blob: c4cf85f95267656e587e3c141f18eeafc322b464 [file] [log] [blame]
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies expensive constants to hoist and coalesces them to
11// better prepare it for SelectionDAG-based code generation. This works around
12// the limitations of the basic-block-at-a-time approach.
13//
14// First it scans all instructions for integer constants and calculates its
15// cost. If the constant can be folded into the instruction (the cost is
16// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
17// consider it expensive and leave it alone. This is the default behavior and
18// the default implementation of getIntImmCost will always return TCC_Free.
19//
20// If the cost is more than TCC_BASIC, then the integer constant can't be folded
21// into the instruction and it might be beneficial to hoist the constant.
22// Similar constants are coalesced to reduce register pressure and
23// materialization code.
24//
25// When a constant is hoisted, it is also hidden behind a bitcast to force it to
26// be live-out of the basic block. Otherwise the constant would be just
27// duplicated and each basic block would have its own copy in the SelectionDAG.
28// The SelectionDAG recognizes such constants as opaque and doesn't perform
29// certain transformations on them, which would create a new expensive constant.
30//
31// This optimization is only applied to integer constants in instructions and
32// simple (this means not nested) constant cast experessions. For example:
33// %0 = load i64* inttoptr (i64 big_constant to i64*)
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "consthoist"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/ADT/MapVector.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/Analysis/TargetTransformInfo.h"
42#include "llvm/IR/Constants.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/Pass.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48
49using namespace llvm;
50
51STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
52STATISTIC(NumConstantsRebased, "Number of constants rebased");
53
54
55namespace {
56typedef SmallVector<User *, 4> ConstantUseListType;
57struct ConstantCandidate {
58 unsigned CumulativeCost;
59 ConstantUseListType Uses;
60};
61
62struct ConstantInfo {
63 ConstantInt *BaseConstant;
64 struct RebasedConstantInfo {
65 ConstantInt *OriginalConstant;
66 Constant *Offset;
67 ConstantUseListType Uses;
68 };
69 typedef SmallVector<RebasedConstantInfo, 4> RebasedConstantListType;
70 RebasedConstantListType RebasedConstants;
71};
72
73class ConstantHoisting : public FunctionPass {
74 const TargetTransformInfo *TTI;
75 DominatorTree *DT;
76
77 /// Keeps track of expensive constants found in the function.
78 typedef MapVector<ConstantInt *, ConstantCandidate> ConstantMapType;
79 ConstantMapType ConstantMap;
80
81 /// These are the final constants we decided to hoist.
82 SmallVector<ConstantInfo, 4> Constants;
83public:
84 static char ID; // Pass identification, replacement for typeid
85 ConstantHoisting() : FunctionPass(ID), TTI(0) {
86 initializeConstantHoistingPass(*PassRegistry::getPassRegistry());
87 }
88
89 bool runOnFunction(Function &F);
90
91 const char *getPassName() const { return "Constant Hoisting"; }
92
93 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
94 AU.setPreservesCFG();
95 AU.addRequired<DominatorTreeWrapperPass>();
96 AU.addRequired<TargetTransformInfo>();
97 }
98
99private:
100 void CollectConstant(User *U, unsigned Opcode, Intrinsic::ID IID,
101 ConstantInt *C);
102 void CollectConstants(Instruction *I);
103 void CollectConstants(Function &F);
104 void FindAndMakeBaseConstant(ConstantMapType::iterator S,
105 ConstantMapType::iterator E);
106 void FindBaseConstants();
107 Instruction *FindConstantInsertionPoint(Function &F,
108 const ConstantInfo &CI) const;
109 void EmitBaseConstants(Function &F, User *U, Instruction *Base,
110 Constant *Offset, ConstantInt *OriginalConstant);
111 bool EmitBaseConstants(Function &F);
112 bool OptimizeConstants(Function &F);
113};
114}
115
116char ConstantHoisting::ID = 0;
117INITIALIZE_PASS_BEGIN(ConstantHoisting, "consthoist", "Constant Hoisting",
118 false, false)
119INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
120INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
121INITIALIZE_PASS_END(ConstantHoisting, "consthoist", "Constant Hoisting",
122 false, false)
123
124FunctionPass *llvm::createConstantHoistingPass() {
125 return new ConstantHoisting();
126}
127
128/// \brief Perform the constant hoisting optimization for the given function.
129bool ConstantHoisting::runOnFunction(Function &F) {
130 DEBUG(dbgs() << "********** Constant Hoisting **********\n");
131 DEBUG(dbgs() << "********** Function: " << F.getName() << '\n');
132
133 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
134 TTI = &getAnalysis<TargetTransformInfo>();
135
136 return OptimizeConstants(F);
137}
138
139void ConstantHoisting::CollectConstant(User * U, unsigned Opcode,
140 Intrinsic::ID IID, ConstantInt *C) {
141 unsigned Cost;
142 if (Opcode)
143 Cost = TTI->getIntImmCost(Opcode, C->getValue(), C->getType());
144 else
145 Cost = TTI->getIntImmCost(IID, C->getValue(), C->getType());
146
147 if (Cost > TargetTransformInfo::TCC_Basic) {
148 ConstantCandidate &CC = ConstantMap[C];
149 CC.CumulativeCost += Cost;
150 CC.Uses.push_back(U);
151 }
152}
153
154/// \brief Scan the instruction or constant expression for expensive integer
155/// constants and record them in the constant map.
156void ConstantHoisting::CollectConstants(Instruction *I) {
157 unsigned Opcode = 0;
158 Intrinsic::ID IID = Intrinsic::not_intrinsic;
159 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
160 IID = II->getIntrinsicID();
161 else
162 Opcode = I->getOpcode();
163
164 // Scan all operands.
165 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) {
166 if (ConstantInt *C = dyn_cast<ConstantInt>(O)) {
167 CollectConstant(I, Opcode, IID, C);
168 continue;
169 }
170 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(O)) {
171 // We only handle constant cast expressions.
172 if (!CE->isCast())
173 continue;
174
175 if (ConstantInt *C = dyn_cast<ConstantInt>(CE->getOperand(0))) {
176 // Ignore the cast expression and use the opcode of the instruction.
177 CollectConstant(CE, Opcode, IID, C);
178 continue;
179 }
180 }
181 }
182}
183
184/// \brief Collect all integer constants in the function that cannot be folded
185/// into an instruction itself.
186void ConstantHoisting::CollectConstants(Function &F) {
187 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
188 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
189 CollectConstants(I);
190}
191
192/// \brief Compare function for sorting integer constants by type and by value
193/// within a type in ConstantMaps.
194static bool
195ConstantMapLessThan(const std::pair<ConstantInt *, ConstantCandidate> &LHS,
196 const std::pair<ConstantInt *, ConstantCandidate> &RHS) {
197 if (LHS.first->getType() == RHS.first->getType())
198 return LHS.first->getValue().ult(RHS.first->getValue());
199 else
200 return LHS.first->getType()->getBitWidth() <
201 RHS.first->getType()->getBitWidth();
202}
203
204/// \brief Find the base constant within the given range and rebase all other
205/// constants with respect to the base constant.
206void ConstantHoisting::FindAndMakeBaseConstant(ConstantMapType::iterator S,
207 ConstantMapType::iterator E) {
208 ConstantMapType::iterator MaxCostItr = S;
209 unsigned NumUses = 0;
210 // Use the constant that has the maximum cost as base constant.
211 for (ConstantMapType::iterator I = S; I != E; ++I) {
212 NumUses += I->second.Uses.size();
213 if (I->second.CumulativeCost > MaxCostItr->second.CumulativeCost)
214 MaxCostItr = I;
215 }
216
217 // Don't hoist constants that have only one use.
218 if (NumUses <= 1)
219 return;
220
221 ConstantInfo CI;
222 CI.BaseConstant = MaxCostItr->first;
223 Type *Ty = CI.BaseConstant->getType();
224 // Rebase the constants with respect to the base constant.
225 for (ConstantMapType::iterator I = S; I != E; ++I) {
226 APInt Diff = I->first->getValue() - CI.BaseConstant->getValue();
227 ConstantInfo::RebasedConstantInfo RCI;
228 RCI.OriginalConstant = I->first;
229 RCI.Offset = ConstantInt::get(Ty, Diff);
230 RCI.Uses = llvm_move(I->second.Uses);
231 CI.RebasedConstants.push_back(RCI);
232 }
233 Constants.push_back(CI);
234}
235
236/// \brief Finds and combines constants that can be easily rematerialized with
237/// an add from a common base constant.
238void ConstantHoisting::FindBaseConstants() {
239 // Sort the constants by value and type. This invalidates the mapping.
240 std::sort(ConstantMap.begin(), ConstantMap.end(), ConstantMapLessThan);
241
242 // Simple linear scan through the sorted constant map for viable merge
243 // candidates.
244 ConstantMapType::iterator MinValItr = ConstantMap.begin();
245 for (ConstantMapType::iterator I = llvm::next(ConstantMap.begin()),
246 E = ConstantMap.end(); I != E; ++I) {
247 if (MinValItr->first->getType() == I->first->getType()) {
248 // Check if the constant is in range of an add with immediate.
249 APInt Diff = I->first->getValue() - MinValItr->first->getValue();
250 if ((Diff.getBitWidth() <= 64) &&
251 TTI->isLegalAddImmediate(Diff.getSExtValue()))
252 continue;
253 }
254 // We either have now a different constant type or the constant is not in
255 // range of an add with immediate anymore.
256 FindAndMakeBaseConstant(MinValItr, I);
257 // Start a new base constant search.
258 MinValItr = I;
259 }
260 // Finalize the last base constant search.
261 FindAndMakeBaseConstant(MinValItr, ConstantMap.end());
262}
263
264/// \brief Records the basic block of the instruction or all basic blocks of the
265/// users of the constant expression.
266static void CollectBasicBlocks(SmallPtrSet<BasicBlock *, 4> &BBs, Function &F,
267 User *U) {
268 if (Instruction *I = dyn_cast<Instruction>(U))
269 BBs.insert(I->getParent());
270 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U))
271 // Find all users of this constant expression.
272 for (Value::use_iterator UU = CE->use_begin(), E = CE->use_end();
273 UU != E; ++UU)
274 // Only record users that are instructions. We don't want to go down a
275 // nested constant expression chain. Also check if the instruction is even
276 // in the current function.
277 if (Instruction *I = dyn_cast<Instruction>(*UU))
278 if(I->getParent()->getParent() == &F)
279 BBs.insert(I->getParent());
280}
281
282/// \brief Find an insertion point that dominates all uses.
283Instruction *ConstantHoisting::
284FindConstantInsertionPoint(Function &F, const ConstantInfo &CI) const {
285 BasicBlock *Entry = &F.getEntryBlock();
286
287 // Collect all basic blocks.
288 SmallPtrSet<BasicBlock *, 4> BBs;
289 ConstantInfo::RebasedConstantListType::const_iterator RCI, RCE;
290 for (RCI = CI.RebasedConstants.begin(), RCE = CI.RebasedConstants.end();
291 RCI != RCE; ++RCI)
292 for (SmallVectorImpl<User *>::const_iterator U = RCI->Uses.begin(),
293 E = RCI->Uses.end(); U != E; ++U)
294 CollectBasicBlocks(BBs, F, *U);
295
296 if (BBs.count(Entry))
297 return Entry->getFirstInsertionPt();
298
299 while (BBs.size() >= 2) {
300 BasicBlock *BB, *BB1, *BB2;
301 BB1 = *BBs.begin();
302 BB2 = *llvm::next(BBs.begin());
303 BB = DT->findNearestCommonDominator(BB1, BB2);
304 if (BB == Entry)
305 return Entry->getFirstInsertionPt();
306 BBs.erase(BB1);
307 BBs.erase(BB2);
308 BBs.insert(BB);
309 }
310 assert((BBs.size() == 1) && "Expected only one element.");
311 return (*BBs.begin())->getFirstInsertionPt();
312}
313
Benjamin Kramer9e709bc2014-01-27 13:11:43 +0000314/// \brief Find the instruction we should insert the constant materialization
315/// before.
316static Instruction *getMatInsertPt(Instruction *I, const DominatorTree *DT) {
317 if (!isa<PHINode>(I) && !isa<LandingPadInst>(I)) // Simple case.
318 return I;
319
320 // We can't insert directly before a phi node or landing pad. Insert before
321 // the terminator of the dominating block.
322 assert(&I->getParent()->getParent()->getEntryBlock() != I->getParent() &&
323 "PHI or landing pad in entry block!");
324 BasicBlock *IDom = DT->getNode(I->getParent())->getIDom()->getBlock();
325 return IDom->getTerminator();
326}
327
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000328/// \brief Emit materialization code for all rebased constants and update their
329/// users.
330void ConstantHoisting::EmitBaseConstants(Function &F, User *U,
331 Instruction *Base, Constant *Offset,
332 ConstantInt *OriginalConstant) {
333 if (Instruction *I = dyn_cast<Instruction>(U)) {
334 Instruction *Mat = Base;
335 if (!Offset->isNullValue()) {
336 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
Benjamin Kramer9e709bc2014-01-27 13:11:43 +0000337 "const_mat", getMatInsertPt(I, DT));
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000338
339 // Use the same debug location as the instruction we are about to update.
340 Mat->setDebugLoc(I->getDebugLoc());
341
342 DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
343 << " + " << *Offset << ") in BB "
344 << I->getParent()->getName() << '\n' << *Mat << '\n');
345 }
346 DEBUG(dbgs() << "Update: " << *I << '\n');
347 I->replaceUsesOfWith(OriginalConstant, Mat);
348 DEBUG(dbgs() << "To: " << *I << '\n');
349 return;
350 }
351 assert(isa<ConstantExpr>(U) && "Expected a ConstantExpr.");
352 ConstantExpr *CE = cast<ConstantExpr>(U);
353 for (Value::use_iterator UU = CE->use_begin(), E = CE->use_end();
354 UU != E; ++UU) {
355 // We only handel instructions here and won't walk down a ConstantExpr chain
356 // to replace all ConstExpr with instructions.
357 if (Instruction *I = dyn_cast<Instruction>(*UU)) {
358 // Only update constant expressions in the current function.
359 if (I->getParent()->getParent() != &F)
360 continue;
361
362 Instruction *Mat = Base;
Benjamin Kramer9e709bc2014-01-27 13:11:43 +0000363 Instruction *InsertBefore = getMatInsertPt(I, DT);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000364 if (!Offset->isNullValue()) {
365 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
Benjamin Kramer9e709bc2014-01-27 13:11:43 +0000366 "const_mat", InsertBefore);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000367
368 // Use the same debug location as the instruction we are about to
369 // update.
370 Mat->setDebugLoc(I->getDebugLoc());
371
372 DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
373 << " + " << *Offset << ") in BB "
374 << I->getParent()->getName() << '\n' << *Mat << '\n');
375 }
376 Instruction *ICE = CE->getAsInstruction();
377 ICE->replaceUsesOfWith(OriginalConstant, Mat);
Benjamin Kramer9e709bc2014-01-27 13:11:43 +0000378 ICE->insertBefore(InsertBefore);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000379
380 // Use the same debug location as the instruction we are about to update.
381 ICE->setDebugLoc(I->getDebugLoc());
382
383 DEBUG(dbgs() << "Create instruction: " << *ICE << '\n');
384 DEBUG(dbgs() << "Update: " << *I << '\n');
385 I->replaceUsesOfWith(CE, ICE);
386 DEBUG(dbgs() << "To: " << *I << '\n');
387 }
388 }
389}
390
391/// \brief Hoist and hide the base constant behind a bitcast and emit
392/// materialization code for derived constants.
393bool ConstantHoisting::EmitBaseConstants(Function &F) {
394 bool MadeChange = false;
395 SmallVectorImpl<ConstantInfo>::iterator CI, CE;
396 for (CI = Constants.begin(), CE = Constants.end(); CI != CE; ++CI) {
397 // Hoist and hide the base constant behind a bitcast.
398 Instruction *IP = FindConstantInsertionPoint(F, *CI);
399 IntegerType *Ty = CI->BaseConstant->getType();
400 Instruction *Base = new BitCastInst(CI->BaseConstant, Ty, "const", IP);
401 DEBUG(dbgs() << "Hoist constant (" << *CI->BaseConstant << ") to BB "
402 << IP->getParent()->getName() << '\n');
403 NumConstantsHoisted++;
404
405 // Emit materialization code for all rebased constants.
406 ConstantInfo::RebasedConstantListType::iterator RCI, RCE;
407 for (RCI = CI->RebasedConstants.begin(), RCE = CI->RebasedConstants.end();
408 RCI != RCE; ++RCI) {
409 NumConstantsRebased++;
410 for (SmallVectorImpl<User *>::iterator U = RCI->Uses.begin(),
411 E = RCI->Uses.end(); U != E; ++U)
412 EmitBaseConstants(F, *U, Base, RCI->Offset, RCI->OriginalConstant);
413 }
414
415 // Use the same debug location as the last user of the constant.
416 assert(!Base->use_empty() && "The use list is empty!?");
417 assert(isa<Instruction>(Base->use_back()) &&
418 "All uses should be instructions.");
419 Base->setDebugLoc(cast<Instruction>(Base->use_back())->getDebugLoc());
420
421 // Correct for base constant, which we counted above too.
422 NumConstantsRebased--;
423 MadeChange = true;
424 }
425 return MadeChange;
426}
427
428/// \brief Optimize expensive integer constants in the given function.
429bool ConstantHoisting::OptimizeConstants(Function &F) {
430 bool MadeChange = false;
431
432 // Collect all constant candidates.
433 CollectConstants(F);
434
435 // There are no constants to worry about.
436 if (ConstantMap.empty())
437 return MadeChange;
438
439 // Combine constants that can be easily materialized with an add from a common
440 // base constant.
441 FindBaseConstants();
442
443 // Finaly hoist the base constant and emit materializating code for dependent
444 // constants.
445 MadeChange |= EmitBaseConstants(F);
446
447 ConstantMap.clear();
448 Constants.clear();
449
450 return MadeChange;
451}