blob: 90ea2467b2d963a8ba58947b19fb658f62d7670e [file] [log] [blame]
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +00001//=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// \file
9//
10// The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11// later by the runtime.
12//
13// This pass traverses the functions in the module and converts
14// each call to printf to a sequence of operations that
15// store the following into the printf buffer:
16// - format string (passed as a module's metadata unique ID)
17// - bitwise copies of printf arguments
18// The backend passes will need to store metadata in the kernel
19//===----------------------------------------------------------------------===//
20
21#include "AMDGPU.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/Triple.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/TargetLibraryInfo.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/IRBuilder.h"
33#include "llvm/IR/InstVisitor.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Type.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41using namespace llvm;
42
43#define DEBUG_TYPE "printfToRuntime"
44#define DWORD_ALIGN 4
45
46namespace {
47class LLVM_LIBRARY_VISIBILITY AMDGPUPrintfRuntimeBinding final
48 : public ModulePass,
49 public InstVisitor<AMDGPUPrintfRuntimeBinding> {
50
51public:
52 static char ID;
53
54 explicit AMDGPUPrintfRuntimeBinding();
55
56 void visitCallSite(CallSite CS) {
57 Function *F = CS.getCalledFunction();
58 if (F && F->hasName() && F->getName() == "printf")
59 Printfs.push_back(CS.getInstruction());
60 }
61
62private:
63 bool runOnModule(Module &M) override;
64 void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
65 StringRef fmt, size_t num_ops) const;
66
67 bool shouldPrintAsStr(char Specifier, Type *OpType) const;
Teresa Johnson9c27b592019-09-07 03:09:36 +000068 bool
69 lowerPrintfForGpu(Module &M,
70 function_ref<const TargetLibraryInfo &(Function &)> GetTLI);
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +000071
72 void getAnalysisUsage(AnalysisUsage &AU) const override {
73 AU.addRequired<TargetLibraryInfoWrapperPass>();
74 AU.addRequired<DominatorTreeWrapperPass>();
75 }
76
Teresa Johnson9c27b592019-09-07 03:09:36 +000077 Value *simplify(Instruction *I, const TargetLibraryInfo *TLI) {
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +000078 return SimplifyInstruction(I, {*TD, TLI, DT});
79 }
80
81 const DataLayout *TD;
82 const DominatorTree *DT;
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +000083 SmallVector<Value *, 32> Printfs;
84};
85} // namespace
86
87char AMDGPUPrintfRuntimeBinding::ID = 0;
88
89INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
90 "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
91 false, false)
92INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
93INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
94INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
95 "AMDGPU Printf lowering", false, false)
96
97char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
98
99namespace llvm {
100ModulePass *createAMDGPUPrintfRuntimeBinding() {
101 return new AMDGPUPrintfRuntimeBinding();
102}
103} // namespace llvm
104
105AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding()
Teresa Johnson9c27b592019-09-07 03:09:36 +0000106 : ModulePass(ID), TD(nullptr), DT(nullptr) {
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +0000107 initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
108}
109
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +0000110void AMDGPUPrintfRuntimeBinding::getConversionSpecifiers(
111 SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
112 size_t NumOps) const {
113 // not all format characters are collected.
114 // At this time the format characters of interest
115 // are %p and %s, which use to know if we
116 // are either storing a literal string or a
117 // pointer to the printf buffer.
118 static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
119 size_t CurFmtSpecifierIdx = 0;
120 size_t PrevFmtSpecifierIdx = 0;
121
122 while ((CurFmtSpecifierIdx = Fmt.find_first_of(
123 ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
124 bool ArgDump = false;
125 StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
126 CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
127 size_t pTag = CurFmt.find_last_of("%");
128 if (pTag != StringRef::npos) {
129 ArgDump = true;
130 while (pTag && CurFmt[--pTag] == '%') {
131 ArgDump = !ArgDump;
132 }
133 }
134
135 if (ArgDump)
136 OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
137
138 PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
139 }
140}
141
142bool AMDGPUPrintfRuntimeBinding::shouldPrintAsStr(char Specifier,
143 Type *OpType) const {
144 if (Specifier != 's')
145 return false;
146 const PointerType *PT = dyn_cast<PointerType>(OpType);
147 if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
148 return false;
149 Type *ElemType = PT->getContainedType(0);
150 if (ElemType->getTypeID() != Type::IntegerTyID)
151 return false;
152 IntegerType *ElemIType = cast<IntegerType>(ElemType);
153 return ElemIType->getBitWidth() == 8;
154}
155
Teresa Johnson9c27b592019-09-07 03:09:36 +0000156bool AMDGPUPrintfRuntimeBinding::lowerPrintfForGpu(
157 Module &M, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +0000158 LLVMContext &Ctx = M.getContext();
159 IRBuilder<> Builder(Ctx);
160 Type *I32Ty = Type::getInt32Ty(Ctx);
161 unsigned UniqID = 0;
162 // NB: This is important for this string size to be divizable by 4
163 const char NonLiteralStr[4] = "???";
164
165 for (auto P : Printfs) {
166 CallInst *CI = dyn_cast<CallInst>(P);
167
168 unsigned NumOps = CI->getNumArgOperands();
169
170 SmallString<16> OpConvSpecifiers;
171 Value *Op = CI->getArgOperand(0);
172
173 if (auto LI = dyn_cast<LoadInst>(Op)) {
174 Op = LI->getPointerOperand();
175 for (auto Use : Op->users()) {
176 if (auto SI = dyn_cast<StoreInst>(Use)) {
177 Op = SI->getValueOperand();
178 break;
179 }
180 }
181 }
182
183 if (auto I = dyn_cast<Instruction>(Op)) {
Teresa Johnson9c27b592019-09-07 03:09:36 +0000184 Value *Op_simplified = simplify(I, &GetTLI(*I->getFunction()));
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +0000185 if (Op_simplified)
186 Op = Op_simplified;
187 }
188
189 ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);
190
191 if (ConstExpr) {
192 GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
193
194 StringRef Str("unknown");
195 if (GVar && GVar->hasInitializer()) {
196 auto Init = GVar->getInitializer();
197 if (auto CA = dyn_cast<ConstantDataArray>(Init)) {
198 if (CA->isString())
199 Str = CA->getAsCString();
200 } else if (isa<ConstantAggregateZero>(Init)) {
201 Str = "";
202 }
203 //
204 // we need this call to ascertain
205 // that we are printing a string
206 // or a pointer. It takes out the
207 // specifiers and fills up the first
208 // arg
209 getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
210 }
211 // Add metadata for the string
212 std::string AStreamHolder;
213 raw_string_ostream Sizes(AStreamHolder);
214 int Sum = DWORD_ALIGN;
215 Sizes << CI->getNumArgOperands() - 1;
216 Sizes << ':';
217 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
218 ArgCount <= OpConvSpecifiers.size();
219 ArgCount++) {
220 Value *Arg = CI->getArgOperand(ArgCount);
221 Type *ArgType = Arg->getType();
222 unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
223 ArgSize = ArgSize / 8;
224 //
225 // ArgSize by design should be a multiple of DWORD_ALIGN,
226 // expand the arguments that do not follow this rule.
227 //
228 if (ArgSize % DWORD_ALIGN != 0) {
229 llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
230 VectorType *LLVMVecType = llvm::dyn_cast<llvm::VectorType>(ArgType);
231 int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
232 if (LLVMVecType && NumElem > 1)
233 ResType = llvm::VectorType::get(ResType, NumElem);
234 Builder.SetInsertPoint(CI);
235 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
236 if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
237 OpConvSpecifiers[ArgCount - 1] == 'X' ||
238 OpConvSpecifiers[ArgCount - 1] == 'u' ||
239 OpConvSpecifiers[ArgCount - 1] == 'o')
240 Arg = Builder.CreateZExt(Arg, ResType);
241 else
242 Arg = Builder.CreateSExt(Arg, ResType);
243 ArgType = Arg->getType();
244 ArgSize = TD->getTypeAllocSizeInBits(ArgType);
245 ArgSize = ArgSize / 8;
246 CI->setOperand(ArgCount, Arg);
247 }
248 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
249 ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
250 if (FpCons)
251 ArgSize = 4;
252 else {
253 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
254 if (FpExt && FpExt->getType()->isDoubleTy() &&
255 FpExt->getOperand(0)->getType()->isFloatTy())
256 ArgSize = 4;
257 }
258 }
259 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
260 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
261 GlobalVariable *GV =
262 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
263 if (GV && GV->hasInitializer()) {
264 Constant *Init = GV->getInitializer();
265 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
266 if (Init->isZeroValue() || CA->isString()) {
267 size_t SizeStr = Init->isZeroValue()
268 ? 1
269 : (strlen(CA->getAsCString().data()) + 1);
270 size_t Rem = SizeStr % DWORD_ALIGN;
271 size_t NSizeStr = 0;
272 LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr
273 << '\n');
274 if (Rem) {
275 NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
276 } else {
277 NSizeStr = SizeStr;
278 }
279 ArgSize = NSizeStr;
280 }
281 } else {
282 ArgSize = sizeof(NonLiteralStr);
283 }
284 } else {
285 ArgSize = sizeof(NonLiteralStr);
286 }
287 }
288 LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
289 << " for type: " << *ArgType << '\n');
290 Sizes << ArgSize << ':';
291 Sum += ArgSize;
292 }
293 LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()
294 << '\n');
295 for (size_t I = 0; I < Str.size(); ++I) {
296 // Rest of the C escape sequences (e.g. \') are handled correctly
297 // by the MDParser
298 switch (Str[I]) {
299 case '\a':
300 Sizes << "\\a";
301 break;
302 case '\b':
303 Sizes << "\\b";
304 break;
305 case '\f':
306 Sizes << "\\f";
307 break;
308 case '\n':
309 Sizes << "\\n";
310 break;
311 case '\r':
312 Sizes << "\\r";
313 break;
314 case '\v':
315 Sizes << "\\v";
316 break;
317 case ':':
318 // ':' cannot be scanned by Flex, as it is defined as a delimiter
319 // Replace it with it's octal representation \72
320 Sizes << "\\72";
321 break;
322 default:
323 Sizes << Str[I];
324 break;
325 }
326 }
327
328 // Insert the printf_alloc call
329 Builder.SetInsertPoint(CI);
330 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
331
332 AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
333 Attribute::NoUnwind);
334
335 Type *SizetTy = Type::getInt32Ty(Ctx);
336
337 Type *Tys_alloc[1] = {SizetTy};
338 Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
339 FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
340 FunctionCallee PrintfAllocFn =
341 M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
342
343 LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
344 std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
345 MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
346
347 // Instead of creating global variables, the
348 // printf format strings are extracted
349 // and passed as metadata. This avoids
350 // polluting llvm's symbol tables in this module.
351 // Metadata is going to be extracted
352 // by the backend passes and inserted
353 // into the OpenCL binary as appropriate.
354 StringRef amd("llvm.printf.fmts");
355 NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
356 MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
357 metaD->addOperand(myMD);
358 Value *sumC = ConstantInt::get(SizetTy, Sum, false);
359 SmallVector<Value *, 1> alloc_args;
360 alloc_args.push_back(sumC);
361 CallInst *pcall =
362 CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);
363
364 //
365 // Insert code to split basicblock with a
366 // piece of hammock code.
367 // basicblock splits after buffer overflow check
368 //
369 ConstantPointerNull *zeroIntPtr =
370 ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
371 ICmpInst *cmp =
372 dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
373 if (!CI->use_empty()) {
374 Value *result =
375 Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
376 CI->replaceAllUsesWith(result);
377 }
378 SplitBlock(CI->getParent(), cmp);
379 Instruction *Brnch =
380 SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
381
382 Builder.SetInsertPoint(Brnch);
383
384 // store unique printf id in the buffer
385 //
386 SmallVector<Value *, 1> ZeroIdxList;
387 ConstantInt *zeroInt =
388 ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
389 ZeroIdxList.push_back(zeroInt);
390
391 GetElementPtrInst *BufferIdx =
392 dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
393 nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch));
394
395 Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
396 Value *id_gep_cast =
397 new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);
398
399 StoreInst *stbuff =
400 new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast);
401 stbuff->insertBefore(Brnch); // to Remove unused variable warning
402
403 SmallVector<Value *, 2> FourthIdxList;
404 ConstantInt *fourInt =
405 ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));
406
407 FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
408 // the following GEP is the buffer pointer
409 BufferIdx = cast<GetElementPtrInst>(GetElementPtrInst::Create(
410 nullptr, pcall, FourthIdxList, "PrintBuffGep", Brnch));
411
412 Type *Int32Ty = Type::getInt32Ty(Ctx);
413 Type *Int64Ty = Type::getInt64Ty(Ctx);
414 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
415 ArgCount <= OpConvSpecifiers.size();
416 ArgCount++) {
417 Value *Arg = CI->getArgOperand(ArgCount);
418 Type *ArgType = Arg->getType();
419 SmallVector<Value *, 32> WhatToStore;
420 if (ArgType->isFPOrFPVectorTy() &&
421 (ArgType->getTypeID() != Type::VectorTyID)) {
422 Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
423 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
424 ConstantFP *fpCons = dyn_cast<ConstantFP>(Arg);
425 if (fpCons) {
426 APFloat Val(fpCons->getValueAPF());
427 bool Lost = false;
428 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
429 &Lost);
430 Arg = ConstantFP::get(Ctx, Val);
431 IType = Int32Ty;
432 } else {
433 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
434 if (FpExt && FpExt->getType()->isDoubleTy() &&
435 FpExt->getOperand(0)->getType()->isFloatTy()) {
436 Arg = FpExt->getOperand(0);
437 IType = Int32Ty;
438 }
439 }
440 }
441 Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
442 WhatToStore.push_back(Arg);
443 } else if (ArgType->getTypeID() == Type::PointerTyID) {
444 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
445 const char *S = NonLiteralStr;
446 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
447 GlobalVariable *GV =
448 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
449 if (GV && GV->hasInitializer()) {
450 Constant *Init = GV->getInitializer();
451 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
452 if (Init->isZeroValue() || CA->isString()) {
453 S = Init->isZeroValue() ? "" : CA->getAsCString().data();
454 }
455 }
456 }
457 size_t SizeStr = strlen(S) + 1;
458 size_t Rem = SizeStr % DWORD_ALIGN;
459 size_t NSizeStr = 0;
460 if (Rem) {
461 NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
462 } else {
463 NSizeStr = SizeStr;
464 }
465 if (S[0]) {
466 char *MyNewStr = new char[NSizeStr]();
467 strcpy(MyNewStr, S);
468 int NumInts = NSizeStr / 4;
469 int CharC = 0;
470 while (NumInts) {
471 int ANum = *(int *)(MyNewStr + CharC);
472 CharC += 4;
473 NumInts--;
474 Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
475 WhatToStore.push_back(ANumV);
476 }
477 delete[] MyNewStr;
478 } else {
479 // Empty string, give a hint to RT it is no NULL
480 Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
481 WhatToStore.push_back(ANumV);
482 }
483 } else {
484 uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
485 assert((Size == 32 || Size == 64) && "unsupported size");
486 Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
487 Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
488 WhatToStore.push_back(Arg);
489 }
490 } else if (ArgType->getTypeID() == Type::VectorTyID) {
491 Type *IType = NULL;
492 uint32_t EleCount = cast<VectorType>(ArgType)->getNumElements();
493 uint32_t EleSize = ArgType->getScalarSizeInBits();
494 uint32_t TotalSize = EleCount * EleSize;
495 if (EleCount == 3) {
496 IntegerType *Int32Ty = Type::getInt32Ty(ArgType->getContext());
497 Constant *Indices[4] = {
498 ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1),
499 ConstantInt::get(Int32Ty, 2), ConstantInt::get(Int32Ty, 2)};
500 Constant *Mask = ConstantVector::get(Indices);
501 ShuffleVectorInst *Shuffle = new ShuffleVectorInst(Arg, Arg, Mask);
502 Shuffle->insertBefore(Brnch);
503 Arg = Shuffle;
504 ArgType = Arg->getType();
505 TotalSize += EleSize;
506 }
507 switch (EleSize) {
508 default:
509 EleCount = TotalSize / 64;
510 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
511 break;
512 case 8:
513 if (EleCount >= 8) {
514 EleCount = TotalSize / 64;
515 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
516 } else if (EleCount >= 3) {
517 EleCount = 1;
518 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
519 } else {
520 EleCount = 1;
521 IType = dyn_cast<Type>(Type::getInt16Ty(ArgType->getContext()));
522 }
523 break;
524 case 16:
525 if (EleCount >= 3) {
526 EleCount = TotalSize / 64;
527 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
528 } else {
529 EleCount = 1;
530 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
531 }
532 break;
533 }
534 if (EleCount > 1) {
535 IType = dyn_cast<Type>(VectorType::get(IType, EleCount));
536 }
537 Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
538 WhatToStore.push_back(Arg);
539 } else {
540 WhatToStore.push_back(Arg);
541 }
Stanislav Mekhanoshin438315b2019-08-13 01:07:27 +0000542 for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
543 Value *TheBtCast = WhatToStore[I];
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +0000544 unsigned ArgSize =
545 TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
546 SmallVector<Value *, 1> BuffOffset;
547 BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));
548
549 Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
550 Value *CastedGEP =
551 new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
552 StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
553 LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
554 << *StBuff << '\n');
555 (void)StBuff;
Stanislav Mekhanoshin438315b2019-08-13 01:07:27 +0000556 if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +0000557 break;
558 BufferIdx = dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
559 nullptr, BufferIdx, BuffOffset, "PrintBuffNextPtr", Brnch));
560 LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
561 << *BufferIdx << '\n');
562 }
563 }
564 }
565 }
566
567 // erase the printf calls
568 for (auto P : Printfs) {
569 CallInst *CI = dyn_cast<CallInst>(P);
570 CI->eraseFromParent();
571 }
572
573 Printfs.clear();
574 return true;
575}
576
577bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
578 Triple TT(M.getTargetTriple());
579 if (TT.getArch() == Triple::r600)
580 return false;
581
582 visit(M);
583
584 if (Printfs.empty())
585 return false;
586
587 TD = &M.getDataLayout();
588 auto DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
589 DT = DTWP ? &DTWP->getDomTree() : nullptr;
Teresa Johnson9c27b592019-09-07 03:09:36 +0000590 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
591 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
592 };
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +0000593
Teresa Johnson9c27b592019-09-07 03:09:36 +0000594 return lowerPrintfForGpu(M, GetTLI);
Stanislav Mekhanoshin4c9c98f2019-08-12 17:12:29 +0000595}