blob: 8559e638ac342ab6f456abb7f113471dab45d827 [file] [log] [blame]
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// The InductiveRangeCheckElimination pass splits a loop's iteration space into
10// three disjoint ranges. It does that in a way such that the loop running in
11// the middle loop provably does not need range checks. As an example, it will
12// convert
13//
14// len = < known positive >
15// for (i = 0; i < n; i++) {
16// if (0 <= i && i < len) {
17// do_something();
18// } else {
19// throw_out_of_bounds();
20// }
21// }
22//
23// to
24//
25// len = < known positive >
26// limit = smin(n, len)
27// // no first segment
28// for (i = 0; i < limit; i++) {
29// if (0 <= i && i < len) { // this check is fully redundant
30// do_something();
31// } else {
32// throw_out_of_bounds();
33// }
34// }
35// for (i = limit; i < n; i++) {
36// if (0 <= i && i < len) {
37// do_something();
38// } else {
39// throw_out_of_bounds();
40// }
41// }
42//===----------------------------------------------------------------------===//
43
44#include "llvm/ADT/Optional.h"
45
Sanjoy Dasdcf26512015-01-27 21:38:12 +000046#include "llvm/Analysis/BranchProbabilityInfo.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000047#include "llvm/Analysis/InstructionSimplify.h"
48#include "llvm/Analysis/LoopInfo.h"
49#include "llvm/Analysis/LoopPass.h"
50#include "llvm/Analysis/ScalarEvolution.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/ScalarEvolutionExpressions.h"
53#include "llvm/Analysis/ValueTracking.h"
54
55#include "llvm/IR/Dominators.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/Instructions.h"
58#include "llvm/IR/IRBuilder.h"
59#include "llvm/IR/Module.h"
60#include "llvm/IR/PatternMatch.h"
61#include "llvm/IR/ValueHandle.h"
62#include "llvm/IR/Verifier.h"
63
64#include "llvm/Support/Debug.h"
65
66#include "llvm/Transforms/Scalar.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Cloning.h"
69#include "llvm/Transforms/Utils/LoopUtils.h"
70#include "llvm/Transforms/Utils/SimplifyIndVar.h"
71#include "llvm/Transforms/Utils/UnrollLoop.h"
72
73#include "llvm/Pass.h"
74
75#include <array>
76
77using namespace llvm;
78
Benjamin Kramer970eac42015-02-06 17:51:54 +000079static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
80 cl::init(64));
Sanjoy Dasa1837a32015-01-16 01:03:22 +000081
Benjamin Kramer970eac42015-02-06 17:51:54 +000082static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
83 cl::init(false));
Sanjoy Dasa1837a32015-01-16 01:03:22 +000084
Sanjoy Dase91665d2015-02-26 08:56:04 +000085static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
86 cl::Hidden, cl::init(10));
87
Sanjoy Dasa1837a32015-01-16 01:03:22 +000088#define DEBUG_TYPE "irce"
89
90namespace {
91
92/// An inductive range check is conditional branch in a loop with
93///
94/// 1. a very cold successor (i.e. the branch jumps to that successor very
95/// rarely)
96///
97/// and
98///
99/// 2. a condition that is provably true for some range of values taken by the
100/// containing loop's induction variable.
101///
102/// Currently all inductive range checks are branches conditional on an
103/// expression of the form
104///
105/// 0 <= (Offset + Scale * I) < Length
106///
107/// where `I' is the canonical induction variable of a loop to which Offset and
108/// Scale are loop invariant, and Length is >= 0. Currently the 'false' branch
109/// is considered cold, looking at profiling data to verify that is a TODO.
110
111class InductiveRangeCheck {
112 const SCEV *Offset;
113 const SCEV *Scale;
114 Value *Length;
115 BranchInst *Branch;
116
117 InductiveRangeCheck() :
118 Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
119
120public:
121 const SCEV *getOffset() const { return Offset; }
122 const SCEV *getScale() const { return Scale; }
123 Value *getLength() const { return Length; }
124
125 void print(raw_ostream &OS) const {
126 OS << "InductiveRangeCheck:\n";
127 OS << " Offset: ";
128 Offset->print(OS);
129 OS << " Scale: ";
130 Scale->print(OS);
131 OS << " Length: ";
132 Length->print(OS);
133 OS << " Branch: ";
134 getBranch()->print(OS);
Sanjoy Das48c75812015-02-26 04:03:31 +0000135 OS << "\n";
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000136 }
137
138#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 void dump() {
140 print(dbgs());
141 }
142#endif
143
144 BranchInst *getBranch() const { return Branch; }
145
Sanjoy Das351db052015-01-22 09:32:02 +0000146 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
147 /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
148
149 class Range {
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000150 const SCEV *Begin;
151 const SCEV *End;
Sanjoy Das351db052015-01-22 09:32:02 +0000152
153 public:
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000154 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
Sanjoy Das351db052015-01-22 09:32:02 +0000155 assert(Begin->getType() == End->getType() && "ill-typed range!");
156 }
157
158 Type *getType() const { return Begin->getType(); }
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000159 const SCEV *getBegin() const { return Begin; }
160 const SCEV *getEnd() const { return End; }
Sanjoy Das351db052015-01-22 09:32:02 +0000161 };
162
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000163 typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
164
165 /// This is the value the condition of the branch needs to evaluate to for the
166 /// branch to take the hot successor (see (1) above).
167 bool getPassingDirection() { return true; }
168
Sanjoy Das95c476d2015-02-21 22:20:22 +0000169 /// Computes a range for the induction variable (IndVar) in which the range
170 /// check is redundant and can be constant-folded away. The induction
171 /// variable is not required to be the canonical {0,+,1} induction variable.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000172 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
Sanjoy Das95c476d2015-02-21 22:20:22 +0000173 const SCEVAddRecExpr *IndVar,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000174 IRBuilder<> &B) const;
175
176 /// Create an inductive range check out of BI if possible, else return
177 /// nullptr.
178 static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000179 Loop *L, ScalarEvolution &SE,
180 BranchProbabilityInfo &BPI);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000181};
182
183class InductiveRangeCheckElimination : public LoopPass {
184 InductiveRangeCheck::AllocatorTy Allocator;
185
186public:
187 static char ID;
188 InductiveRangeCheckElimination() : LoopPass(ID) {
189 initializeInductiveRangeCheckEliminationPass(
190 *PassRegistry::getPassRegistry());
191 }
192
193 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000194 AU.addRequired<LoopInfoWrapperPass>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000195 AU.addRequiredID(LoopSimplifyID);
196 AU.addRequiredID(LCSSAID);
197 AU.addRequired<ScalarEvolution>();
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000198 AU.addRequired<BranchProbabilityInfo>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000199 }
200
201 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
202};
203
204char InductiveRangeCheckElimination::ID = 0;
205}
206
207INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
208 "Inductive range check elimination", false, false)
209
210static bool IsLowerBoundCheck(Value *Check, Value *&IndexV) {
211 using namespace llvm::PatternMatch;
212
213 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
214 Value *LHS = nullptr, *RHS = nullptr;
215
216 if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
217 return false;
218
219 switch (Pred) {
220 default:
221 return false;
222
223 case ICmpInst::ICMP_SLE:
224 std::swap(LHS, RHS);
225 // fallthrough
226 case ICmpInst::ICMP_SGE:
227 if (!match(RHS, m_ConstantInt<0>()))
228 return false;
229 IndexV = LHS;
230 return true;
231
232 case ICmpInst::ICMP_SLT:
233 std::swap(LHS, RHS);
234 // fallthrough
235 case ICmpInst::ICMP_SGT:
236 if (!match(RHS, m_ConstantInt<-1>()))
237 return false;
238 IndexV = LHS;
239 return true;
240 }
241}
242
243static bool IsUpperBoundCheck(Value *Check, Value *Index, Value *&UpperLimit) {
244 using namespace llvm::PatternMatch;
245
246 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
247 Value *LHS = nullptr, *RHS = nullptr;
248
249 if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
250 return false;
251
252 switch (Pred) {
253 default:
254 return false;
255
256 case ICmpInst::ICMP_SGT:
257 std::swap(LHS, RHS);
258 // fallthrough
259 case ICmpInst::ICMP_SLT:
260 if (LHS != Index)
261 return false;
262 UpperLimit = RHS;
263 return true;
264
265 case ICmpInst::ICMP_UGT:
266 std::swap(LHS, RHS);
267 // fallthrough
268 case ICmpInst::ICMP_ULT:
269 if (LHS != Index)
270 return false;
271 UpperLimit = RHS;
272 return true;
273 }
274}
275
276/// Split a condition into something semantically equivalent to (0 <= I <
277/// Limit), both comparisons signed and Len loop invariant on L and positive.
278/// On success, return true and set Index to I and UpperLimit to Limit. Return
279/// false on failure (we may still write to UpperLimit and Index on failure).
280/// It does not try to interpret I as a loop index.
281///
282static bool SplitRangeCheckCondition(Loop *L, ScalarEvolution &SE,
283 Value *Condition, const SCEV *&Index,
284 Value *&UpperLimit) {
285
286 // TODO: currently this catches some silly cases like comparing "%idx slt 1".
287 // Our transformations are still correct, but less likely to be profitable in
288 // those cases. We have to come up with some heuristics that pick out the
289 // range checks that are more profitable to clone a loop for. This function
290 // in general can be made more robust.
291
292 using namespace llvm::PatternMatch;
293
294 Value *A = nullptr;
295 Value *B = nullptr;
296 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
297
298 // In these early checks we assume that the matched UpperLimit is positive.
299 // We'll verify that fact later, before returning true.
300
301 if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
302 Value *IndexV = nullptr;
303 Value *ExpectedUpperBoundCheck = nullptr;
304
305 if (IsLowerBoundCheck(A, IndexV))
306 ExpectedUpperBoundCheck = B;
307 else if (IsLowerBoundCheck(B, IndexV))
308 ExpectedUpperBoundCheck = A;
309 else
310 return false;
311
312 if (!IsUpperBoundCheck(ExpectedUpperBoundCheck, IndexV, UpperLimit))
313 return false;
314
315 Index = SE.getSCEV(IndexV);
316
317 if (isa<SCEVCouldNotCompute>(Index))
318 return false;
319
320 } else if (match(Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
321 switch (Pred) {
322 default:
323 return false;
324
325 case ICmpInst::ICMP_SGT:
326 std::swap(A, B);
327 // fall through
328 case ICmpInst::ICMP_SLT:
329 UpperLimit = B;
330 Index = SE.getSCEV(A);
331 if (isa<SCEVCouldNotCompute>(Index) || !SE.isKnownNonNegative(Index))
332 return false;
333 break;
334
335 case ICmpInst::ICMP_UGT:
336 std::swap(A, B);
337 // fall through
338 case ICmpInst::ICMP_ULT:
339 UpperLimit = B;
340 Index = SE.getSCEV(A);
341 if (isa<SCEVCouldNotCompute>(Index))
342 return false;
343 break;
344 }
345 } else {
346 return false;
347 }
348
349 const SCEV *UpperLimitSCEV = SE.getSCEV(UpperLimit);
350 if (isa<SCEVCouldNotCompute>(UpperLimitSCEV) ||
351 !SE.isKnownNonNegative(UpperLimitSCEV))
352 return false;
353
354 if (SE.getLoopDisposition(UpperLimitSCEV, L) !=
355 ScalarEvolution::LoopInvariant) {
356 DEBUG(dbgs() << " in function: " << L->getHeader()->getParent()->getName()
357 << " ";
358 dbgs() << " UpperLimit is not loop invariant: "
359 << UpperLimit->getName() << "\n";);
360 return false;
361 }
362
363 return true;
364}
365
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000366
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000367InductiveRangeCheck *
368InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000369 Loop *L, ScalarEvolution &SE,
370 BranchProbabilityInfo &BPI) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000371
372 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
373 return nullptr;
374
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000375 BranchProbability LikelyTaken(15, 16);
376
377 if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
378 return nullptr;
379
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000380 Value *Length = nullptr;
381 const SCEV *IndexSCEV = nullptr;
382
383 if (!SplitRangeCheckCondition(L, SE, BI->getCondition(), IndexSCEV, Length))
384 return nullptr;
385
386 assert(IndexSCEV && Length && "contract with SplitRangeCheckCondition!");
387
388 const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
389 bool IsAffineIndex =
390 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
391
392 if (!IsAffineIndex)
393 return nullptr;
394
395 InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
396 IRC->Length = Length;
397 IRC->Offset = IndexAddRec->getStart();
398 IRC->Scale = IndexAddRec->getStepRecurrence(SE);
399 IRC->Branch = BI;
400 return IRC;
401}
402
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000403namespace {
404
Sanjoy Dase75ed922015-02-26 08:19:31 +0000405// Keeps track of the structure of a loop. This is similar to llvm::Loop,
406// except that it is more lightweight and can track the state of a loop through
407// changing and potentially invalid IR. This structure also formalizes the
408// kinds of loops we can deal with -- ones that have a single latch that is also
409// an exiting block *and* have a canonical induction variable.
410struct LoopStructure {
411 const char *Tag;
412
413 BasicBlock *Header;
414 BasicBlock *Latch;
415
416 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
417 // successor is `LatchExit', the exit block of the loop.
418 BranchInst *LatchBr;
419 BasicBlock *LatchExit;
420 unsigned LatchBrExitIdx;
421
422 Value *IndVarNext;
423 Value *IndVarStart;
424 Value *LoopExitAt;
425 bool IndVarIncreasing;
426
427 LoopStructure()
428 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
429 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
430 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
431
432 template <typename M> LoopStructure map(M Map) const {
433 LoopStructure Result;
434 Result.Tag = Tag;
435 Result.Header = cast<BasicBlock>(Map(Header));
436 Result.Latch = cast<BasicBlock>(Map(Latch));
437 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
438 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
439 Result.LatchBrExitIdx = LatchBrExitIdx;
440 Result.IndVarNext = Map(IndVarNext);
441 Result.IndVarStart = Map(IndVarStart);
442 Result.LoopExitAt = Map(LoopExitAt);
443 Result.IndVarIncreasing = IndVarIncreasing;
444 return Result;
445 }
446
Sanjoy Dase91665d2015-02-26 08:56:04 +0000447 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
448 BranchProbabilityInfo &BPI,
449 Loop &,
Sanjoy Dase75ed922015-02-26 08:19:31 +0000450 const char *&);
451};
452
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000453/// This class is used to constrain loops to run within a given iteration space.
454/// The algorithm this class implements is given a Loop and a range [Begin,
455/// End). The algorithm then tries to break out a "main loop" out of the loop
456/// it is given in a way that the "main loop" runs with the induction variable
457/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
458/// loops to run any remaining iterations. The pre loop runs any iterations in
459/// which the induction variable is < Begin, and the post loop runs any
460/// iterations in which the induction variable is >= End.
461///
462class LoopConstrainer {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000463 // The representation of a clone of the original loop we started out with.
464 struct ClonedLoop {
465 // The cloned blocks
466 std::vector<BasicBlock *> Blocks;
467
468 // `Map` maps values in the clonee into values in the cloned version
469 ValueToValueMapTy Map;
470
471 // An instance of `LoopStructure` for the cloned loop
472 LoopStructure Structure;
473 };
474
475 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
476 // more details on what these fields mean.
477 struct RewrittenRangeInfo {
478 BasicBlock *PseudoExit;
479 BasicBlock *ExitSelector;
480 std::vector<PHINode *> PHIValuesAtPseudoExit;
Sanjoy Dase75ed922015-02-26 08:19:31 +0000481 PHINode *IndVarEnd;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000482
Sanjoy Dase75ed922015-02-26 08:19:31 +0000483 RewrittenRangeInfo()
484 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000485 };
486
487 // Calculated subranges we restrict the iteration space of the main loop to.
488 // See the implementation of `calculateSubRanges' for more details on how
Sanjoy Dase75ed922015-02-26 08:19:31 +0000489 // these fields are computed. `LowLimit` is None if there is no restriction
490 // on low end of the restricted iteration space of the main loop. `HighLimit`
491 // is None if there is no restriction on high end of the restricted iteration
492 // space of the main loop.
493
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000494 struct SubRanges {
Sanjoy Dase75ed922015-02-26 08:19:31 +0000495 Optional<const SCEV *> LowLimit;
496 Optional<const SCEV *> HighLimit;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000497 };
498
499 // A utility function that does a `replaceUsesOfWith' on the incoming block
500 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
501 // incoming block list with `ReplaceBy'.
502 static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
503 BasicBlock *ReplaceBy);
504
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000505 // Compute a safe set of limits for the main loop to run in -- effectively the
506 // intersection of `Range' and the iteration space of the original loop.
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000507 // Return None if unable to compute the set of subranges.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000508 //
Sanjoy Dase75ed922015-02-26 08:19:31 +0000509 Optional<SubRanges> calculateSubRanges() const;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000510
511 // Clone `OriginalLoop' and return the result in CLResult. The IR after
512 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
513 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
514 // but there is no such edge.
515 //
516 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
517
518 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
519 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
520 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
521 // `OriginalHeaderCount'.
522 //
523 // If there are iterations left to execute, control is made to jump to
524 // `ContinuationBlock', otherwise they take the normal loop exit. The
525 // returned `RewrittenRangeInfo' object is populated as follows:
526 //
527 // .PseudoExit is a basic block that unconditionally branches to
528 // `ContinuationBlock'.
529 //
530 // .ExitSelector is a basic block that decides, on exit from the loop,
531 // whether to branch to the "true" exit or to `PseudoExit'.
532 //
533 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
534 // for each PHINode in the loop header on taking the pseudo exit.
535 //
536 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
537 // preheader because it is made to branch to the loop header only
538 // conditionally.
539 //
540 RewrittenRangeInfo
541 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
542 Value *ExitLoopAt,
543 BasicBlock *ContinuationBlock) const;
544
545 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
546 // function creates a new preheader for `LS' and returns it.
547 //
Sanjoy Dase75ed922015-02-26 08:19:31 +0000548 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
549 const char *Tag) const;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000550
551 // `ContinuationBlockAndPreheader' was the continuation block for some call to
552 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
553 // This function rewrites the PHI nodes in `LS.Header' to start with the
554 // correct value.
555 void rewriteIncomingValuesForPHIs(
Sanjoy Dase75ed922015-02-26 08:19:31 +0000556 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000557 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
558
559 // Even though we do not preserve any passes at this time, we at least need to
560 // keep the parent loop structure consistent. The `LPPassManager' seems to
561 // verify this after running a loop pass. This function adds the list of
Benjamin Kramer39f76ac2015-02-06 14:43:49 +0000562 // blocks denoted by BBs to this loops parent loop if required.
563 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000564
565 // Some global state.
566 Function &F;
567 LLVMContext &Ctx;
568 ScalarEvolution &SE;
569
570 // Information about the original loop we started out with.
571 Loop &OriginalLoop;
572 LoopInfo &OriginalLoopInfo;
573 const SCEV *LatchTakenCount;
574 BasicBlock *OriginalPreheader;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000575
576 // The preheader of the main loop. This may or may not be different from
577 // `OriginalPreheader'.
578 BasicBlock *MainLoopPreheader;
579
580 // The range we need to run the main loop in.
581 InductiveRangeCheck::Range Range;
582
583 // The structure of the main loop (see comment at the beginning of this class
584 // for a definition)
585 LoopStructure MainLoopStructure;
586
587public:
Sanjoy Dase75ed922015-02-26 08:19:31 +0000588 LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
589 ScalarEvolution &SE, InductiveRangeCheck::Range R)
590 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
591 SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
592 OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
593 MainLoopStructure(LS) {}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000594
595 // Entry point for the algorithm. Returns true on success.
596 bool run();
597};
598
599}
600
601void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
602 BasicBlock *ReplaceBy) {
603 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
604 if (PN->getIncomingBlock(i) == Block)
605 PN->setIncomingBlock(i, ReplaceBy);
606}
607
Sanjoy Dase75ed922015-02-26 08:19:31 +0000608static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
609 APInt SMax =
610 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
611 return SE.getSignedRange(S).contains(SMax) &&
612 SE.getUnsignedRange(S).contains(SMax);
613}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000614
Sanjoy Dase75ed922015-02-26 08:19:31 +0000615static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
616 APInt SMin =
617 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
618 return SE.getSignedRange(S).contains(SMin) &&
619 SE.getUnsignedRange(S).contains(SMin);
620}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000621
Sanjoy Dase75ed922015-02-26 08:19:31 +0000622Optional<LoopStructure>
Sanjoy Dase91665d2015-02-26 08:56:04 +0000623LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
624 Loop &L, const char *&FailureReason) {
Sanjoy Dase75ed922015-02-26 08:19:31 +0000625 assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
626
627 BasicBlock *Latch = L.getLoopLatch();
628 if (!L.isLoopExiting(Latch)) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000629 FailureReason = "no loop latch";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000630 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000631 }
632
Sanjoy Dase75ed922015-02-26 08:19:31 +0000633 BasicBlock *Header = L.getHeader();
634 BasicBlock *Preheader = L.getLoopPreheader();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000635 if (!Preheader) {
636 FailureReason = "no preheader";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000637 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000638 }
639
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000640 BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000641 if (!LatchBr || LatchBr->isUnconditional()) {
642 FailureReason = "latch terminator not conditional branch";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000643 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000644 }
645
Sanjoy Dase75ed922015-02-26 08:19:31 +0000646 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000647
Sanjoy Dase91665d2015-02-26 08:56:04 +0000648 BranchProbability ExitProbability =
649 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
650
651 if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
652 FailureReason = "short running loop, not profitable";
653 return None;
654 }
655
Sanjoy Dase75ed922015-02-26 08:19:31 +0000656 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
657 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
658 FailureReason = "latch terminator branch not conditional on integral icmp";
659 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000660 }
661
Sanjoy Dase75ed922015-02-26 08:19:31 +0000662 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
663 if (isa<SCEVCouldNotCompute>(LatchCount)) {
664 FailureReason = "could not compute latch count";
665 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000666 }
667
Sanjoy Dase75ed922015-02-26 08:19:31 +0000668 ICmpInst::Predicate Pred = ICI->getPredicate();
669 Value *LeftValue = ICI->getOperand(0);
670 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
671 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
672
673 Value *RightValue = ICI->getOperand(1);
674 const SCEV *RightSCEV = SE.getSCEV(RightValue);
675
676 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
677 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
678 if (isa<SCEVAddRecExpr>(RightSCEV)) {
679 std::swap(LeftSCEV, RightSCEV);
680 std::swap(LeftValue, RightValue);
681 Pred = ICmpInst::getSwappedPredicate(Pred);
682 } else {
683 FailureReason = "no add recurrences in the icmp";
684 return None;
685 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000686 }
687
Sanjoy Dase75ed922015-02-26 08:19:31 +0000688 auto IsInductionVar = [&SE](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
689 if (!AR->isAffine())
690 return false;
691
692 IntegerType *Ty = cast<IntegerType>(AR->getType());
693 IntegerType *WideTy =
694 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
695
696 // Currently we only work with induction variables that have been proved to
697 // not wrap. This restriction can potentially be lifted in the future.
698
699 const SCEVAddRecExpr *ExtendAfterOp =
700 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
701 if (!ExtendAfterOp)
702 return false;
703
704 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
705 const SCEV *ExtendedStep =
706 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
707
708 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
709 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
710
711 if (!NoSignedWrap)
712 return false;
713
714 if (const SCEVConstant *StepExpr =
715 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
716 ConstantInt *StepCI = StepExpr->getValue();
717 if (StepCI->isOne() || StepCI->isMinusOne()) {
718 IsIncreasing = StepCI->isOne();
719 return true;
720 }
721 }
722
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000723 return false;
Sanjoy Dase75ed922015-02-26 08:19:31 +0000724 };
725
726 // `ICI` is interpreted as taking the backedge if the *next* value of the
727 // induction variable satisfies some constraint.
728
729 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
730 bool IsIncreasing = false;
731 if (!IsInductionVar(IndVarNext, IsIncreasing)) {
732 FailureReason = "LHS in icmp not induction variable";
733 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000734 }
735
Sanjoy Dase75ed922015-02-26 08:19:31 +0000736 ConstantInt *One = ConstantInt::get(IndVarTy, 1);
737 // TODO: generalize the predicates here to also match their unsigned variants.
738 if (IsIncreasing) {
739 bool FoundExpectedPred =
740 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
741 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
742
743 if (!FoundExpectedPred) {
744 FailureReason = "expected icmp slt semantically, found something else";
745 return None;
746 }
747
748 if (LatchBrExitIdx == 0) {
749 if (CanBeSMax(SE, RightSCEV)) {
750 // TODO: this restriction is easily removable -- we just have to
751 // remember that the icmp was an slt and not an sle.
752 FailureReason = "limit may overflow when coercing sle to slt";
753 return None;
754 }
755
756 IRBuilder<> B(&*Preheader->rbegin());
757 RightValue = B.CreateAdd(RightValue, One);
758 }
759
760 } else {
761 bool FoundExpectedPred =
762 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
763 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
764
765 if (!FoundExpectedPred) {
766 FailureReason = "expected icmp sgt semantically, found something else";
767 return None;
768 }
769
770 if (LatchBrExitIdx == 0) {
771 if (CanBeSMin(SE, RightSCEV)) {
772 // TODO: this restriction is easily removable -- we just have to
773 // remember that the icmp was an sgt and not an sge.
774 FailureReason = "limit may overflow when coercing sge to sgt";
775 return None;
776 }
777
778 IRBuilder<> B(&*Preheader->rbegin());
779 RightValue = B.CreateSub(RightValue, One);
780 }
781 }
782
783 const SCEV *StartNext = IndVarNext->getStart();
784 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
785 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
786
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000787 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
788
Sanjoy Dase75ed922015-02-26 08:19:31 +0000789 assert(SE.getLoopDisposition(LatchCount, &L) ==
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000790 ScalarEvolution::LoopInvariant &&
791 "loop variant exit count doesn't make sense!");
792
Sanjoy Dase75ed922015-02-26 08:19:31 +0000793 assert(!L.contains(LatchExit) && "expected an exit block!");
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000794
Sanjoy Dase75ed922015-02-26 08:19:31 +0000795 Value *IndVarStartV = SCEVExpander(SE, "irce").expandCodeFor(
796 IndVarStart, IndVarTy, &*Preheader->rbegin());
797 IndVarStartV->setName("indvar.start");
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000798
Sanjoy Dase75ed922015-02-26 08:19:31 +0000799 LoopStructure Result;
800
801 Result.Tag = "main";
802 Result.Header = Header;
803 Result.Latch = Latch;
804 Result.LatchBr = LatchBr;
805 Result.LatchExit = LatchExit;
806 Result.LatchBrExitIdx = LatchBrExitIdx;
807 Result.IndVarStart = IndVarStartV;
808 Result.IndVarNext = LeftValue;
809 Result.IndVarIncreasing = IsIncreasing;
810 Result.LoopExitAt = RightValue;
811
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000812 FailureReason = nullptr;
813
Sanjoy Dase75ed922015-02-26 08:19:31 +0000814 return Result;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000815}
816
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000817Optional<LoopConstrainer::SubRanges>
Sanjoy Dase75ed922015-02-26 08:19:31 +0000818LoopConstrainer::calculateSubRanges() const {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000819 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
820
Sanjoy Das351db052015-01-22 09:32:02 +0000821 if (Range.getType() != Ty)
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000822 return None;
823
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000824 LoopConstrainer::SubRanges Result;
825
826 // I think we can be more aggressive here and make this nuw / nsw if the
827 // addition that feeds into the icmp for the latch's terminating branch is nuw
828 // / nsw. In any case, a wrapping 2's complement addition is safe.
829 ConstantInt *One = ConstantInt::get(Ty, 1);
Sanjoy Dase75ed922015-02-26 08:19:31 +0000830 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
831 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000832
Sanjoy Dase75ed922015-02-26 08:19:31 +0000833 bool Increasing = MainLoopStructure.IndVarIncreasing;
834 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
835 // range of values the induction variable takes.
836 const SCEV *Smallest =
837 Increasing ? Start : SE.getAddExpr(End, SE.getSCEV(One));
838 const SCEV *Greatest =
839 Increasing ? End : SE.getAddExpr(Start, SE.getSCEV(One));
840
841 auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
842 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
843 };
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000844
845 // In some cases we can prove that we don't need a pre or post loop
846
847 bool ProvablyNoPreloop =
Sanjoy Dase75ed922015-02-26 08:19:31 +0000848 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
849 if (!ProvablyNoPreloop)
850 Result.LowLimit = Clamp(Range.getBegin());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000851
852 bool ProvablyNoPostLoop =
Sanjoy Dase75ed922015-02-26 08:19:31 +0000853 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
854 if (!ProvablyNoPostLoop)
855 Result.HighLimit = Clamp(Range.getEnd());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000856
857 return Result;
858}
859
860void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
861 const char *Tag) const {
862 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
863 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
864 Result.Blocks.push_back(Clone);
865 Result.Map[BB] = Clone;
866 }
867
868 auto GetClonedValue = [&Result](Value *V) {
869 assert(V && "null values not in domain!");
870 auto It = Result.Map.find(V);
871 if (It == Result.Map.end())
872 return V;
873 return static_cast<Value *>(It->second);
874 };
875
876 Result.Structure = MainLoopStructure.map(GetClonedValue);
877 Result.Structure.Tag = Tag;
878
879 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
880 BasicBlock *ClonedBB = Result.Blocks[i];
881 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
882
883 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
884
885 for (Instruction &I : *ClonedBB)
886 RemapInstruction(&I, Result.Map,
887 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
888
889 // Exit blocks will now have one more predecessor and their PHI nodes need
890 // to be edited to reflect that. No phi nodes need to be introduced because
891 // the loop is in LCSSA.
892
893 for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
894 SBBI != SBBE; ++SBBI) {
895
896 if (OriginalLoop.contains(*SBBI))
897 continue; // not an exit block
898
899 for (Instruction &I : **SBBI) {
900 if (!isa<PHINode>(&I))
901 break;
902
903 PHINode *PN = cast<PHINode>(&I);
904 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
905 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
906 }
907 }
908 }
909}
910
911LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
Sanjoy Dase75ed922015-02-26 08:19:31 +0000912 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000913 BasicBlock *ContinuationBlock) const {
914
915 // We start with a loop with a single latch:
916 //
917 // +--------------------+
918 // | |
919 // | preheader |
920 // | |
921 // +--------+-----------+
922 // | ----------------\
923 // | / |
924 // +--------v----v------+ |
925 // | | |
926 // | header | |
927 // | | |
928 // +--------------------+ |
929 // |
930 // ..... |
931 // |
932 // +--------------------+ |
933 // | | |
934 // | latch >----------/
935 // | |
936 // +-------v------------+
937 // |
938 // |
939 // | +--------------------+
940 // | | |
941 // +---> original exit |
942 // | |
943 // +--------------------+
944 //
945 // We change the control flow to look like
946 //
947 //
948 // +--------------------+
949 // | |
950 // | preheader >-------------------------+
951 // | | |
952 // +--------v-----------+ |
953 // | /-------------+ |
954 // | / | |
955 // +--------v--v--------+ | |
956 // | | | |
957 // | header | | +--------+ |
958 // | | | | | |
959 // +--------------------+ | | +-----v-----v-----------+
960 // | | | |
961 // | | | .pseudo.exit |
962 // | | | |
963 // | | +-----------v-----------+
964 // | | |
965 // ..... | | |
966 // | | +--------v-------------+
967 // +--------------------+ | | | |
968 // | | | | | ContinuationBlock |
969 // | latch >------+ | | |
970 // | | | +----------------------+
971 // +---------v----------+ |
972 // | |
973 // | |
974 // | +---------------^-----+
975 // | | |
976 // +-----> .exit.selector |
977 // | |
978 // +----------v----------+
979 // |
980 // +--------------------+ |
981 // | | |
982 // | original exit <----+
983 // | |
984 // +--------------------+
985 //
986
987 RewrittenRangeInfo RRI;
988
989 auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
990 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
991 &F, BBInsertLocation);
992 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
993 BBInsertLocation);
994
995 BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
Sanjoy Dase75ed922015-02-26 08:19:31 +0000996 bool Increasing = LS.IndVarIncreasing;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000997
998 IRBuilder<> B(PreheaderJump);
999
1000 // EnterLoopCond - is it okay to start executing this `LS'?
Sanjoy Dase75ed922015-02-26 08:19:31 +00001001 Value *EnterLoopCond = Increasing
1002 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1003 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1004
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001005 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1006 PreheaderJump->eraseFromParent();
1007
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001008 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
Sanjoy Dase75ed922015-02-26 08:19:31 +00001009 B.SetInsertPoint(LS.LatchBr);
1010 Value *TakeBackedgeLoopCond =
1011 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1012 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1013 Value *CondForBranch = LS.LatchBrExitIdx == 1
1014 ? TakeBackedgeLoopCond
1015 : B.CreateNot(TakeBackedgeLoopCond);
1016
1017 LS.LatchBr->setCondition(CondForBranch);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001018
1019 B.SetInsertPoint(RRI.ExitSelector);
1020
1021 // IterationsLeft - are there any more iterations left, given the original
1022 // upper bound on the induction variable? If not, we branch to the "real"
1023 // exit.
Sanjoy Dase75ed922015-02-26 08:19:31 +00001024 Value *IterationsLeft = Increasing
1025 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1026 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001027 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1028
1029 BranchInst *BranchToContinuation =
1030 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1031
1032 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1033 // each of the PHI nodes in the loop header. This feeds into the initial
1034 // value of the same PHI nodes if/when we continue execution.
1035 for (Instruction &I : *LS.Header) {
1036 if (!isa<PHINode>(&I))
1037 break;
1038
1039 PHINode *PN = cast<PHINode>(&I);
1040
1041 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1042 BranchToContinuation);
1043
1044 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1045 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1046 RRI.ExitSelector);
1047 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1048 }
1049
Sanjoy Dase75ed922015-02-26 08:19:31 +00001050 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1051 BranchToContinuation);
1052 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1053 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1054
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001055 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1056 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1057 for (Instruction &I : *LS.LatchExit) {
1058 if (PHINode *PN = dyn_cast<PHINode>(&I))
1059 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1060 else
1061 break;
1062 }
1063
1064 return RRI;
1065}
1066
1067void LoopConstrainer::rewriteIncomingValuesForPHIs(
Sanjoy Dase75ed922015-02-26 08:19:31 +00001068 LoopStructure &LS, BasicBlock *ContinuationBlock,
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001069 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1070
1071 unsigned PHIIndex = 0;
1072 for (Instruction &I : *LS.Header) {
1073 if (!isa<PHINode>(&I))
1074 break;
1075
1076 PHINode *PN = cast<PHINode>(&I);
1077
1078 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1079 if (PN->getIncomingBlock(i) == ContinuationBlock)
1080 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1081 }
1082
Sanjoy Dase75ed922015-02-26 08:19:31 +00001083 LS.IndVarStart = RRI.IndVarEnd;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001084}
1085
Sanjoy Dase75ed922015-02-26 08:19:31 +00001086BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1087 BasicBlock *OldPreheader,
1088 const char *Tag) const {
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001089
1090 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1091 BranchInst::Create(LS.Header, Preheader);
1092
1093 for (Instruction &I : *LS.Header) {
1094 if (!isa<PHINode>(&I))
1095 break;
1096
1097 PHINode *PN = cast<PHINode>(&I);
1098 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1099 replacePHIBlock(PN, OldPreheader, Preheader);
1100 }
1101
1102 return Preheader;
1103}
1104
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001105void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001106 Loop *ParentLoop = OriginalLoop.getParentLoop();
1107 if (!ParentLoop)
1108 return;
1109
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001110 for (BasicBlock *BB : BBs)
1111 ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001112}
1113
1114bool LoopConstrainer::run() {
1115 BasicBlock *Preheader = nullptr;
Sanjoy Dase75ed922015-02-26 08:19:31 +00001116 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1117 Preheader = OriginalLoop.getLoopPreheader();
1118 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1119 "preconditions!");
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001120
1121 OriginalPreheader = Preheader;
1122 MainLoopPreheader = Preheader;
1123
Sanjoy Dase75ed922015-02-26 08:19:31 +00001124 Optional<SubRanges> MaybeSR = calculateSubRanges();
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001125 if (!MaybeSR.hasValue()) {
1126 DEBUG(dbgs() << "irce: could not compute subranges\n");
1127 return false;
1128 }
Sanjoy Dase75ed922015-02-26 08:19:31 +00001129
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001130 SubRanges SR = MaybeSR.getValue();
Sanjoy Dase75ed922015-02-26 08:19:31 +00001131 bool Increasing = MainLoopStructure.IndVarIncreasing;
1132 IntegerType *IVTy =
1133 cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1134
1135 SCEVExpander Expander(SE, "irce");
1136 Instruction *InsertPt = OriginalPreheader->getTerminator();
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001137
1138 // It would have been better to make `PreLoop' and `PostLoop'
1139 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1140 // constructor.
1141 ClonedLoop PreLoop, PostLoop;
Sanjoy Dase75ed922015-02-26 08:19:31 +00001142 bool NeedsPreLoop =
1143 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1144 bool NeedsPostLoop =
1145 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1146
1147 Value *ExitPreLoopAt = nullptr;
1148 Value *ExitMainLoopAt = nullptr;
1149 const SCEVConstant *MinusOneS =
1150 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1151
1152 if (NeedsPreLoop) {
1153 const SCEV *ExitPreLoopAtSCEV = nullptr;
1154
1155 if (Increasing)
1156 ExitPreLoopAtSCEV = *SR.LowLimit;
1157 else {
1158 if (CanBeSMin(SE, *SR.HighLimit)) {
1159 DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1160 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit)
1161 << "\n");
1162 return false;
1163 }
1164 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1165 }
1166
1167 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1168 ExitPreLoopAt->setName("exit.preloop.at");
1169 }
1170
1171 if (NeedsPostLoop) {
1172 const SCEV *ExitMainLoopAtSCEV = nullptr;
1173
1174 if (Increasing)
1175 ExitMainLoopAtSCEV = *SR.HighLimit;
1176 else {
1177 if (CanBeSMin(SE, *SR.LowLimit)) {
1178 DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1179 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit)
1180 << "\n");
1181 return false;
1182 }
1183 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1184 }
1185
1186 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1187 ExitMainLoopAt->setName("exit.mainloop.at");
1188 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001189
1190 // We clone these ahead of time so that we don't have to deal with changing
1191 // and temporarily invalid IR as we transform the loops.
1192 if (NeedsPreLoop)
1193 cloneLoop(PreLoop, "preloop");
1194 if (NeedsPostLoop)
1195 cloneLoop(PostLoop, "postloop");
1196
1197 RewrittenRangeInfo PreLoopRRI;
1198
1199 if (NeedsPreLoop) {
1200 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1201 PreLoop.Structure.Header);
1202
1203 MainLoopPreheader =
1204 createPreheader(MainLoopStructure, Preheader, "mainloop");
Sanjoy Dase75ed922015-02-26 08:19:31 +00001205 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1206 ExitPreLoopAt, MainLoopPreheader);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001207 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1208 PreLoopRRI);
1209 }
1210
1211 BasicBlock *PostLoopPreheader = nullptr;
1212 RewrittenRangeInfo PostLoopRRI;
1213
1214 if (NeedsPostLoop) {
1215 PostLoopPreheader =
1216 createPreheader(PostLoop.Structure, Preheader, "postloop");
1217 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
Sanjoy Dase75ed922015-02-26 08:19:31 +00001218 ExitMainLoopAt, PostLoopPreheader);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001219 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1220 PostLoopRRI);
1221 }
1222
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001223 BasicBlock *NewMainLoopPreheader =
1224 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1225 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1226 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1227 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001228
1229 // Some of the above may be nullptr, filter them out before passing to
1230 // addToParentLoopIfNeeded.
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001231 auto NewBlocksEnd =
1232 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001233
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001234 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1235 addToParentLoopIfNeeded(PreLoop.Blocks);
1236 addToParentLoopIfNeeded(PostLoop.Blocks);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001237
1238 return true;
1239}
1240
Sanjoy Das95c476d2015-02-21 22:20:22 +00001241/// Computes and returns a range of values for the induction variable (IndVar)
1242/// in which the range check can be safely elided. If it cannot compute such a
1243/// range, returns None.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001244Optional<InductiveRangeCheck::Range>
1245InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
Sanjoy Das95c476d2015-02-21 22:20:22 +00001246 const SCEVAddRecExpr *IndVar,
1247 IRBuilder<> &) const {
1248 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1249 // variable, that may or may not exist as a real llvm::Value in the loop) and
1250 // this inductive range check is a range check on the "C + D * I" ("C" is
1251 // getOffset() and "D" is getScale()). We rewrite the value being range
1252 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1253 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1254 // can be generalized as needed.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001255 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001256 // The actual inequalities we solve are of the form
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001257 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001258 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1259 //
1260 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions
1261 // and subtractions are twos-complement wrapping and comparisons are signed.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001262 //
1263 // Proof:
1264 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001265 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1266 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows
1267 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have
1268 // overflown.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001269 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001270 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t.
1271 // Hence 0 <= (IndVar + M) < L
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001272
Sanjoy Das95c476d2015-02-21 22:20:22 +00001273 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1274 // 127, IndVar = 126 and L = -2 in an i8 world.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001275
Sanjoy Das95c476d2015-02-21 22:20:22 +00001276 if (!IndVar->isAffine())
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001277 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001278
Sanjoy Das95c476d2015-02-21 22:20:22 +00001279 const SCEV *A = IndVar->getStart();
1280 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1281 if (!B)
1282 return None;
1283
1284 const SCEV *C = getOffset();
1285 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1286 if (D != B)
1287 return None;
1288
1289 ConstantInt *ConstD = D->getValue();
1290 if (!(ConstD->isMinusOne() || ConstD->isOne()))
1291 return None;
1292
1293 const SCEV *M = SE.getMinusSCEV(C, A);
1294
1295 const SCEV *Begin = SE.getNegativeSCEV(M);
1296 const SCEV *End = SE.getMinusSCEV(SE.getSCEV(getLength()), M);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001297
Sanjoy Das351db052015-01-22 09:32:02 +00001298 return InductiveRangeCheck::Range(Begin, End);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001299}
1300
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001301static Optional<InductiveRangeCheck::Range>
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001302IntersectRange(ScalarEvolution &SE,
1303 const Optional<InductiveRangeCheck::Range> &R1,
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001304 const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
1305 if (!R1.hasValue())
1306 return R2;
1307 auto &R1Value = R1.getValue();
1308
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001309 // TODO: we could widen the smaller range and have this work; but for now we
1310 // bail out to keep things simple.
Sanjoy Das351db052015-01-22 09:32:02 +00001311 if (R1Value.getType() != R2.getType())
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001312 return None;
1313
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001314 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1315 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1316
1317 return InductiveRangeCheck::Range(NewBegin, NewEnd);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001318}
1319
1320bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1321 if (L->getBlocks().size() >= LoopSizeCutoff) {
1322 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1323 return false;
1324 }
1325
1326 BasicBlock *Preheader = L->getLoopPreheader();
1327 if (!Preheader) {
1328 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1329 return false;
1330 }
1331
1332 LLVMContext &Context = Preheader->getContext();
1333 InductiveRangeCheck::AllocatorTy IRCAlloc;
1334 SmallVector<InductiveRangeCheck *, 16> RangeChecks;
1335 ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
Sanjoy Dasdcf26512015-01-27 21:38:12 +00001336 BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001337
1338 for (auto BBI : L->getBlocks())
1339 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1340 if (InductiveRangeCheck *IRC =
Sanjoy Dasdcf26512015-01-27 21:38:12 +00001341 InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001342 RangeChecks.push_back(IRC);
1343
1344 if (RangeChecks.empty())
1345 return false;
1346
1347 DEBUG(dbgs() << "irce: looking at loop "; L->print(dbgs());
1348 dbgs() << "irce: loop has " << RangeChecks.size()
1349 << " inductive range checks: \n";
1350 for (InductiveRangeCheck *IRC : RangeChecks)
1351 IRC->print(dbgs());
1352 );
1353
Sanjoy Dase75ed922015-02-26 08:19:31 +00001354 const char *FailureReason = nullptr;
1355 Optional<LoopStructure> MaybeLoopStructure =
Sanjoy Dase91665d2015-02-26 08:56:04 +00001356 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
Sanjoy Dase75ed922015-02-26 08:19:31 +00001357 if (!MaybeLoopStructure.hasValue()) {
1358 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1359 << "\n";);
1360 return false;
1361 }
1362 LoopStructure LS = MaybeLoopStructure.getValue();
1363 bool Increasing = LS.IndVarIncreasing;
1364 const SCEV *MinusOne =
1365 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1366 const SCEVAddRecExpr *IndVar =
1367 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1368
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001369 Optional<InductiveRangeCheck::Range> SafeIterRange;
1370 Instruction *ExprInsertPt = Preheader->getTerminator();
1371
1372 SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
1373
1374 IRBuilder<> B(ExprInsertPt);
1375 for (InductiveRangeCheck *IRC : RangeChecks) {
Sanjoy Das95c476d2015-02-21 22:20:22 +00001376 auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001377 if (Result.hasValue()) {
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001378 auto MaybeSafeIterRange =
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001379 IntersectRange(SE, SafeIterRange, Result.getValue(), B);
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001380 if (MaybeSafeIterRange.hasValue()) {
1381 RangeChecksToEliminate.push_back(IRC);
1382 SafeIterRange = MaybeSafeIterRange.getValue();
1383 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001384 }
1385 }
1386
1387 if (!SafeIterRange.hasValue())
1388 return false;
1389
Sanjoy Dase75ed922015-02-26 08:19:31 +00001390 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
1391 SE, SafeIterRange.getValue());
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001392 bool Changed = LC.run();
1393
1394 if (Changed) {
1395 auto PrintConstrainedLoopInfo = [L]() {
1396 dbgs() << "irce: in function ";
1397 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1398 dbgs() << "constrained ";
1399 L->print(dbgs());
1400 };
1401
1402 DEBUG(PrintConstrainedLoopInfo());
1403
1404 if (PrintChangedLoops)
1405 PrintConstrainedLoopInfo();
1406
1407 // Optimize away the now-redundant range checks.
1408
1409 for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
1410 ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
1411 ? ConstantInt::getTrue(Context)
1412 : ConstantInt::getFalse(Context);
1413 IRC->getBranch()->setCondition(FoldedRangeCheck);
1414 }
1415 }
1416
1417 return Changed;
1418}
1419
1420Pass *llvm::createInductiveRangeCheckEliminationPass() {
1421 return new InductiveRangeCheckElimination;
1422}