blob: c6829076fcb4bd62a7a10af3a9b2ca268017537b [file] [log] [blame]
Andrew Kaylora23ea1662013-07-22 18:47:24 +00001#include "llvm/Analysis/Passes.h"
2#include "llvm/Analysis/Verifier.h"
3#include "llvm/ExecutionEngine/ExecutionEngine.h"
4#include "llvm/ExecutionEngine/MCJIT.h"
5#include "llvm/ExecutionEngine/SectionMemoryManager.h"
6#include "llvm/IR/DataLayout.h"
7#include "llvm/IR/DerivedTypes.h"
8#include "llvm/IR/IRBuilder.h"
9#include "llvm/IR/LLVMContext.h"
10#include "llvm/IR/Module.h"
11#include "llvm/PassManager.h"
12#include "llvm/Support/TargetSelect.h"
13#include "llvm/Transforms/Scalar.h"
14#include <cstdio>
15#include <map>
16#include <string>
17#include <vector>
18using namespace llvm;
19
20//===----------------------------------------------------------------------===//
21// Lexer
22//===----------------------------------------------------------------------===//
23
24// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
25// of these for known things.
26enum Token {
27 tok_eof = -1,
28
29 // commands
30 tok_def = -2, tok_extern = -3,
31
32 // primary
33 tok_identifier = -4, tok_number = -5,
34
35 // control
36 tok_if = -6, tok_then = -7, tok_else = -8,
37 tok_for = -9, tok_in = -10,
38
39 // operators
40 tok_binary = -11, tok_unary = -12,
41
42 // var definition
43 tok_var = -13
44};
45
46static std::string IdentifierStr; // Filled in if tok_identifier
47static double NumVal; // Filled in if tok_number
48
49/// gettok - Return the next token from standard input.
50static int gettok() {
51 static int LastChar = ' ';
52
53 // Skip any whitespace.
54 while (isspace(LastChar))
55 LastChar = getchar();
56
57 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
58 IdentifierStr = LastChar;
59 while (isalnum((LastChar = getchar())))
60 IdentifierStr += LastChar;
61
62 if (IdentifierStr == "def") return tok_def;
63 if (IdentifierStr == "extern") return tok_extern;
64 if (IdentifierStr == "if") return tok_if;
65 if (IdentifierStr == "then") return tok_then;
66 if (IdentifierStr == "else") return tok_else;
67 if (IdentifierStr == "for") return tok_for;
68 if (IdentifierStr == "in") return tok_in;
69 if (IdentifierStr == "binary") return tok_binary;
70 if (IdentifierStr == "unary") return tok_unary;
71 if (IdentifierStr == "var") return tok_var;
72 return tok_identifier;
73 }
74
75 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
76 std::string NumStr;
77 do {
78 NumStr += LastChar;
79 LastChar = getchar();
80 } while (isdigit(LastChar) || LastChar == '.');
81
82 NumVal = strtod(NumStr.c_str(), 0);
83 return tok_number;
84 }
85
86 if (LastChar == '#') {
87 // Comment until end of line.
88 do LastChar = getchar();
89 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
90
91 if (LastChar != EOF)
92 return gettok();
93 }
94
95 // Check for end of file. Don't eat the EOF.
96 if (LastChar == EOF)
97 return tok_eof;
98
99 // Otherwise, just return the character as its ascii value.
100 int ThisChar = LastChar;
101 LastChar = getchar();
102 return ThisChar;
103}
104
105//===----------------------------------------------------------------------===//
106// Abstract Syntax Tree (aka Parse Tree)
107//===----------------------------------------------------------------------===//
108
109/// ExprAST - Base class for all expression nodes.
110class ExprAST {
111public:
112 virtual ~ExprAST() {}
113 virtual Value *Codegen() = 0;
114};
115
116/// NumberExprAST - Expression class for numeric literals like "1.0".
117class NumberExprAST : public ExprAST {
118 double Val;
119public:
120 NumberExprAST(double val) : Val(val) {}
121 virtual Value *Codegen();
122};
123
124/// VariableExprAST - Expression class for referencing a variable, like "a".
125class VariableExprAST : public ExprAST {
126 std::string Name;
127public:
128 VariableExprAST(const std::string &name) : Name(name) {}
129 const std::string &getName() const { return Name; }
130 virtual Value *Codegen();
131};
132
133/// UnaryExprAST - Expression class for a unary operator.
134class UnaryExprAST : public ExprAST {
135 char Opcode;
136 ExprAST *Operand;
137public:
138 UnaryExprAST(char opcode, ExprAST *operand)
139 : Opcode(opcode), Operand(operand) {}
140 virtual Value *Codegen();
141};
142
143/// BinaryExprAST - Expression class for a binary operator.
144class BinaryExprAST : public ExprAST {
145 char Op;
146 ExprAST *LHS, *RHS;
147public:
148 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
149 : Op(op), LHS(lhs), RHS(rhs) {}
150 virtual Value *Codegen();
151};
152
153/// CallExprAST - Expression class for function calls.
154class CallExprAST : public ExprAST {
155 std::string Callee;
156 std::vector<ExprAST*> Args;
157public:
158 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
159 : Callee(callee), Args(args) {}
160 virtual Value *Codegen();
161};
162
163/// IfExprAST - Expression class for if/then/else.
164class IfExprAST : public ExprAST {
165 ExprAST *Cond, *Then, *Else;
166public:
167 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
168 : Cond(cond), Then(then), Else(_else) {}
169 virtual Value *Codegen();
170};
171
172/// ForExprAST - Expression class for for/in.
173class ForExprAST : public ExprAST {
174 std::string VarName;
175 ExprAST *Start, *End, *Step, *Body;
176public:
177 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
178 ExprAST *step, ExprAST *body)
179 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
180 virtual Value *Codegen();
181};
182
183/// VarExprAST - Expression class for var/in
184class VarExprAST : public ExprAST {
185 std::vector<std::pair<std::string, ExprAST*> > VarNames;
186 ExprAST *Body;
187public:
188 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
189 ExprAST *body)
190 : VarNames(varnames), Body(body) {}
191
192 virtual Value *Codegen();
193};
194
195/// PrototypeAST - This class represents the "prototype" for a function,
196/// which captures its argument names as well as if it is an operator.
197class PrototypeAST {
198 std::string Name;
199 std::vector<std::string> Args;
200 bool isOperator;
201 unsigned Precedence; // Precedence if a binary op.
202public:
203 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
204 bool isoperator = false, unsigned prec = 0)
205 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
206
207 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
208 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
209
210 char getOperatorName() const {
211 assert(isUnaryOp() || isBinaryOp());
212 return Name[Name.size()-1];
213 }
214
215 unsigned getBinaryPrecedence() const { return Precedence; }
216
217 Function *Codegen();
218
219 void CreateArgumentAllocas(Function *F);
220};
221
222/// FunctionAST - This class represents a function definition itself.
223class FunctionAST {
224 PrototypeAST *Proto;
225 ExprAST *Body;
226public:
227 FunctionAST(PrototypeAST *proto, ExprAST *body)
228 : Proto(proto), Body(body) {}
229
230 Function *Codegen();
231};
232
233//===----------------------------------------------------------------------===//
234// Parser
235//===----------------------------------------------------------------------===//
236
237/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
238/// token the parser is looking at. getNextToken reads another token from the
239/// lexer and updates CurTok with its results.
240static int CurTok;
241static int getNextToken() {
242 return CurTok = gettok();
243}
244
245/// BinopPrecedence - This holds the precedence for each binary operator that is
246/// defined.
247static std::map<char, int> BinopPrecedence;
248
249/// GetTokPrecedence - Get the precedence of the pending binary operator token.
250static int GetTokPrecedence() {
251 if (!isascii(CurTok))
252 return -1;
253
254 // Make sure it's a declared binop.
255 int TokPrec = BinopPrecedence[CurTok];
256 if (TokPrec <= 0) return -1;
257 return TokPrec;
258}
259
260/// Error* - These are little helper functions for error handling.
261ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
262PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
263FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
264
265static ExprAST *ParseExpression();
266
267/// identifierexpr
268/// ::= identifier
269/// ::= identifier '(' expression* ')'
270static ExprAST *ParseIdentifierExpr() {
271 std::string IdName = IdentifierStr;
272
273 getNextToken(); // eat identifier.
274
275 if (CurTok != '(') // Simple variable ref.
276 return new VariableExprAST(IdName);
277
278 // Call.
279 getNextToken(); // eat (
280 std::vector<ExprAST*> Args;
281 if (CurTok != ')') {
282 while (1) {
283 ExprAST *Arg = ParseExpression();
284 if (!Arg) return 0;
285 Args.push_back(Arg);
286
287 if (CurTok == ')') break;
288
289 if (CurTok != ',')
290 return Error("Expected ')' or ',' in argument list");
291 getNextToken();
292 }
293 }
294
295 // Eat the ')'.
296 getNextToken();
297
298 return new CallExprAST(IdName, Args);
299}
300
301/// numberexpr ::= number
302static ExprAST *ParseNumberExpr() {
303 ExprAST *Result = new NumberExprAST(NumVal);
304 getNextToken(); // consume the number
305 return Result;
306}
307
308/// parenexpr ::= '(' expression ')'
309static ExprAST *ParseParenExpr() {
310 getNextToken(); // eat (.
311 ExprAST *V = ParseExpression();
312 if (!V) return 0;
313
314 if (CurTok != ')')
315 return Error("expected ')'");
316 getNextToken(); // eat ).
317 return V;
318}
319
320/// ifexpr ::= 'if' expression 'then' expression 'else' expression
321static ExprAST *ParseIfExpr() {
322 getNextToken(); // eat the if.
323
324 // condition.
325 ExprAST *Cond = ParseExpression();
326 if (!Cond) return 0;
327
328 if (CurTok != tok_then)
329 return Error("expected then");
330 getNextToken(); // eat the then
331
332 ExprAST *Then = ParseExpression();
333 if (Then == 0) return 0;
334
335 if (CurTok != tok_else)
336 return Error("expected else");
337
338 getNextToken();
339
340 ExprAST *Else = ParseExpression();
341 if (!Else) return 0;
342
343 return new IfExprAST(Cond, Then, Else);
344}
345
346/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
347static ExprAST *ParseForExpr() {
348 getNextToken(); // eat the for.
349
350 if (CurTok != tok_identifier)
351 return Error("expected identifier after for");
352
353 std::string IdName = IdentifierStr;
354 getNextToken(); // eat identifier.
355
356 if (CurTok != '=')
357 return Error("expected '=' after for");
358 getNextToken(); // eat '='.
359
360
361 ExprAST *Start = ParseExpression();
362 if (Start == 0) return 0;
363 if (CurTok != ',')
364 return Error("expected ',' after for start value");
365 getNextToken();
366
367 ExprAST *End = ParseExpression();
368 if (End == 0) return 0;
369
370 // The step value is optional.
371 ExprAST *Step = 0;
372 if (CurTok == ',') {
373 getNextToken();
374 Step = ParseExpression();
375 if (Step == 0) return 0;
376 }
377
378 if (CurTok != tok_in)
379 return Error("expected 'in' after for");
380 getNextToken(); // eat 'in'.
381
382 ExprAST *Body = ParseExpression();
383 if (Body == 0) return 0;
384
385 return new ForExprAST(IdName, Start, End, Step, Body);
386}
387
388/// varexpr ::= 'var' identifier ('=' expression)?
389// (',' identifier ('=' expression)?)* 'in' expression
390static ExprAST *ParseVarExpr() {
391 getNextToken(); // eat the var.
392
393 std::vector<std::pair<std::string, ExprAST*> > VarNames;
394
395 // At least one variable name is required.
396 if (CurTok != tok_identifier)
397 return Error("expected identifier after var");
398
399 while (1) {
400 std::string Name = IdentifierStr;
401 getNextToken(); // eat identifier.
402
403 // Read the optional initializer.
404 ExprAST *Init = 0;
405 if (CurTok == '=') {
406 getNextToken(); // eat the '='.
407
408 Init = ParseExpression();
409 if (Init == 0) return 0;
410 }
411
412 VarNames.push_back(std::make_pair(Name, Init));
413
414 // End of var list, exit loop.
415 if (CurTok != ',') break;
416 getNextToken(); // eat the ','.
417
418 if (CurTok != tok_identifier)
419 return Error("expected identifier list after var");
420 }
421
422 // At this point, we have to have 'in'.
423 if (CurTok != tok_in)
424 return Error("expected 'in' keyword after 'var'");
425 getNextToken(); // eat 'in'.
426
427 ExprAST *Body = ParseExpression();
428 if (Body == 0) return 0;
429
430 return new VarExprAST(VarNames, Body);
431}
432
433/// primary
434/// ::= identifierexpr
435/// ::= numberexpr
436/// ::= parenexpr
437/// ::= ifexpr
438/// ::= forexpr
439/// ::= varexpr
440static ExprAST *ParsePrimary() {
441 switch (CurTok) {
442 default: return Error("unknown token when expecting an expression");
443 case tok_identifier: return ParseIdentifierExpr();
444 case tok_number: return ParseNumberExpr();
445 case '(': return ParseParenExpr();
446 case tok_if: return ParseIfExpr();
447 case tok_for: return ParseForExpr();
448 case tok_var: return ParseVarExpr();
449 }
450}
451
452/// unary
453/// ::= primary
454/// ::= '!' unary
455static ExprAST *ParseUnary() {
456 // If the current token is not an operator, it must be a primary expr.
457 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
458 return ParsePrimary();
459
460 // If this is a unary operator, read it.
461 int Opc = CurTok;
462 getNextToken();
463 if (ExprAST *Operand = ParseUnary())
464 return new UnaryExprAST(Opc, Operand);
465 return 0;
466}
467
468/// binoprhs
469/// ::= ('+' unary)*
470static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
471 // If this is a binop, find its precedence.
472 while (1) {
473 int TokPrec = GetTokPrecedence();
474
475 // If this is a binop that binds at least as tightly as the current binop,
476 // consume it, otherwise we are done.
477 if (TokPrec < ExprPrec)
478 return LHS;
479
480 // Okay, we know this is a binop.
481 int BinOp = CurTok;
482 getNextToken(); // eat binop
483
484 // Parse the unary expression after the binary operator.
485 ExprAST *RHS = ParseUnary();
486 if (!RHS) return 0;
487
488 // If BinOp binds less tightly with RHS than the operator after RHS, let
489 // the pending operator take RHS as its LHS.
490 int NextPrec = GetTokPrecedence();
491 if (TokPrec < NextPrec) {
492 RHS = ParseBinOpRHS(TokPrec+1, RHS);
493 if (RHS == 0) return 0;
494 }
495
496 // Merge LHS/RHS.
497 LHS = new BinaryExprAST(BinOp, LHS, RHS);
498 }
499}
500
501/// expression
502/// ::= unary binoprhs
503///
504static ExprAST *ParseExpression() {
505 ExprAST *LHS = ParseUnary();
506 if (!LHS) return 0;
507
508 return ParseBinOpRHS(0, LHS);
509}
510
511/// prototype
512/// ::= id '(' id* ')'
513/// ::= binary LETTER number? (id, id)
514/// ::= unary LETTER (id)
515static PrototypeAST *ParsePrototype() {
516 std::string FnName;
517
518 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
519 unsigned BinaryPrecedence = 30;
520
521 switch (CurTok) {
522 default:
523 return ErrorP("Expected function name in prototype");
524 case tok_identifier:
525 FnName = IdentifierStr;
526 Kind = 0;
527 getNextToken();
528 break;
529 case tok_unary:
530 getNextToken();
531 if (!isascii(CurTok))
532 return ErrorP("Expected unary operator");
533 FnName = "unary";
534 FnName += (char)CurTok;
535 Kind = 1;
536 getNextToken();
537 break;
538 case tok_binary:
539 getNextToken();
540 if (!isascii(CurTok))
541 return ErrorP("Expected binary operator");
542 FnName = "binary";
543 FnName += (char)CurTok;
544 Kind = 2;
545 getNextToken();
546
547 // Read the precedence if present.
548 if (CurTok == tok_number) {
549 if (NumVal < 1 || NumVal > 100)
550 return ErrorP("Invalid precedecnce: must be 1..100");
551 BinaryPrecedence = (unsigned)NumVal;
552 getNextToken();
553 }
554 break;
555 }
556
557 if (CurTok != '(')
558 return ErrorP("Expected '(' in prototype");
559
560 std::vector<std::string> ArgNames;
561 while (getNextToken() == tok_identifier)
562 ArgNames.push_back(IdentifierStr);
563 if (CurTok != ')')
564 return ErrorP("Expected ')' in prototype");
565
566 // success.
567 getNextToken(); // eat ')'.
568
569 // Verify right number of names for operator.
570 if (Kind && ArgNames.size() != Kind)
571 return ErrorP("Invalid number of operands for operator");
572
573 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
574}
575
576/// definition ::= 'def' prototype expression
577static FunctionAST *ParseDefinition() {
578 getNextToken(); // eat def.
579 PrototypeAST *Proto = ParsePrototype();
580 if (Proto == 0) return 0;
581
582 if (ExprAST *E = ParseExpression())
583 return new FunctionAST(Proto, E);
584 return 0;
585}
586
587/// toplevelexpr ::= expression
588static FunctionAST *ParseTopLevelExpr() {
589 if (ExprAST *E = ParseExpression()) {
590 // Make an anonymous proto.
591 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
592 return new FunctionAST(Proto, E);
593 }
594 return 0;
595}
596
597/// external ::= 'extern' prototype
598static PrototypeAST *ParseExtern() {
599 getNextToken(); // eat extern.
600 return ParsePrototype();
601}
602
603//===----------------------------------------------------------------------===//
604// Quick and dirty hack
605//===----------------------------------------------------------------------===//
606
607// FIXME: Obviously we can do better than this
608std::string GenerateUniqueName(const char *root)
609{
610 static int i = 0;
611 char s[16];
612 sprintf(s, "%s%d", root, i++);
613 std::string S = s;
614 return S;
615}
616
617std::string MakeLegalFunctionName(std::string Name)
618{
619 std::string NewName;
620 if (!Name.length())
621 return GenerateUniqueName("anon_func_");
622
623 // Start with what we have
624 NewName = Name;
625
626 // Look for a numberic first character
627 if (NewName.find_first_of("0123456789") == 0) {
628 NewName.insert(0, 1, 'n');
629 }
630
631 // Replace illegal characters with their ASCII equivalent
632 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
633 size_t pos;
634 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
635 char old_c = NewName.at(pos);
636 char new_str[16];
637 sprintf(new_str, "%d", (int)old_c);
638 NewName = NewName.replace(pos, 1, new_str);
639 }
640
641 return NewName;
642}
643
644//===----------------------------------------------------------------------===//
645// MCJIT helper class
646//===----------------------------------------------------------------------===//
647
648class MCJITHelper
649{
650public:
651 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
652 ~MCJITHelper();
653
654 Function *getFunction(const std::string FnName);
655 Module *getModuleForNewFunction();
656 void *getPointerToFunction(Function* F);
657 void *getPointerToNamedFunction(const std::string &Name);
658 void dump();
659
660private:
661 typedef std::vector<Module*> ModuleVector;
662 typedef std::vector<ExecutionEngine*> EngineVector;
663
664 LLVMContext &Context;
665 Module *OpenModule;
666 ModuleVector Modules;
667 EngineVector Engines;
668};
669
670class HelpingMemoryManager : public SectionMemoryManager
671{
672 HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
673 void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
674
675public:
676 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
677 virtual ~HelpingMemoryManager() {}
678
679 /// This method returns the address of the specified function.
680 /// Our implementation will attempt to find functions in other
681 /// modules associated with the MCJITHelper to cross link functions
682 /// from one generated module to another.
683 ///
684 /// If \p AbortOnFailure is false and no function with the given name is
685 /// found, this function returns a null pointer. Otherwise, it prints a
686 /// message to stderr and aborts.
687 virtual void *getPointerToNamedFunction(const std::string &Name,
688 bool AbortOnFailure = true);
689private:
690 MCJITHelper *MasterHelper;
691};
692
693void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
694 bool AbortOnFailure)
695{
696 // Try the standard symbol resolution first, but ask it not to abort.
697 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
698 if (pfn)
699 return pfn;
700
701 pfn = MasterHelper->getPointerToNamedFunction(Name);
702 if (!pfn && AbortOnFailure)
703 report_fatal_error("Program used external function '" + Name +
704 "' which could not be resolved!");
705 return pfn;
706}
707
708MCJITHelper::~MCJITHelper()
709{
710 if (OpenModule)
711 delete OpenModule;
712 EngineVector::iterator begin = Engines.begin();
713 EngineVector::iterator end = Engines.end();
714 EngineVector::iterator it;
715 for (it = begin; it != end; ++it)
716 delete *it;
717}
718
719Function *MCJITHelper::getFunction(const std::string FnName) {
720 ModuleVector::iterator begin = Modules.begin();
721 ModuleVector::iterator end = Modules.end();
722 ModuleVector::iterator it;
723 for (it = begin; it != end; ++it) {
724 Function *F = (*it)->getFunction(FnName);
725 if (F) {
726 if (*it == OpenModule)
727 return F;
728
729 assert(OpenModule != NULL);
730
731 // This function is in a module that has already been JITed.
732 // We need to generate a new prototype for external linkage.
733 Function *PF = OpenModule->getFunction(FnName);
734 if (PF && !PF->empty()) {
735 ErrorF("redefinition of function across modules");
736 return 0;
737 }
738
739 // If we don't have a prototype yet, create one.
740 if (!PF)
741 PF = Function::Create(F->getFunctionType(),
742 Function::ExternalLinkage,
743 FnName,
744 OpenModule);
745 return PF;
746 }
747 }
748 return NULL;
749}
750
751Module *MCJITHelper::getModuleForNewFunction() {
752 // If we have a Module that hasn't been JITed, use that.
753 if (OpenModule)
754 return OpenModule;
755
756 // Otherwise create a new Module.
757 std::string ModName = GenerateUniqueName("mcjit_module_");
758 Module *M = new Module(ModName, Context);
759 Modules.push_back(M);
760 OpenModule = M;
761 return M;
762}
763
764void *MCJITHelper::getPointerToFunction(Function* F) {
765 // See if an existing instance of MCJIT has this function.
766 EngineVector::iterator begin = Engines.begin();
767 EngineVector::iterator end = Engines.end();
768 EngineVector::iterator it;
769 for (it = begin; it != end; ++it) {
770 void *P = (*it)->getPointerToFunction(F);
771 if (P)
772 return P;
773 }
774
775 // If we didn't find the function, see if we can generate it.
776 if (OpenModule) {
777 std::string ErrStr;
778 ExecutionEngine *NewEngine = EngineBuilder(OpenModule)
779 .setErrorStr(&ErrStr)
780 .setUseMCJIT(true)
781 .setMCJITMemoryManager(new HelpingMemoryManager(this))
782 .create();
783 if (!NewEngine) {
784 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
785 exit(1);
786 }
787
788 // Create a function pass manager for this engine
789 FunctionPassManager *FPM = new FunctionPassManager(OpenModule);
790
791 // Set up the optimizer pipeline. Start with registering info about how the
792 // target lays out data structures.
793 FPM->add(new DataLayout(*NewEngine->getDataLayout()));
794 // Provide basic AliasAnalysis support for GVN.
795 FPM->add(createBasicAliasAnalysisPass());
796 // Promote allocas to registers.
797 FPM->add(createPromoteMemoryToRegisterPass());
798 // Do simple "peephole" optimizations and bit-twiddling optzns.
799 FPM->add(createInstructionCombiningPass());
800 // Reassociate expressions.
801 FPM->add(createReassociatePass());
802 // Eliminate Common SubExpressions.
803 FPM->add(createGVNPass());
804 // Simplify the control flow graph (deleting unreachable blocks, etc).
805 FPM->add(createCFGSimplificationPass());
806 FPM->doInitialization();
807
808 // For each function in the module
809 Module::iterator it;
810 Module::iterator end = OpenModule->end();
811 for (it = OpenModule->begin(); it != end; ++it) {
812 // Run the FPM on this function
813 FPM->run(*it);
814 }
815
816 // We don't need this anymore
817 delete FPM;
818
819 OpenModule = NULL;
820 Engines.push_back(NewEngine);
821 NewEngine->finalizeObject();
822 return NewEngine->getPointerToFunction(F);
823 }
824 return NULL;
825}
826
827void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
828{
829 // Look for the function in each of our execution engines.
830 EngineVector::iterator begin = Engines.begin();
831 EngineVector::iterator end = Engines.end();
832 EngineVector::iterator it;
833 for (it = begin; it != end; ++it) {
834 if (Function *F = (*it)->FindFunctionNamed(Name.c_str()))
835 return (*it)->getPointerToFunction(F);
836 }
837
838 return NULL;
839}
840
841void MCJITHelper::dump()
842{
843 ModuleVector::iterator begin = Modules.begin();
844 ModuleVector::iterator end = Modules.end();
845 ModuleVector::iterator it;
846 for (it = begin; it != end; ++it)
847 (*it)->dump();
848}
849
850//===----------------------------------------------------------------------===//
851// Code Generation
852//===----------------------------------------------------------------------===//
853
854static MCJITHelper *TheHelper;
855static IRBuilder<> Builder(getGlobalContext());
856static std::map<std::string, AllocaInst*> NamedValues;
857
858Value *ErrorV(const char *Str) { Error(Str); return 0; }
859
860/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
861/// the function. This is used for mutable variables etc.
862static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
863 const std::string &VarName) {
864 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
865 TheFunction->getEntryBlock().begin());
866 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
867 VarName.c_str());
868}
869
870Value *NumberExprAST::Codegen() {
871 return ConstantFP::get(getGlobalContext(), APFloat(Val));
872}
873
874Value *VariableExprAST::Codegen() {
875 // Look this variable up in the function.
876 Value *V = NamedValues[Name];
877 char ErrStr[256];
878 sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
879 if (V == 0) return ErrorV(ErrStr);
880
881 // Load the value.
882 return Builder.CreateLoad(V, Name.c_str());
883}
884
885Value *UnaryExprAST::Codegen() {
886 Value *OperandV = Operand->Codegen();
887 if (OperandV == 0) return 0;
888
889 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
890 if (F == 0)
891 return ErrorV("Unknown unary operator");
892
893 return Builder.CreateCall(F, OperandV, "unop");
894}
895
896Value *BinaryExprAST::Codegen() {
897 // Special case '=' because we don't want to emit the LHS as an expression.
898 if (Op == '=') {
899 // Assignment requires the LHS to be an identifier.
900 VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
901 if (!LHSE)
902 return ErrorV("destination of '=' must be a variable");
903 // Codegen the RHS.
904 Value *Val = RHS->Codegen();
905 if (Val == 0) return 0;
906
907 // Look up the name.
908 Value *Variable = NamedValues[LHSE->getName()];
909 if (Variable == 0) return ErrorV("Unknown variable name");
910
911 Builder.CreateStore(Val, Variable);
912 return Val;
913 }
914
915 Value *L = LHS->Codegen();
916 Value *R = RHS->Codegen();
917 if (L == 0 || R == 0) return 0;
918
919 switch (Op) {
920 case '+': return Builder.CreateFAdd(L, R, "addtmp");
921 case '-': return Builder.CreateFSub(L, R, "subtmp");
922 case '*': return Builder.CreateFMul(L, R, "multmp");
923 case '/': return Builder.CreateFDiv(L, R, "divtmp");
924 case '<':
925 L = Builder.CreateFCmpULT(L, R, "cmptmp");
926 // Convert bool 0/1 to double 0.0 or 1.0
927 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
928 "booltmp");
929 default: break;
930 }
931
932 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
933 // a call to it.
934 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
935 assert(F && "binary operator not found!");
936
937 Value *Ops[] = { L, R };
938 return Builder.CreateCall(F, Ops, "binop");
939}
940
941Value *CallExprAST::Codegen() {
942 // Look up the name in the global module table.
943 Function *CalleeF = TheHelper->getFunction(Callee);
944 if (CalleeF == 0)
945 return ErrorV("Unknown function referenced");
946
947 // If argument mismatch error.
948 if (CalleeF->arg_size() != Args.size())
949 return ErrorV("Incorrect # arguments passed");
950
951 std::vector<Value*> ArgsV;
952 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
953 ArgsV.push_back(Args[i]->Codegen());
954 if (ArgsV.back() == 0) return 0;
955 }
956
957 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
958}
959
960Value *IfExprAST::Codegen() {
961 Value *CondV = Cond->Codegen();
962 if (CondV == 0) return 0;
963
964 // Convert condition to a bool by comparing equal to 0.0.
965 CondV = Builder.CreateFCmpONE(CondV,
966 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
967 "ifcond");
968
969 Function *TheFunction = Builder.GetInsertBlock()->getParent();
970
971 // Create blocks for the then and else cases. Insert the 'then' block at the
972 // end of the function.
973 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
974 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
975 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
976
977 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
978
979 // Emit then value.
980 Builder.SetInsertPoint(ThenBB);
981
982 Value *ThenV = Then->Codegen();
983 if (ThenV == 0) return 0;
984
985 Builder.CreateBr(MergeBB);
986 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
987 ThenBB = Builder.GetInsertBlock();
988
989 // Emit else block.
990 TheFunction->getBasicBlockList().push_back(ElseBB);
991 Builder.SetInsertPoint(ElseBB);
992
993 Value *ElseV = Else->Codegen();
994 if (ElseV == 0) return 0;
995
996 Builder.CreateBr(MergeBB);
997 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
998 ElseBB = Builder.GetInsertBlock();
999
1000 // Emit merge block.
1001 TheFunction->getBasicBlockList().push_back(MergeBB);
1002 Builder.SetInsertPoint(MergeBB);
1003 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
1004 "iftmp");
1005
1006 PN->addIncoming(ThenV, ThenBB);
1007 PN->addIncoming(ElseV, ElseBB);
1008 return PN;
1009}
1010
1011Value *ForExprAST::Codegen() {
1012 // Output this as:
1013 // var = alloca double
1014 // ...
1015 // start = startexpr
1016 // store start -> var
1017 // goto loop
1018 // loop:
1019 // ...
1020 // bodyexpr
1021 // ...
1022 // loopend:
1023 // step = stepexpr
1024 // endcond = endexpr
1025 //
1026 // curvar = load var
1027 // nextvar = curvar + step
1028 // store nextvar -> var
1029 // br endcond, loop, endloop
1030 // outloop:
1031
1032 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1033
1034 // Create an alloca for the variable in the entry block.
1035 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1036
1037 // Emit the start code first, without 'variable' in scope.
1038 Value *StartVal = Start->Codegen();
1039 if (StartVal == 0) return 0;
1040
1041 // Store the value into the alloca.
1042 Builder.CreateStore(StartVal, Alloca);
1043
1044 // Make the new basic block for the loop header, inserting after current
1045 // block.
1046 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1047
1048 // Insert an explicit fall through from the current block to the LoopBB.
1049 Builder.CreateBr(LoopBB);
1050
1051 // Start insertion in LoopBB.
1052 Builder.SetInsertPoint(LoopBB);
1053
1054 // Within the loop, the variable is defined equal to the PHI node. If it
1055 // shadows an existing variable, we have to restore it, so save it now.
1056 AllocaInst *OldVal = NamedValues[VarName];
1057 NamedValues[VarName] = Alloca;
1058
1059 // Emit the body of the loop. This, like any other expr, can change the
1060 // current BB. Note that we ignore the value computed by the body, but don't
1061 // allow an error.
1062 if (Body->Codegen() == 0)
1063 return 0;
1064
1065 // Emit the step value.
1066 Value *StepVal;
1067 if (Step) {
1068 StepVal = Step->Codegen();
1069 if (StepVal == 0) return 0;
1070 } else {
1071 // If not specified, use 1.0.
1072 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1073 }
1074
1075 // Compute the end condition.
1076 Value *EndCond = End->Codegen();
1077 if (EndCond == 0) return EndCond;
1078
1079 // Reload, increment, and restore the alloca. This handles the case where
1080 // the body of the loop mutates the variable.
1081 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1082 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1083 Builder.CreateStore(NextVar, Alloca);
1084
1085 // Convert condition to a bool by comparing equal to 0.0.
1086 EndCond = Builder.CreateFCmpONE(EndCond,
1087 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1088 "loopcond");
1089
1090 // Create the "after loop" block and insert it.
1091 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1092
1093 // Insert the conditional branch into the end of LoopEndBB.
1094 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1095
1096 // Any new code will be inserted in AfterBB.
1097 Builder.SetInsertPoint(AfterBB);
1098
1099 // Restore the unshadowed variable.
1100 if (OldVal)
1101 NamedValues[VarName] = OldVal;
1102 else
1103 NamedValues.erase(VarName);
1104
1105
1106 // for expr always returns 0.0.
1107 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1108}
1109
1110Value *VarExprAST::Codegen() {
1111 std::vector<AllocaInst *> OldBindings;
1112
1113 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1114
1115 // Register all variables and emit their initializer.
1116 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1117 const std::string &VarName = VarNames[i].first;
1118 ExprAST *Init = VarNames[i].second;
1119
1120 // Emit the initializer before adding the variable to scope, this prevents
1121 // the initializer from referencing the variable itself, and permits stuff
1122 // like this:
1123 // var a = 1 in
1124 // var a = a in ... # refers to outer 'a'.
1125 Value *InitVal;
1126 if (Init) {
1127 InitVal = Init->Codegen();
1128 if (InitVal == 0) return 0;
1129 } else { // If not specified, use 0.0.
1130 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1131 }
1132
1133 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1134 Builder.CreateStore(InitVal, Alloca);
1135
1136 // Remember the old variable binding so that we can restore the binding when
1137 // we unrecurse.
1138 OldBindings.push_back(NamedValues[VarName]);
1139
1140 // Remember this binding.
1141 NamedValues[VarName] = Alloca;
1142 }
1143
1144 // Codegen the body, now that all vars are in scope.
1145 Value *BodyVal = Body->Codegen();
1146 if (BodyVal == 0) return 0;
1147
1148 // Pop all our variables from scope.
1149 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1150 NamedValues[VarNames[i].first] = OldBindings[i];
1151
1152 // Return the body computation.
1153 return BodyVal;
1154}
1155
1156Function *PrototypeAST::Codegen() {
1157 // Make the function type: double(double,double) etc.
1158 std::vector<Type*> Doubles(Args.size(),
1159 Type::getDoubleTy(getGlobalContext()));
1160 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1161 Doubles, false);
1162
1163 std::string FnName = MakeLegalFunctionName(Name);
1164
1165 Module* M = TheHelper->getModuleForNewFunction();
1166
1167 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
1168
1169 // If F conflicted, there was already something named 'FnName'. If it has a
1170 // body, don't allow redefinition or reextern.
1171 if (F->getName() != FnName) {
1172 // Delete the one we just made and get the existing one.
1173 F->eraseFromParent();
1174 F = M->getFunction(Name);
1175
1176 // If F already has a body, reject this.
1177 if (!F->empty()) {
1178 ErrorF("redefinition of function");
1179 return 0;
1180 }
1181
1182 // If F took a different number of args, reject.
1183 if (F->arg_size() != Args.size()) {
1184 ErrorF("redefinition of function with different # args");
1185 return 0;
1186 }
1187 }
1188
1189 // Set names for all arguments.
1190 unsigned Idx = 0;
1191 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1192 ++AI, ++Idx)
1193 AI->setName(Args[Idx]);
1194
1195 return F;
1196}
1197
1198/// CreateArgumentAllocas - Create an alloca for each argument and register the
1199/// argument in the symbol table so that references to it will succeed.
1200void PrototypeAST::CreateArgumentAllocas(Function *F) {
1201 Function::arg_iterator AI = F->arg_begin();
1202 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1203 // Create an alloca for this variable.
1204 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1205
1206 // Store the initial value into the alloca.
1207 Builder.CreateStore(AI, Alloca);
1208
1209 // Add arguments to variable symbol table.
1210 NamedValues[Args[Idx]] = Alloca;
1211 }
1212}
1213
1214Function *FunctionAST::Codegen() {
1215 NamedValues.clear();
1216
1217 Function *TheFunction = Proto->Codegen();
1218 if (TheFunction == 0)
1219 return 0;
1220
1221 // If this is an operator, install it.
1222 if (Proto->isBinaryOp())
1223 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1224
1225 // Create a new basic block to start insertion into.
1226 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1227 Builder.SetInsertPoint(BB);
1228
1229 // Add all arguments to the symbol table and create their allocas.
1230 Proto->CreateArgumentAllocas(TheFunction);
1231
1232 if (Value *RetVal = Body->Codegen()) {
1233 // Finish off the function.
1234 Builder.CreateRet(RetVal);
1235
1236 // Validate the generated code, checking for consistency.
1237 verifyFunction(*TheFunction);
1238
1239 return TheFunction;
1240 }
1241
1242 // Error reading body, remove function.
1243 TheFunction->eraseFromParent();
1244
1245 if (Proto->isBinaryOp())
1246 BinopPrecedence.erase(Proto->getOperatorName());
1247 return 0;
1248}
1249
1250//===----------------------------------------------------------------------===//
1251// Top-Level parsing and JIT Driver
1252//===----------------------------------------------------------------------===//
1253
1254static void HandleDefinition() {
1255 if (FunctionAST *F = ParseDefinition()) {
1256 if (Function *LF = F->Codegen()) {
1257#ifndef MINIMAL_STDERR_OUTPUT
1258 fprintf(stderr, "Read function definition:");
1259 LF->dump();
1260#endif
1261 }
1262 } else {
1263 // Skip token for error recovery.
1264 getNextToken();
1265 }
1266}
1267
1268static void HandleExtern() {
1269 if (PrototypeAST *P = ParseExtern()) {
1270 if (Function *F = P->Codegen()) {
1271#ifndef MINIMAL_STDERR_OUTPUT
1272 fprintf(stderr, "Read extern: ");
1273 F->dump();
1274#endif
1275 }
1276 } else {
1277 // Skip token for error recovery.
1278 getNextToken();
1279 }
1280}
1281
1282static void HandleTopLevelExpression() {
1283 // Evaluate a top-level expression into an anonymous function.
1284 if (FunctionAST *F = ParseTopLevelExpr()) {
1285 if (Function *LF = F->Codegen()) {
1286 // JIT the function, returning a function pointer.
1287 void *FPtr = TheHelper->getPointerToFunction(LF);
1288
1289 // Cast it to the right type (takes no arguments, returns a double) so we
1290 // can call it as a native function.
1291 double (*FP)() = (double (*)())(intptr_t)FPtr;
1292#ifdef MINIMAL_STDERR_OUTPUT
1293 FP();
1294#else
1295 fprintf(stderr, "Evaluated to %f\n", FP());
1296#endif
1297 }
1298 } else {
1299 // Skip token for error recovery.
1300 getNextToken();
1301 }
1302}
1303
1304/// top ::= definition | external | expression | ';'
1305static void MainLoop() {
1306 while (1) {
1307#ifndef MINIMAL_STDERR_OUTPUT
1308 fprintf(stderr, "ready> ");
1309#endif
1310 switch (CurTok) {
1311 case tok_eof: return;
1312 case ';': getNextToken(); break; // ignore top-level semicolons.
1313 case tok_def: HandleDefinition(); break;
1314 case tok_extern: HandleExtern(); break;
1315 default: HandleTopLevelExpression(); break;
1316 }
1317 }
1318}
1319
1320//===----------------------------------------------------------------------===//
1321// "Library" functions that can be "extern'd" from user code.
1322//===----------------------------------------------------------------------===//
1323
1324/// putchard - putchar that takes a double and returns 0.
1325extern "C"
1326double putchard(double X) {
1327 putchar((char)X);
1328 return 0;
1329}
1330
1331/// printd - printf that takes a double prints it as "%f\n", returning 0.
1332extern "C"
1333double printd(double X) {
1334 printf("%f", X);
1335 return 0;
1336}
1337
1338extern "C"
1339double printlf() {
1340 printf("\n");
1341 return 0;
1342}
1343
1344//===----------------------------------------------------------------------===//
1345// Main driver code.
1346//===----------------------------------------------------------------------===//
1347
1348int main() {
1349 InitializeNativeTarget();
1350 InitializeNativeTargetAsmPrinter();
1351 InitializeNativeTargetAsmParser();
1352 LLVMContext &Context = getGlobalContext();
1353
1354 // Install standard binary operators.
1355 // 1 is lowest precedence.
1356 BinopPrecedence['='] = 2;
1357 BinopPrecedence['<'] = 10;
1358 BinopPrecedence['+'] = 20;
1359 BinopPrecedence['-'] = 20;
1360 BinopPrecedence['/'] = 40;
1361 BinopPrecedence['*'] = 40; // highest.
1362
1363 // Prime the first token.
1364#ifndef MINIMAL_STDERR_OUTPUT
1365 fprintf(stderr, "ready> ");
1366#endif
1367 getNextToken();
1368
1369 // Make the helper, which holds all the code.
1370 TheHelper = new MCJITHelper(Context);
1371
1372 // Run the main "interpreter loop" now.
1373 MainLoop();
1374
1375#ifndef MINIMAL_STDERR_OUTPUT
1376 // Print out all of the generated code.
1377 TheHelper->dump();
1378#endif
1379
1380 return 0;
1381}