blob: 4d2b54521e838afc4c16da2de160b59f2d3d309c [file] [log] [blame]
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001//===--- HexagonBitSimplify.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexbit"
11
12#include "llvm/CodeGen/Passes.h"
13#include "llvm/CodeGen/MachineDominators.h"
14#include "llvm/CodeGen/MachineFunctionPass.h"
15#include "llvm/CodeGen/MachineInstrBuilder.h"
16#include "llvm/CodeGen/MachineRegisterInfo.h"
17#include "llvm/Support/CommandLine.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/raw_ostream.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "HexagonTargetMachine.h"
23#include "HexagonBitTracker.h"
24
25using namespace llvm;
26
27namespace llvm {
28 void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
29 FunctionPass *createHexagonBitSimplify();
30}
31
32namespace {
33 // Set of virtual registers, based on BitVector.
34 struct RegisterSet : private BitVector {
35 RegisterSet() : BitVector() {}
36 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
37 RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
38
39 using BitVector::clear;
40 using BitVector::count;
41
42 unsigned find_first() const {
43 int First = BitVector::find_first();
44 if (First < 0)
45 return 0;
46 return x2v(First);
47 }
48
49 unsigned find_next(unsigned Prev) const {
50 int Next = BitVector::find_next(v2x(Prev));
51 if (Next < 0)
52 return 0;
53 return x2v(Next);
54 }
55
56 RegisterSet &insert(unsigned R) {
57 unsigned Idx = v2x(R);
58 ensure(Idx);
59 return static_cast<RegisterSet&>(BitVector::set(Idx));
60 }
61 RegisterSet &remove(unsigned R) {
62 unsigned Idx = v2x(R);
63 if (Idx >= size())
64 return *this;
65 return static_cast<RegisterSet&>(BitVector::reset(Idx));
66 }
67
68 RegisterSet &insert(const RegisterSet &Rs) {
69 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
70 }
71 RegisterSet &remove(const RegisterSet &Rs) {
72 return static_cast<RegisterSet&>(BitVector::reset(Rs));
73 }
74
75 reference operator[](unsigned R) {
76 unsigned Idx = v2x(R);
77 ensure(Idx);
78 return BitVector::operator[](Idx);
79 }
80 bool operator[](unsigned R) const {
81 unsigned Idx = v2x(R);
82 assert(Idx < size());
83 return BitVector::operator[](Idx);
84 }
85 bool has(unsigned R) const {
86 unsigned Idx = v2x(R);
87 if (Idx >= size())
88 return false;
89 return BitVector::test(Idx);
90 }
91
92 bool empty() const {
93 return !BitVector::any();
94 }
95 bool includes(const RegisterSet &Rs) const {
96 // A.BitVector::test(B) <=> A-B != {}
97 return !Rs.BitVector::test(*this);
98 }
99 bool intersects(const RegisterSet &Rs) const {
100 return BitVector::anyCommon(Rs);
101 }
102
103 private:
104 void ensure(unsigned Idx) {
105 if (size() <= Idx)
106 resize(std::max(Idx+1, 32U));
107 }
108 static inline unsigned v2x(unsigned v) {
109 return TargetRegisterInfo::virtReg2Index(v);
110 }
111 static inline unsigned x2v(unsigned x) {
112 return TargetRegisterInfo::index2VirtReg(x);
113 }
114 };
115
116
117 struct PrintRegSet {
118 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
119 : RS(S), TRI(RI) {}
120 friend raw_ostream &operator<< (raw_ostream &OS,
121 const PrintRegSet &P);
122 private:
123 const RegisterSet &RS;
124 const TargetRegisterInfo *TRI;
125 };
126
127 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
128 LLVM_ATTRIBUTE_UNUSED;
129 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
130 OS << '{';
131 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
132 OS << ' ' << PrintReg(R, P.TRI);
133 OS << " }";
134 return OS;
135 }
136}
137
138
139namespace {
140 class Transformation;
141
142 class HexagonBitSimplify : public MachineFunctionPass {
143 public:
144 static char ID;
145 HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
146 initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
147 }
148 virtual const char *getPassName() const {
149 return "Hexagon bit simplification";
150 }
151 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152 AU.addRequired<MachineDominatorTree>();
153 AU.addPreserved<MachineDominatorTree>();
154 MachineFunctionPass::getAnalysisUsage(AU);
155 }
156 virtual bool runOnMachineFunction(MachineFunction &MF);
157
158 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
159 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
160 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
161 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
162 static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B,
163 uint16_t W);
164 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
165 uint16_t W);
166 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
167 uint16_t W, uint64_t &U);
168 static bool replaceReg(unsigned OldR, unsigned NewR,
169 MachineRegisterInfo &MRI);
170 static bool getSubregMask(const BitTracker::RegisterRef &RR,
171 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
172 static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
173 unsigned NewSR, MachineRegisterInfo &MRI);
174 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
175 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
176 static bool parseRegSequence(const MachineInstr &I,
177 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
178
179 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
180 uint16_t Begin);
181 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
182 uint16_t Begin, const HexagonInstrInfo &HII);
183
184 static const TargetRegisterClass *getFinalVRegClass(
185 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
186 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
187 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
188
189 private:
190 MachineDominatorTree *MDT;
191
192 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
193 };
194
195 char HexagonBitSimplify::ID = 0;
196 typedef HexagonBitSimplify HBS;
197
198
199 // The purpose of this class is to provide a common facility to traverse
200 // the function top-down or bottom-up via the dominator tree, and keep
201 // track of the available registers.
202 class Transformation {
203 public:
204 bool TopDown;
205 Transformation(bool TD) : TopDown(TD) {}
206 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
207 virtual ~Transformation() {}
208 };
209}
210
211INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
212 "Hexagon bit simplification", false, false)
213INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
214INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
215 "Hexagon bit simplification", false, false)
216
217
218bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
219 RegisterSet &AVs) {
220 MachineDomTreeNode *N = MDT->getNode(&B);
221 typedef GraphTraits<MachineDomTreeNode*> GTN;
222 bool Changed = false;
223
224 if (T.TopDown)
225 Changed = T.processBlock(B, AVs);
226
227 RegisterSet Defs;
228 for (auto &I : B)
229 getInstrDefs(I, Defs);
230 RegisterSet NewAVs = AVs;
231 NewAVs.insert(Defs);
232
233 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
234 MachineBasicBlock *SB = (*I)->getBlock();
235 Changed |= visitBlock(*SB, T, NewAVs);
236 }
237 if (!T.TopDown)
238 Changed |= T.processBlock(B, AVs);
239
240 return Changed;
241}
242
243//
244// Utility functions:
245//
246void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
247 RegisterSet &Defs) {
248 for (auto &Op : MI.operands()) {
249 if (!Op.isReg() || !Op.isDef())
250 continue;
251 unsigned R = Op.getReg();
252 if (!TargetRegisterInfo::isVirtualRegister(R))
253 continue;
254 Defs.insert(R);
255 }
256}
257
258void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
259 RegisterSet &Uses) {
260 for (auto &Op : MI.operands()) {
261 if (!Op.isReg() || !Op.isUse())
262 continue;
263 unsigned R = Op.getReg();
264 if (!TargetRegisterInfo::isVirtualRegister(R))
265 continue;
266 Uses.insert(R);
267 }
268}
269
270// Check if all the bits in range [B, E) in both cells are equal.
271bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
272 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
273 uint16_t W) {
274 for (uint16_t i = 0; i < W; ++i) {
275 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
276 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
277 return false;
278 // Same for RC2[i].
279 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
280 return false;
281 if (RC1[B1+i] != RC2[B2+i])
282 return false;
283 }
284 return true;
285}
286
287
288bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC,
289 uint16_t B, uint16_t W) {
290 assert(B < RC.width() && B+W <= RC.width());
291 for (uint16_t i = B; i < B+W; ++i)
292 if (!RC[i].num())
293 return false;
294 return true;
295}
296
297
298bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
299 uint16_t B, uint16_t W) {
300 assert(B < RC.width() && B+W <= RC.width());
301 for (uint16_t i = B; i < B+W; ++i)
302 if (!RC[i].is(0))
303 return false;
304 return true;
305}
306
307
308bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
309 uint16_t B, uint16_t W, uint64_t &U) {
310 assert(B < RC.width() && B+W <= RC.width());
311 int64_t T = 0;
312 for (uint16_t i = B+W; i > B; --i) {
313 const BitTracker::BitValue &BV = RC[i-1];
314 T <<= 1;
315 if (BV.is(1))
316 T |= 1;
317 else if (!BV.is(0))
318 return false;
319 }
320 U = T;
321 return true;
322}
323
324
325bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
326 MachineRegisterInfo &MRI) {
327 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
328 !TargetRegisterInfo::isVirtualRegister(NewR))
329 return false;
330 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
331 decltype(End) NextI;
332 for (auto I = Begin; I != End; I = NextI) {
333 NextI = std::next(I);
334 I->setReg(NewR);
335 }
336 return Begin != End;
337}
338
339
340bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
341 unsigned NewSR, MachineRegisterInfo &MRI) {
342 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
343 !TargetRegisterInfo::isVirtualRegister(NewR))
344 return false;
345 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
346 decltype(End) NextI;
347 for (auto I = Begin; I != End; I = NextI) {
348 NextI = std::next(I);
349 I->setReg(NewR);
350 I->setSubReg(NewSR);
351 }
352 return Begin != End;
353}
354
355
356bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
357 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
358 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
359 !TargetRegisterInfo::isVirtualRegister(NewR))
360 return false;
361 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
362 decltype(End) NextI;
363 for (auto I = Begin; I != End; I = NextI) {
364 NextI = std::next(I);
365 if (I->getSubReg() != OldSR)
366 continue;
367 I->setReg(NewR);
368 I->setSubReg(NewSR);
369 }
370 return Begin != End;
371}
372
373
374// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
375// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
376// if this succeeded, otherwise return false.
377bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
378 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
379 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
380 if (RC == &Hexagon::IntRegsRegClass) {
381 assert(RR.Sub == 0);
382 Begin = 0;
383 Width = 32;
384 return true;
385 }
386 if (RC == &Hexagon::DoubleRegsRegClass) {
387 if (RR.Sub == 0) {
388 Begin = 0;
389 Width = 64;
390 return true;
391 }
392 assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
393 Width = 32;
394 Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
395 return true;
396 }
397 return false;
398}
399
400
401// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
402// subregister.
403bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
404 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
405 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
406 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
407 assert(Sub1 != Sub2);
408 if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
409 SL = I.getOperand(1);
410 SH = I.getOperand(3);
411 return true;
412 }
413 if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
414 SH = I.getOperand(1);
415 SL = I.getOperand(3);
416 return true;
417 }
418 return false;
419}
420
421
422// All stores (except 64-bit stores) take a 32-bit register as the source
423// of the value to be stored. If the instruction stores into a location
424// that is shorter than 32 bits, some bits of the source register are not
425// used. For each store instruction, calculate the set of used bits in
426// the source register, and set appropriate bits in Bits. Return true if
427// the bits are calculated, false otherwise.
428bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
429 uint16_t Begin) {
430 using namespace Hexagon;
431
432 switch (Opc) {
433 // Store byte
434 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
435 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
436 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
437 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
438 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
439 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
440 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
441 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
442 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
443 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
444 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
445 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
446 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
447 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
448 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
449 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
450 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
451 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
452 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
453 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
454 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
455 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
456 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
457 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
458 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
459 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
460 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
461 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
462 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
463 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
464 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
465 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
466 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
467 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
468 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
469 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
470 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
471 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
472 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
473 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
474 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
475 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
476 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
477 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
478 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
479 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
480 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
481 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
482 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
483 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
484 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
485 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
486 Bits.set(Begin, Begin+8);
487 return true;
488
489 // Store low half
490 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
491 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
492 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
493 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
494 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
495 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
496 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
497 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
498 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
499 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
500 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
501 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
502 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
503 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
504 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
505 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
506 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
507 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
508 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
509 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
510 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
511 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
512 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
513 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
514 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
515 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
516 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
517 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
518 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
519 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
520 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
521 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
522 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
523 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
524 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
525 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
526 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
527 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
528 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
529 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
530 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
531 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
532 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
533 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
534 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
535 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
536 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
537 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
538 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
539 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
540 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
541 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
542 Bits.set(Begin, Begin+16);
543 return true;
544
545 // Store high half
546 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
547 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
548 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
549 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
550 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
551 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
552 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
553 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
554 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
555 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
556 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
557 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
558 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
559 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
560 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
561 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
562 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
563 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
564 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
565 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
566 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
567 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
568 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
569 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
570 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
571 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
572 Bits.set(Begin+16, Begin+32);
573 return true;
574 }
575
576 return false;
577}
578
579
580// For an instruction with opcode Opc, calculate the set of bits that it
581// uses in a register in operand OpN. This only calculates the set of used
582// bits for cases where it does not depend on any operands (as is the case
583// in shifts, for example). For concrete instructions from a program, the
584// operand may be a subregister of a larger register, while Bits would
585// correspond to the larger register in its entirety. Because of that,
586// the parameter Begin can be used to indicate which bit of Bits should be
587// considered the LSB of of the operand.
588bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
589 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
590 using namespace Hexagon;
591
592 const MCInstrDesc &D = HII.get(Opc);
593 if (D.mayStore()) {
594 if (OpN == D.getNumOperands()-1)
595 return getUsedBitsInStore(Opc, Bits, Begin);
596 return false;
597 }
598
599 switch (Opc) {
600 // One register source. Used bits: R1[0-7].
601 case A2_sxtb:
602 case A2_zxtb:
603 case A4_cmpbeqi:
604 case A4_cmpbgti:
605 case A4_cmpbgtui:
606 if (OpN == 1) {
607 Bits.set(Begin, Begin+8);
608 return true;
609 }
610 break;
611
612 // One register source. Used bits: R1[0-15].
613 case A2_aslh:
614 case A2_sxth:
615 case A2_zxth:
616 case A4_cmpheqi:
617 case A4_cmphgti:
618 case A4_cmphgtui:
619 if (OpN == 1) {
620 Bits.set(Begin, Begin+16);
621 return true;
622 }
623 break;
624
625 // One register source. Used bits: R1[16-31].
626 case A2_asrh:
627 if (OpN == 1) {
628 Bits.set(Begin+16, Begin+32);
629 return true;
630 }
631 break;
632
633 // Two register sources. Used bits: R1[0-7], R2[0-7].
634 case A4_cmpbeq:
635 case A4_cmpbgt:
636 case A4_cmpbgtu:
637 if (OpN == 1) {
638 Bits.set(Begin, Begin+8);
639 return true;
640 }
641 break;
642
643 // Two register sources. Used bits: R1[0-15], R2[0-15].
644 case A4_cmpheq:
645 case A4_cmphgt:
646 case A4_cmphgtu:
647 case A2_addh_h16_ll:
648 case A2_addh_h16_sat_ll:
649 case A2_addh_l16_ll:
650 case A2_addh_l16_sat_ll:
651 case A2_combine_ll:
652 case A2_subh_h16_ll:
653 case A2_subh_h16_sat_ll:
654 case A2_subh_l16_ll:
655 case A2_subh_l16_sat_ll:
656 case M2_mpy_acc_ll_s0:
657 case M2_mpy_acc_ll_s1:
658 case M2_mpy_acc_sat_ll_s0:
659 case M2_mpy_acc_sat_ll_s1:
660 case M2_mpy_ll_s0:
661 case M2_mpy_ll_s1:
662 case M2_mpy_nac_ll_s0:
663 case M2_mpy_nac_ll_s1:
664 case M2_mpy_nac_sat_ll_s0:
665 case M2_mpy_nac_sat_ll_s1:
666 case M2_mpy_rnd_ll_s0:
667 case M2_mpy_rnd_ll_s1:
668 case M2_mpy_sat_ll_s0:
669 case M2_mpy_sat_ll_s1:
670 case M2_mpy_sat_rnd_ll_s0:
671 case M2_mpy_sat_rnd_ll_s1:
672 case M2_mpyd_acc_ll_s0:
673 case M2_mpyd_acc_ll_s1:
674 case M2_mpyd_ll_s0:
675 case M2_mpyd_ll_s1:
676 case M2_mpyd_nac_ll_s0:
677 case M2_mpyd_nac_ll_s1:
678 case M2_mpyd_rnd_ll_s0:
679 case M2_mpyd_rnd_ll_s1:
680 case M2_mpyu_acc_ll_s0:
681 case M2_mpyu_acc_ll_s1:
682 case M2_mpyu_ll_s0:
683 case M2_mpyu_ll_s1:
684 case M2_mpyu_nac_ll_s0:
685 case M2_mpyu_nac_ll_s1:
686 case M2_mpyud_acc_ll_s0:
687 case M2_mpyud_acc_ll_s1:
688 case M2_mpyud_ll_s0:
689 case M2_mpyud_ll_s1:
690 case M2_mpyud_nac_ll_s0:
691 case M2_mpyud_nac_ll_s1:
692 if (OpN == 1 || OpN == 2) {
693 Bits.set(Begin, Begin+16);
694 return true;
695 }
696 break;
697
698 // Two register sources. Used bits: R1[0-15], R2[16-31].
699 case A2_addh_h16_lh:
700 case A2_addh_h16_sat_lh:
701 case A2_combine_lh:
702 case A2_subh_h16_lh:
703 case A2_subh_h16_sat_lh:
704 case M2_mpy_acc_lh_s0:
705 case M2_mpy_acc_lh_s1:
706 case M2_mpy_acc_sat_lh_s0:
707 case M2_mpy_acc_sat_lh_s1:
708 case M2_mpy_lh_s0:
709 case M2_mpy_lh_s1:
710 case M2_mpy_nac_lh_s0:
711 case M2_mpy_nac_lh_s1:
712 case M2_mpy_nac_sat_lh_s0:
713 case M2_mpy_nac_sat_lh_s1:
714 case M2_mpy_rnd_lh_s0:
715 case M2_mpy_rnd_lh_s1:
716 case M2_mpy_sat_lh_s0:
717 case M2_mpy_sat_lh_s1:
718 case M2_mpy_sat_rnd_lh_s0:
719 case M2_mpy_sat_rnd_lh_s1:
720 case M2_mpyd_acc_lh_s0:
721 case M2_mpyd_acc_lh_s1:
722 case M2_mpyd_lh_s0:
723 case M2_mpyd_lh_s1:
724 case M2_mpyd_nac_lh_s0:
725 case M2_mpyd_nac_lh_s1:
726 case M2_mpyd_rnd_lh_s0:
727 case M2_mpyd_rnd_lh_s1:
728 case M2_mpyu_acc_lh_s0:
729 case M2_mpyu_acc_lh_s1:
730 case M2_mpyu_lh_s0:
731 case M2_mpyu_lh_s1:
732 case M2_mpyu_nac_lh_s0:
733 case M2_mpyu_nac_lh_s1:
734 case M2_mpyud_acc_lh_s0:
735 case M2_mpyud_acc_lh_s1:
736 case M2_mpyud_lh_s0:
737 case M2_mpyud_lh_s1:
738 case M2_mpyud_nac_lh_s0:
739 case M2_mpyud_nac_lh_s1:
740 // These four are actually LH.
741 case A2_addh_l16_hl:
742 case A2_addh_l16_sat_hl:
743 case A2_subh_l16_hl:
744 case A2_subh_l16_sat_hl:
745 if (OpN == 1) {
746 Bits.set(Begin, Begin+16);
747 return true;
748 }
749 if (OpN == 2) {
750 Bits.set(Begin+16, Begin+32);
751 return true;
752 }
753 break;
754
755 // Two register sources, used bits: R1[16-31], R2[0-15].
756 case A2_addh_h16_hl:
757 case A2_addh_h16_sat_hl:
758 case A2_combine_hl:
759 case A2_subh_h16_hl:
760 case A2_subh_h16_sat_hl:
761 case M2_mpy_acc_hl_s0:
762 case M2_mpy_acc_hl_s1:
763 case M2_mpy_acc_sat_hl_s0:
764 case M2_mpy_acc_sat_hl_s1:
765 case M2_mpy_hl_s0:
766 case M2_mpy_hl_s1:
767 case M2_mpy_nac_hl_s0:
768 case M2_mpy_nac_hl_s1:
769 case M2_mpy_nac_sat_hl_s0:
770 case M2_mpy_nac_sat_hl_s1:
771 case M2_mpy_rnd_hl_s0:
772 case M2_mpy_rnd_hl_s1:
773 case M2_mpy_sat_hl_s0:
774 case M2_mpy_sat_hl_s1:
775 case M2_mpy_sat_rnd_hl_s0:
776 case M2_mpy_sat_rnd_hl_s1:
777 case M2_mpyd_acc_hl_s0:
778 case M2_mpyd_acc_hl_s1:
779 case M2_mpyd_hl_s0:
780 case M2_mpyd_hl_s1:
781 case M2_mpyd_nac_hl_s0:
782 case M2_mpyd_nac_hl_s1:
783 case M2_mpyd_rnd_hl_s0:
784 case M2_mpyd_rnd_hl_s1:
785 case M2_mpyu_acc_hl_s0:
786 case M2_mpyu_acc_hl_s1:
787 case M2_mpyu_hl_s0:
788 case M2_mpyu_hl_s1:
789 case M2_mpyu_nac_hl_s0:
790 case M2_mpyu_nac_hl_s1:
791 case M2_mpyud_acc_hl_s0:
792 case M2_mpyud_acc_hl_s1:
793 case M2_mpyud_hl_s0:
794 case M2_mpyud_hl_s1:
795 case M2_mpyud_nac_hl_s0:
796 case M2_mpyud_nac_hl_s1:
797 if (OpN == 1) {
798 Bits.set(Begin+16, Begin+32);
799 return true;
800 }
801 if (OpN == 2) {
802 Bits.set(Begin, Begin+16);
803 return true;
804 }
805 break;
806
807 // Two register sources, used bits: R1[16-31], R2[16-31].
808 case A2_addh_h16_hh:
809 case A2_addh_h16_sat_hh:
810 case A2_combine_hh:
811 case A2_subh_h16_hh:
812 case A2_subh_h16_sat_hh:
813 case M2_mpy_acc_hh_s0:
814 case M2_mpy_acc_hh_s1:
815 case M2_mpy_acc_sat_hh_s0:
816 case M2_mpy_acc_sat_hh_s1:
817 case M2_mpy_hh_s0:
818 case M2_mpy_hh_s1:
819 case M2_mpy_nac_hh_s0:
820 case M2_mpy_nac_hh_s1:
821 case M2_mpy_nac_sat_hh_s0:
822 case M2_mpy_nac_sat_hh_s1:
823 case M2_mpy_rnd_hh_s0:
824 case M2_mpy_rnd_hh_s1:
825 case M2_mpy_sat_hh_s0:
826 case M2_mpy_sat_hh_s1:
827 case M2_mpy_sat_rnd_hh_s0:
828 case M2_mpy_sat_rnd_hh_s1:
829 case M2_mpyd_acc_hh_s0:
830 case M2_mpyd_acc_hh_s1:
831 case M2_mpyd_hh_s0:
832 case M2_mpyd_hh_s1:
833 case M2_mpyd_nac_hh_s0:
834 case M2_mpyd_nac_hh_s1:
835 case M2_mpyd_rnd_hh_s0:
836 case M2_mpyd_rnd_hh_s1:
837 case M2_mpyu_acc_hh_s0:
838 case M2_mpyu_acc_hh_s1:
839 case M2_mpyu_hh_s0:
840 case M2_mpyu_hh_s1:
841 case M2_mpyu_nac_hh_s0:
842 case M2_mpyu_nac_hh_s1:
843 case M2_mpyud_acc_hh_s0:
844 case M2_mpyud_acc_hh_s1:
845 case M2_mpyud_hh_s0:
846 case M2_mpyud_hh_s1:
847 case M2_mpyud_nac_hh_s0:
848 case M2_mpyud_nac_hh_s1:
849 if (OpN == 1 || OpN == 2) {
850 Bits.set(Begin+16, Begin+32);
851 return true;
852 }
853 break;
854 }
855
856 return false;
857}
858
859
860// Calculate the register class that matches Reg:Sub. For example, if
861// vreg1 is a double register, then vreg1:subreg_hireg would match "int"
862// register class.
863const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
864 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
865 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
866 return nullptr;
867 auto *RC = MRI.getRegClass(RR.Reg);
868 if (RR.Sub == 0)
869 return RC;
870
871 auto VerifySR = [] (unsigned Sub) -> void {
872 assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
873 };
874
875 switch (RC->getID()) {
876 case Hexagon::DoubleRegsRegClassID:
877 VerifySR(RR.Sub);
878 return &Hexagon::IntRegsRegClass;
879 }
880 return nullptr;
881}
882
883
884// Check if RD could be replaced with RS at any possible use of RD.
885// For example a predicate register cannot be replaced with a integer
886// register, but a 64-bit register with a subregister can be replaced
887// with a 32-bit register.
888bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
889 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
890 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
891 !TargetRegisterInfo::isVirtualRegister(RS.Reg))
892 return false;
893 // Return false if one (or both) classes are nullptr.
894 auto *DRC = getFinalVRegClass(RD, MRI);
895 if (!DRC)
896 return false;
897
898 return DRC == getFinalVRegClass(RS, MRI);
899}
900
901
902//
903// Dead code elimination
904//
905namespace {
906 class DeadCodeElimination {
907 public:
908 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
909 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
910 MDT(mdt), MRI(mf.getRegInfo()) {}
911
912 bool run() {
913 return runOnNode(MDT.getRootNode());
914 }
915
916 private:
917 bool isDead(unsigned R) const;
918 bool runOnNode(MachineDomTreeNode *N);
919
920 MachineFunction &MF;
921 const HexagonInstrInfo &HII;
922 MachineDominatorTree &MDT;
923 MachineRegisterInfo &MRI;
924 };
925}
926
927
928bool DeadCodeElimination::isDead(unsigned R) const {
929 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
930 MachineInstr *UseI = I->getParent();
931 if (UseI->isDebugValue())
932 continue;
933 if (UseI->isPHI()) {
934 assert(!UseI->getOperand(0).getSubReg());
935 unsigned DR = UseI->getOperand(0).getReg();
936 if (DR == R)
937 continue;
938 }
939 return false;
940 }
941 return true;
942}
943
944
945bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
946 bool Changed = false;
947 typedef GraphTraits<MachineDomTreeNode*> GTN;
948 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
949 Changed |= runOnNode(*I);
950
951 MachineBasicBlock *B = N->getBlock();
952 std::vector<MachineInstr*> Instrs;
953 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
954 Instrs.push_back(&*I);
955
956 for (auto MI : Instrs) {
957 unsigned Opc = MI->getOpcode();
958 // Do not touch lifetime markers. This is why the target-independent DCE
959 // cannot be used.
960 if (Opc == TargetOpcode::LIFETIME_START ||
961 Opc == TargetOpcode::LIFETIME_END)
962 continue;
963 bool Store = false;
964 if (MI->isInlineAsm())
965 continue;
966 // Delete PHIs if possible.
967 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
968 continue;
969
970 bool AllDead = true;
971 SmallVector<unsigned,2> Regs;
972 for (auto &Op : MI->operands()) {
973 if (!Op.isReg() || !Op.isDef())
974 continue;
975 unsigned R = Op.getReg();
976 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
977 AllDead = false;
978 break;
979 }
980 Regs.push_back(R);
981 }
982 if (!AllDead)
983 continue;
984
985 B->erase(MI);
986 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
987 MRI.markUsesInDebugValueAsUndef(Regs[i]);
988 Changed = true;
989 }
990
991 return Changed;
992}
993
994
995//
996// Eliminate redundant instructions
997//
998// This transformation will identify instructions where the output register
999// is the same as one of its input registers. This only works on instructions
1000// that define a single register (unlike post-increment loads, for example).
1001// The equality check is actually more detailed: the code calculates which
1002// bits of the output are used, and only compares these bits with the input
1003// registers.
1004// If the output matches an input, the instruction is replaced with COPY.
1005// The copies will be removed by another transformation.
1006namespace {
1007 class RedundantInstrElimination : public Transformation {
1008 public:
1009 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1010 MachineRegisterInfo &mri)
1011 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1012 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1013 private:
1014 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1015 unsigned &LostB, unsigned &LostE);
1016 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1017 unsigned &LostB, unsigned &LostE);
1018 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1019 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1020 uint16_t Begin);
1021 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1022
1023 const HexagonInstrInfo &HII;
1024 MachineRegisterInfo &MRI;
1025 BitTracker &BT;
1026 };
1027}
1028
1029
1030// Check if the instruction is a lossy shift left, where the input being
1031// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1032// of bit indices that are lost.
1033bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1034 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1035 using namespace Hexagon;
1036 unsigned Opc = MI.getOpcode();
1037 unsigned ImN, RegN, Width;
1038 switch (Opc) {
1039 case S2_asl_i_p:
1040 ImN = 2;
1041 RegN = 1;
1042 Width = 64;
1043 break;
1044 case S2_asl_i_p_acc:
1045 case S2_asl_i_p_and:
1046 case S2_asl_i_p_nac:
1047 case S2_asl_i_p_or:
1048 case S2_asl_i_p_xacc:
1049 ImN = 3;
1050 RegN = 2;
1051 Width = 64;
1052 break;
1053 case S2_asl_i_r:
1054 ImN = 2;
1055 RegN = 1;
1056 Width = 32;
1057 break;
1058 case S2_addasl_rrri:
1059 case S4_andi_asl_ri:
1060 case S4_ori_asl_ri:
1061 case S4_addi_asl_ri:
1062 case S4_subi_asl_ri:
1063 case S2_asl_i_r_acc:
1064 case S2_asl_i_r_and:
1065 case S2_asl_i_r_nac:
1066 case S2_asl_i_r_or:
1067 case S2_asl_i_r_sat:
1068 case S2_asl_i_r_xacc:
1069 ImN = 3;
1070 RegN = 2;
1071 Width = 32;
1072 break;
1073 default:
1074 return false;
1075 }
1076
1077 if (RegN != OpN)
1078 return false;
1079
1080 assert(MI.getOperand(ImN).isImm());
1081 unsigned S = MI.getOperand(ImN).getImm();
1082 if (S == 0)
1083 return false;
1084 LostB = Width-S;
1085 LostE = Width;
1086 return true;
1087}
1088
1089
1090// Check if the instruction is a lossy shift right, where the input being
1091// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1092// of bit indices that are lost.
1093bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1094 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1095 using namespace Hexagon;
1096 unsigned Opc = MI.getOpcode();
1097 unsigned ImN, RegN;
1098 switch (Opc) {
1099 case S2_asr_i_p:
1100 case S2_lsr_i_p:
1101 ImN = 2;
1102 RegN = 1;
1103 break;
1104 case S2_asr_i_p_acc:
1105 case S2_asr_i_p_and:
1106 case S2_asr_i_p_nac:
1107 case S2_asr_i_p_or:
1108 case S2_lsr_i_p_acc:
1109 case S2_lsr_i_p_and:
1110 case S2_lsr_i_p_nac:
1111 case S2_lsr_i_p_or:
1112 case S2_lsr_i_p_xacc:
1113 ImN = 3;
1114 RegN = 2;
1115 break;
1116 case S2_asr_i_r:
1117 case S2_lsr_i_r:
1118 ImN = 2;
1119 RegN = 1;
1120 break;
1121 case S4_andi_lsr_ri:
1122 case S4_ori_lsr_ri:
1123 case S4_addi_lsr_ri:
1124 case S4_subi_lsr_ri:
1125 case S2_asr_i_r_acc:
1126 case S2_asr_i_r_and:
1127 case S2_asr_i_r_nac:
1128 case S2_asr_i_r_or:
1129 case S2_lsr_i_r_acc:
1130 case S2_lsr_i_r_and:
1131 case S2_lsr_i_r_nac:
1132 case S2_lsr_i_r_or:
1133 case S2_lsr_i_r_xacc:
1134 ImN = 3;
1135 RegN = 2;
1136 break;
1137
1138 default:
1139 return false;
1140 }
1141
1142 if (RegN != OpN)
1143 return false;
1144
1145 assert(MI.getOperand(ImN).isImm());
1146 unsigned S = MI.getOperand(ImN).getImm();
1147 LostB = 0;
1148 LostE = S;
1149 return true;
1150}
1151
1152
1153// Calculate the bit vector that corresponds to the used bits of register Reg.
1154// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1155// culation fails (i.e. the used bits are unknown), it returns false. Other-
1156// wise, it returns true and sets the corresponding bits in Bits.
1157bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1158 BitVector Used(Bits.size());
1159 RegisterSet Visited;
1160 std::vector<unsigned> Pending;
1161 Pending.push_back(Reg);
1162
1163 for (unsigned i = 0; i < Pending.size(); ++i) {
1164 unsigned R = Pending[i];
1165 if (Visited.has(R))
1166 continue;
1167 Visited.insert(R);
1168 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1169 BitTracker::RegisterRef UR = *I;
1170 unsigned B, W;
1171 if (!HBS::getSubregMask(UR, B, W, MRI))
1172 return false;
1173 MachineInstr &UseI = *I->getParent();
1174 if (UseI.isPHI() || UseI.isCopy()) {
1175 unsigned DefR = UseI.getOperand(0).getReg();
1176 if (!TargetRegisterInfo::isVirtualRegister(DefR))
1177 return false;
1178 Pending.push_back(DefR);
1179 } else {
1180 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1181 return false;
1182 }
1183 }
1184 }
1185 Bits |= Used;
1186 return true;
1187}
1188
1189
1190// Calculate the bits used by instruction MI in a register in operand OpN.
1191// Return true/false if the calculation succeeds/fails. If is succeeds, set
1192// used bits in Bits. This function does not reset any bits in Bits, so
1193// subsequent calls over different instructions will result in the union
1194// of the used bits in all these instructions.
1195// The register in question may be used with a sub-register, whereas Bits
1196// holds the bits for the entire register. To keep track of that, the
1197// argument Begin indicates where in Bits is the lowest-significant bit
1198// of the register used in operand OpN. For example, in instruction:
1199// vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1200// the operand 1 is a 32-bit register, which happens to be a subregister
1201// of the 64-bit register vreg2, and that subregister starts at position 32.
1202// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1203// of vreg2:subreg_hireg.
1204bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1205 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1206 unsigned Opc = MI.getOpcode();
1207 BitVector T(Bits.size());
1208 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1209 // Even if we don't have bits yet, we could still provide some information
1210 // if the instruction is a lossy shift: the lost bits will be marked as
1211 // not used.
1212 unsigned LB, LE;
1213 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1214 assert(MI.getOperand(OpN).isReg());
1215 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1216 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1217 uint16_t Width = RC->getSize()*8;
1218
1219 if (!GotBits)
1220 T.set(Begin, Begin+Width);
1221 assert(LB <= LE && LB < Width && LE <= Width);
1222 T.reset(Begin+LB, Begin+LE);
1223 GotBits = true;
1224 }
1225 if (GotBits)
1226 Bits |= T;
1227 return GotBits;
1228}
1229
1230
1231// Calculates the used bits in RD ("defined register"), and checks if these
1232// bits in RS ("used register") and RD are identical.
1233bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1234 BitTracker::RegisterRef RS) {
1235 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1236 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1237
1238 unsigned DB, DW;
1239 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1240 return false;
1241 unsigned SB, SW;
1242 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1243 return false;
1244 if (SW != DW)
1245 return false;
1246
1247 BitVector Used(DC.width());
1248 if (!computeUsedBits(RD.Reg, Used))
1249 return false;
1250
1251 for (unsigned i = 0; i != DW; ++i)
1252 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1253 return false;
1254 return true;
1255}
1256
1257
1258bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1259 const RegisterSet&) {
1260 bool Changed = false;
1261
1262 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1263 NextI = std::next(I);
1264 MachineInstr *MI = &*I;
1265
1266 if (MI->getOpcode() == TargetOpcode::COPY)
1267 continue;
1268 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1269 continue;
1270 unsigned NumD = MI->getDesc().getNumDefs();
1271 if (NumD != 1)
1272 continue;
1273
1274 BitTracker::RegisterRef RD = MI->getOperand(0);
1275 if (!BT.has(RD.Reg))
1276 continue;
1277 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001278 auto At = MI->isPHI() ? B.getFirstNonPHI()
1279 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001280
1281 // Find a source operand that is equal to the result.
1282 for (auto &Op : MI->uses()) {
1283 if (!Op.isReg())
1284 continue;
1285 BitTracker::RegisterRef RS = Op;
1286 if (!BT.has(RS.Reg))
1287 continue;
1288 if (!HBS::isTransparentCopy(RD, RS, MRI))
1289 continue;
1290
1291 unsigned BN, BW;
1292 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1293 continue;
1294
1295 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1296 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1297 continue;
1298
1299 // If found, replace the instruction with a COPY.
1300 DebugLoc DL = MI->getDebugLoc();
1301 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1302 unsigned NewR = MRI.createVirtualRegister(FRC);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001303 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001304 .addReg(RS.Reg, 0, RS.Sub);
1305 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1306 BT.put(BitTracker::RegisterRef(NewR), SC);
1307 Changed = true;
1308 break;
1309 }
1310 }
1311
1312 return Changed;
1313}
1314
1315
1316//
1317// Const generation
1318//
1319// Recognize instructions that produce constant values known at compile-time.
1320// Replace them with register definitions that load these constants directly.
1321namespace {
1322 class ConstGeneration : public Transformation {
1323 public:
1324 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1325 MachineRegisterInfo &mri)
1326 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1327 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1328 private:
1329 bool isTfrConst(const MachineInstr *MI) const;
1330 bool isConst(unsigned R, int64_t &V) const;
1331 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1332 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1333
1334 const HexagonInstrInfo &HII;
1335 MachineRegisterInfo &MRI;
1336 BitTracker &BT;
1337 };
1338}
1339
1340bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1341 if (!BT.has(R))
1342 return false;
1343 const BitTracker::RegisterCell &RC = BT.lookup(R);
1344 int64_t T = 0;
1345 for (unsigned i = RC.width(); i > 0; --i) {
1346 const BitTracker::BitValue &V = RC[i-1];
1347 T <<= 1;
1348 if (V.is(1))
1349 T |= 1;
1350 else if (!V.is(0))
1351 return false;
1352 }
1353 C = T;
1354 return true;
1355}
1356
1357
1358bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
1359 unsigned Opc = MI->getOpcode();
1360 switch (Opc) {
1361 case Hexagon::A2_combineii:
1362 case Hexagon::A4_combineii:
1363 case Hexagon::A2_tfrsi:
1364 case Hexagon::A2_tfrpi:
1365 case Hexagon::TFR_PdTrue:
1366 case Hexagon::TFR_PdFalse:
1367 case Hexagon::CONST32_Int_Real:
1368 case Hexagon::CONST64_Int_Real:
1369 return true;
1370 }
1371 return false;
1372}
1373
1374
1375// Generate a transfer-immediate instruction that is appropriate for the
1376// register class and the actual value being transferred.
1377unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1378 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1379 unsigned Reg = MRI.createVirtualRegister(RC);
1380 if (RC == &Hexagon::IntRegsRegClass) {
1381 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1382 .addImm(int32_t(C));
1383 return Reg;
1384 }
1385
1386 if (RC == &Hexagon::DoubleRegsRegClass) {
1387 if (isInt<8>(C)) {
1388 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1389 .addImm(C);
1390 return Reg;
1391 }
1392
1393 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1394 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1395 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1396 : Hexagon::A4_combineii;
1397 BuildMI(B, At, DL, HII.get(Opc), Reg)
1398 .addImm(int32_t(Hi))
1399 .addImm(int32_t(Lo));
1400 return Reg;
1401 }
1402
1403 BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1404 .addImm(C);
1405 return Reg;
1406 }
1407
1408 if (RC == &Hexagon::PredRegsRegClass) {
1409 unsigned Opc;
1410 if (C == 0)
1411 Opc = Hexagon::TFR_PdFalse;
1412 else if ((C & 0xFF) == 0xFF)
1413 Opc = Hexagon::TFR_PdTrue;
1414 else
1415 return 0;
1416 BuildMI(B, At, DL, HII.get(Opc), Reg);
1417 return Reg;
1418 }
1419
1420 return 0;
1421}
1422
1423
1424bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1425 bool Changed = false;
1426 RegisterSet Defs;
1427
1428 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1429 if (isTfrConst(I))
1430 continue;
1431 Defs.clear();
1432 HBS::getInstrDefs(*I, Defs);
1433 if (Defs.count() != 1)
1434 continue;
1435 unsigned DR = Defs.find_first();
1436 if (!TargetRegisterInfo::isVirtualRegister(DR))
1437 continue;
1438 int64_t C;
1439 if (isConst(DR, C)) {
1440 DebugLoc DL = I->getDebugLoc();
1441 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1442 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1443 if (ImmReg) {
1444 HBS::replaceReg(DR, ImmReg, MRI);
1445 BT.put(ImmReg, BT.lookup(DR));
1446 Changed = true;
1447 }
1448 }
1449 }
1450 return Changed;
1451}
1452
1453
1454//
1455// Copy generation
1456//
1457// Identify pairs of available registers which hold identical values.
1458// In such cases, only one of them needs to be calculated, the other one
1459// will be defined as a copy of the first.
1460//
1461// Copy propagation
1462//
1463// Eliminate register copies RD = RS, by replacing the uses of RD with
1464// with uses of RS.
1465namespace {
1466 class CopyGeneration : public Transformation {
1467 public:
1468 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1469 MachineRegisterInfo &mri)
1470 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1471 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1472 private:
1473 bool findMatch(const BitTracker::RegisterRef &Inp,
1474 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1475
1476 const HexagonInstrInfo &HII;
1477 MachineRegisterInfo &MRI;
1478 BitTracker &BT;
1479 };
1480
1481 class CopyPropagation : public Transformation {
1482 public:
1483 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1484 : Transformation(false), MRI(mri) {}
1485 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1486 static bool isCopyReg(unsigned Opc);
1487 private:
1488 bool propagateRegCopy(MachineInstr &MI);
1489
1490 MachineRegisterInfo &MRI;
1491 };
1492
1493}
1494
1495
1496/// Check if there is a register in AVs that is identical to Inp. If so,
1497/// set Out to the found register. The output may be a pair Reg:Sub.
1498bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1499 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1500 if (!BT.has(Inp.Reg))
1501 return false;
1502 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1503 unsigned B, W;
1504 if (!HBS::getSubregMask(Inp, B, W, MRI))
1505 return false;
1506
1507 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1508 if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
1509 continue;
1510 const BitTracker::RegisterCell &RC = BT.lookup(R);
1511 unsigned RW = RC.width();
1512 if (W == RW) {
1513 if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
1514 continue;
1515 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1516 continue;
1517 Out.Reg = R;
1518 Out.Sub = 0;
1519 return true;
1520 }
1521 // Check if there is a super-register, whose part (with a subregister)
1522 // is equal to the input.
1523 // Only do double registers for now.
1524 if (W*2 != RW)
1525 continue;
1526 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1527 continue;
1528
1529 if (HBS::isEqual(InpRC, B, RC, 0, W))
1530 Out.Sub = Hexagon::subreg_loreg;
1531 else if (HBS::isEqual(InpRC, B, RC, W, W))
1532 Out.Sub = Hexagon::subreg_hireg;
1533 else
1534 continue;
1535 Out.Reg = R;
1536 return true;
1537 }
1538 return false;
1539}
1540
1541
1542bool CopyGeneration::processBlock(MachineBasicBlock &B,
1543 const RegisterSet &AVs) {
1544 RegisterSet AVB(AVs);
1545 bool Changed = false;
1546 RegisterSet Defs;
1547
1548 for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1549 ++I, AVB.insert(Defs)) {
1550 NextI = std::next(I);
1551 Defs.clear();
1552 HBS::getInstrDefs(*I, Defs);
1553
1554 unsigned Opc = I->getOpcode();
1555 if (CopyPropagation::isCopyReg(Opc))
1556 continue;
1557
1558 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1559 BitTracker::RegisterRef MR;
1560 if (!findMatch(R, MR, AVB))
1561 continue;
1562 DebugLoc DL = I->getDebugLoc();
1563 auto *FRC = HBS::getFinalVRegClass(MR, MRI);
1564 unsigned NewR = MRI.createVirtualRegister(FRC);
1565 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1566 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1567 .addReg(MR.Reg, 0, MR.Sub);
1568 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1569 }
1570 }
1571
1572 return Changed;
1573}
1574
1575
1576bool CopyPropagation::isCopyReg(unsigned Opc) {
1577 switch (Opc) {
1578 case TargetOpcode::COPY:
1579 case TargetOpcode::REG_SEQUENCE:
1580 case Hexagon::A2_tfr:
1581 case Hexagon::A2_tfrp:
1582 case Hexagon::A2_combinew:
1583 case Hexagon::A4_combineir:
1584 case Hexagon::A4_combineri:
1585 return true;
1586 default:
1587 break;
1588 }
1589 return false;
1590}
1591
1592
1593bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1594 bool Changed = false;
1595 unsigned Opc = MI.getOpcode();
1596 BitTracker::RegisterRef RD = MI.getOperand(0);
1597 assert(MI.getOperand(0).getSubReg() == 0);
1598
1599 switch (Opc) {
1600 case TargetOpcode::COPY:
1601 case Hexagon::A2_tfr:
1602 case Hexagon::A2_tfrp: {
1603 BitTracker::RegisterRef RS = MI.getOperand(1);
1604 if (!HBS::isTransparentCopy(RD, RS, MRI))
1605 break;
1606 if (RS.Sub != 0)
1607 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1608 else
1609 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1610 break;
1611 }
1612 case TargetOpcode::REG_SEQUENCE: {
1613 BitTracker::RegisterRef SL, SH;
1614 if (HBS::parseRegSequence(MI, SL, SH)) {
1615 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1616 SL.Reg, SL.Sub, MRI);
1617 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1618 SH.Reg, SH.Sub, MRI);
1619 }
1620 break;
1621 }
1622 case Hexagon::A2_combinew: {
1623 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1624 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1625 RL.Reg, RL.Sub, MRI);
1626 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1627 RH.Reg, RH.Sub, MRI);
1628 break;
1629 }
1630 case Hexagon::A4_combineir:
1631 case Hexagon::A4_combineri: {
1632 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1633 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1634 : Hexagon::subreg_hireg;
1635 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1636 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1637 break;
1638 }
1639 }
1640 return Changed;
1641}
1642
1643
1644bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1645 std::vector<MachineInstr*> Instrs;
1646 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1647 Instrs.push_back(&*I);
1648
1649 bool Changed = false;
1650 for (auto I : Instrs) {
1651 unsigned Opc = I->getOpcode();
1652 if (!CopyPropagation::isCopyReg(Opc))
1653 continue;
1654 Changed |= propagateRegCopy(*I);
1655 }
1656
1657 return Changed;
1658}
1659
1660
1661//
1662// Bit simplification
1663//
1664// Recognize patterns that can be simplified and replace them with the
1665// simpler forms.
1666// This is by no means complete
1667namespace {
1668 class BitSimplification : public Transformation {
1669 public:
1670 BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1671 MachineRegisterInfo &mri)
1672 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1673 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1674 private:
1675 struct RegHalf : public BitTracker::RegisterRef {
1676 bool Low; // Low/High halfword.
1677 };
1678
1679 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1680 unsigned B, RegHalf &RH);
1681
1682 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1683 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1684 unsigned getCombineOpcode(bool HLow, bool LLow);
1685
1686 bool genStoreUpperHalf(MachineInstr *MI);
1687 bool genStoreImmediate(MachineInstr *MI);
1688 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1689 const BitTracker::RegisterCell &RC);
1690 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1691 const BitTracker::RegisterCell &RC);
1692 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1693 const BitTracker::RegisterCell &RC);
1694 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1695 const BitTracker::RegisterCell &RC);
1696 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1697 const BitTracker::RegisterCell &RC);
1698
1699 const HexagonInstrInfo &HII;
1700 MachineRegisterInfo &MRI;
1701 BitTracker &BT;
1702 };
1703}
1704
1705
1706// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1707// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1708// set the information about the found register in RH.
1709bool BitSimplification::matchHalf(unsigned SelfR,
1710 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1711 // XXX This could be searching in the set of available registers, in case
1712 // the match is not exact.
1713
1714 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1715 // register and all the bits B..B+15 match between RC and the register.
1716 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1717 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1718 bool Low = false;
1719 unsigned I = B;
1720 while (I < B+16 && RC[I].num())
1721 I++;
1722 if (I == B+16)
1723 return false;
1724
1725 unsigned Reg = RC[I].RefI.Reg;
1726 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1727 if (P < I-B)
1728 return false;
1729 unsigned Pos = P - (I-B);
1730
1731 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1732 return false;
1733 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1734 return false;
1735 if (!BT.has(Reg))
1736 return false;
1737
1738 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1739 if (Pos+16 > SC.width())
1740 return false;
1741
1742 for (unsigned i = 0; i < 16; ++i) {
1743 const BitTracker::BitValue &RV = RC[i+B];
1744 if (RV.Type == BitTracker::BitValue::Ref) {
1745 if (RV.RefI.Reg != Reg)
1746 return false;
1747 if (RV.RefI.Pos != i+Pos)
1748 return false;
1749 continue;
1750 }
1751 if (RC[i+B] != SC[i+Pos])
1752 return false;
1753 }
1754
1755 unsigned Sub = 0;
1756 switch (Pos) {
1757 case 0:
1758 Sub = Hexagon::subreg_loreg;
1759 Low = true;
1760 break;
1761 case 16:
1762 Sub = Hexagon::subreg_loreg;
1763 Low = false;
1764 break;
1765 case 32:
1766 Sub = Hexagon::subreg_hireg;
1767 Low = true;
1768 break;
1769 case 48:
1770 Sub = Hexagon::subreg_hireg;
1771 Low = false;
1772 break;
1773 default:
1774 return false;
1775 }
1776
1777 RH.Reg = Reg;
1778 RH.Sub = Sub;
1779 RH.Low = Low;
1780 // If the subregister is not valid with the register, set it to 0.
1781 if (!HBS::getFinalVRegClass(RH, MRI))
1782 RH.Sub = 0;
1783
1784 return true;
1785}
1786
1787
1788// Check if RC matches the pattern of a S2_packhl. If so, return true and
1789// set the inputs Rs and Rt.
1790bool BitSimplification::matchPackhl(unsigned SelfR,
1791 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1792 BitTracker::RegisterRef &Rt) {
1793 RegHalf L1, H1, L2, H2;
1794
1795 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1796 return false;
1797 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1798 return false;
1799
1800 // Rs = H1.L1, Rt = H2.L2
1801 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1802 return false;
1803 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1804 return false;
1805
1806 Rs = H1;
1807 Rt = H2;
1808 return true;
1809}
1810
1811
1812unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1813 return HLow ? LLow ? Hexagon::A2_combine_ll
1814 : Hexagon::A2_combine_lh
1815 : LLow ? Hexagon::A2_combine_hl
1816 : Hexagon::A2_combine_hh;
1817}
1818
1819
1820// If MI stores the upper halfword of a register (potentially obtained via
1821// shifts or extracts), replace it with a storerf instruction. This could
1822// cause the "extraction" code to become dead.
1823bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1824 unsigned Opc = MI->getOpcode();
1825 if (Opc != Hexagon::S2_storerh_io)
1826 return false;
1827
1828 MachineOperand &ValOp = MI->getOperand(2);
1829 BitTracker::RegisterRef RS = ValOp;
1830 if (!BT.has(RS.Reg))
1831 return false;
1832 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1833 RegHalf H;
1834 if (!matchHalf(0, RC, 0, H))
1835 return false;
1836 if (H.Low)
1837 return false;
1838 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1839 ValOp.setReg(H.Reg);
1840 ValOp.setSubReg(H.Sub);
1841 return true;
1842}
1843
1844
1845// If MI stores a value known at compile-time, and the value is within a range
1846// that avoids using constant-extenders, replace it with a store-immediate.
1847bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1848 unsigned Opc = MI->getOpcode();
1849 unsigned Align = 0;
1850 switch (Opc) {
1851 case Hexagon::S2_storeri_io:
1852 Align++;
1853 case Hexagon::S2_storerh_io:
1854 Align++;
1855 case Hexagon::S2_storerb_io:
1856 break;
1857 default:
1858 return false;
1859 }
1860
1861 // Avoid stores to frame-indices (due to an unknown offset).
1862 if (!MI->getOperand(0).isReg())
1863 return false;
1864 MachineOperand &OffOp = MI->getOperand(1);
1865 if (!OffOp.isImm())
1866 return false;
1867
1868 int64_t Off = OffOp.getImm();
1869 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1870 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1871 return false;
1872 // Source register:
1873 BitTracker::RegisterRef RS = MI->getOperand(2);
1874 if (!BT.has(RS.Reg))
1875 return false;
1876 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1877 uint64_t U;
1878 if (!HBS::getConst(RC, 0, RC.width(), U))
1879 return false;
1880
1881 // Only consider 8-bit values to avoid constant-extenders.
1882 int V;
1883 switch (Opc) {
1884 case Hexagon::S2_storerb_io:
1885 V = int8_t(U);
1886 break;
1887 case Hexagon::S2_storerh_io:
1888 V = int16_t(U);
1889 break;
1890 case Hexagon::S2_storeri_io:
1891 V = int32_t(U);
1892 break;
1893 }
1894 if (!isInt<8>(V))
1895 return false;
1896
1897 MI->RemoveOperand(2);
1898 switch (Opc) {
1899 case Hexagon::S2_storerb_io:
1900 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1901 break;
1902 case Hexagon::S2_storerh_io:
1903 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1904 break;
1905 case Hexagon::S2_storeri_io:
1906 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1907 break;
1908 }
1909 MI->addOperand(MachineOperand::CreateImm(V));
1910 return true;
1911}
1912
1913
1914// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1915// last instruction in a sequence that results in something equivalent to
1916// the pack-halfwords. The intent is to cause the entire sequence to become
1917// dead.
1918bool BitSimplification::genPackhl(MachineInstr *MI,
1919 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1920 unsigned Opc = MI->getOpcode();
1921 if (Opc == Hexagon::S2_packhl)
1922 return false;
1923 BitTracker::RegisterRef Rs, Rt;
1924 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1925 return false;
1926
1927 MachineBasicBlock &B = *MI->getParent();
1928 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1929 DebugLoc DL = MI->getDebugLoc();
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001930 auto At = MI->isPHI() ? B.getFirstNonPHI()
1931 : MachineBasicBlock::iterator(MI);
1932 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001933 .addReg(Rs.Reg, 0, Rs.Sub)
1934 .addReg(Rt.Reg, 0, Rt.Sub);
1935 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1936 BT.put(BitTracker::RegisterRef(NewR), RC);
1937 return true;
1938}
1939
1940
1941// If MI produces halfword of the input in the low half of the output,
1942// replace it with zero-extend or extractu.
1943bool BitSimplification::genExtractHalf(MachineInstr *MI,
1944 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1945 RegHalf L;
1946 // Check for halfword in low 16 bits, zeros elsewhere.
1947 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1948 return false;
1949
1950 unsigned Opc = MI->getOpcode();
1951 MachineBasicBlock &B = *MI->getParent();
1952 DebugLoc DL = MI->getDebugLoc();
1953
1954 // Prefer zxth, since zxth can go in any slot, while extractu only in
1955 // slots 2 and 3.
1956 unsigned NewR = 0;
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001957 auto At = MI->isPHI() ? B.getFirstNonPHI()
1958 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001959 if (L.Low && Opc != Hexagon::A2_zxth) {
1960 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001961 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001962 .addReg(L.Reg, 0, L.Sub);
1963 } else if (!L.Low && Opc != Hexagon::S2_extractu) {
1964 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1965 BuildMI(B, MI, DL, HII.get(Hexagon::S2_extractu), NewR)
1966 .addReg(L.Reg, 0, L.Sub)
1967 .addImm(16)
1968 .addImm(16);
1969 }
1970 if (NewR == 0)
1971 return false;
1972 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1973 BT.put(BitTracker::RegisterRef(NewR), RC);
1974 return true;
1975}
1976
1977
1978// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
1979// combine.
1980bool BitSimplification::genCombineHalf(MachineInstr *MI,
1981 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1982 RegHalf L, H;
1983 // Check for combine h/l
1984 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
1985 return false;
1986 // Do nothing if this is just a reg copy.
1987 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
1988 return false;
1989
1990 unsigned Opc = MI->getOpcode();
1991 unsigned COpc = getCombineOpcode(H.Low, L.Low);
1992 if (COpc == Opc)
1993 return false;
1994
1995 MachineBasicBlock &B = *MI->getParent();
1996 DebugLoc DL = MI->getDebugLoc();
1997 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001998 auto At = MI->isPHI() ? B.getFirstNonPHI()
1999 : MachineBasicBlock::iterator(MI);
2000 BuildMI(B, At, DL, HII.get(COpc), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002001 .addReg(H.Reg, 0, H.Sub)
2002 .addReg(L.Reg, 0, L.Sub);
2003 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2004 BT.put(BitTracker::RegisterRef(NewR), RC);
2005 return true;
2006}
2007
2008
2009// If MI resets high bits of a register and keeps the lower ones, replace it
2010// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2011bool BitSimplification::genExtractLow(MachineInstr *MI,
2012 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2013 unsigned Opc = MI->getOpcode();
2014 switch (Opc) {
2015 case Hexagon::A2_zxtb:
2016 case Hexagon::A2_zxth:
2017 case Hexagon::S2_extractu:
2018 return false;
2019 }
2020 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2021 int32_t Imm = MI->getOperand(2).getImm();
2022 if (isInt<10>(Imm))
2023 return false;
2024 }
2025
2026 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2027 return false;
2028 unsigned W = RC.width();
2029 while (W > 0 && RC[W-1].is(0))
2030 W--;
2031 if (W == 0 || W == RC.width())
2032 return false;
2033 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2034 : (W == 16) ? Hexagon::A2_zxth
2035 : (W < 10) ? Hexagon::A2_andir
2036 : Hexagon::S2_extractu;
2037 MachineBasicBlock &B = *MI->getParent();
2038 DebugLoc DL = MI->getDebugLoc();
2039
2040 for (auto &Op : MI->uses()) {
2041 if (!Op.isReg())
2042 continue;
2043 BitTracker::RegisterRef RS = Op;
2044 if (!BT.has(RS.Reg))
2045 continue;
2046 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2047 unsigned BN, BW;
2048 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2049 continue;
2050 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2051 continue;
2052
2053 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002054 auto At = MI->isPHI() ? B.getFirstNonPHI()
2055 : MachineBasicBlock::iterator(MI);
2056 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002057 .addReg(RS.Reg, 0, RS.Sub);
2058 if (NewOpc == Hexagon::A2_andir)
2059 MIB.addImm((1 << W) - 1);
2060 else if (NewOpc == Hexagon::S2_extractu)
2061 MIB.addImm(W).addImm(0);
2062 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2063 BT.put(BitTracker::RegisterRef(NewR), RC);
2064 return true;
2065 }
2066 return false;
2067}
2068
2069
2070// Check for tstbit simplification opportunity, where the bit being checked
2071// can be tracked back to another register. For example:
2072// vreg2 = S2_lsr_i_r vreg1, 5
2073// vreg3 = S2_tstbit_i vreg2, 0
2074// =>
2075// vreg3 = S2_tstbit_i vreg1, 5
2076bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2077 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2078 unsigned Opc = MI->getOpcode();
2079 if (Opc != Hexagon::S2_tstbit_i)
2080 return false;
2081
2082 unsigned BN = MI->getOperand(2).getImm();
2083 BitTracker::RegisterRef RS = MI->getOperand(1);
2084 unsigned F, W;
2085 DebugLoc DL = MI->getDebugLoc();
2086 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2087 return false;
2088 MachineBasicBlock &B = *MI->getParent();
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002089 auto At = MI->isPHI() ? B.getFirstNonPHI()
2090 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002091
2092 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2093 const BitTracker::BitValue &V = SC[F+BN];
2094 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2095 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2096 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2097 // a double register, need to use a subregister and adjust bit
2098 // number.
2099 unsigned P = UINT_MAX;
2100 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2101 if (TC == &Hexagon::DoubleRegsRegClass) {
2102 P = V.RefI.Pos;
2103 RR.Sub = Hexagon::subreg_loreg;
2104 if (P >= 32) {
2105 P -= 32;
2106 RR.Sub = Hexagon::subreg_hireg;
2107 }
2108 } else if (TC == &Hexagon::IntRegsRegClass) {
2109 P = V.RefI.Pos;
2110 }
2111 if (P != UINT_MAX) {
2112 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002113 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002114 .addReg(RR.Reg, 0, RR.Sub)
2115 .addImm(P);
2116 HBS::replaceReg(RD.Reg, NewR, MRI);
2117 BT.put(NewR, RC);
2118 return true;
2119 }
2120 } else if (V.is(0) || V.is(1)) {
2121 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2122 unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002123 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002124 HBS::replaceReg(RD.Reg, NewR, MRI);
2125 return true;
2126 }
2127
2128 return false;
2129}
2130
2131
2132bool BitSimplification::processBlock(MachineBasicBlock &B,
2133 const RegisterSet &AVs) {
2134 bool Changed = false;
2135 RegisterSet AVB = AVs;
2136 RegisterSet Defs;
2137
2138 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2139 MachineInstr *MI = &*I;
2140 Defs.clear();
2141 HBS::getInstrDefs(*MI, Defs);
2142
2143 unsigned Opc = MI->getOpcode();
2144 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2145 continue;
2146
2147 if (MI->mayStore()) {
2148 bool T = genStoreUpperHalf(MI);
2149 T = T || genStoreImmediate(MI);
2150 Changed |= T;
2151 continue;
2152 }
2153
2154 if (Defs.count() != 1)
2155 continue;
2156 const MachineOperand &Op0 = MI->getOperand(0);
2157 if (!Op0.isReg() || !Op0.isDef())
2158 continue;
2159 BitTracker::RegisterRef RD = Op0;
2160 if (!BT.has(RD.Reg))
2161 continue;
2162 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2163 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2164
2165 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2166 bool T = genPackhl(MI, RD, RC);
2167 Changed |= T;
2168 continue;
2169 }
2170
2171 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2172 bool T = genExtractHalf(MI, RD, RC);
2173 T = T || genCombineHalf(MI, RD, RC);
2174 T = T || genExtractLow(MI, RD, RC);
2175 Changed |= T;
2176 continue;
2177 }
2178
2179 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2180 bool T = simplifyTstbit(MI, RD, RC);
2181 Changed |= T;
2182 continue;
2183 }
2184 }
2185 return Changed;
2186}
2187
2188
2189bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2190 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2191 auto &HRI = *HST.getRegisterInfo();
2192 auto &HII = *HST.getInstrInfo();
2193
2194 MDT = &getAnalysis<MachineDominatorTree>();
2195 MachineRegisterInfo &MRI = MF.getRegInfo();
2196 bool Changed;
2197
2198 Changed = DeadCodeElimination(MF, *MDT).run();
2199
2200 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2201 BitTracker BT(HE, MF);
2202 DEBUG(BT.trace(true));
2203 BT.run();
2204
2205 MachineBasicBlock &Entry = MF.front();
2206
2207 RegisterSet AIG; // Available registers for IG.
2208 ConstGeneration ImmG(BT, HII, MRI);
2209 Changed |= visitBlock(Entry, ImmG, AIG);
2210
2211 RegisterSet ARE; // Available registers for RIE.
2212 RedundantInstrElimination RIE(BT, HII, MRI);
2213 Changed |= visitBlock(Entry, RIE, ARE);
2214
2215 RegisterSet ACG; // Available registers for CG.
2216 CopyGeneration CopyG(BT, HII, MRI);
2217 Changed |= visitBlock(Entry, CopyG, ACG);
2218
2219 RegisterSet ACP; // Available registers for CP.
2220 CopyPropagation CopyP(HRI, MRI);
2221 Changed |= visitBlock(Entry, CopyP, ACP);
2222
2223 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2224
2225 BT.run();
2226 RegisterSet ABS; // Available registers for BS.
2227 BitSimplification BitS(BT, HII, MRI);
2228 Changed |= visitBlock(Entry, BitS, ABS);
2229
2230 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2231
2232 if (Changed) {
2233 for (auto &B : MF)
2234 for (auto &I : B)
2235 I.clearKillInfo();
2236 DeadCodeElimination(MF, *MDT).run();
2237 }
2238 return Changed;
2239}
2240
2241
2242// Recognize loops where the code at the end of the loop matches the code
2243// before the entry of the loop, and the matching code is such that is can
2244// be simplified. This pass relies on the bit simplification above and only
2245// prepares code in a way that can be handled by the bit simplifcation.
2246//
2247// This is the motivating testcase (and explanation):
2248//
2249// {
2250// loop0(.LBB0_2, r1) // %for.body.preheader
2251// r5:4 = memd(r0++#8)
2252// }
2253// {
2254// r3 = lsr(r4, #16)
2255// r7:6 = combine(r5, r5)
2256// }
2257// {
2258// r3 = insert(r5, #16, #16)
2259// r7:6 = vlsrw(r7:6, #16)
2260// }
2261// .LBB0_2:
2262// {
2263// memh(r2+#4) = r5
2264// memh(r2+#6) = r6 # R6 is really R5.H
2265// }
2266// {
2267// r2 = add(r2, #8)
2268// memh(r2+#0) = r4
2269// memh(r2+#2) = r3 # R3 is really R4.H
2270// }
2271// {
2272// r5:4 = memd(r0++#8)
2273// }
2274// { # "Shuffling" code that sets up R3 and R6
2275// r3 = lsr(r4, #16) # so that their halves can be stored in the
2276// r7:6 = combine(r5, r5) # next iteration. This could be folded into
2277// } # the stores if the code was at the beginning
2278// { # of the loop iteration. Since the same code
2279// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2280// r7:6 = vlsrw(r7:6, #16) # there.
2281// }:endloop0
2282//
2283//
2284// The outcome:
2285//
2286// {
2287// loop0(.LBB0_2, r1)
2288// r5:4 = memd(r0++#8)
2289// }
2290// .LBB0_2:
2291// {
2292// memh(r2+#4) = r5
2293// memh(r2+#6) = r5.h
2294// }
2295// {
2296// r2 = add(r2, #8)
2297// memh(r2+#0) = r4
2298// memh(r2+#2) = r4.h
2299// }
2300// {
2301// r5:4 = memd(r0++#8)
2302// }:endloop0
2303
2304namespace llvm {
2305 FunctionPass *createHexagonLoopRescheduling();
2306 void initializeHexagonLoopReschedulingPass(PassRegistry&);
2307}
2308
2309namespace {
2310 class HexagonLoopRescheduling : public MachineFunctionPass {
2311 public:
2312 static char ID;
2313 HexagonLoopRescheduling() : MachineFunctionPass(ID),
2314 HII(0), HRI(0), MRI(0), BTP(0) {
2315 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2316 }
2317
2318 bool runOnMachineFunction(MachineFunction &MF) override;
2319
2320 private:
2321 const HexagonInstrInfo *HII;
2322 const HexagonRegisterInfo *HRI;
2323 MachineRegisterInfo *MRI;
2324 BitTracker *BTP;
2325
2326 struct LoopCand {
2327 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2328 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2329 MachineBasicBlock *LB, *PB, *EB;
2330 };
2331 typedef std::vector<MachineInstr*> InstrList;
2332 struct InstrGroup {
2333 BitTracker::RegisterRef Inp, Out;
2334 InstrList Ins;
2335 };
2336 struct PhiInfo {
2337 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2338 unsigned DefR;
2339 BitTracker::RegisterRef LR, PR;
2340 MachineBasicBlock *LB, *PB;
2341 };
2342
2343 static unsigned getDefReg(const MachineInstr *MI);
2344 bool isConst(unsigned Reg) const;
2345 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2346 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2347 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2348 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2349 unsigned &InpR2) const;
2350 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2351 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2352 bool processLoop(LoopCand &C);
2353 };
2354}
2355
2356char HexagonLoopRescheduling::ID = 0;
2357
2358INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2359 "Hexagon Loop Rescheduling", false, false)
2360
2361
2362HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2363 MachineBasicBlock &B) {
2364 DefR = HexagonLoopRescheduling::getDefReg(&P);
2365 LB = &B;
2366 PB = nullptr;
2367 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2368 const MachineOperand &OpB = P.getOperand(i+1);
2369 if (OpB.getMBB() == &B) {
2370 LR = P.getOperand(i);
2371 continue;
2372 }
2373 PB = OpB.getMBB();
2374 PR = P.getOperand(i);
2375 }
2376}
2377
2378
2379unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2380 RegisterSet Defs;
2381 HBS::getInstrDefs(*MI, Defs);
2382 if (Defs.count() != 1)
2383 return 0;
2384 return Defs.find_first();
2385}
2386
2387
2388bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2389 if (!BTP->has(Reg))
2390 return false;
2391 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2392 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2393 const BitTracker::BitValue &V = RC[i];
2394 if (!V.is(0) && !V.is(1))
2395 return false;
2396 }
2397 return true;
2398}
2399
2400
2401bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2402 unsigned DefR) const {
2403 unsigned Opc = MI->getOpcode();
2404 switch (Opc) {
2405 case TargetOpcode::COPY:
2406 case Hexagon::S2_lsr_i_r:
2407 case Hexagon::S2_asr_i_r:
2408 case Hexagon::S2_asl_i_r:
2409 case Hexagon::S2_lsr_i_p:
2410 case Hexagon::S2_asr_i_p:
2411 case Hexagon::S2_asl_i_p:
2412 case Hexagon::S2_insert:
2413 case Hexagon::A2_or:
2414 case Hexagon::A2_orp:
2415 case Hexagon::A2_and:
2416 case Hexagon::A2_andp:
2417 case Hexagon::A2_combinew:
2418 case Hexagon::A4_combineri:
2419 case Hexagon::A4_combineir:
2420 case Hexagon::A2_combineii:
2421 case Hexagon::A4_combineii:
2422 case Hexagon::A2_combine_ll:
2423 case Hexagon::A2_combine_lh:
2424 case Hexagon::A2_combine_hl:
2425 case Hexagon::A2_combine_hh:
2426 return true;
2427 }
2428 return false;
2429}
2430
2431
2432bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2433 unsigned InpR) const {
2434 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2435 const MachineOperand &Op = MI->getOperand(i);
2436 if (!Op.isReg())
2437 continue;
2438 if (Op.getReg() == InpR)
2439 return i == n-1;
2440 }
2441 return false;
2442}
2443
2444
2445bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2446 if (!BTP->has(OutR) || !BTP->has(InpR))
2447 return false;
2448 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2449 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2450 const BitTracker::BitValue &V = OutC[i];
2451 if (V.Type != BitTracker::BitValue::Ref)
2452 continue;
2453 if (V.RefI.Reg != InpR)
2454 return false;
2455 }
2456 return true;
2457}
2458
2459
2460bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2461 unsigned OutR2, unsigned &InpR2) const {
2462 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2463 return false;
2464 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2465 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2466 unsigned W = OutC1.width();
2467 unsigned MatchR = 0;
2468 if (W != OutC2.width())
2469 return false;
2470 for (unsigned i = 0; i < W; ++i) {
2471 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2472 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2473 return false;
2474 if (V1.Type != BitTracker::BitValue::Ref)
2475 continue;
2476 if (V1.RefI.Pos != V2.RefI.Pos)
2477 return false;
2478 if (V1.RefI.Reg != InpR1)
2479 return false;
2480 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2481 return false;
2482 if (!MatchR)
2483 MatchR = V2.RefI.Reg;
2484 else if (V2.RefI.Reg != MatchR)
2485 return false;
2486 }
2487 InpR2 = MatchR;
2488 return true;
2489}
2490
2491
2492void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2493 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2494 unsigned NewPredR) {
2495 DenseMap<unsigned,unsigned> RegMap;
2496
2497 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2498 unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2499 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2500 .addReg(NewPredR)
2501 .addMBB(&PB)
2502 .addReg(G.Inp.Reg)
2503 .addMBB(&LB);
2504 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2505
2506 for (unsigned i = G.Ins.size(); i > 0; --i) {
2507 const MachineInstr *SI = G.Ins[i-1];
2508 unsigned DR = getDefReg(SI);
2509 const TargetRegisterClass *RC = MRI->getRegClass(DR);
2510 unsigned NewDR = MRI->createVirtualRegister(RC);
2511 DebugLoc DL = SI->getDebugLoc();
2512
2513 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2514 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2515 const MachineOperand &Op = SI->getOperand(j);
2516 if (!Op.isReg()) {
2517 MIB.addOperand(Op);
2518 continue;
2519 }
2520 if (!Op.isUse())
2521 continue;
2522 unsigned UseR = RegMap[Op.getReg()];
2523 MIB.addReg(UseR, 0, Op.getSubReg());
2524 }
2525 RegMap.insert(std::make_pair(DR, NewDR));
2526 }
2527
2528 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2529}
2530
2531
2532bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2533 DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2534 std::vector<PhiInfo> Phis;
2535 for (auto &I : *C.LB) {
2536 if (!I.isPHI())
2537 break;
2538 unsigned PR = getDefReg(&I);
2539 if (isConst(PR))
2540 continue;
2541 bool BadUse = false, GoodUse = false;
2542 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2543 MachineInstr *UseI = UI->getParent();
2544 if (UseI->getParent() != C.LB) {
2545 BadUse = true;
2546 break;
2547 }
2548 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2549 GoodUse = true;
2550 }
2551 if (BadUse || !GoodUse)
2552 continue;
2553
2554 Phis.push_back(PhiInfo(I, *C.LB));
2555 }
2556
2557 DEBUG({
2558 dbgs() << "Phis: {";
2559 for (auto &I : Phis) {
2560 dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2561 << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2562 << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2563 << I.LB->getNumber() << ')';
2564 }
2565 dbgs() << " }\n";
2566 });
2567
2568 if (Phis.empty())
2569 return false;
2570
2571 bool Changed = false;
2572 InstrList ShufIns;
2573
2574 // Go backwards in the block: for each bit shuffling instruction, check
2575 // if that instruction could potentially be moved to the front of the loop:
2576 // the output of the loop cannot be used in a non-shuffling instruction
2577 // in this loop.
2578 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2579 if (I->isTerminator())
2580 continue;
2581 if (I->isPHI())
2582 break;
2583
2584 RegisterSet Defs;
2585 HBS::getInstrDefs(*I, Defs);
2586 if (Defs.count() != 1)
2587 continue;
2588 unsigned DefR = Defs.find_first();
2589 if (!TargetRegisterInfo::isVirtualRegister(DefR))
2590 continue;
2591 if (!isBitShuffle(&*I, DefR))
2592 continue;
2593
2594 bool BadUse = false;
2595 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2596 MachineInstr *UseI = UI->getParent();
2597 if (UseI->getParent() == C.LB) {
2598 if (UseI->isPHI()) {
2599 // If the use is in a phi node in this loop, then it should be
2600 // the value corresponding to the back edge.
2601 unsigned Idx = UI.getOperandNo();
2602 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2603 BadUse = true;
2604 } else {
2605 auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2606 if (F == ShufIns.end())
2607 BadUse = true;
2608 }
2609 } else {
2610 // There is a use outside of the loop, but there is no epilog block
2611 // suitable for a copy-out.
2612 if (C.EB == nullptr)
2613 BadUse = true;
2614 }
2615 if (BadUse)
2616 break;
2617 }
2618
2619 if (BadUse)
2620 continue;
2621 ShufIns.push_back(&*I);
2622 }
2623
2624 // Partition the list of shuffling instructions into instruction groups,
2625 // where each group has to be moved as a whole (i.e. a group is a chain of
2626 // dependent instructions). A group produces a single live output register,
2627 // which is meant to be the input of the loop phi node (although this is
2628 // not checked here yet). It also uses a single register as its input,
2629 // which is some value produced in the loop body. After moving the group
2630 // to the beginning of the loop, that input register would need to be
2631 // the loop-carried register (through a phi node) instead of the (currently
2632 // loop-carried) output register.
2633 typedef std::vector<InstrGroup> InstrGroupList;
2634 InstrGroupList Groups;
2635
2636 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2637 MachineInstr *SI = ShufIns[i];
2638 if (SI == nullptr)
2639 continue;
2640
2641 InstrGroup G;
2642 G.Ins.push_back(SI);
2643 G.Out.Reg = getDefReg(SI);
2644 RegisterSet Inputs;
2645 HBS::getInstrUses(*SI, Inputs);
2646
2647 for (unsigned j = i+1; j < n; ++j) {
2648 MachineInstr *MI = ShufIns[j];
2649 if (MI == nullptr)
2650 continue;
2651 RegisterSet Defs;
2652 HBS::getInstrDefs(*MI, Defs);
2653 // If this instruction does not define any pending inputs, skip it.
2654 if (!Defs.intersects(Inputs))
2655 continue;
2656 // Otherwise, add it to the current group and remove the inputs that
2657 // are defined by MI.
2658 G.Ins.push_back(MI);
2659 Inputs.remove(Defs);
2660 // Then add all registers used by MI.
2661 HBS::getInstrUses(*MI, Inputs);
2662 ShufIns[j] = nullptr;
2663 }
2664
2665 // Only add a group if it requires at most one register.
2666 if (Inputs.count() > 1)
2667 continue;
2668 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2669 return G.Out.Reg == P.LR.Reg;
2670 };
2671 if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2672 continue;
2673
2674 G.Inp.Reg = Inputs.find_first();
2675 Groups.push_back(G);
2676 }
2677
2678 DEBUG({
2679 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2680 InstrGroup &G = Groups[i];
2681 dbgs() << "Group[" << i << "] inp: "
2682 << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2683 << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2684 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2685 dbgs() << " " << *G.Ins[j];
2686 }
2687 });
2688
2689 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2690 InstrGroup &G = Groups[i];
2691 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2692 continue;
2693 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2694 return G.Out.Reg == P.LR.Reg;
2695 };
2696 auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2697 if (F == Phis.end())
2698 continue;
2699 unsigned PredR = 0;
2700 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
2701 const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
2702 unsigned Opc = DefPredR->getOpcode();
2703 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2704 continue;
2705 if (!DefPredR->getOperand(1).isImm())
2706 continue;
2707 if (DefPredR->getOperand(1).getImm() != 0)
2708 continue;
2709 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2710 if (RC != MRI->getRegClass(F->PR.Reg)) {
2711 PredR = MRI->createVirtualRegister(RC);
2712 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2713 : Hexagon::A2_tfrpi;
2714 auto T = C.PB->getFirstTerminator();
2715 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
2716 BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
2717 .addImm(0);
2718 } else {
2719 PredR = F->PR.Reg;
2720 }
2721 }
2722 assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
2723 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
2724 Changed = true;
2725 }
2726
2727 return Changed;
2728}
2729
2730
2731bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
2732 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2733 HII = HST.getInstrInfo();
2734 HRI = HST.getRegisterInfo();
2735 MRI = &MF.getRegInfo();
2736 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2737 BitTracker BT(HE, MF);
2738 DEBUG(BT.trace(true));
2739 BT.run();
2740 BTP = &BT;
2741
2742 std::vector<LoopCand> Cand;
2743
2744 for (auto &B : MF) {
2745 if (B.pred_size() != 2 || B.succ_size() != 2)
2746 continue;
2747 MachineBasicBlock *PB = nullptr;
2748 bool IsLoop = false;
2749 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2750 if (*PI != &B)
2751 PB = *PI;
2752 else
2753 IsLoop = true;
2754 }
2755 if (!IsLoop)
2756 continue;
2757
2758 MachineBasicBlock *EB = nullptr;
2759 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2760 if (*SI == &B)
2761 continue;
2762 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2763 // edge from B to EP is non-critical.
2764 if ((*SI)->pred_size() == 1)
2765 EB = *SI;
2766 break;
2767 }
2768
2769 Cand.push_back(LoopCand(&B, PB, EB));
2770 }
2771
2772 bool Changed = false;
2773 for (auto &C : Cand)
2774 Changed |= processLoop(C);
2775
2776 return Changed;
2777}
2778
2779//===----------------------------------------------------------------------===//
2780// Public Constructor Functions
2781//===----------------------------------------------------------------------===//
2782
2783FunctionPass *llvm::createHexagonLoopRescheduling() {
2784 return new HexagonLoopRescheduling();
2785}
2786
2787FunctionPass *llvm::createHexagonBitSimplify() {
2788 return new HexagonBitSimplify();
2789}
2790