elements in the input then an input element is live if any of the
1205 // corresponding output elements are live.
1206 Ratio = VWidth / InVWidth;
1207 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Chris Lattner7e044912010-01-04 07:17:19 +00001208 if (DemandedElts[OutIdx])
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001209 InputDemandedElts.setBit(OutIdx / Ratio);
1210 } else if ((InVWidth % VWidth) == 0) {
1211 // If the number of elements in the input is a multiple of the number of
1212 // elements in the output then an input element is live if the
1213 // corresponding output element is live.
1214 Ratio = InVWidth / VWidth;
Chris Lattner7e044912010-01-04 07:17:19 +00001215 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001216 if (DemandedElts[InIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001217 InputDemandedElts.setBit(InIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001218 } else {
1219 // Unsupported so far.
1220 break;
Chris Lattner7e044912010-01-04 07:17:19 +00001221 }
Craig Topper4c947752012-12-22 18:09:02 +00001222
Chris Lattner7e044912010-01-04 07:17:19 +00001223 // div/rem demand all inputs, because they don't want divide by zero.
1224 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001225 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001226 if (TmpV) {
1227 I->setOperand(0, TmpV);
1228 MadeChange = true;
1229 }
Craig Topper4c947752012-12-22 18:09:02 +00001230
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001231 if (VWidth == InVWidth) {
1232 UndefElts = UndefElts2;
1233 } else if ((VWidth % InVWidth) == 0) {
1234 // If the number of elements in the output is a multiple of the number of
1235 // elements in the input then an output element is undef if the
1236 // corresponding input element is undef.
Chris Lattner7e044912010-01-04 07:17:19 +00001237 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001238 if (UndefElts2[OutIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001239 UndefElts.setBit(OutIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001240 } else if ((InVWidth % VWidth) == 0) {
1241 // If the number of elements in the input is a multiple of the number of
1242 // elements in the output then an output element is undef if all of the
1243 // corresponding input elements are undef.
1244 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1245 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1246 if (SubUndef.countPopulation() == Ratio)
1247 UndefElts.setBit(OutIdx);
1248 }
1249 } else {
Chris Lattner7e044912010-01-04 07:17:19 +00001250 llvm_unreachable("Unimp");
Chris Lattner7e044912010-01-04 07:17:19 +00001251 }
1252 break;
1253 }
1254 case Instruction::And:
1255 case Instruction::Or:
1256 case Instruction::Xor:
1257 case Instruction::Add:
1258 case Instruction::Sub:
1259 case Instruction::Mul:
1260 // div/rem demand all inputs, because they don't want divide by zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001261 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1262 Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001263 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1264 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001265 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001266 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001267
Chris Lattner7e044912010-01-04 07:17:19 +00001268 // Output elements are undefined if both are undefined. Consider things
1269 // like undef&0. The result is known zero, not undef.
1270 UndefElts &= UndefElts2;
1271 break;
Pete Coopere807e452012-07-26 22:37:04 +00001272 case Instruction::FPTrunc:
1273 case Instruction::FPExt:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001274 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1275 Depth + 1);
Pete Coopere807e452012-07-26 22:37:04 +00001276 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1277 break;
Craig Topper4c947752012-12-22 18:09:02 +00001278
Chris Lattner7e044912010-01-04 07:17:19 +00001279 case Instruction::Call: {
1280 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1281 if (!II) break;
1282 switch (II->getIntrinsicID()) {
1283 default: break;
Craig Topper4c947752012-12-22 18:09:02 +00001284
Craig Topper7fc6d342016-12-11 22:32:38 +00001285 case Intrinsic::x86_xop_vfrcz_ss:
1286 case Intrinsic::x86_xop_vfrcz_sd:
1287 // The instructions for these intrinsics are speced to zero upper bits not
1288 // pass them through like other scalar intrinsics. So we shouldn't just
1289 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1290 // Instead we should return a zero vector.
Craig Topper1a8a3372016-12-29 03:30:17 +00001291 if (!DemandedElts[0]) {
1292 Worklist.Add(II);
Craig Topper7fc6d342016-12-11 22:32:38 +00001293 return ConstantAggregateZero::get(II->getType());
Craig Topper1a8a3372016-12-29 03:30:17 +00001294 }
Craig Topper7fc6d342016-12-11 22:32:38 +00001295
Craig Topperac75bca2016-12-13 07:45:45 +00001296 // Only the lower element is used.
1297 DemandedElts = 1;
Craig Topper7fc6d342016-12-11 22:32:38 +00001298 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1299 UndefElts, Depth + 1);
1300 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperac75bca2016-12-13 07:45:45 +00001301
1302 // Only the lower element is undefined. The high elements are zero.
1303 UndefElts = UndefElts[0];
Craig Topper7fc6d342016-12-11 22:32:38 +00001304 break;
1305
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001306 // Unary scalar-as-vector operations that work column-wise.
Simon Pilgrim83020942016-04-24 18:23:14 +00001307 case Intrinsic::x86_sse_rcp_ss:
1308 case Intrinsic::x86_sse_rsqrt_ss:
1309 case Intrinsic::x86_sse_sqrt_ss:
1310 case Intrinsic::x86_sse2_sqrt_sd:
Simon Pilgrim83020942016-04-24 18:23:14 +00001311 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1312 UndefElts, Depth + 1);
1313 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1314
1315 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001316 if (!DemandedElts[0]) {
1317 Worklist.Add(II);
Simon Pilgrim83020942016-04-24 18:23:14 +00001318 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001319 }
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001320 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1321 // checks).
Simon Pilgrim83020942016-04-24 18:23:14 +00001322 break;
1323
Craig Toppera0372de2016-12-14 03:17:27 +00001324 // Binary scalar-as-vector operations that work column-wise. The high
1325 // elements come from operand 0. The low element is a function of both
1326 // operands.
Chris Lattner7e044912010-01-04 07:17:19 +00001327 case Intrinsic::x86_sse_min_ss:
1328 case Intrinsic::x86_sse_max_ss:
Simon Pilgrim83020942016-04-24 18:23:14 +00001329 case Intrinsic::x86_sse_cmp_ss:
Chris Lattner7e044912010-01-04 07:17:19 +00001330 case Intrinsic::x86_sse2_min_sd:
1331 case Intrinsic::x86_sse2_max_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00001332 case Intrinsic::x86_sse2_cmp_sd: {
1333 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1334 UndefElts, Depth + 1);
1335 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1336
1337 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001338 if (!DemandedElts[0]) {
1339 Worklist.Add(II);
Craig Toppera0372de2016-12-14 03:17:27 +00001340 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001341 }
Craig Toppera0372de2016-12-14 03:17:27 +00001342
1343 // Only lower element is used for operand 1.
1344 DemandedElts = 1;
1345 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1346 UndefElts2, Depth + 1);
1347 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1348
1349 // Lower element is undefined if both lower elements are undefined.
1350 // Consider things like undef&0. The result is known zero, not undef.
1351 if (!UndefElts2[0])
1352 UndefElts.clearBit(0);
1353
1354 break;
1355 }
1356
Craig Toppereb6a20e2016-12-14 03:17:30 +00001357 // Binary scalar-as-vector operations that work column-wise. The high
1358 // elements come from operand 0 and the low element comes from operand 1.
Simon Pilgrim83020942016-04-24 18:23:14 +00001359 case Intrinsic::x86_sse41_round_ss:
Craig Toppereb6a20e2016-12-14 03:17:30 +00001360 case Intrinsic::x86_sse41_round_sd: {
1361 // Don't use the low element of operand 0.
1362 APInt DemandedElts2 = DemandedElts;
1363 DemandedElts2.clearBit(0);
1364 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001365 UndefElts, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001366 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001367
1368 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001369 if (!DemandedElts[0]) {
1370 Worklist.Add(II);
Craig Toppereb6a20e2016-12-14 03:17:30 +00001371 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001372 }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001373
1374 // Only lower element is used for operand 1.
1375 DemandedElts = 1;
Gabor Greife23efee2010-06-28 16:45:00 +00001376 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001377 UndefElts2, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001378 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
Chris Lattner7e044912010-01-04 07:17:19 +00001379
Craig Toppereb6a20e2016-12-14 03:17:30 +00001380 // Take the high undef elements from operand 0 and take the lower element
1381 // from operand 1.
1382 UndefElts.clearBit(0);
1383 UndefElts |= UndefElts2[0];
Chris Lattner7e044912010-01-04 07:17:19 +00001384 break;
Craig Toppereb6a20e2016-12-14 03:17:30 +00001385 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001386
Craig Topperdfd268d2016-12-14 05:43:05 +00001387 // Three input scalar-as-vector operations that work column-wise. The high
1388 // elements come from operand 0 and the low element is a function of all
1389 // three inputs.
Craig Topper268b3ab2016-12-14 06:06:58 +00001390 case Intrinsic::x86_avx512_mask_add_ss_round:
1391 case Intrinsic::x86_avx512_mask_div_ss_round:
1392 case Intrinsic::x86_avx512_mask_mul_ss_round:
1393 case Intrinsic::x86_avx512_mask_sub_ss_round:
1394 case Intrinsic::x86_avx512_mask_max_ss_round:
1395 case Intrinsic::x86_avx512_mask_min_ss_round:
1396 case Intrinsic::x86_avx512_mask_add_sd_round:
1397 case Intrinsic::x86_avx512_mask_div_sd_round:
1398 case Intrinsic::x86_avx512_mask_mul_sd_round:
1399 case Intrinsic::x86_avx512_mask_sub_sd_round:
1400 case Intrinsic::x86_avx512_mask_max_sd_round:
1401 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topper23ebd952016-12-11 08:54:52 +00001402 case Intrinsic::x86_fma_vfmadd_ss:
1403 case Intrinsic::x86_fma_vfmsub_ss:
1404 case Intrinsic::x86_fma_vfnmadd_ss:
1405 case Intrinsic::x86_fma_vfnmsub_ss:
1406 case Intrinsic::x86_fma_vfmadd_sd:
1407 case Intrinsic::x86_fma_vfmsub_sd:
1408 case Intrinsic::x86_fma_vfnmadd_sd:
1409 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Topperab5f3552016-12-15 03:49:45 +00001410 case Intrinsic::x86_avx512_mask_vfmadd_ss:
1411 case Intrinsic::x86_avx512_mask_vfmadd_sd:
1412 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1413 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
Craig Topper23ebd952016-12-11 08:54:52 +00001414 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1415 UndefElts, Depth + 1);
1416 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperdfd268d2016-12-14 05:43:05 +00001417
1418 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001419 if (!DemandedElts[0]) {
1420 Worklist.Add(II);
Craig Topperdfd268d2016-12-14 05:43:05 +00001421 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001422 }
Craig Topperdfd268d2016-12-14 05:43:05 +00001423
1424 // Only lower element is used for operand 1 and 2.
1425 DemandedElts = 1;
Craig Topper23ebd952016-12-11 08:54:52 +00001426 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1427 UndefElts2, Depth + 1);
1428 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1429 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1430 UndefElts3, Depth + 1);
1431 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1432
Craig Topperdfd268d2016-12-14 05:43:05 +00001433 // Lower element is undefined if all three lower elements are undefined.
1434 // Consider things like undef&0. The result is known zero, not undef.
1435 if (!UndefElts2[0] || !UndefElts3[0])
1436 UndefElts.clearBit(0);
Craig Topper23ebd952016-12-11 08:54:52 +00001437
Craig Topper23ebd952016-12-11 08:54:52 +00001438 break;
1439
Craig Topperab5f3552016-12-15 03:49:45 +00001440 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1441 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1442 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1443 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1444 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1445 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1446 // These intrinsics get the passthru bits from operand 2.
1447 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1448 UndefElts, Depth + 1);
1449 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1450
1451 // If lowest element of a scalar op isn't used then use Arg2.
Craig Topper1a8a3372016-12-29 03:30:17 +00001452 if (!DemandedElts[0]) {
1453 Worklist.Add(II);
Craig Topperab5f3552016-12-15 03:49:45 +00001454 return II->getArgOperand(2);
Craig Topper1a8a3372016-12-29 03:30:17 +00001455 }
Craig Topperab5f3552016-12-15 03:49:45 +00001456
1457 // Only lower element is used for operand 0 and 1.
1458 DemandedElts = 1;
1459 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1460 UndefElts2, Depth + 1);
1461 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1462 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1463 UndefElts3, Depth + 1);
1464 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1465
1466 // Lower element is undefined if all three lower elements are undefined.
1467 // Consider things like undef&0. The result is known zero, not undef.
1468 if (!UndefElts2[0] || !UndefElts3[0])
1469 UndefElts.clearBit(0);
1470
1471 break;
1472
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001473 case Intrinsic::x86_sse2_pmulu_dq:
1474 case Intrinsic::x86_sse41_pmuldq:
1475 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00001476 case Intrinsic::x86_avx2_pmulu_dq:
1477 case Intrinsic::x86_avx512_pmul_dq_512:
1478 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001479 Value *Op0 = II->getArgOperand(0);
1480 Value *Op1 = II->getArgOperand(1);
1481 unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1482 assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1483
1484 APInt InnerDemandedElts(InnerVWidth, 0);
1485 for (unsigned i = 0; i != VWidth; ++i)
1486 if (DemandedElts[i])
1487 InnerDemandedElts.setBit(i * 2);
1488
1489 UndefElts2 = APInt(InnerVWidth, 0);
1490 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1491 Depth + 1);
1492 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1493
1494 UndefElts3 = APInt(InnerVWidth, 0);
1495 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1496 Depth + 1);
1497 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1498
1499 break;
1500 }
1501
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001502 case Intrinsic::x86_sse2_packssdw_128:
1503 case Intrinsic::x86_sse2_packsswb_128:
1504 case Intrinsic::x86_sse2_packuswb_128:
1505 case Intrinsic::x86_sse41_packusdw:
1506 case Intrinsic::x86_avx2_packssdw:
1507 case Intrinsic::x86_avx2_packsswb:
1508 case Intrinsic::x86_avx2_packusdw:
Craig Topper3731f4d2017-02-16 07:35:23 +00001509 case Intrinsic::x86_avx2_packuswb:
1510 case Intrinsic::x86_avx512_packssdw_512:
1511 case Intrinsic::x86_avx512_packsswb_512:
1512 case Intrinsic::x86_avx512_packusdw_512:
1513 case Intrinsic::x86_avx512_packuswb_512: {
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001514 auto *Ty0 = II->getArgOperand(0)->getType();
1515 unsigned InnerVWidth = Ty0->getVectorNumElements();
1516 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1517
1518 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1519 unsigned VWidthPerLane = VWidth / NumLanes;
1520 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1521
1522 // Per lane, pack the elements of the first input and then the second.
1523 // e.g.
1524 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1525 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1526 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1527 APInt OpDemandedElts(InnerVWidth, 0);
1528 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1529 unsigned LaneIdx = Lane * VWidthPerLane;
1530 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1531 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1532 if (DemandedElts[Idx])
1533 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1534 }
1535 }
1536
1537 // Demand elements from the operand.
1538 auto *Op = II->getArgOperand(OpNum);
1539 APInt OpUndefElts(InnerVWidth, 0);
1540 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1541 Depth + 1);
1542 if (TmpV) {
1543 II->setArgOperand(OpNum, TmpV);
1544 MadeChange = true;
1545 }
1546
1547 // Pack the operand's UNDEF elements, one lane at a time.
1548 OpUndefElts = OpUndefElts.zext(VWidth);
1549 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1550 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1551 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1552 LaneElts = LaneElts.shl(InnerVWidthPerLane * (2 * Lane + OpNum));
1553 UndefElts |= LaneElts;
1554 }
1555 }
1556 break;
1557 }
1558
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001559 // PSHUFB
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001560 case Intrinsic::x86_ssse3_pshuf_b_128:
1561 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001562 case Intrinsic::x86_avx512_pshuf_b_512:
1563 // PERMILVAR
1564 case Intrinsic::x86_avx_vpermilvar_ps:
1565 case Intrinsic::x86_avx_vpermilvar_ps_256:
1566 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1567 case Intrinsic::x86_avx_vpermilvar_pd:
1568 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrimfe2c0ed2017-01-18 14:47:49 +00001569 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1570 // PERMV
1571 case Intrinsic::x86_avx2_permd:
1572 case Intrinsic::x86_avx2_permps: {
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001573 Value *Op1 = II->getArgOperand(1);
1574 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1575 Depth + 1);
1576 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1577 break;
1578 }
1579
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001580 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1581 // in an undefined state.
1582 case Intrinsic::x86_sse4a_extrq:
1583 case Intrinsic::x86_sse4a_extrqi:
1584 case Intrinsic::x86_sse4a_insertq:
1585 case Intrinsic::x86_sse4a_insertqi:
Craig Topper3a86a042017-03-19 05:49:16 +00001586 UndefElts.setHighBits(VWidth / 2);
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001587 break;
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001588 case Intrinsic::amdgcn_buffer_load:
1589 case Intrinsic::amdgcn_buffer_load_format: {
Craig Topperd33ee1b2017-04-03 16:34:59 +00001590 if (VWidth == 1 || !DemandedElts.isMask())
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001591 return nullptr;
1592
1593 // TODO: Handle 3 vectors when supported in code gen.
1594 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
1595 if (NewNumElts == VWidth)
1596 return nullptr;
1597
1598 Module *M = II->getParent()->getParent()->getParent();
1599 Type *EltTy = V->getType()->getVectorElementType();
1600
1601 Type *NewTy = (NewNumElts == 1) ? EltTy :
1602 VectorType::get(EltTy, NewNumElts);
1603
1604 Function *NewIntrin = Intrinsic::getDeclaration(M, II->getIntrinsicID(),
1605 NewTy);
1606
1607 SmallVector<Value *, 5> Args;
1608 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1609 Args.push_back(II->getArgOperand(I));
1610
Matt Arsenaulta3bdd8f2017-03-10 05:25:49 +00001611 IRBuilderBase::InsertPointGuard Guard(*Builder);
1612 Builder->SetInsertPoint(II);
1613
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001614 CallInst *NewCall = Builder->CreateCall(NewIntrin, Args);
1615 NewCall->takeName(II);
1616 NewCall->copyMetadata(*II);
1617 if (NewNumElts == 1) {
1618 return Builder->CreateInsertElement(UndefValue::get(V->getType()),
1619 NewCall, static_cast<uint64_t>(0));
1620 }
1621
1622 SmallVector<uint32_t, 8> EltMask;
1623 for (unsigned I = 0; I < VWidth; ++I)
1624 EltMask.push_back(I);
1625
1626 Value *Shuffle = Builder->CreateShuffleVector(
1627 NewCall, UndefValue::get(NewTy), EltMask);
1628
1629 MadeChange = true;
1630 return Shuffle;
1631 }
Chris Lattner7e044912010-01-04 07:17:19 +00001632 }
1633 break;
1634 }
1635 }
Craig Topperf40110f2014-04-25 05:29:35 +00001636 return MadeChange ? I : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001637}